US20160029604A1 - Multiplex gene editing - Google Patents

Multiplex gene editing Download PDF

Info

Publication number
US20160029604A1
US20160029604A1 US14/698,561 US201514698561A US2016029604A1 US 20160029604 A1 US20160029604 A1 US 20160029604A1 US 201514698561 A US201514698561 A US 201514698561A US 2016029604 A1 US2016029604 A1 US 2016029604A1
Authority
US
United States
Prior art keywords
cell
animal
gene
hdr
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/698,561
Other languages
English (en)
Inventor
Scott C. Fahrenkrug
Daniel F. Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Recombinetics Inc
Original Assignee
Recombinetics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recombinetics Inc filed Critical Recombinetics Inc
Priority to US14/698,561 priority Critical patent/US20160029604A1/en
Assigned to RECOMBINETICS, INC. reassignment RECOMBINETICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CARLSON, DANIEL F., FAHRENKRUG, SCOTT C.
Publication of US20160029604A1 publication Critical patent/US20160029604A1/en
Assigned to HAJAS, PETER reassignment HAJAS, PETER SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RECOMBINETICS, INC.
Priority to US15/923,951 priority patent/US20180235194A1/en
Assigned to RECOMBINETICS INC. reassignment RECOMBINETICS INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HAJAS, PETER
Priority to US17/379,898 priority patent/US12070022B2/en
Priority to US18/771,458 priority patent/US20240381856A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/873Techniques for producing new embryos, e.g. nuclear transfer, manipulation of totipotent cells or production of chimeric embryos
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/15Animals comprising multiple alterations of the genome, by transgenesis or homologous recombination, e.g. obtained by cross-breeding
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/101Bovine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated

