US20150345787A1 - Air proportional control type combustion device and method for adjusting heat amount thereof - Google Patents

Air proportional control type combustion device and method for adjusting heat amount thereof Download PDF

Info

Publication number
US20150345787A1
US20150345787A1 US14/648,251 US201314648251A US2015345787A1 US 20150345787 A1 US20150345787 A1 US 20150345787A1 US 201314648251 A US201314648251 A US 201314648251A US 2015345787 A1 US2015345787 A1 US 2015345787A1
Authority
US
United States
Prior art keywords
blower
rpm
air
air pressure
combustion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/648,251
Other languages
English (en)
Inventor
Si Hwan Kim
Su Dae PARK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyungdong Navien Co Ltd
Original Assignee
Kyungdong Navien Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyungdong Navien Co Ltd filed Critical Kyungdong Navien Co Ltd
Assigned to KYUNGDONG NAVIEN CO., LTD. reassignment KYUNGDONG NAVIEN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SI HWAN, PARK, Su Dae
Publication of US20150345787A1 publication Critical patent/US20150345787A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/04Regulating fuel supply conjointly with air supply and with draught
    • F23N1/042Regulating fuel supply conjointly with air supply and with draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/60Devices for simultaneous control of gas and combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/04Regulating fuel supply conjointly with air supply and with draught
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • the present invention relates to an air proportional control (air ratio control) type combustion device controlling an output heat amount by controlling an RPM of a blower, which is capable of compensating for an air flow rate to the RPM of the blower according to external circumstances or changes of the circumstances and a method for adjusting a heat amount thereof.
  • air proportional control air ratio control
  • Combustion devices are devices in which heat generated by burning mixed air in which a gas is mixed with air by using a burner is used to heat heating water or hot water that is used in boilers or hot water devices through heat exchangers.
  • a heat amount generated by the combustion device is determined by a flow rate of air.
  • FIG. 1 is a view illustrating an example of a combustion part included in a combustion device according to a related art.
  • an air tube 11 for supplying air to a blower 10 is connected to the blower 10 , and a gas tube 13 through which a gas flows is connected to the air tube 11 at a front end of the blower 10 .
  • mixed air in which the gas is mixed with the air is introduced into the blower 10 .
  • a multi-stage valve 15 is disposed on one side of the air tube 11 through which the mixed air flows to control an amount of mixed air introduced into the blower 10 .
  • the mixed air delivered by the blower 10 is supplied to a burner 17 and burnt.
  • heat generated during the combustion process may heat direct water supplied to the combustion device through a heat exchanger 19 to generate hot water or heating water.
  • An amount of gas supplied to the blower 10 is controlled by a gas valve 21 disposed in the gas tube 13 .
  • An amount of air is adjusted by controlling an RPM of the blower 10 itself.
  • An actual amount of air supplied to the blower 10 may be proportionally measured by an air pressure sensor (APS) 23 .
  • APS air pressure sensor
  • an output heat amount of air proportional control type combustion device is determined by the flow rate of the mixed air, and the flow rate of the air is controlled by the RPM of the blower 10 .
  • the air flow rate with respect to the RPM of the blower 10 may vary for each combustion device. Furthermore, since the air flow rate changes according to whether the gas duct is blocked or seasons even though the same combustion device is used, the air flow rate to the RPM of the blower 10 may continuously vary in spite of the same combustion device.
  • An object of the present invention is to provide an air proportional control type combustion device controlling an output heat amount by controlling an RPM of a blower, which is capable of outputting an accurate heat amount by compensating an effect of external circumstances with respect to an air flow rate to the RPM of the blower and a method for adjusting the heat amount thereof.
  • Another object of the present invention is to provide an air proportional control type combustion device that is capable of measuring and compensating change of an air flow rate to an RPM of the blower to compensate the change of the air flow rate according to external circumstances that varies without being fixed, thereby outputting an accurate heat amount and a method of controlling the heat amount thereof.