Definitions

  • the technical field relates to gene editing at multiple sites, multiple gene edits in vertebrate cells, and uses thereof.
  • HDR homology directed repair
  • FIG. 1A depicts a process for making animals homozygous for two knockouts using single edits.
  • FIG. 1B depicts a hypothetical process of making animals with multiple edits by making of a single edit at a time.
  • FIG. 2 depicts multiplex gene edits used to establish founders at generation F0
  • FIG. 3 Multiplex gene editing of swine RAG2 and IL2R ⁇ .
  • Panel a) Surveyor and RFLP analysis to determine the efficiency of non-homologous end joining (NHEJ) and homology depended repair HDR on cell populations 3 days post transfection.
  • Panel b) RFLP analysis for homology dependent repair on cell populations 11 days post transfection.
  • Panel c) Percentage of colonies positive for HDR at IL2R ⁇ , RAG2 or both. Cells were plated from the population indicated by a “C” in panel a.
  • Panel d) Colony analysis from cells transfected with TALEN mRNA quantities of 2 and 1 ⁇ g for IL2R ⁇ and RAG2 and HDR template at 1 ⁇ M for each. Distribution of colony genotypes is shown below.
  • FIG. 4 Multiplex gene editing of swine APC and p53.
  • Panel a) Surveyor and RFLP analysis to determine the efficiency of non-homologous end joining (NHEJ) and homology depended repair HDR on cell populations 3 days post transfection.
  • Panel b). RFLP analysis for homology dependent repair on cell populations 11 days post transfection.
  • Panels c and d) Percentage of colonies positive derived from the indicated cell population (indicated in panel a, “C” and “D”) for HDR at APC, p53 or both. Colonies with 3 or more HDR alleles are listed below.
  • FIG. 5 Effect of Oligonucleotide HDR template concentration on Five-gene multiplex HDR efficiency. Indicated amounts of TALEN mRNA directed to swine RAG2, IL2Rg, p53, APC and LDLR were co-transfected into pig fibroblasts along with 2 uM (panel a) or 1 uM (panel b) of each cognate HDR template. Percent NHEJ and HDR were measured by Surveyor and RFLP assay.
  • FIG. 6 is a five-gene multiplex data set that shows plots of experimental data for the effect of oligonucleotide HDR template concentration on 5-gene multiplex HDR efficiency.
  • Indicated amounts of TALEN mRNA directed to swine RAG2, IL2Rg, p53, APC and LDLR were co-transfected into pig fibroblasts along with 2 uM (panel a) or 1 uM (panel b) of each cognate HDR template. Percent NHEJ and HDR were measured by Surveyor and RFLP assay.
  • Colony genotypes from 5-gene multiplex HDR Colony genotypes were evaluated by RFLP analysis.
  • FIG. 7 is another five-gene multiplex data set that shows plots of experimental data for a second experiment involving the effect of oligonucleotide HDR template concentration on Five-gene multiplex HDR efficiency.
  • Panel b) A tally of the number of colonies edited at 0-5 loci.
  • FIG. 8 is another five-gene multiplex trial data set that shows colony genotypes.
  • Panel a) Each line represents the genotype of one colony at each specified locus. Three genotypes could be identified; those with the expected RFLP genotype of heterozygous or homozygous HDR as well as those with an RFLP positive fragment, plus a second allele that has a visible shift in size indicative of an insertion or deletion (indel) allele. The percentage of colonies with an edit at the specified locus is indicated below each column.
  • Panel b) A tally of the number of colonies edited at 0-5 loci.
  • FIG. 9 depicts a process of making an F0 generation chimera with targeted nucleases that produce a desired gene knockout or choice of alleles.
  • FIG. 10 depicts establishment of an RF0 generation animal with a normal phenotype and progeny with a failure to thrive (FTT) phenotype and genotype.
  • FTT failure to thrive
  • FIG. 11 depicts a process for making chimeric animals with gametes having the genetics of the donor embryo.
  • FIG. 12 depicts multiplex editing at three targeted loci of NKX-2, GATA4, and MESP1.
  • Panel a) is a schematic of the experiment
  • panel b) shows the targeting of the genes, with the NKX2-5, GATA4, and MESP1 listed as SEQ ID NOs: 1-3, respectively.
  • Panel c) depicts the results of an assay for the experiments. Oligo sequences for each target gene. Novel nucleotides are represented by capital letters.
  • the PTC is represented by light color letters in boxes and the novel HindIll RFLP site is underlined.
  • FIG. 13 depicts multiplex gene-editing using a combination of TALENs and RGENs; assay of transfected cells evaluated by RFLP revealed HDR at both sites.
  • Multiple genes can be modified in a cell or embryo that may be used for research or to make whole animals.
  • Other embodiments involve the complementation of cell or organ loss by selective depopulation of host niches.
  • FIG. 1A has a timeline that illustrates why it takes several years using single edits to make livestock that have only two edited alleles, with the time being about six years for cattle. Edited, in this context, refers to choosing gene and altering it.
  • a gene of interest has to be edited, for instance knocked out (KO), in cultured somatic cells that are cloned to create a heterozygous calf with a targeted KO.
  • the heterozygotes would be raised to maturity for breeding, about 2 years old for cattle, to generate first-generation (F1) male and female heterozygous calves, which would be bred with each other to generate a homozygous knockout calf (F2).
  • F1 first-generation
  • F2 homozygous knockout calf
  • FIG. 2 shows multiple edits being made in a first-generation animal (F0).
  • F0 first-generation animal
  • Embryos are prepared directly or by cloning with two or more edits independently chosen to be heterozygotes or homozygotes and placed in surrogate females to gestate.
  • the resultant animals are F0 generation founders.
  • a plurality of embryos may be prepared and placed in one or more surrogates to produce progeny of both genders, or well-known techniques of embryo-splitting may be used to make a plurality of clonal embryos.
  • Livestock such as pigs that typically produce a litter with both genders may be crossed and propagated.
  • An embodiment is a method of making genetic edits in a vertebrate cell or embryo at a plurality of target chromosomal DNA sites comprising introducing into a vertebrate cell or embryo: a first targeted endonuclease directed to a first target chromosomal DNA site and a first homology directed repair (HDR) template homologous to the first target site sequence; and a second targeted endonuclease directed to a second target chromosomal DNA site and a second HDR template homologous to the second target site sequence, with the first HDR template sequence replacing the native chromosomal DNA sequence at the first target site and the second HDR template sequence replacing the native chromosomal DNA sequence at the second target site sequence.
  • HDR homology directed repair
  • results herein show that too much or too little endonuclease and/or HDR template can have a negative effect, which may have confounded prior research in this area.
  • the inventors have observed that targeted endonucleases can be designed and made correctly but nonetheless fail because they are too efficient. Further, the population of successfully modified cells often does not improve over time. Artisans modifying cells normally look for longevity of the cell and modification as an indicator of stability and health for successful cloning or other uses. But that expectation has often not been helpful in the multiplexing processes herein.
  • the inventors have observed that homologous recombination (HR) introgression efficiencies are variable in the multiplex approach as compared to a single-locus introgression. Some loci were very sensitive but others had large drops in efficiency. There is apparently interference between the endonucleases but the net effect cannot be explained simply, for instance by positing that the endonucleases are competing for common resource.
  • HR homologous recombination
  • HDR processes taught herein may be readily distinguished by the edits, and resultant organisms, being made only at the intended target sites.
  • inventive HDR editing embodiments can be performed free of insertion of extra gene copies and/or free of disruption of genes other than those targeted by the endonucleases.
  • specific edits are made at one location because the HDR template sequence is not copied into sites without appropriate homology.
  • Embodiments include organisms and processes wherein an exogenous allele is copied into chromosomal DNA only at the site of its cognate allele.
  • HDR-based editing An advantage of HDR-based editing is that the edits can be chosen. In contrast, other attempts, by non-homologous end joining (NHEJ) processes, can make indels at multiple positions such that the indels cancel each other out without making a frame shift. This problem becomes significant when multiplexing is involved. But successful use of HDR provides that the edits can be made to ensure that, if desired, the target gene has an intended frame shift. Moreover, allelic replacement requires HDR and cannot be accomplished by NHEJ, vector-driven insertion of nucleic acids, transposon insertions, and the like. Moreover, choosing organism that are free of unwanted edits further increases the degree of difficulty.
  • NHEJ non-homologous end joining
  • An embodiment of the invention provides processes for creating multiple targeted gene knockouts or other edits in a single cell or embryo, a process referred to herein as multiplex gene knockouts or editing.
  • targeted gene refers to a site of chromosomal DNA that is selected for endonuclease attack by design of the endonuclease system, e.g., a TALENs or CRISPR.
  • knockout, inactivated, and disrupted are used interchangeably herein to mean that the targeted site is changed so that the gene expression product is eliminated or greatly reduced so that the gene's expression no longer has a significant impact on the animal as a whole. These terms are sometimes used elsewhere to refer to observably reducing the role of a gene without essentially eliminating its role.
  • Gene editing refers to choosing a gene and altering it. Random insertions, gene trapping, and the like are not gene editing. Examples of gene edits are, at targeted sites, gene knockouts, adding nucleic acids, removing nucleic acids, elimination of all function, introgression of an allele, a hypermorphic alteration, a hypomorphic alteration, and a replacement of one or more alleles.
  • a replacement of an allele refers to a non-meiotic process of copying an exogenous allele over an endogenous allele.
  • the term replacement of an allele means the change is made from the native allele to the exogenous allele without indels or other changes except for, in some cases, degenerate substitutions.
  • the term degenerate substitution means that a base in a codon is changed to another base without changing the amino acid that is coded.
  • the degenerate substitution may be chosen to be in an exon or in an intron.
  • One use for a degenerate substitution is to create a restriction site for easy testing of a presence of the introgressed sequence.
  • the endogenous allele is also referred to herein as the native allele.
  • gene is broad and refers to chromosomal DNA that is expressed to make a functional product.
  • Genes have alleles. Genotypes are homozygous if there are two identical alleles at a particular locus and as heterozygous if the two alleles differ. Alleles are alternative forms of a gene (one member of a pair) that are located at a specific position on a specific chromosome. Alleles determine distinct traits. Alleles have basepair (bp) differences at specific positions in their DNA sequences (distinguishing positions or bp) that give rise to the distinct trait and distinguish them from each another, these distinguishing positions serve as allelic markers.
  • Alleles are commonly described, and are described herein, as being identical if they have the same bases at distinguishing positions; animals naturally have certain variations at other by in other positions. Artisans routinely accommodate natural variations when comparing alleles.
  • the term exactly identical is used herein to mean absolutely no by differences or indels in a DNA alignment.
  • allelic identity is to align the chromosomal DNA in the altered organism with the chromosomal DNA of the exogenous allele as it is recognized in nature.
  • the exogenous allele will have one or more allelic markers.
  • the DNA alignment upstream and downstream of the markers will be identical for a certain distance. Depending on the desired test, this distance may be from, e.g., 10 to 4000 bp.
  • an HDR template can be expected to create a sequence that has exactly identical, the bases on either side of the templated area will, of course, have some natural variation. Artisans routinely distinguish alleles despite the presence of natural variations.
  • centimorgan In genetics, a centimorgan (cM, also called a map unit (m.u.)) is a unit that measures genetic linkage. It is defined as the distance between chromosome positions (loci or markers of loci) for which the expected average number of intervening chromosomal crossovers in a single generation is 0.01. Genes that are close to each other have a lower chance of crossing over compared to genes that are distant from each other on the chromosome. Crossing over is a very rare event when two genes are right next to each other on the chromosome. Crossing over of a single allele relative to its two neighboring alleles is so improbable that such an event must be the product of genetic engineering. Even in the case where animals of the same breeds are involved, natural versus engineered allele replacement can be readily determined when the parents are known. And parentage can be determined with a high degree of accuracy by genotyping potential parents. Parent determination is routine in herds and humans.
  • Embodiments include multiplex gene editing methods that are simultaneous.
  • simultaneous is in contrast to a hypothetical process of treating cells multiple times to achieve multiple edits, as in serial knockouts or serial cloning or intervening cycles of animal breeding.
  • Simultaneous means being present at a useful concentration at the same time, for instance multiple targeted endonucleases being present.
  • the processes can be applied to zygotes and embryos to make organisms wherein all cells or essentially all cells have edited alleles or knockouts.
  • Essentially all cells in the context of a knockout for instance, refers to knocking the gene out of so many cells that the gene is, for practical purposes, absent because its gene products are ineffective for the organism's function.
  • the processes modify cells, and cells in embryos, over a minimal number cell divisions, preferably about zero to about two divisions.
  • Embodiments include a quick process or a process that takes place over various times or numbers of cell divisions is contemplated, for instance: from 0 to 20 replications (cell divisions).
  • All values and ranges within the expressly stated limits are contemplated, e.g., about 0 to about 2 replications, about 0 to about 3 replications, no more than about 4 replications, from about 0 to about 10 replications, 10-17; less than about 7 days, less than about 1, about 2, about 3, about 4, about 5, or about 6 days, from about 0.5 to about 18 days, and the like.
  • the term low-passage refers to primary cells that have undergone no more than about 20 replications.
  • Example 1 see FIG. 3 , describes experiments that attempted, successfully, to use HDR editing to knockout two genes at once and, further, to be able to select cells that are homozygous for both knockouts or heterozygous for each knockout.
  • select is used to refer to the ability to identify and isolate the cells for further use; there were no expressible reporter genes anywhere in the process, which is a highly significant advantage that distinguishes this process from many other approaches.
  • Cells were treated to introduce a first and a second targeted endonuclease (each being a TALENs pair) directed to, respectively, a first gene (Recombination Activating Gene 2, RAG2) and a second gene target (Interleukin Receptor 2, gamma, IL2Rg or ILR2 ⁇ ).
  • the TALENs had to be designed to target intended sites and made in adequate amounts.
  • the treatment of the cells took less than five minutes. Electroporation was used but there are many other suitable protein or DNA introducing-processes described herein.
  • the cells were then cultured so that they formed individual colonies of cells that each descended from a single treated cell. Cells from the various colonies were tested after 3 days or 11 days.
  • the rate of knockout of RAG2 was about six times higher than the rate of knockout of IL2Rg; apparently some genes are more difficult to knockout than others.
  • the efficiency of knocking out both genes was high and cells heterozygous or homozygous for both knockouts were successfully identified.
  • dosage of TALEN mRNA and HDR template had specific and non-specific effects.
  • An increase in TALEN mRNA for IL2Rg led to an increase in both NHEJ and HDR for IL2Rg while NHEJ levels for RAG2 were unchanged.
  • An increase in IL2Rg HDR template reduced HDR at the RAG2 locus suggesting a nonspecific inhibition of homology directed repair by escalation of the concentration of oligonucleotide. This dose sensitivity, particularly at these low doses, has possibly lead others away from pursuit of multiplex processes.
  • Cells from Example 1 have been cloned and, at the time of filing, two animals are pregnant with embryos derived from the same.
  • Example 2 see FIG. 4 , describes experiments that had the same goal of multiplex HDR editing but for different genes.
  • the first gene target was Adenomatous polyposis coli (APC).
  • the second gene target was p53 (the TP53 gene). Cells homozygous for both knockouts and cells heterozygous for both knockouts were detected and isolated.
  • Example 3 describes multiplex HDR editing to knockout 2-5 genes.
  • the gene LDLR was consistently less amenable to modification than the other genes.
  • multiple alleles can be disrupted simultaneously using the TALEN-specified, homology directed repair (HDR).
  • cells and embryos with multiplex knockouts are embodiments of the invention, as well as animals made thereby.
  • Example 4 describes some detailed processes for making various animals and refers to certain genes by way of example.
  • Example 5 describes examples of CRISPR/Cas9 design and production.
  • Example 6 provides further examples of multiplex gene editing with targeted nucleases driving HDR processes.
  • GATA4 GATA binding protein 4
  • NKX2-5 NKX2-5)
  • MEMP1 Mesoderm Posterior Protein 1
  • the objective was to create biallelic knockouts for each gene for use in complementation studies.
  • the process was about 0.5% efficient as 2 clones had the intended biallelic HDR at each gene.
  • the given genes knocked out singly or in combination genes will cause a failure to thrive genotype and early embryonic lethality without complementation. Artisans will appreciate that knockout of these genes individually and interbreeding of heterozygotes to obtain triple knockouts (about 1/66 chance) for FTT and complementation studies is not feasible in livestock.
  • Example 7 provides data that TALENs and Cas9/CRISPR can be mixed to perform multiplex editing of genes. Some genes/alleles are more readily targeted by a TALEN, or Cas9/CRISPR and that the situation may arise that multiplexing must be done with a combination of these tools.
  • EIF4GI Eukaryotic Translation Initiation Factor 4GI
  • RELA p65
  • TALENs and RGENs may be used together or separately for multiplexing Combinations including, for example, 1, 2, 3 4, 5, 6, 7, 8, 9 or 10 TALENs with 1, 2, 3 4, 5, 6, 7, 8, 9 or 10 RGEN reagents, in any combination.
  • Chimeras can be made by preparing a host blastocyst and adding a donor cell from a donor animal.
  • the resultant animal will be a chimer that has cells that originate from both the host and the donor.
  • Some genes are required for the embryo to create certain kinds of cells and cell lineages. When such a gene is knocked out in the host cells, the introduction of a donor cell that has the missing gene can result in those cells and cell lineages being restored to the host embryo; the restored cells have the donor genotype.
  • Such a process is referred to as a complementation process.
  • PSCs pluripotent stem cells
  • xenogenic pluripotent stem cells including human induced PSCs.
  • xenotransplantation has been considered a potential solution to the organ/tissue shortage for greater than 40 years.
  • the fact that no genes were knocked out to disable the formation of the pancreas is significant. Knocking out even one gene in a large vertebrate is a significant investment of resources using conventional processes.
  • overexpression of a gene product in a cell is readily achieved using the present state of the art, for instance, with a plasmid or a vector that places multiple gene cassette copies into the genome. Adding expression of a gene is easier than targeting a gene and knocking it out. The ability to prevent organogenesis by overexpression of a gene product is believed to be unusual at this time. In fact, limitations in the ability to engineer large animal genomes can be significant. Nonetheless, the pig is the preferred donor animal for xenotransplantation due to its similarity in size and physiology to humans as well as its high fecundity and growth rate.
  • FIG. 9 depicts a multiplex process used herein to make gene knockouts or other gene edits as applied in the context of chimeras.
  • Low-passage primary somatic cells are made with gene knockouts. Cells with exactly the desired distribution of heterozygosity and homozygosity for the knockouts are isolated. These cells are used in cloning to make an embryo that is allowed to develop as a host blastocyst.
  • blastocyst is used broadly herein to refer to embryos from two cells to about three weeks.
  • the term embryo is used broadly to refer to animals from zygote to live birth.
  • a donor embryo is established and used as a source of donor cells that provide genes to populate the niche created by the knockouts.
  • the donor cells are introduced into the host blastocyst and reproduce with the host cells to form a chimera having both host and donor cells.
  • the embryo is transferred to a surrogate female and gestated.
  • the progeny of the chimera have host genotypes when the host cells form the gametes. Chimeras have their gender determined by their host blastocyst.
  • FIG. 10 illustrates a failure to thrive phenotype (FTT) complementation process.
  • FTT refers to animals that are not expected to live to an age of sexual maturity.
  • a host embryo is provided with an FTT genotype and phenotype.
  • Multiplex processes are ideal because the FTTs available by knockout of just one gene are limited and are not known for some organs and tissues.
  • the donor cells provide the genes missing in the FTT and provide the missing cell types.
  • the embryo can be a large vertebrate animal and the knockouts can be multiplex, e.g., 2-25 genes.
  • targeted endonucleases can be used to achieve a knockout.
  • an IL2Rg-/y RAG2 ⁇ / ⁇ knockout is the FTT because the host is essentially missing immune functions. But the donor cells do not have those genes missing and the resultant chimera has an essentially normal phenotype for purposes of being able to raise and maintain the animal. But the progeny has the FTT phenotype. The animals can thus be maintained and FTT animals conveniently produced.
  • the chimeras can be any combination of heterozygous and homozygous for the knockouts. Processes for making chimera are thus described that are F0 generation animals that produce failure to thrive (FTT) phenotypes when other processes require an additional generation, or more.
  • Chimera normally pass on the genetics of the host cells.
  • Alternative chimeras that pass the donor cell genetics to their progeny and not the host cell genetics. It turns out that switching the genetic inheritance can create some useful opportunities.
  • FIG. 11 an embryo labeled as G ⁇ host is depicted. The embryo has been prepared with nonfunctional gametes. A donor blastocyst is prepared and used as a source of donor cells. The donor cells provide the genes and cell lineages that are needed to make donor gametes. The resultant chimera has the gametes of the donor cells and creates progeny having donor cell genetics.
  • the host embryo is a male Brahman bull.
  • the donor cells are from a double-muscled bull.
  • the chimera has a Brahman bull phenotype but its progeny are double muscled.
  • the host and donors may be from the same or different breeds or same or different species.
  • the host has been prepared to be sterile, meaning that it cannot sexually reproduce.
  • Some sterile animals may be used to make gametes that are nonfunctional, e.g., immotile sperm, or not make gametes at all, e.g., with early gametogenesis being disrupted.
  • the donor cells may be, for instance, wild-type cells, cells from animal breeds having desirable traits, or genetically modified cells.
  • Embodiments of the invention include chimeric sterile animals, such as chimeric livestock, that have a genetic modification to a chromosome that prevents gametogenesis or spermatogenesis.
  • the chromosome may be an X chromosome, a Y chromosome, or an autosome.
  • the modification may include a disruption of an existing gene.
  • the disruption may be created by altering an existing chromosomal gene so that it cannot be expressed, or by genetically expressing factors that will inhibit the transcription or translation of a gene.
  • gametogenesis means the production of haploid sex cells (ova and spermatozoa) that each carry one-half the genetic compliment of the parents from the germ cell line of each parent.
  • spermatogenesis The production of spermatozoa is spermatogenesis.
  • the fusion of spermatozoa and ova during fertilization results in a zygote cell that has a diploid genome.
  • gametogenic cell refers to a progenitor to an ovum or sperm, typically a germ cell or a spermatogonial cell.
  • One embodiment is a knockout of spermatogonial stem cells (SSC) in the host.
  • SSC spermatogonial stem cells
  • the animal may be made with donor cells that have desirable genetics and supplies SSC cells that make gametes with the donor genotype.
  • Some genes are disrupted in combination to produce one or more effects that cause infertility, for instance, combinations of: Acr/H1.1/Smcp, Acr/Tnp2/Smcp, Tnp2/H1.1/Smcp, Acr/Hlt/Smcp, Tnp2/H1t/Smcp (Nayernia K; Drabent B; Meinhardt A; Adham I M; Schwandt I; Muller C; Sancken U; Kleene KC; Engel W Triple knockouts reveal gene interactions affecting fertility of male mice. Mol. Reprod. Dev 70(4):406-16, 2005).
  • Embodiments include a first line of animals with a knockout of a first gene or genes and a second line of animals with a knockout of a second gene or genes so that male progeny of the lines are infertile.
  • a group of genetically sterile animals can be used to disseminate identical genes from a single donor by sexual reproduction so that many donor progeny may be rapidly generated.
  • Embodiments include animals that are modified to produce only one gender of animal so that users receiving the animals will not be able to easily breed the animals with the traits.
  • Embodiments include making a genetic modification to cells or embryos to inactivate a gene or plurality of genes selective for gametogenesis or spermatozoa activity.
  • One process of genetic modification involves introduction of a targeted nuclease, e.g., a Cas9/CRISPR or mRNA for a TALEN pair that specifically binds to the gene.
  • An animal is cloned from the cells or the modified embryo is directly raised in a surrogate mother.
  • the animal may be a livestock animal or other animal.
  • Gametogenesis may be blocked at an early stage.
  • spermatozoa activity may be disrupted that is essential for fertility but is not otherwise essential to the animal. The animal is thus sterile because it cannot sexually reproduce: however, ARTs may be used to create progeny from the modified sperm.
  • a donor animal that has desirable genetic traits (as a result of breeding and/or genetic engineering) is selected.
  • two, three, or more genes (2-25) may be simultaneously knocked out to produce an F0 generation with the desired combination of alleles. If homozygosity for all of the knockouts creates an FTT, then one option is to make the founders homozygous for all of the knockouts except for one—or whatever the minimum heterozygosity should be for that situation.
  • the one heterozygote gene can allow for a non-FTT phenotype.
  • the multiplex knockouts can be used in combination with complementation to make fostering chimera that have FTT progeny. This process can eliminate generations in the creation of a multiple knockout animal.
  • One group of embodiments relates to immunodeficient pigs or other livestock and processes of making them. These embodiments are examples of multiplex edits, e.g., knockouts that take advantage of the opportunity to manage selection of homozygous and heterozygous knockout genotypes. These demonstrate the power of multiplex to rapidly establish founder lines. They also include further aspects of the inventions that involve making chimeras.
  • pig is the most relevant, non-primate animal model that mimics the size and physiology of humans.
  • fully immunodeficient pigs are not widely available because (1) multiple gene knockouts (KOs) are required, (2) intercrossing to create multi-locus null animals is extremely costly and depending on the number of Kos may be possible, and (3) only small scale germ-free facilities are available for pigs.
  • embodiments include large vertebrate animals with a knockout of both RAG2 and IL2Rg (i.e., RG-KO).
  • the term large vertebrate refers to simians, livestock, dogs, and cats.
  • livestock refers to animals customarily raised for food, such as cattle, sheep, goats, avian (chicken, turkey), pigs, buffalo, and fish.
  • the genes can be knocked out of somatic cells that are then used for cloning to produce a whole animal.
  • embryos can be treated to knockout the genes, with the animals being derived directly from the embryos.
  • the multiplex gene-targeting platform can simultaneously disrupt of T, B and NK cell development in the pig. Accordingly, animals made without such cells can be made directly with the methods herein, as F0 founders, but the phenotype is FTT.
  • the editing of food animal genomes can be greatly accelerated by editing numerous loci at the same time, saving generations of animal breeding that would be required to bring together alleles that are generated instead one at a time.
  • some agricultural traits are complex, meaning that they are manifest as a result of the influence of alleles at more than one gene (from 2 to hundreds). For example, polymorphisms at DGAT, ABCG2, and a polymorphism on chromosome 18 together account for a large portion of the variation in Net Dairy Merit in dairy cattle.
  • Livestock cells or embryos can be subjected to multiplex editing of numerous genes, including various agricultural targets: one or more of ACAN, AMELY, BLG, BMP 1B (FecB), DAZL, DGAT, Eif4GI, GDF8, Horn-poll locus, IGF2, CWC15, KissR/GRP54, OFD 1Y, p65, PRLR, Prmd14, PRNP, Rosa, Socs2, SRY, ZFY, ⁇ -lactoglobulin, CLPG.
  • Some traits like cancer, are caused on the basis of mutations at multiple genes (see APC/p53).
  • numerous disease traits are so-called Complex traits that manifest as a result of the influence of alleles at more than one gene.
  • diabetes, metabolism, heart disease, and neurological diseases are considered complex traits.
  • Embodiments include animal models that are heterozygous and homozygous for individual alleles, or in combination with alleles at other genes, in different combinations.
  • mature onset diabetes of the young loci cause diabetes individually and additively, including; MODY 1 (HNF4 ⁇ ), MODY 2 (GCK), MODY 3 (HNF1 ⁇ ), MODY 4 (Pdx1), MODY 5 (HNF-1 ⁇ ), MODY 6 (eurogenic differentiation 1), MODY 7 (KLF11), MODY 8 (CEL), MODY 9 (PAX4), MODY 10 (INS), MODY 11 (BLK).
  • Livestock cells or embryos can be subjected to multiplex editing of numerous genes for animal modelling, including various disease modeling targets: APC, ApoE, DMD, GHRHR, HR, HSD11B2, LDLR, NF1, NPPA, NR3C2, p53, PKD1, Rbm20, SCNN1G, tP53, DAZL, FAH, HBB, IL2RG, PDX1, PITX3, Runx1, RAG2, GGTA.
  • Embodiments include cells, embryos, and animals with one or more of the above targets being edited, e.g., KO.
  • spermatogonial stem cells offer a second method genetic modification of livestock. Genetic modification or gene edits can be executed in vitro in spermatogonial stem cells isolated from donor testes. Modified cells are transplanted into germ cell-depleted testes of a recipient. Implanted spermatogonial stem cells produce sperm that carry the genetic modification(s) that can be used for breeding via artificial insemination or in vitro fertilization (IVF) to derive founder animals.
  • IVF in vitro fertilization
  • Multiplex editing can be used to purposefully ablate cells or organs from a specific embryonic or animal niche, creating an environment conducive to better donor cell integration, proliferation, and differentiation, enhancing their contribution by complementation orthologous cells, tissues or organs in the embryo, fetus or animal.
  • the animal with the empty niche is a deficiency carrier because it has been created to have a deficiency that can be filled by donor cells and genes.
  • Specific examples include the recipient-elimination, and donor-rescue of gametogenic cell lineages (DAZL, VASA, MIWI, PIWI, and so forth.).
  • multiplex gene editing can be used to induce congenital alopecia, providing opportunity for donor derived cells to participate in hair folliculogenesis.
  • the genes considered for multiplex gene editing to cause alopecia include those identified in OMIM and thr
  • Chimerism with donor cells that have folliculogenic potential may be used to grow human hair follicles.
  • the ablation of organs or tissues in pigs or other vertebrates and growth of organs or tissues from human origins is particularly useful as a source of medical organs or tissues.
  • PRKDC PRKDC
  • BCL11a BMI1, CCR5, CXCR4, DKK1, ETV2
  • FLI1, FLK1, GATA2, GATA4, HHEX KIT
  • LMX1A MYF5, MYOD1, MYOG, NKX2-5
  • NR4A2 PAX3, PDX1, PITX3, Runx1, RAG2, GGTA, HR, HANDII, TBX5.
  • Embodiments include targeting one, two, or more (2-25) of the above targets in a multiplex approach or by other approaches.
  • the methods and inventions described herein with respect to particular targets and targeted endonucleases are broadly applicable.
  • the inventors have prepared primary livestock cells suitable for cloning with edits with all of the following genes. .
  • Animals may be made that are mono-allelic or bi-allelic for a chromosomal modification, using methods that either leave a genetically expressible marker in place, allow for it to be bred out of an animal, or by methods that do not place such a marker in the animal.
  • HDR homologous dependent recombination
  • Tools such as TALENs and recombinase fusion proteins, as well as conventional methods, are discussed elsewhere herein.
  • TALEN-mediated genome modification provides for a bi-allelic alteration to be accomplished in a single generation.
  • an animal homozygous for a knocked-out gene may be made by SCNT and without inbreeding to produce homozygosity.
  • Gestation length and maturation to reproduction age for livestock such as pigs and cattle is a significant barrier to research and to production.
  • Bi-allelic knockout has been achieved in immortal cells lines using other processes such as ZFN and dilution cloning (Liu et al., 2010).
  • Another group recently demonstrated bi-allelic KO of porcine GGTA1 using commercial ZFN reagents (Hauschild et al., 2011) where bi-allelic null cells could be enriched by FACS for the absence of a GGTA1-dependent surface epitope. While these studies demonstrate certain useful concepts, they do not show that animals or livestock could be modified because simple clonal dilution is generally not feasible for primary fibroblast isolates (fibroblasts grow poorly at low density) and biological enrichment for null cells is not available for the majority of genes.
  • Targeted nuclease-induced homologous recombination can be used so as to eliminate the need for linked selection markers.
  • TALENs may be used to precisely transfer specific alleles into a livestock genome by homology dependent repair (HDR).
  • HDR homology dependent repair
  • a specific 1 lbp deletion (the Belgian Blue allele) (Grobet et al., 1997; Kambadur et al., 1997) was introduced into the bovine GDF8 locus (see U.S. 2012/0222143).
  • the btGDF8.1 TALEN pair cleaved up to 16% of chromosomes at the target locus.
  • HDR Homology Directed Repair
  • Homology directed repair is a mechanism in cells to repair ssDNA and double stranded DNA (dsDNA) lesions. This repair mechanism can be used by the cell when there is an HDR template present that has a sequence with significant homology to the lesion site.
  • Specific binding refers to a molecule that binds to a target with a relatively high affinity compared to non-target tissues, and generally involves a plurality of non-covalent interactions, such as electrostatic interactions, van der Waals interactions, hydrogen bonding, and the like.
  • Specific hybridization is a form of specific binding between nucleic acids that have complementary sequences.
  • Proteins can also specifically bind to DNA, for instance, in TALENs or CRISPR/Cas9 systems or by Ga14 motifs.
  • Introgression of an allele refers to a process of copying an exogenous allele over an endogenous allele with a template-guided process.
  • the endogenous allele might actually be excised and replaced by an exogenous nucleic acid allele in some situations but present theory is that the process is a copying mechanism. Since alleles are gene pairs, there is significant homology between them.
  • the allele might be a gene that encodes a protein, or it could have other functions such as encoding a bioactive RNA chain or providing a site for receiving a regulatory protein or RNA.
  • the HDR template is a nucleic acid that comprises the allele that is being introgressed.
  • the template may be a dsDNA or a single-stranded DNA (ssDNA).
  • ssDNA templates are preferably from about 20 to about 5000 residues although other lengths can be used. Artisans will immediately appreciate that all ranges and values within the explicitly stated range are contemplated; e.g., from 500 to 1500 residues, from 20 to 100 residues, and so forth.
  • the template may further comprise flanking sequences that provide homology to DNA adjacent to the endogenous allele or the DNA that is to be replaced.
  • the template may also comprise a sequence that is bound to a targeted nuclease system, and is thus the cognate binding site for the system's DNA-binding member.
  • cognate refers to two biomolecules that typically interact, for example, a receptor and its ligand.
  • one of the biomolecules may be designed with a sequence to bind with an intended, i.e., cognate, DNA site or protein site.
  • Genome editing tools such as transcription activator-like effector nucleases (TALENs) and zinc finger nucleases (ZFNs) have impacted the fields of biotechnology, gene therapy and functional genomic studies in many organisms. More recently, RNA-guided endonucleases (RGENs) are directed to their target sites by a complementary RNA molecule.
  • the Cas9/CRISPR system is a REGEN.
  • tracrRNA is another such tool.
  • These are examples of targeted nuclease systems: these system have a DNA-binding member that localizes the nuclease to a target site. The site is then cut by the nuclease.
  • TALENs and ZFNs have the nuclease fused to the DNA-binding member.
  • Cas9/CRISPR are cognates that find each other on the target DNA.
  • the DNA-binding member has a cognate sequence in the chromosomal DNA.
  • the DNA-binding member is typically designed in light of the intended cognate sequence so as to obtain a nucleolytic action at nor near an intended site. Certain embodiments are applicable to all such systems without limitation; including, embodiments that minimize nuclease re-cleavage, embodiments for making SNPs with precision at an intended residue, and placement of the allele that is being introgressed at the DNA-binding site.
  • TALEN as used herein, is broad and includes a monomeric TALEN that can cleave double stranded DNA without assistance from another TALEN.
  • TALEN is also used to refer to one or both members of a pair of TALENs that are engineered to work together to cleave DNA at the same site.
  • TALENs that work together may be referred to as a left-TALEN and a right-TALEN, which references the handedness of DNA or a TALEN-pair.
  • each DNA binding repeat is responsible for recognizing one base pair in the target DNA sequence.
  • the residues may be assembled to target a DNA sequence.
  • a target site for binding of a TALEN is determined and a fusion molecule comprising a nuclease and a series of RVDs that recognize the target site is created.
  • the nuclease cleaves the DNA so that cellular repair machinery can operate to make a genetic modification at the cut ends.
  • TALEN means a protein comprising a Transcription Activator-like (TAL) effector binding domain and a nuclease domain and includes monomeric TALENs that are functional per se as well as others that require dimerization with another monomeric TALEN.
  • the dimerization can result in a homodimeric TALEN when both monomeric TALEN are identical or can result in a heterodimeric TALEN when monomeric TALEN are different.
  • TALENs have been shown to induce gene modification in immortalized human cells by means of the two major eukaryotic DNA repair pathways, non-homologous end joining (NHEJ) and homology directed repair. TALENs are often used in pairs but monomeric TALENs are known.
  • NHEJ non-homologous end joining
  • Cells for treatment by TALENs include a cultured cell, an immortalized cell, a primary cell, a primary somatic cell, a zygote, a germ cell, a primordial germ cell, a blastocyst, or a stem cell.
  • a TAL effector can be used to target other protein domains (e.g., non-nuclease protein domains) to specific nucleotide sequences.
  • a TAL effector can be linked to a protein domain from, without limitation, a DNA 20 interacting enzyme (e.g., a methylase, a topoisomerase, an integrase, a transposase, or a ligase), a transcription activators or repressor, or a protein that interacts with or modifies other proteins such as histones.
  • a DNA 20 interacting enzyme e.g., a methylase, a topoisomerase, an integrase, a transposase, or a ligase
  • a transcription activators or repressor e.g., a transcription activators or repressor
  • a protein that interacts with or modifies other proteins such as histones.
  • Applications of such TAL effector fusions include, for example, creating or modifying epigenetic regulatory elements, making site-specific insertions, deletions, or repairs in DNA, controlling gene expression, and modifying chromat
  • nuclease includes exonucleases and endonucleases.
  • endonuclease refers to any wild-type or variant enzyme capable of catalyzing the hydrolysis (cleavage) of bonds between nucleic acids within a DNA or RNA molecule, preferably a DNA molecule.
  • Non-limiting examples of endonucleases include type II restriction endonucleases such as FokI, HhaL HindlIL Nod, BbvCl, EcoRI, BOIL and AlwL Endonucleases comprise also rare- cutting endonucleases when having typically a polynucleotide recognition site of about 12-45 basepairs (bp) in length, more preferably of 14-45 bp.
  • Rare-cutting endonucleases induce DNA double-strand breaks (DSBs) at a defined locus.
  • Rare-cutting endonucleases can for example be a targeted endonuclease, a chimeric Zinc-Finger nuclease (ZFN) resulting from the fusion of engineered zinc-finger domains with the catalytic domain of a restriction enzyme such as FokI or a chemical endonuclease.
  • ZFN Zinc-Finger nuclease
  • a chemical or peptidic cleaver is conjugated either to a polymer of nucleic acids or to another DNA recognizing a specific target sequence, thereby targeting the cleavage activity to a specific sequence.
  • Chemical endonucleases also encompass synthetic nucleases like conjugates of orthophenanthroline, a DNA cleaving molecule, and triplex-forming oligonucleotides (TFOs), known to bind specific DNA sequences. Such chemical endonucleases are comprised in the term “endonuclease” according to the present invention.
  • endonuclease examples include I-See I, I-Chu L I-Cre I, I-Csm I, PI-See L PI-Tti L PI-Mtu I, I-Ceu I, I-See IL 1-See III, HO, PI-Civ I, PI-Ctr L PI-Aae I, PI-Bsu I, PI-Dha I, PI-Dra L PI- May L PI-Meh I, PI-Mfu L PI-Mfl I, PI-Mga L PI-Mgo I, PI-Min L PI-Mka L PI-Mle I, PI-Mma I, PI- 30 Msh L PI-Msm I, PI-Mth I, PI-Mtu I, PI-Mxe I, PI-Npu I, PI-Pfu L PI-Rma I, PI-Spb I,
  • a genetic modification made by TALENs or other tools may be, for example, chosen from the list consisting of an insertion, a deletion, insertion of an exogenous nucleic acid fragment, and a substitution.
  • the term insertion is used broadly to mean either literal insertion into the chromosome or use of the exogenous sequence as a template for repair.
  • a target DNA site is identified and a TALEN-pair is created that will specifically bind to the site.
  • the TALEN is delivered to the cell or embryo, e.g., as a protein, mRNA or by a vector that encodes the TALEN.
  • the TALEN cleaves the DNA to make a double-strand break that is then repaired, often resulting in the creation of an indel, or incorporating sequences or polymorphisms contained in an accompanying exogenous nucleic acid that is either inserted into the chromosome or serves as a template for repair of the break with a modified sequence.
  • This template-driven repair is a useful process for changing a chromosome, and provides for effective changes to cellular chromosomes.
  • exogenous nucleic acid means a nucleic acid that is added to the cell or embryo, regardless of whether the nucleic acid is the same or distinct from nucleic acid sequences naturally in the cell.
  • nucleic acid fragment is broad and includes a chromosome, expression cassette, gene, DNA, RNA, mRNA, or portion thereof.
  • the cell or embryo may be, for instance, chosen from the group consisting non-human vertebrates, non-human primates, cattle, horse, swine, sheep, chicken, avian, rabbit, goats, dog, cat, laboratory animal, and fish.
  • Some embodiments involve a composition or a method of making a genetically modified livestock and/or artiodactyl comprising introducing a TALEN-pair into livestock and/or an artiodactyl cell or embryo that makes a genetic modification to DNA of the cell or embryo at a site that is specifically bound by the TALEN-pair, and producing the livestock animal/artiodactyl from the cell.
  • Direct injection may be used for the cell or embryo, e.g., into a zygote, blastocyst, or embryo.
  • the TALEN and/or other factors may be introduced into a cell using any of many known techniques for introduction of proteins, RNA, mRNA, DNA, or vectors.
  • Genetically modified animals may be made from the embryos or cells according to known processes, e.g., implantation of the embryo into a gestational host, or various cloning methods.
  • a genetic modification to DNA of the cell at a site that is specifically bound by the TALEN means that the genetic modification is made at the site cut by the nuclease on the TALEN when the TALEN is specifically bound to its target site. The nuclease does not cut exactly where the TALEN-pair binds, but rather at a defined site between the two binding sites.
  • Some embodiments involve a composition or a treatment of a cell that is used for cloning the animal.
  • the cell may be a livestock and/or artiodactyl cell, a cultured cell, a primary cell, a primary somatic cell, a zygote, a germ cell, a primordial germ cell, or a stem cell.
  • an embodiment is a composition or a method of creating a genetic modification comprising exposing a plurality of primary cells in a culture to TALEN proteins or a nucleic acid encoding a TALEN or TALENs.
  • the TALENs may be introduced as proteins or as nucleic acid fragments, e.g., encoded by mRNA or a DNA sequence in a vector.
  • Zinc-finger nucleases are artificial restriction enzymes generated by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. Zinc finger domains can be engineered to target desired DNA sequences and this enables zinc-finger nucleases to target unique sequences within complex genomes. By taking advantage of endogenous DNA repair machinery, these reagents can be used to alter the genomes of higher organisms. ZFNs may be used in method of inactivating genes.
  • a zinc finger DNA-binding domain has about 30 amino acids and folds into a stable structure. Each finger primarily binds to a triplet within the DNA substrate. Amino acid residues at key positions contribute to most of the sequence-specific interactions with the DNA site. These amino acids can be changed while maintaining the remaining amino acids to preserve the necessary structure. Binding to longer DNA sequences is achieved by linking several domains in tandem. Other functionalities like non-specific FokI cleavage domain (N), transcription activator domains (A), transcription repressor domains (R) and methylases (M) can be fused to a ZFPs to form ZFNs respectively, zinc finger transcription activators (ZFA), zinc finger transcription repressors (ZFR, and zinc finger methylases (ZFM).
  • N non-specific FokI cleavage domain
  • A transcription activator domains
  • R transcription repressor domains
  • M methylases
  • nucleic acids may be introduced into cells, for knockout purposes, for inactivation of a gene, to obtain expression of a gene, or for other purposes.
  • nucleic acid includes DNA, RNA, and nucleic acid analogs, and nucleic acids that are double-stranded or single-stranded (i.e., a sense or an antisense single strand).
  • Nucleic acid analogs can be modified at the base moiety, sugar moiety, or phosphate backbone to improve, for example, stability, hybridization, or solubility of the nucleic acid.
  • the deoxyribose phosphate backbone can be modified to produce morpholino nucleic acids, in which each base moiety is linked to a six membered, morpholino ring, or peptide nucleic acids, in which the deoxyphosphate backbone is replaced by a pseudopeptide backbone and the four bases are retained.
  • the target nucleic acid sequence can be operably linked to a regulatory region such as a promoter.
  • Regulatory regions can be porcine regulatory regions or can be from other species.
  • operably linked refers to positioning of a regulatory region relative to a nucleic acid sequence in such a way as to permit or facilitate transcription of the target nucleic acid.
  • type of promoter can be operably linked to a target nucleic acid sequence.
  • promoters include, without limitation, tissue-specific promoters, constitutive promoters, inducible promoters, and promoters responsive or unresponsive to a particular stimulus.
  • a promoter that facilitates the expression of a nucleic acid molecule without significant tissue- or temporal-specificity can be used (i.e., a constitutive promoter).
  • a beta-actin promoter such as the chicken beta-actin gene promoter, ubiquitin promoter, miniCAGs promoter, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter, or 3-phosphoglycerate kinase (PGK) promoter can be used, as well as viral promoters such as the herpes simplex virus thymidine kinase (HSV-TK) promoter, the SV40 promoter, or a cytomegalovirus (CMV) promoter.
  • HSV-TK herpes simplex virus thymidine kinase
  • CMV cytomegalovirus
  • a fusion of the chicken beta actin gene promoter and the CMV enhancer is used as a promoter. See, for example, Xu et al., Hum. Gene Ther. 12:563, 2001; and Kiwaki et al., Hum. Gene Ther. 7:821, 1996.
  • Additional regulatory regions that may be useful in nucleic acid constructs, include, but are not limited to, polyadenylation sequences, translation control sequences (e.g., an internal ribosome entry segment, IRES), enhancers, inducible elements, or introns. Such regulatory regions may not be necessary, although they may increase expression by affecting transcription, stability of the mRNA, translational efficiency, or the like. Such regulatory regions can be included in a nucleic acid construct as desired to obtain optimal expression of the nucleic acids in the cell(s). Sufficient expression, however, can sometimes be obtained without such additional elements.
  • a nucleic acid construct may be used that encodes signal peptides or selectable expressed markers.
  • Signal peptides can be used such that an encoded polypeptide is directed to a particular cellular location (e.g., the cell surface).
  • selectable markers include puromycin, ganciclovir, adenosine deaminase (ADA), aminoglycoside phosphotransferase (neo,
  • G418, APH dihydrofolate reductase
  • DHFR dihydrofolate reductase
  • TK thymidine kinase
  • XGPRT xanthin-guanine phosphoribosyltransferase
  • a sequence encoding a selectable marker can be flanked by recognition sequences for a recombinase such as, e.g., Cre or Flp.
  • the selectable marker can be flanked by loxP recognition sites (34-bp recognition sites recognized by the Cre recombinase) or FRT recognition sites such that the selectable marker can be excised from the construct.
  • loxP recognition sites 34-bp recognition sites recognized by the Cre recombinase
  • FRT recognition sites such that the selectable marker can be excised from the construct.
  • a transposon containing a Cre- or Flp-activatable transgene interrupted by a selectable marker gene also can be used to obtain transgenic animals with conditional expression of a transgene.
  • a promoter driving expression of the marker/transgene can be either ubiquitous or tissue-specific, which would result in the ubiquitous or tissue-specific expression of the marker in F0 animals (e.g., pigs).
  • Tissue specific activation of the transgene can be accomplished, for example, by crossing a pig that ubiquitously expresses a marker-interrupted transgene to a pig expressing Cre or Flp in a tissue-specific manner, or by crossing a pig that expresses a marker-interrupted transgene in a tissue-specific manner to a pig that ubiquitously expresses Cre or Flp recombinase. Controlled expression of the transgene or controlled excision of the marker allows expression of the transgene.
  • the exogenous nucleic acid encodes a polypeptide.
  • a nucleic acid sequence encoding a polypeptide can include a tag sequence that encodes a “tag” designed to facilitate subsequent manipulation of the encoded polypeptide (e.g., to facilitate localization or detection).
  • Tag sequences can be inserted in the nucleic acid sequence encoding the polypeptide such that the encoded tag is located at either the carboxyl or amino terminus of the polypeptide.
  • Non-limiting examples of encoded tags include glutathione S-transferase (GST) and FLAGTM tag (Kodak, New Haven, CT).
  • Nucleic acid constructs can be introduced into embryonic, fetal, or adult artiodactyl/livestock cells of any type, including, for example, germ cells such as an oocyte or an egg, a progenitor cell, an adult or embryonic stem cell, a primordial germ cell, a kidney cell such as a PK-15 cell, an islet cell, a beta cell, a liver cell, or a fibroblast such as a dermal fibroblast, using a variety of techniques.
  • germ cells such as an oocyte or an egg
  • a progenitor cell an adult or embryonic stem cell
  • a primordial germ cell such as a PK-15 cell
  • an islet cell such as a beta cell
  • a liver cell or a fibroblast such as a dermal fibroblast
  • Non-limiting examples of techniques include the use of transposon systems, recombinant viruses that can infect cells, or liposomes or other non-viral methods such as electroporation, microinjection, or calcium phosphate precipitation, that are capable of delivering nucleic acids to cells.
  • transposon systems the transcriptional unit of a nucleic acid construct, i.e., the regulatory region operably linked to an exogenous nucleic acid sequence, is flanked by an inverted repeat of a transposon.
  • transposon systems including, for example, Sleeping Beauty (see, U.S. Pat. No. 6,613,752 and U.S. 2005/0003542); Frog Prince (Miskey et al., Nucleic Acids Res.
  • a transposase can be delivered as a protein, encoded on the same nucleic acid construct as the exogenous nucleic acid, can be introduced on a separate nucleic acid construct, or provided as an mRNA (e.g., an in vitro-transcribed and capped mRNA).
  • mRNA e.g., an in vitro-transcribed and capped mRNA
  • Nucleic acids can be incorporated into vectors.
  • a vector is a broad term that includes any specific DNA segment that is designed to move from a carrier into a target DNA.
  • a vector may be referred to as an expression vector, or a vector system, which is a set of components needed to bring about DNA insertion into a genome or other targeted DNA sequence such as an episome, plasmid, or even virus/phage DNA segment.
  • Vector systems such as viral vectors (e.g., retroviruses, adeno-associated virus and integrating phage viruses), and non-viral vectors (e.g., transposons) used for gene delivery in animals have two basic components: 1) a vector comprised of DNA (or RNA that is reverse transcribed into a cDNA) and 2) a transposase, recombinase, or other integrase enzyme that recognizes both the vector and a DNA target sequence and inserts the vector into the target DNA sequence.
  • Vectors most often contain one or more expression cassettes that comprise one or more expression control sequences, wherein an expression control sequence is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence or mRNA, respectively.
  • Plasmids and viral vectors are known.
  • Mammalian expression plasmids typically have an origin of replication, a suitable promoter and optional enhancer, and also any necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5′ flanking non-transcribed sequences.
  • vectors include: plasmids (which may also be a carrier of another type of vector), adenovirus, adeno-associated virus (AAV), lentivirus (e.g., modified HIV-1, SIV or FIV), retrovirus (e.g., ASV, ALV or MoMLV), and transposons (e.g., Sleeping Beauty, P-elements, Tol-2, Frog Prince, piggyBac).
  • plasmids which may also be a carrier of another type of vector
  • adenovirus e.g., adeno-associated virus (AAV)
  • lentivirus e.g., modified HIV-1, SIV or FIV
  • retrovirus e.g., ASV, ALV or MoMLV
  • transposons e.g., Sleeping Beauty, P-elements, Tol-2, Frog Prince, piggyBac.
  • nucleic acid refers to both RNA and DNA, including, for example, cDNA, genomic DNA, synthetic (e.g., chemically synthesized) DNA, as well as naturally occurring and chemically modified nucleic acids, e.g., synthetic bases or alternative backbones.
  • a nucleic acid molecule can be double-stranded or single-stranded (i.e., a sense or an antisense single strand).
  • transgenic is used broadly herein and refers to a genetically modified organism or genetically engineered organism whose genetic material has been altered using genetic engineering techniques. A knockout artiodactyl is thus transgenic regardless of whether or not exogenous genes or nucleic acids are expressed in the animal or its progeny.
  • Animals may be modified using TALENs or other genetic engineering tools, including recombinase fusion proteins, or various vectors that are known.
  • a genetic modification made by such tools may comprise disruption of a gene.
  • the term disruption of a gene refers to preventing the formation of a functional gene product.
  • a gene product is functional only if it fulfills its normal (wild-type) functions.
  • Disruption of the gene prevents expression of a functional factor encoded by the gene and comprises an insertion, deletion, or substitution of one or more bases in a sequence encoded by the gene and/or a promoter and/or an operator that is necessary for expression of the gene in the animal.
  • the disrupted gene may be disrupted by, e.g., removal of at least a portion of the gene from a genome of the animal, alteration of the gene to prevent expression of a functional factor encoded by the gene, an interfering RNA, or expression of a dominant negative factor by an exogenous gene.
  • Materials and methods of genetically modifying animals are further detailed in U.S. Pat. No. 8,518,701; U.S. 2010/0251395; and U.S. 2012/0222143 which are hereby incorporated herein by reference for all purposes; in case of conflict, the instant specification is controlling.
  • trans-acting refers to processes acting on a target gene from a different molecule (i.e., intermolecular).
  • a trans-acting element is usually a DNA sequence that contains a gene. This gene codes for a protein (or microRNA or other diffusible molecule) that is used in the regulation the target gene.
  • the trans-acting gene may be on the same chromosome as the target gene, but the activity is via the intermediary protein or RNA that it encodes.
  • Embodiments of trans-acting gene are, e.g., genes that encode targeting endonucleases. Inactivation of a gene using a dominant negative generally involves a trans-acting element.
  • cis-regulatory or cis-acting means an action without coding for protein or RNA; in the context of gene inactivation, this generally means inactivation of the coding portion of a gene, or a promoter and/or operator that is necessary for expression of the functional gene.
  • Various techniques known in the art can be used to inactivate genes to make knock-out animals and/or to introduce nucleic acid constructs into animals to produce founder animals and to make animal lines, in which the knockout or nucleic acid construct is integrated into the genome.
  • Such techniques include, without limitation, pronuclear microinjection (U.S. Pat. No. 4,873,191), retrovirus mediated gene transfer into germ lines (Van der Putten et al., Proc. Natl. Acad. Sci. USA, 82:6148-6152, 1985), gene targeting into embryonic stem cells (Thompson et al., Cell, 56:313-321, 1989), electroporation of embryos (Lo, Mol. Cell.
  • An animal that is genomically modified is an animal wherein all of its cells have the genetic modification, including its germ line cells.
  • the animals may be inbred and progeny that are genomically modified may be selected.
  • Cloning for instance, may be used to make a mosaic animal if its cells are modified at the blastocyst state, or genomic modification can take place when a single-cell is modified. Animals that are modified so they do not sexually mature can be homozygous or heterozygous for the modification, depending on the specific approach that is used. If a particular gene is inactivated by a knock out modification, homozygousity would normally be required. If a particular gene is inactivated by an RNA interference or dominant negative strategy, then heterozygosity is often adequate.
  • a nucleic acid construct is introduced into a fertilized egg; 1 or 2 cell fertilized eggs are used as the pronuclei containing the genetic material from the sperm head and the egg are visible within the protoplasm.
  • Pronuclear staged fertilized eggs can be obtained in vitro or in vivo (i.e., surgically recovered from the oviduct of donor animals).
  • In vitro fertilized eggs can be produced as follows. For example, swine ovaries can be collected at an abattoir, and maintained at 22-28° C. during transport.
  • Ovaries can be washed and isolated for follicular aspiration, and follicles ranging from 4-8 mm can be aspirated into 50 mL conical centrifuge tubes using 18 gauge needles and under vacuum. Follicular fluid and aspirated oocytes can be rinsed through pre-filters with commercial TL-HEPES (Minitube, Verona, Wis.).
  • Oocytes surrounded by a compact cumulus mass can be selected and placed into TCM-199 OOCYTE MATURATION MEDIUM (Minitube, Verona, WI) supplemented with 0.1 mg/mL cysteine, 10 ng/mL epidermal growth factor, 10% porcine follicular fluid, 50 ⁇ M 2-mercaptoethanol, 0.5 mg/ml cAMP, 10 IU/mL each of pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) for approximately 22 hours in humidified air at 38.7° C. and 5% CO2.
  • PMSG pregnant mare serum gonadotropin
  • hCG human chorionic gonadotropin
  • the oocytes can be moved to fresh TCM-199 maturation medium, which will not contain cAMP, PMSG or hCG and incubated for an additional 22 hours. Matured oocytes can be stripped of their cumulus cells by vortexing in 0.1% hyaluronidase for 1 minute.
  • mature oocytes can be fertilized in 500 ⁇ l Minitube PORCPRO IVF MEDIUM SYSTEM (Minitube, Verona, WI) in Minitube 5-well fertilization dishes.
  • Minitube PORCPRO IVF MEDIUM SYSTEM Minitube, Verona, WI
  • IVPF in vitro fertilization
  • freshly-collected or frozen boar semen can be washed and resuspended in PORCPRO IVF Medium to 4 ⁇ 10 5 sperm.
  • Sperm concentrations can be analyzed by computer assisted semen analysis (SPERMVISION, Minitube, Verona, WI).
  • Final in vitro insemination can be performed in a 10 ⁇ l volume at a final concentration of approximately 40 motile sperm/oocyte, depending on boar.
  • Linearized nucleic acid constructs can be injected into one of the pronuclei. Then the injected eggs can be transferred to a recipient female (e.g., into the oviducts of a recipient female) and allowed to develop in the recipient female to produce the transgenic animals.
  • a recipient female e.g., into the oviducts of a recipient female
  • in vitro fertilized embryos can be centrifuged at 15,000 ⁇ g for 5 minutes to sediment lipids allowing visualization of the pronucleus.
  • the embryos can be injected with using an Eppendorf FEMTOJET injector and can be cultured until blastocyst formation. Rates of embryo cleavage and blastocyst formation and quality can be recorded.
  • Embryos can be surgically transferred into uteri of asynchronous recipients.
  • 100-200 (e.g., 150-200) embryos can be deposited into the ampulla-isthmus junction of the oviduct using a 5.5-inch TOMCAT® catheter. After surgery, real-time ultrasound examination of pregnancy can be performed.
  • a transgenic artiodactyl cell e.g., a transgenic pig cell or bovine cell
  • a transgenic artiodactyl cell such as an embryonic blastomere, fetal fibroblast, adult ear fibroblast, or granulosa cell that includes a nucleic acid construct described above
  • Oocytes can be enucleated by partial zona dissection near the polar body and then pressing out cytoplasm at the dissection area.
  • an injection pipette with a sharp beveled tip is used to inject the transgenic cell into an enucleated oocyte arrested at meiosis 2.
  • oocytes arrested at meiosis-2 are termed eggs.
  • the embryo After producing a porcine or bovine embryo (e.g., by fusing and activating the oocyte), the embryo is transferred to the oviducts of a recipient female, about 20 to 24 hours after activation. See, for example, Cibelli et al., Science 280:1256-1258, 1998, and U.S. Pat. No. 6,548,741.
  • recipient females can be checked for pregnancy approximately 20-21 days after transfer of the embryos.
  • Standard breeding techniques can be used to create animals that are homozygous for the exogenous nucleic acid from the initial heterozygous founder animals. Homozygosity may not be required, however.
  • Transgenic pigs described herein can be bred with other pigs of interest.
  • a nucleic acid of interest and a selectable marker can be provided on separate transposons and provided to either embryos or cells in unequal amount, where the amount of transposon containing the selectable marker far exceeds (5-10 fold excess) the transposon containing the nucleic acid of interest.
  • Transgenic cells or animals expressing the nucleic acid of interest can be isolated based on presence and expression of the selectable marker. Because the transposons will integrate into the genome in a precise and unlinked way (independent transposition events), the nucleic acid of interest and the selectable marker are not genetically linked and can easily be separated by genetic segregation through standard breeding. Thus, transgenic animals can be produced that are not constrained to retain selectable markers in subsequent generations, an issue of some concern from a public safety perspective.
  • PCR Polymerase chain reaction
  • PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA.
  • Primers typically are 14 to 40 nucleotides in length, but can range from 10 nucleotides to hundreds of nucleotides in length. PCR is described in, for example PCR Primer: A Laboratory Manual, ed. Dieffenbach and Dveksler, Cold Spring Harbor Laboratory Press, 1995.
  • Nucleic acids also can be amplified by ligase chain reaction, strand displacement amplification, self-sustained sequence replication, or nucleic acid sequence-based amplified. See, for example, Lewis, Genetic Engineering News 12:1, 1992; Guatelli et al., Proc. Natl. Acad. Sci.
  • embryos can be individually processed for analysis by PCR, Southern hybridization and splinkerette PCR (see, e.g., Dupuy et al. Proc Natl Acad Sci USA, 99:4495, 2002).
  • RNA expression of a nucleic acid sequence encoding a polypeptide in the tissues of transgenic pigs can be assessed using techniques that include, for example, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, Western analysis, immunoassays such as enzyme-linked immunosorbent assays, and reverse-transcriptase PCR (RT-PCR).
  • Northern blot analysis of tissue samples obtained from the animal in situ hybridization analysis
  • Western analysis Western analysis
  • immunoassays such as enzyme-linked immunosorbent assays
  • RT-PCR reverse-transcriptase PCR
  • RNAi interfering RNA
  • Double-stranded RNA induces sequence-specific degradation of homologous gene transcripts.
  • RISC RNA-induced silencing complex
  • RISC contains a double stranded RNAse (dsRNase, e.g., Dicer) and ssRNase (e.g., Argonaut 2 or Ago2).
  • RISC utilizes antisense strand as a guide to find a cleavable target.
  • siRNAs and microRNAs miRNAs
  • a method of disrupting a gene in a genetically modified animal comprises inducing RNA interference against a target gene and/or nucleic acid such that expression of the target gene and/or nucleic acid is reduced.
  • the exogenous nucleic acid sequence can induce RNA interference against a nucleic acid encoding a polypeptide.
  • double-stranded small interfering RNA (siRNA) or small hairpin RNA (shRNA) homologous to a target DNA can be used to reduce expression of that DNA.
  • Constructs for siRNA can be produced as described, for example, in Fire et al., Nature 391:806, 1998; Romano and Masino, Mol. Microbiol. 6:3343, 1992; Cogoni et al., EMBO J. 15:3153, 1996; Cogoni and Masino, Nature, 399:166, 1999; Misquitta and Paterson Proc. Natl. Acad. Sci.
  • shRNAs are transcribed as a single-stranded RNA molecule containing complementary regions, which can anneal and form short hairpins.
  • the probability of finding a single, individual functional siRNA or miRNA directed to a specific gene is high.
  • the predictability of a specific sequence of siRNA, for instance, is about 50% but a number of interfering RNAs may be made with good confidence that at least one of them will be effective.
  • Embodiments include an in vitro cell, an in vivo cell, and a genetically modified animal such as a livestock animal that express an RNAi directed against a gene, e.g., a gene selective for a developmental stage.
  • the RNAi may be, for instance, selected from the group consisting of siRNA, shRNA, dsRNA, RISC and miRNA.
  • An inducible system may be used to control expression of a gene.
  • Various inducible systems are known that allow spatiotemporal control of expression of a gene.
  • Several have been proven to be functional in vivo in transgenic animals.
  • the term inducible system includes traditional promoters and inducible gene expression elements.
  • an inducible system is the tetracycline (tet)-on promoter system, which can be used to regulate transcription of the nucleic acid.
  • tet tetracycline
  • a mutated Tet repressor (TetR) is fused to the activation domain of herpes simplex virus VP16 trans-activator protein to create a tetracycline-controlled transcriptional activator (tTA), which is regulated by tet or doxycycline (dox).
  • tTA tetracycline-controlled transcriptional activator
  • dox tetracycline-controlled transcriptional activator
  • Alternative inducible systems include the ecdysone or rapamycin systems.
  • Ecdysone is an insect molting hormone whose production is controlled by a heterodimer of the ecdysone receptor and the product of the ultraspiracle gene (USP). Expression is induced by treatment with ecdysone or an analog of ecdysone such as muristerone A.
  • the agent that is administered to the animal to trigger the inducible system is referred to as an induction agent.
  • the tetracycline-inducible system and the Cre/loxP recombinase system are among the more commonly used inducible systems.
  • the tetracycline-inducible system involves a tetracycline-controlled transactivator (tTA)/reverse tTA (rtTA).
  • tTA tetracycline-controlled transactivator
  • rtTA reverse tTA
  • a method to use these systems in vivo involves generating two lines of genetically modified animals. One animal line expresses the activator (tTA, rtTA, or Cre recombinase) under the control of a selected promoter.
  • Another set of transgenic animals express the acceptor, in which the expression of the gene of interest (or the gene to be modified) is under the control of the target sequence for the tTA/rtTA transactivators (or is flanked by loxP sequences). Mating the two strains of mice provides control of gene expression.
  • tetracycline-dependent regulatory systems rely on two components, i.e., a tetracycline-controlled transactivator (tTA or rtTA) and a tTA/rtTA-dependent promoter that controls expression of a downstream cDNA, in a tetracycline-dependent manner.
  • tTA tetracycline-controlled transactivator
  • tTA/rtTA-dependent promoter that controls expression of a downstream cDNA
  • tet-OFF The tet system that uses tTA is termed tet-OFF, because tetracycline or doxycycline allows transcriptional down-regulation. Administration of tetracycline or its derivatives allows temporal control of transgene expression in vivo.
  • rtTA is a variant of tTA that is not functional in the absence of doxycycline but requires the presence of the ligand for transactivation. This tet system is therefore termed tet-ON.
  • the tet systems have been used in vivo for the inducible expression of several transgenes, encoding, e.g., reporter genes, oncogenes, or proteins involved in a signaling cascade.
  • the Cre/lox system uses the Cre recombinase, which catalyzes site-specific recombination by crossover between two distant Cre recognition sequences, i.e., loxP sites.
  • a DNA sequence introduced between the two loxP sequences (termed floxed DNA) is excised by Cre-mediated recombination.
  • Control of Cre expression in a transgenic animal using either spatial control (with a tissue- or cell-specific promoter) or temporal control (with an inducible system), results in control of DNA excision between the two loxP sites.
  • conditional gene inactivation conditional knockout
  • Another approach is for protein over-expression, wherein a floxed stop codon is inserted between the promoter sequence and the DNA of interest.
  • Inducible Cre recombinases have also been developed.
  • the inducible Cre recombinase is activated only by administration of an exogenous ligand.
  • the inducible Cre recombinases are fusion proteins containing the original Cre recombinase and a specific ligand-binding domain. The functional activity of the Cre recombinase is dependent on an external ligand that is able to bind to this specific domain in the fusion protein.
  • Embodiments include an in vitro cell, an in vivo cell, and a genetically modified animal such as a livestock animal that comprise a gene under control of an inducible system.
  • the genetic modification of an animal may be genomic or mosaic.
  • the inducible system may be, for instance, selected from the group consisting of Tet-On, Tet-Off, Cre-lox, and Hifl alpha.
  • An embodiment is a gene set forth herein.
  • Genes may thus be disrupted not only by removal or RNAi suppression but also by creation/expression of a dominant negative variant of a protein which has inhibitory effects on the normal function of that gene product.
  • the expression of a dominant negative (DN) gene can result in an altered phenotype, exerted by a) a titration effect; the DN PASSIVELY competes with an endogenous gene product for either a cooperative factor or the normal target of the endogenous gene without elaborating the same activity, b) a poison pill (or monkey wrench) effect wherein the dominant negative gene product ACTIVELY interferes with a process required for normal gene function, c) a feedback effect, wherein the DN ACTIVELY stimulates a negative regulator of the gene function.
  • founder animals may be produced by cloning and other methods described herein.
  • the founders can be homozygous for a genetic modification, as in the case where a zygote or a primary cell undergoes a homozygous modification.
  • founders can also be made that are heterozygous.
  • the founders may be genomically modified, meaning that the cells in their genome have undergone modification.
  • Founders can be mosaic for a modification, as may happen when vectors are introduced into one of a plurality of cells in an embryo, typically at a blastocyst stage. Progeny of mosaic animals may be tested to identify progeny that are genomically modified. An animal line is established when a pool of animals has been created that can be reproduced sexually or by assisted reproductive techniques, with heterogeneous or homozygous progeny consistently expressing the modification.
  • An animal line may include a trait chosen from a trait in the group consisting of a production trait, a type trait, a workability trait, a fertility trait, a mothering trait, and a disease resistance trait. Further traits include expression of a recombinant gene product.
  • Embodiments of the invention include administration of a targeted nuclease system with a recombinase (e.g., a RecA protein, a Rad51) or other DNA-binding protein associated with DNA recombination.
  • a recombinase forms a filament with a nucleic acid fragment and, in effect, searches cellular DNA to find a DNA sequence substantially homologous to the sequence.
  • a recombinase may be combined with a nucleic acid sequence that serves as a template for HDR. The recombinase is then combined with the HDR template to form a filament and placed into the cell.
  • the recombinase and/or HDR template that combines with the recombinase may be placed in the cell or embryo as a protein, an mRNA, or with a vector that encodes the recombinase.
  • the disclosure of U.S. 2011/0059160 (U.S. Patent Application No. 12/869,232) is hereby incorporated herein by reference for all purposes; in case of conflict, the specification is controlling.
  • the term recombinase refers to a genetic recombination enzyme that enzymatically catalyzes, in a cell, the joining of relatively short pieces of DNA between two relatively longer DNA strands.
  • Recombinases include Cre recombinase, Hin recombinase, RecA, RAD51, Cre, and FLP.
  • Cre recombinase is a Type I topoisomerase from P1 bacteriophage that catalyzes site-specific recombination of DNA between loxP sites.
  • Hin recombinase is a 21 kD protein composed of 198 amino acids that is found in the bacteria Salmonella. Hin belongs to the serine recombinase family of DNA invertases in which it relies on the active site serine to initiate DNA cleavage and recombination.
  • RAD51 is a human gene.
  • the protein encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks.
  • RAD51 family members are homologous to the bacterial RecA and yeast Rad51.
  • Cre recombinase is an enzyme that is used in experiments to delete specific sequences that are flanked by loxP sites.
  • FLP refers to Flippase recombination enzyme (FLP or Flp) derived from the 2 ⁇ plasmid of the baker's yeast Saccharomyces cerevisiae.
  • RecA or “RecA protein” refers to a family of RecA-like recombination proteins having essentially all or most of the same functions, particularly: (i) the ability to position properly oligonucleotides or polynucleotides on their homologous targets for subsequent extension by DNA polymerases; (ii) the ability topologically to prepare duplex nucleic acid for DNA synthesis; and, (iii) the ability of RecA/oligonucleotide or RecA/polynucleotide complexes efficiently to find and bind to complementary sequences.
  • the best characterized RecA protein is from E.
  • RecA-like proteins in addition to the original allelic form of the protein a number of mutant RecA-like proteins have been identified, for example, RecA803. Further, many organisms have RecA-like strand-transfer proteins including, for example, yeast, Drosophila, mammals including humans, and plants. These proteins include, for example, Recl, Rec2, Rad51, Rad51B, Rad51C, Rad51D, Rad51E, XRCC2 and DMC1.
  • An embodiment of the recombination protein is the RecA protein of E. coli .
  • the RecA protein can be the mutant RecA-803 protein of E. coli , a RecA protein from another bacterial source or a homologous recombination protein from another organism.
  • the present invention also provides compositions and kits containing, for example, nucleic acid molecules encoding site-specific endonucleases, CRISPR, Cas9, ZNFs, TALENs, RecA-gal4 fusions, polypeptides of the same, compositions containing such nucleic acid molecules or polypeptides, or engineered cell lines.
  • An HDR may also be provided that is effective for introgression of an indicated allele. Such items can be used, for example, as research tools, or therapeutically.
  • Pig were maintained at 37 at 5% CO2 in DMEM supplemented with 10% fetal bovine serum, 100 I.U./ml penicillin and streptomycin, and 2mM L-Glutamine.
  • All TALENs and HDR templates were delivered through transfection using the NEON Transfection system (Life Technologies). Briefly, low passage Ossabaw, Landrace reaching 100% confluence were split 1:2 and harvested the next day at 70-80% confluence.
  • Each transfection was comprised of 500,000-600,000 cells resuspended in buffer “R” mixed with TALEN mRNA and oligos and electroporated using the 100 ⁇ l tips that provide a 100 ⁇ l working volume by the following parameters: input Voltage; 1800V; Pulse Width; 20 ms; and Pulse Number; 1. Typically, 1-2 ⁇ g of TALEN mRNA and 1-4 ⁇ M of HDR templates (single stranded oligonucleotides) specific for the gene of interest were included in each transfection. Deviation from those amounts is indicated in the figures and legends. After transfection, cells were plated in a well of a 6-well dish for three days and cultured at either 30° C. After three days, cell populations were plated for colony analysis and/or expanded and at 37° C. until at least day 10 to assess stability of edits.
  • PCR flanking the intended sites was conducted using PLATINUM Taq DNA polymerase HiFi (Life Technologies) with 1 ⁇ l of the cell lysate according to the manufacturer's recommendations.
  • the frequency of mutation in a population was analysed with the SURVEYOR Mutation Detection Kit (Transgenomic) according to the manufacturer's recommendations using 10 ⁇ l of the PCR product as described above.
  • RFLP analysis was performed on 10 ⁇ l of the above PCR reaction using the indicated restriction enzyme. Surveyor and RFLP reactions were resolved on a 10% TBE polyacrylamide gels and visualized by ethidium bromide staining.
  • Densitometry measurements of the bands were performed using IMAGEJ; and mutation rate of Surveyor reactions was calculated as described in Guschin et al., 2010(1).
  • Percent homology directed repair (HDR) was calculated by dividing the sum intensity of RFLP fragments by the sum intensity of the parental band+RFLP fragments.
  • RFLP analysis of colonies was treated similarly except that the PCR products were amplified by 1X MYTAQ RED MIX (Bioline) and resolved on 2.5% agarose gels.
  • Transfected cells populations at day 3 and 10 were collected from a well of a 6-well dish and 10-30% were resuspended in 50 ⁇ l of 1 ⁇ PCR compatible lysis buffer: 10 mM Tris-Cl pH 8.0, 2 mM EDTA, 0.45% TRYTON X-100(vol/vol), 0.45% TWEEN-20(vol/vol) freshly supplemented with 200 ⁇ g/ml Proteinase K.
  • the lysates were processed in a thermal cycler using the following program: 55° C. for 60 minutes, 95° C. for 15 minutes. Colony samples from dilution cloning were treated as above using 20-30 ⁇ l of lysis buffer.
  • TALEN mRNA and HDR templates directed to pig RAG2 and IL2R ⁇ were co-transfected into pig fibroblasts.
  • a fixed quantity of RAG2 mRNA and template were used for each transfection whereas the quantity of IL2Rg TALEN mRNA and HDR template is altered for each condition as indicated.
  • the dosage of TALEN mRNA and HDR template has both on and off target effects.
  • An increase in TALEN mRNA for IL2R yled to an increase in both NHEJ and HDR for IL2R ⁇ while NHEJ levels for RAG2 were unchanged.
  • Example 1 a non-specific reduction in HDR was observed at high concentration of HDR oligo, thus it was unknown whether 2+HDR oligos could be effective without non-specific inhibition of HDR.
  • Two concentrations were tested, 1 uM and 2 uM for each target site. While TALEN activity was not significantly altered between the two conditions, HDR was blunted significantly at 2 uM concentration for each template.
  • Clones derived from the 1 uM condition had a variety of genotypes, some of those with edits in each gene and up to 7 alleles ( FIG. 6 ). If treated as independent events, the expected frequency of the genotype denoted by an “a”, with 7 alleles edited, is 0.001 percent. Binomial distribution predicts the likelihood of identifying 2+colonies of such a genotype in a sample size of 72, as was done here, is less than 0.000026 percent.
  • FIG. 5 Effect of Oligonucleotide HDR template concentration on 5-gene multiplex HDR efficiency. Indicated amounts of TALEN mRNA directed to swine RAG2, IL2Rg, p53, APC and LDLR were co-transfected into pig fibroblasts along with 2 uM (panel a) or 1 uM (panel b) of each cognate HDR template. Percent NHEJ and HDR were measured by Surveyor and RFLP assay. Referring to FIG. 6 : Colony genotypes from 5-gene multiplex HDR. Colony genotypes were evaluated by RFLP analysis. Panel a) Each line represents the genotype of one colony at each specified locus.
  • Three genotypes could be identified; those with the expected RFLP genotype of heterozygous or homozygous HDR as well as those with an RFLP positive fragment, plus a second allele that has a visible shift in size indicative of an insertion or deletion (indel) allele.
  • the percentage of colonies with an edit at the specified locus is indicated below each column.
  • Panel b) A tally of the number of colonies edited at 0-5 loci. Referring to FIG. 7 : Colony genotypes of a second 5-gene multiplex trial. Panel a) Each line represents the genotype of one colony at each specified locus.
  • Three genotypes could be identified; those with the expected RFLP genotype of heterozygous or homozygous HDR as well as those with an RFLP positive fragment, plus a second allele that has a visible shift in size indicative of an insertion or deletion (indel) allele.
  • the percentage of colonies with an edit at the specified locus is indicated below each column.
  • Panel b) A tally of the number of colonies edited at 0-5 loci. Referring to FIG. 8 : Colony genotypes a third 5-gene multiplex trial. Panel a) Each line represents the genotype of one colony at each specified locus.
  • Three genotypes could be identified; those with the expected RFLP genotype of heterozygous or homozygous HDR as well as those with an RFLP positive fragment, plus a second allele that has a visible shift in size indicative of an insertion or deletion (indel) allele.
  • the percentage of colonies with an edit at the specified locus is indicated below each column.
  • Panel b) A tally of the number of colonies edited at 0-5 loci.
  • Example 4A Develop RAG2/IL2Rg null (RG-KO) pig fibroblasts by multiplex gene editing.
  • RG-KO candidates will be identified by, e.g., restriction length polymorphism (RFLP) as confirmed by sequencing. At least about 5 validated RG-KO colonies will be pooled as a resource for cloning and chimera production.
  • RFLP restriction length polymorphism
  • RG-KO embryos and female EGFP-labeled donor cells will be produced using chromatin transfer technology followed by in vitro culture to the blastocyst stage.
  • RG-KO cells from Example 1 may be used.
  • Day-7 inter cell mass clumps from EGFP blastocysts will be injected into day-6 RG-KO embryos prior to embryo transfer to a synchronized sow.
  • Nagashima and colleagues observed chimerism in >50 percent of liveborn piglets
  • Non-chimeric offspring will be tested to determine if they deficient for T, B and NK cells.
  • the following process is one technique for the same.
  • C-section derivation will be conducted on each sow carrying presumptive chimeras and one bred sow carrying wild-type piglets.
  • Umbilical cord blood will be isolated from each piglet immediately after C-section derivation.
  • Cord blood leukocytes will be evaluated by fluorescence-activated cell sorting (FACS) for T, B and NK cell populations as well as donor derived EGFP expression.
  • FACS fluorescence-activated cell sorting
  • chimerism will be evaluated by PCR from cord blood, ear and tail biopsy.
  • Chimeric pigs will be tested to determine origin of T, B and NK cells. The following process is one technique for the same. Chimeric piglets will be identified using the methods above. Weekly evaluation of circulating lymphocytes and serum immunoglobulin will be compared between chimeric, non-chimeric and wild-type piglets over a 2 month period. Populations of sorted T, B and NK cells will be evaluated for EGFP expression and microsatellite analysis to confirm donor origin. The maintenance of samples and semen collections from chimeric pigs will be supported by RCI until Phase II funding is available.
  • Cord blood will be collected from each piglet immediately after C-section delivery. A portion of the cord blood will be processed and cryopreserved for potential allograft treatments while the remainder will be used for FACS analysis of lymphocytes. Peripheral blood samples will be collected at 2, 4, 6 and 8 weeks of age by standard methods. RBCs will be removed and approximately 1-2E+5 cells will be distributed into tubes. Aliquots will be labeled with anti-pig antibodies for identification of T cells (CD4 and CD8), B cells (CD45RA ad CD3), NK cells (CD16 and CD3) and myeloid cells (CD3).
  • T cells CD4 and CD8
  • B cells CD45RA ad CD3
  • NK cells CD16 and CD3
  • myeloid cells CD3
  • Antigen expression will be quantified on the LS RII Flow Cytometer (BD Biosciences). Fluorophores will be carefully selected to enable multiplex evaluation of donor derived EGFP cells along with surface antigens. Single cell suspensions from the spleen will be analyzed by the same methods.
  • All major organs and tissues will be grossly examined for appropriate anatomic development and appropriate samples from all major organs and tissues including pancreas, liver, heart, kidneys, lungs, gastrointestinal, immune system (peripheral and mucosal lymph nodes and spleen), and CNS will be collected for DNA isolation.
  • Single cell suspensions will be prepared from the spleen for FACS analysis.
  • Tissues will be prepared for histological examination to further assess chimerism and for any alterations that may be associated with the chimeric state and for the presence of any underlying illness.
  • Quantitative PCR will be conducted on cord blood, ear, and tail biopsy using primers specific to the EGFP transgene and compared to a standard curve with known ratios of EGFP to wild type-cells. Specimens will also be evaluated for RG-KO alleles via the RFLP assay previously described. Engraftment of EGFP+cells will be evaluated macroscopically on whole animals and organs during necropsy. Tissues from the major organs will be sectioned for EGFP immunohistochemistry and counterstained with DAPI (4′, 6-diamidino-2-phenylindole) to determine the ratio of donor to host cells.
  • DAPI 6-diamidino-2-phenylindole
  • Animals will be screened for informative microsatellites for host and donor genetics from those routinely used in our lab. Samples from tissues and blood (sorted lymphocytes or myeloid lineages, EGFP positive and negative) will be evaluated. Relative quantities of donor versus host cells will be evaluated by multiplexed amplicon sequencing on the MISEQ instrument (Illumina).
  • Non-chimeric pigs will be made having an absence of T, B and NK cells in cord and peripheral blood. Chimeric pigs will have levels substantially similar to nearly wild-type levels. Moreover, T, B and NK cell positive chimeras will have substantially normal immune functions and remain healthy when reared in standard conditions.
  • Gene specific gRNA sequences were cloned into the Church lab gRNA vector (Addgene ID: 41824) according their methods.
  • the Cas9 nuclease was provided either by co-transfection of the hCas9 plasmid (Addgene ID: 41815) or mRNA synthesized from RCIScript-hCas9.
  • This RCIScript-hCas9 was constructed by sub-cloning the XbaI-AgeI fragment from the hCas9 plasmid (encompassing the hCas9 cDNA) into the RCIScript plasmid. Synthesis of mRNA was conducted as above except that linearization was performed using KpnI.
  • Panel (a) is a schematic of each gene in the multiplex experiment (depicted as a cDNA-exons denoted by alternating shades) and the site targeted by TALENS is indicated. The sequence coding the DNA binding domain for each gene is indicated below. Swine fibroblasts were co-transfected with 1 ug of each TALEN mRNA and 0.1 nMol of each HDR oligo ( FIG. 12 panel b), targeting each gene, designed to insert a premature termination codon as well as a novel HindIII RFLP site for genotyping. A total of 384 colonies were isolated for genotyping. The GATA4 and Nkx2-5 RFLP assays were performed ( FIG. 12 panel c) and MESP1 was evaluated by sequencing (not shown).
  • Swine fibroblasts were co-transfected with TALENS (1 ug EIF4G 14.1 mRNA)+Cas9/CRISPR components (2 ug Cas9 mRNA+2 ug p65 G1s guide RNA) and 02 nMol of HDR oligo for each gene.
  • Transfected cells were evaluated by RFLP assay revealing HDR at both sites. Cells from this population will be plated for colony isolation and isolates with edits in both genes are identified.
  • the targeted endonucleases making double stranded breaks in the allele loci cognate to each of the plurality of targeted endonucleases and with the cell copying the homology directed repair (HDR) template nucleic acid sequence into the loci cognate to each HDR template to thereby edit the allele.
  • HDR homology directed repair
  • HDR template homologous to the third, fourth, fifth, sixth, and seventh target chromosomal DNA sites, respectively.
  • mRNAs are provided as mRNAs and are introduced into the cell or embryo from a solution having a concentration from 0.1 ng/ml to 100 ng/ml; artisans will immediately appreciate that all values and ranges within the expressly stated limits are contemplated, e.g., about 20, from about 1 to about 20, from about 0.5 to about 50, and so forth; and/or
  • HDR templates are provided as mRNAs and are introduced into the cell or embryo from a solution having a concentration from about 0.2 ⁇ M to about 20 ⁇ M.
  • a donor cell integrated with the host cells to form the chimeric embryo.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
US14/698,561 2014-04-28 2015-04-28 Multiplex gene editing Abandoned US20160029604A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/698,561 US20160029604A1 (en) 2014-04-28 2015-04-28 Multiplex gene editing
US15/923,951 US20180235194A1 (en) 2014-04-28 2018-03-16 Multiplex gene editing
US17/379,898 US12070022B2 (en) 2014-04-28 2021-07-19 Methods for making genetic edits
US18/771,458 US20240381856A1 (en) 2014-04-28 2024-07-12 Methods for making genetic edits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461985327P 2014-04-28 2014-04-28
US14/698,561 US20160029604A1 (en) 2014-04-28 2015-04-28 Multiplex gene editing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/923,951 Division US20180235194A1 (en) 2014-04-28 2018-03-16 Multiplex gene editing

Publications (1)

Publication Number Publication Date
US20160029604A1 true US20160029604A1 (en) 2016-02-04

Family

ID=53190022

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/698,561 Abandoned US20160029604A1 (en) 2014-04-28 2015-04-28 Multiplex gene editing
US15/923,951 Abandoned US20180235194A1 (en) 2014-04-28 2018-03-16 Multiplex gene editing
US17/379,898 Active US12070022B2 (en) 2014-04-28 2021-07-19 Methods for making genetic edits
US18/771,458 Pending US20240381856A1 (en) 2014-04-28 2024-07-12 Methods for making genetic edits

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/923,951 Abandoned US20180235194A1 (en) 2014-04-28 2018-03-16 Multiplex gene editing
US17/379,898 Active US12070022B2 (en) 2014-04-28 2021-07-19 Methods for making genetic edits
US18/771,458 Pending US20240381856A1 (en) 2014-04-28 2024-07-12 Methods for making genetic edits

Country Status (13)

Country Link
US (4) US20160029604A1 (enExample)
EP (1) EP3136850A1 (enExample)
JP (1) JP2017513510A (enExample)
KR (1) KR20170003585A (enExample)
CN (2) CN111647627A (enExample)
AP (1) AP2016009588A0 (enExample)
AR (1) AR100216A1 (enExample)
AU (1) AU2015253352A1 (enExample)
BR (2) BR122023023211A2 (enExample)
CA (1) CA2946881A1 (enExample)
MX (1) MX2016014066A (enExample)
PH (1) PH12016502162A1 (enExample)
WO (1) WO2015168125A1 (enExample)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182881A3 (en) * 2016-04-18 2017-11-30 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
WO2018057790A1 (en) 2016-09-21 2018-03-29 Recombinetics, Inc. Animal models for cardiomyopathy
WO2018094291A1 (en) * 2016-11-18 2018-05-24 Christopher Bradley Massively multiplexed homologous template repair for whole-genome replacement
WO2018183746A1 (en) * 2017-03-30 2018-10-04 Monsanto Technology Llc Systems and methods for use in identifying multiple genome edits and predicting the aggregate effects of the identified genome edits
WO2018205641A1 (zh) * 2017-05-09 2018-11-15 中国科学院动物研究所 一种抗寒及瘦肉型转基因猪及其制备方法
WO2019033053A1 (en) 2017-08-11 2019-02-14 Recombinetics, Inc. Inducible disease models methods of making them and use in tissue complementation
WO2019075373A1 (en) * 2017-10-12 2019-04-18 Mayo Foundation For Medical Education And Research METHODS AND COMPOSITIONS FOR GENE EDITION
CN110891965A (zh) * 2017-04-24 2020-03-17 杜邦营养生物科学有限公司 植物中使用的抗crispr蛋白的方法和组合物
US10716298B2 (en) 2014-09-23 2020-07-21 Acceligen, Inc. Materials and methods for producing animals with short hair
US10874092B2 (en) 2015-06-30 2020-12-29 Regents Of The University Of Minnesota Humanized skeletal muscle
US10897880B2 (en) 2015-06-30 2021-01-26 Regents Of The University Of Minnesota Humanized heart muscle
US10920242B2 (en) 2011-02-25 2021-02-16 Recombinetics, Inc. Non-meiotic allele introgression
US10959414B2 (en) 2013-08-27 2021-03-30 Recombinetics, Inc. Efficient non-meiotic allele introgression
WO2021102084A1 (en) 2019-11-22 2021-05-27 President And Fellows Of Harvard College Ionic liquids for drug delivery
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US11566236B2 (en) 2018-02-05 2023-01-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US20230073534A1 (en) * 2020-01-21 2023-03-09 The Board Of Regents Of The University Of Texas System Modulating tlr/nf-kb and p53 signaling pathways to enhance interspecies chimerism between evolutionaryily distant species
WO2023059846A1 (en) 2021-10-08 2023-04-13 President And Fellows Of Harvard College Ionic liquids for drug delivery
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11673928B2 (en) 2015-03-03 2023-06-13 Regents Of The University Of Minnesota Genetically modified pig cells with an inactivated Etv2 gene
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
US12070022B2 (en) 2014-04-28 2024-08-27 Recombinetics, Inc. Methods for making genetic edits
US12161674B2 (en) 2017-12-05 2024-12-10 Vertex Pharmaceuticals Incorporated CRISPR-CAS9 modified CD34+ human hematopoietic stem and progenitor cells and uses thereof
US12201699B2 (en) 2014-10-10 2025-01-21 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
CN120204361A (zh) * 2025-03-28 2025-06-27 中国科学院水生生物研究所 Hnf4α或含Hnf4α的生物材料在制备抑制细菌和/或病毒产品中的应用

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
KR101566498B1 (ko) * 2013-11-13 2015-11-06 건국대학교 산학협력단 인터루킨 2 수용체 감마 유전자 적중벡터, 그 벡터가 도입된 면역세포 결핍 형질전환 미니 복제돼지 생산과 그 제조방법 및 활용
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
EP4079847A1 (en) 2014-07-30 2022-10-26 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
US20170099813A1 (en) * 2015-10-07 2017-04-13 Recombinetics, Inc. Method of generating sterile terminal sires in livestock and animals produced thereby
IL294014B2 (en) 2015-10-23 2024-07-01 Harvard College Nucleobase editors and uses thereof
CN105567689B (zh) * 2016-01-25 2019-04-09 重庆威斯腾生物医药科技有限责任公司 CRISPR/Cas9靶向敲除人TCAB1基因及其特异性gRNA
CN106191061B (zh) * 2016-07-18 2019-06-18 暨南大学 一种特异靶向人ABCG2基因的sgRNA导向序列及其应用
WO2018027078A1 (en) 2016-08-03 2018-02-08 President And Fellows Of Harard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
SG11201903089RA (en) 2016-10-14 2019-05-30 Harvard College Aav delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
ES2969213T3 (es) * 2017-02-15 2024-05-17 2Seventy Bio Inc Plantillas de reparación de donantes para edición multiplex del genoma
EP3592381A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Cancer vaccine
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
CN110914310A (zh) 2017-03-10 2020-03-24 哈佛大学的校长及成员们 胞嘧啶至鸟嘌呤碱基编辑器
GB2575930A (en) 2017-03-23 2020-01-29 Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
CN106987604B (zh) * 2017-03-29 2021-05-28 北京希诺谷生物科技有限公司 一种制备动脉粥样硬化疾病模型犬的方法
AU2018254547B2 (en) 2017-04-20 2024-06-13 Egenesis, Inc. Methods for generating genetically modified animals
CN107974462A (zh) * 2017-04-28 2018-05-01 中山大学 一种通过延迟基因的表达时间来提高猪瘦肉产量的方法
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
CN107937445B (zh) * 2017-07-25 2021-05-04 北京希诺谷生物科技有限公司 利用体细胞克隆技术制备基因敲除犬的方法
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
EP3676376B1 (en) 2017-08-30 2025-01-15 President and Fellows of Harvard College High efficiency base editors comprising gam
KR102207352B1 (ko) * 2017-09-29 2021-01-26 서울대학교산학협력단 Klotho 유전자 넉아웃 질환모델 동물 및 이의 용도
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
WO2019118949A1 (en) 2017-12-15 2019-06-20 The Broad Institute, Inc. Systems and methods for predicting repair outcomes in genetic engineering
CN108504685A (zh) * 2018-03-27 2018-09-07 宜明细胞生物科技有限公司 一种利用CRISPR/Cas9系统同源重组修复IL-2RG缺陷基因的方法
WO2019226953A1 (en) 2018-05-23 2019-11-28 The Broad Institute, Inc. Base editors and uses thereof
KR102158428B1 (ko) 2018-08-16 2020-09-22 (주)라트바이오 인위적 뉴클레아제를 생산하는 형질전환 배아 및 형질전환 동물의 제작 방법
CN110846330B (zh) * 2018-08-21 2021-08-27 中国科学院动物研究所 一种突变基因及其用于构建蹼足病小型猪模型的用途
CN109321600A (zh) * 2018-10-19 2019-02-12 中国农业大学 一种培育生产低致敏性牛奶的牛的方法及其应用
WO2020092453A1 (en) 2018-10-29 2020-05-07 The Broad Institute, Inc. Nucleobase editors comprising geocas9 and uses thereof
CN109735630A (zh) * 2019-01-05 2019-05-10 兰州大学 绵羊zfy基因单核苷酸多态性标记的检测方法及标记应用
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
CN111484994B (zh) * 2019-01-29 2022-04-19 四川大学华西医院 CRISPR-Cas9特异性敲除猪Fah、Rag2双基因的方法
CN109777834A (zh) * 2019-02-25 2019-05-21 中国科学院广州生物医药与健康研究院 一种重度免疫缺陷猪模型及其构建方法和应用
DE112020001342T5 (de) 2019-03-19 2022-01-13 President and Fellows of Harvard College Verfahren und Zusammensetzungen zum Editing von Nukleotidsequenzen
WO2020214842A1 (en) 2019-04-17 2020-10-22 The Broad Institute, Inc. Adenine base editors with reduced off-target effects
US11859213B2 (en) 2019-05-16 2024-01-02 Regents Of The University Of Minnesota Development of superior chimerism by hiPSC engineering and embryo aggregation
CN110452929B (zh) * 2019-07-09 2021-07-20 中山大学 一种非嵌合基因编辑猪胚胎模型的构建方法
US20220256821A1 (en) * 2019-07-15 2022-08-18 The General Hospital Corporation Zebrafish deletion and compound mutants and uses thereof
CN110305872A (zh) * 2019-07-17 2019-10-08 中国农业科学院北京畜牧兽医研究所 小型猪2型糖尿病模型的构建方法及应用
US20220282284A1 (en) * 2019-08-15 2022-09-08 The Rockefeller University Crispr genome editing with cell surface display to produce homozygously edited eukaryotic cells
CN112538497B (zh) * 2019-09-20 2023-02-28 南京启真基因工程有限公司 CRISPR/Cas9系统及其在构建α、β和α&β地中海贫血模型猪细胞系中的应用
WO2021072328A1 (en) 2019-10-10 2021-04-15 The Broad Institute, Inc. Methods and compositions for prime editing rna
KR102270145B1 (ko) * 2019-12-27 2021-07-01 서울대학교산학협력단 Btk 넉아웃 질환모델용 돼지 및 이의 용도
GB2614813B (en) 2020-05-08 2025-05-07 Harvard College Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN111334529B (zh) * 2020-05-20 2020-09-29 中国农业大学 一种利用第三代碱基编辑器制备精准blg基因敲除牛的方法
CN111534519B (zh) * 2020-05-26 2021-12-14 中国农业科学院北京畜牧兽医研究所 识别猪eIF4G1基因的sgRNA及其编码DNA和应用
BR112022024625A2 (pt) * 2020-06-02 2023-02-23 Catalent Pharma Solutions Llc Construtos de ácido nucleico para a fabricação de proteína
CN113234722B (zh) * 2021-04-30 2023-03-14 肇庆市瑞思元生物科技有限公司 利用碱基编辑修复与板层状鱼鳞病相关的tgm1 c607t突变的试剂和方法
CN113583944B (zh) * 2021-09-15 2023-07-21 广西壮族自治区水牛研究所 激活Wnt/β-catenin信号通路在提高水牛体外胚胎生产效率中的应用
WO2023077360A1 (zh) * 2021-11-04 2023-05-11 云南农业大学 一种构建重症免疫缺陷和肝损伤双重猪模型的方法及应用
US20250300846A1 (en) * 2021-12-17 2025-09-25 Laurie Schmelzle Systems and methods for generating, managing, and displaying non-fungible digital representations of living, biological, and/or eukaryotic organisms
CN115341044A (zh) * 2022-10-19 2022-11-15 佛山科学技术学院 一种利用微生物及其相关snp位点预测猪日增重的方法
CN115786343B (zh) * 2022-11-17 2024-08-30 石河子大学 一种猪Zfy基因的RNA干扰片段、表达载体及其应用
CN116334087A (zh) * 2023-05-10 2023-06-27 山东农业大学 特异性靶向猪Pax3基因的sgRNA序列及其应用
CN116790604B (zh) * 2023-08-18 2023-10-27 成都中科奥格生物科技有限公司 一种sgRNA、CRISPR/Cas9载体及其构建方法和用途
CN118910057B (zh) * 2024-09-04 2025-03-21 江苏农牧科技职业学院 用于敲除猪RBM20基因部分保守序列的sgRNA组合、猪模型和构建方法
CN119432858A (zh) * 2025-01-13 2025-02-14 江苏省农业科学院 一种用于精准编辑奶牛BLG基因的sgRNA组合、引物及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130117870A1 (en) * 2011-02-25 2013-05-09 Scott C. Fahrenkrug Genetically modified animals and methods for making the same

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873191A (en) 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
EP0821070A1 (en) 1996-07-22 1998-01-28 Carelli, Claude Marcel Henri Pit-1 gene polymorphism and trait selection in animals
AU6218899A (en) 1998-10-12 2000-05-01 Geron Bio-Med Limited Porcine oocytes with improved developmental competence
AU1100201A (en) 1999-10-28 2001-05-08 Board Of Trustees Of The Leland Stanford Junior University Methods of in vivo gene transfer using a sleeping beauty transposon system
JP4968498B2 (ja) 2002-01-23 2012-07-04 ユニバーシティ オブ ユタ リサーチ ファウンデーション ジンクフィンガーヌクレアーゼを用いる、標的化された染色体変異誘発
CA2512134A1 (en) 2002-12-31 2004-07-22 Mmi Genomics, Inc. Compositions, methods and systems for inferring bovine traits
US7985739B2 (en) 2003-06-04 2011-07-26 The Board Of Trustees Of The Leland Stanford Junior University Enhanced sleeping beauty transposon system and methods for using the same
US20050153317A1 (en) 2003-10-24 2005-07-14 Metamorphix, Inc. Methods and systems for inferring traits to breed and manage non-beef livestock
NZ550106A (en) * 2004-04-22 2009-06-26 Kyowa Hakko Kirin Co Ltd Transgenic animals and uses thereof
EP2527456B1 (en) * 2004-10-22 2018-05-16 Revivicor Inc. Transgenic porcines lacking endogenous immunoglobulin light chain
AU2006262020B8 (en) 2005-06-24 2011-02-17 Recombinetics, Inc. Using cytosine deaminases to diminish retroelement transfer from pigs to humans
CA2700170A1 (en) * 2007-09-27 2009-04-02 Sangamo Biosciences, Inc. Genomic editing in zebrafish using zinc finger nucleases
WO2010008562A2 (en) 2008-07-16 2010-01-21 Recombinetics Methods and materials for producing transgenic animals
US20110023140A1 (en) 2008-12-04 2011-01-27 Sigma-Aldrich Co. Rabbit genome editing with zinc finger nucleases
US20110030072A1 (en) * 2008-12-04 2011-02-03 Sigma-Aldrich Co. Genome editing of immunodeficiency genes in animals
US20110023159A1 (en) 2008-12-04 2011-01-27 Sigma-Aldrich Co. Ovine genome editing with zinc finger nucleases
AU2009322964B2 (en) * 2008-12-04 2014-10-09 Sangamo Therapeutics, Inc. Genome editing in rats using zinc-finger nucleases
KR20100080068A (ko) 2008-12-31 2010-07-08 주식회사 툴젠 신규한 징크 핑거 뉴클레아제 및 이의 용도
CN102858985A (zh) * 2009-07-24 2013-01-02 西格马-奥尔德里奇有限责任公司 基因组编辑方法
US20120192298A1 (en) 2009-07-24 2012-07-26 Sigma Aldrich Co. Llc Method for genome editing
DK2462230T3 (en) 2009-08-03 2015-10-19 Recombinetics Inc METHODS AND COMPOSITIONS FOR TARGETED RE-MODIFICATION
US8518392B2 (en) 2009-08-14 2013-08-27 Regeneron Pharmaceuticals, Inc. Promoter-regulated differentiation-dependent self-deleting cassette
US8586363B2 (en) 2009-12-10 2013-11-19 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
CA2788850C (en) * 2010-02-09 2019-06-25 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
EP2533629B1 (en) 2010-02-11 2018-11-28 Recombinetics, Inc. Methods and materials for producing transgenic artiodactyls
JP5841322B2 (ja) 2010-04-22 2016-01-13 オレゴン ヘルス アンド サイエンス ユニバーシティ フマリルアセト酢酸ヒドロラーゼ(fah)欠損性ブタおよびその使用
CN102905517A (zh) * 2010-04-23 2013-01-30 先锋国际良种公司 基因开关组合物及使用方法
EP2392208B1 (en) 2010-06-07 2016-05-04 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Fusion proteins comprising a DNA-binding domain of a Tal effector protein and a non-specific cleavage domain of a restriction nuclease and their use
AU2011266843C9 (en) * 2010-06-17 2018-03-01 Kymab Limited Animal models and therapeutic molecules
KR20180121665A (ko) 2010-07-23 2018-11-07 시그마-알드리치 컴퍼니., 엘엘씨 표적화 엔도뉴클레아제 및 단일-가닥 핵산을 사용하는 게놈 편집
US9528124B2 (en) 2013-08-27 2016-12-27 Recombinetics, Inc. Efficient non-meiotic allele introgression
PT2702160T (pt) * 2011-04-27 2020-07-30 Amyris Inc Métodos para modificação genómica
US20130212722A1 (en) 2012-02-15 2013-08-15 Mice With Horns, Llc Transgenic animals with customizable traits
WO2013176772A1 (en) 2012-05-25 2013-11-28 The Regents Of The University Of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
AR091482A1 (es) * 2012-06-21 2015-02-04 Recombinetics Inc Celulas modificadas geneticamente y metodos par su obtencion
US10058078B2 (en) 2012-07-31 2018-08-28 Recombinetics, Inc. Production of FMDV-resistant livestock by allele substitution
US20140115728A1 (en) 2012-10-24 2014-04-24 A. Joseph Tector Double knockout (gt/cmah-ko) pigs, organs and tissues
AU2013337951B2 (en) 2012-10-30 2019-10-03 Recombinetics, Inc. Control of sexual maturation in animals
CA2887706C (en) 2012-11-05 2022-08-02 Regeneron Pharmaceuticals Genetically modified non-human animals and methods of use thereof
ES2713243T3 (es) 2012-12-06 2019-05-20 Sigma Aldrich Co Llc Modificación y regulación del genoma basada en CRISPR
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
EP4234696A3 (en) 2012-12-12 2023-09-06 The Broad Institute Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
EP4481048A3 (en) 2012-12-17 2025-02-26 President and Fellows of Harvard College Rna-guided human genome engineering
US10612043B2 (en) 2013-03-09 2020-04-07 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
US20150013025A1 (en) 2013-05-19 2015-01-08 Mice With Horns, Llc Transgenic animals with customizable traits
US20140359795A1 (en) 2013-05-31 2014-12-04 Recombinetics, Inc. Genetic techniques for making animals with sortable sperm
US20140359796A1 (en) 2013-05-31 2014-12-04 Recombinetics, Inc. Genetically sterile animals
ES2991293T3 (es) 2013-06-05 2024-12-03 Univ Duke Edición génica guiada por ARN y regulación génica
IL303973A (en) 2013-07-09 2023-08-01 Harvard College Multiplexed RNA-guided genome engineering
WO2015009571A1 (en) 2013-07-13 2015-01-22 Mice With Horns, Llc Improved methods for spermatogonial stem cell (ssc) transfer
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
WO2015035034A1 (en) 2013-09-04 2015-03-12 Mice With Horns, Llc Materials and methods for correcting recessive mutations in animals
WO2015052231A2 (en) 2013-10-08 2015-04-16 Technical University Of Denmark Multiplex editing system
US10787684B2 (en) 2013-11-19 2020-09-29 President And Fellows Of Harvard College Large gene excision and insertion
KR102209636B1 (ko) 2014-02-11 2021-01-29 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 Crispr 이용의 다중화된 게놈 조작
MX2016014066A (es) * 2014-04-28 2017-05-03 Recombinetics Inc Edicion de genes multiples en cerdos.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130117870A1 (en) * 2011-02-25 2013-05-09 Scott C. Fahrenkrug Genetically modified animals and methods for making the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Jao et al 2013, Proc. Natl. Acad. Sci. (USA) 110:13904-13909 *
Ma et al 2014 Mar, PLOS One 9(e89413):1-8. *
Mashimo et al 2014 Feb, CELL 156:836-843. *
Niu et al 2014 Feb, CELL 156:836-843. *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10920242B2 (en) 2011-02-25 2021-02-16 Recombinetics, Inc. Non-meiotic allele introgression
US11477969B2 (en) 2013-08-27 2022-10-25 Recombinetics, Inc. Efficient non-meiotic allele introgression in livestock
US10959414B2 (en) 2013-08-27 2021-03-30 Recombinetics, Inc. Efficient non-meiotic allele introgression
US12070022B2 (en) 2014-04-28 2024-08-27 Recombinetics, Inc. Methods for making genetic edits
US10716298B2 (en) 2014-09-23 2020-07-21 Acceligen, Inc. Materials and methods for producing animals with short hair
US12201699B2 (en) 2014-10-10 2025-01-21 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
US11680268B2 (en) 2014-11-07 2023-06-20 Editas Medicine, Inc. Methods for improving CRISPR/Cas-mediated genome-editing
US11673928B2 (en) 2015-03-03 2023-06-13 Regents Of The University Of Minnesota Genetically modified pig cells with an inactivated Etv2 gene
US10874092B2 (en) 2015-06-30 2020-12-29 Regents Of The University Of Minnesota Humanized skeletal muscle
US10897880B2 (en) 2015-06-30 2021-01-26 Regents Of The University Of Minnesota Humanized heart muscle
US12089574B2 (en) 2015-06-30 2024-09-17 Regents Of The University Of Minnesota Humanized skeletal muscle
US20210169054A1 (en) * 2015-06-30 2021-06-10 Regents Of The University Of Minnesota Humanized heart muscle
US11667911B2 (en) 2015-09-24 2023-06-06 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/CAS-mediated genome editing
US11597924B2 (en) 2016-03-25 2023-03-07 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
US12049651B2 (en) 2016-04-13 2024-07-30 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
IL262416B2 (en) * 2016-04-18 2024-02-01 Crispr Therapeutics Ag Materials and methods for the treatment of hemoglobin diseases
IL262416B1 (en) * 2016-04-18 2023-10-01 Crispr Therapeutics Ag Materials and methods for the treatment of hemoglobin diseases
WO2017182881A3 (en) * 2016-04-18 2017-11-30 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
EP4424829A3 (en) * 2016-04-18 2024-11-06 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
CN109715198A (zh) * 2016-04-18 2019-05-03 克里斯珀医疗股份公司 用于治疗血红蛋白病的材料和方法
WO2018057790A1 (en) 2016-09-21 2018-03-29 Recombinetics, Inc. Animal models for cardiomyopathy
WO2018094291A1 (en) * 2016-11-18 2018-05-24 Christopher Bradley Massively multiplexed homologous template repair for whole-genome replacement
US11990205B2 (en) 2017-03-30 2024-05-21 Monsanto Technology Llc Systems and methods for use in identifying multiple genome edits and predicting the aggregate effects of the identified genome edits
WO2018183746A1 (en) * 2017-03-30 2018-10-04 Monsanto Technology Llc Systems and methods for use in identifying multiple genome edits and predicting the aggregate effects of the identified genome edits
CN110891965A (zh) * 2017-04-24 2020-03-17 杜邦营养生物科学有限公司 植物中使用的抗crispr蛋白的方法和组合物
US11419320B2 (en) 2017-05-09 2022-08-23 Institute Of Zoology, Chinese Academy Of Sciences Cold-resistant and lean-type transgenic pig and preparation method therefor
WO2018205641A1 (zh) * 2017-05-09 2018-11-15 中国科学院动物研究所 一种抗寒及瘦肉型转基因猪及其制备方法
US11866726B2 (en) 2017-07-14 2024-01-09 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
WO2019033053A1 (en) 2017-08-11 2019-02-14 Recombinetics, Inc. Inducible disease models methods of making them and use in tissue complementation
WO2019075373A1 (en) * 2017-10-12 2019-04-18 Mayo Foundation For Medical Education And Research METHODS AND COMPOSITIONS FOR GENE EDITION
US12161674B2 (en) 2017-12-05 2024-12-10 Vertex Pharmaceuticals Incorporated CRISPR-CAS9 modified CD34+ human hematopoietic stem and progenitor cells and uses thereof
US11566236B2 (en) 2018-02-05 2023-01-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
WO2021102084A1 (en) 2019-11-22 2021-05-27 President And Fellows Of Harvard College Ionic liquids for drug delivery
US20230073534A1 (en) * 2020-01-21 2023-03-09 The Board Of Regents Of The University Of Texas System Modulating tlr/nf-kb and p53 signaling pathways to enhance interspecies chimerism between evolutionaryily distant species
WO2023059846A1 (en) 2021-10-08 2023-04-13 President And Fellows Of Harvard College Ionic liquids for drug delivery
CN120204361A (zh) * 2025-03-28 2025-06-27 中国科学院水生生物研究所 Hnf4α或含Hnf4α的生物材料在制备抑制细菌和/或病毒产品中的应用

Also Published As

Publication number Publication date
US20180235194A1 (en) 2018-08-23
EP3136850A1 (en) 2017-03-08
US12070022B2 (en) 2024-08-27
US20240381856A1 (en) 2024-11-21
PH12016502162A1 (en) 2017-02-06
JP2017513510A (ja) 2017-06-01
AR100216A1 (es) 2016-09-21
BR122023023211A2 (pt) 2024-01-23
BR112016024945A2 (pt) 2017-10-24
CN111647627A (zh) 2020-09-11
CA2946881A1 (en) 2015-11-05
AU2015253352A1 (en) 2016-12-08
AP2016009588A0 (en) 2016-11-30
CN106535630B (zh) 2020-04-24
KR20170003585A (ko) 2017-01-09
CN106535630A (zh) 2017-03-22
MX2016014066A (es) 2017-05-03
WO2015168125A1 (en) 2015-11-05
US20220056482A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US12070022B2 (en) Methods for making genetic edits
US20200017882A1 (en) Engineering of humanized car t-cell and platelets by genetic complementation
US20190335725A1 (en) Genetically sterile animals
US20190223417A1 (en) Genetically modified animals having increased heat tolerance
US20210037797A1 (en) Inducible disease models methods of making them and use in tissue complementation
US20190254266A1 (en) Engineering of Humanized Kidney by Genetic Complementation
US20160160238A1 (en) Heterozygous modifications of tumor suppressor genes
HK1235224A1 (en) Multiplex gene editing in swine
NZ715540B2 (en) Genetically sterile animals

Legal Events

Date Code Title Description
AS Assignment

Owner name: RECOMBINETICS, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FAHRENKRUG, SCOTT C.;CARLSON, DANIEL F.;REEL/FRAME:036385/0445

Effective date: 20150804

AS Assignment

Owner name: HAJAS, PETER, MINNESOTA

Free format text: SECURITY INTEREST;ASSIGNOR:RECOMBINETICS, INC.;REEL/FRAME:042152/0758

Effective date: 20170214

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: RECOMBINETICS INC., MINNESOTA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:HAJAS, PETER;REEL/FRAME:053155/0050

Effective date: 20200707