  • a method for adjusting heat amount of an air proportional control type combustion device includes: a process of storing a reference air pressure for each output heat amount of the combustion device and a reference RPM for outputting the reference air pressure in a memory; a first process of blocking supply of a gas introduced into the blower, driving the blower at the reference RPM, and measuring a pressure of the air introduced into the blower by using an air pressure sensor; a second process of changing the RPM of the blower until the measured value becomes to the reference air pressure when the measured air pressure value is different from the reference air pressure, to re-store the changed RPM in the memory as the reference RPM; and a process of controlling the blower at the reference RPM in the process of adjusting the blower to output a heat amount requested by a user.
  • the first and second processes of adjusting the blower may be performed in a state in which a multi-valve controlling an amount of mixed air introduced to the blower is fully opened.
  • the reference RPM stored in the memory may be maintained as it is, and the second process of adjusting the blower may not be performed.
  • An air proportional control type combustion device includes: a blower for delivering mixed air in which a gas is mixed with air; a gas valve disposed in a gas tube connected to the blower to control an amount of gas introduced into the blower; an air pressure sensor disposed in an air tube connected to the blower to measure a pressure of the air introduced into the blower; a memory in which a reference air pressure for each output heat amount of a combustion device and a reference RPM for outputting the reference air pressure are stored; and a control part for controlling the blower at the reference RPM stored in the memory to output a heat amount requested by a user, wherein the control part includes a blower adjusting unit for changing the RPM of the blower until the measured value becomes to the reference air pressure when the measured value of the air pressure sensor read in a state in which the gas valve is closed, and the air blower is driven at the reference RPM is different from the reference air pressure to re-store the changed RPM as the reference RPM in the memory.
  • the blower adjusting unit may maintain the reference RPM stored in the memory as it is when a difference between the measured value of the air pressure sensor that is read in a state in which the gas valve is closed, and the blower may be driven with the reference RPM and the reference air pressure is within a critical range.
  • the combustion device may compensate the effect of the external circumstances with respect to the flow rate of the air to the RPM of the blower while controlling the output heat amount by controlling the RPM of the blower to output the accurate heat amount.
  • the combustion device may measure and compensate the change of the flow rate of the air to the RPM of the blower by periods to compensate the change of the flow rate of the air according to the external circumstances that vary without being fixed, thereby outputting the accurate heat amount.
  • FIG. 1 is a block diagram illustrating an example of a combustion part included in a combustion device according to the related art.
  • FIG. 2 is a block diagram of a combustion device of the present invention.
  • FIG. 3 is a flowchart showing a method for adjusting a heat amount of the combustion device according to the present invention.
  • a combustion device 200 includes a combustion part 100 , a memory 201 , and a control part 210 .
  • a combustion device 200 of FIG. 2 components that are not necessary for description of the present invention are omitted.
  • the combustion device 200 may further include a user interface and so on.
  • the combustion part 100 may have other components in addition to the components that are exemplarily illustrated in FIG. 1 .
  • the combustion part 100 has to be an air proportional control type combustion part so that an entire output heat amount of the combustion device 200 is controlled by controlling an RPM of a blower 10 .
  • a combustion table on which reference RPM Ref. RPM information for outputting a reference air pressure Ref. APS for each output heat amount and a reference air pressure Ref. APS is recorded is stored in the memory 201 .
  • an output heat amount of the combustion device 200 may be controlled by a flow rate of air, that is, an air pressure measured by an air pressure sensor 23 according to an air proportional control method.
  • the reference air pressure Ref. APS may be an air pressure corresponding to a flow rate of the air for generating a corresponding output heat amount.
  • the reference RPM Ref. RPM may be a predetermined RPM of the blower 10 , which generates a corresponding air pressure.
  • a maximum critical RPM Max. RPM is stored in the memory 201 .
  • the maximum critical RPM Max. RPM may be the maximum value in which the reference RPM Ref. RPM is corrected during a blower adjustment process that will be described later and determined by each output heat amount.
  • the control part 210 may include a combustion control unit 211 and a blower adjusting unit 213 to perform an overall operation of the combustion device 200 and a specific blower adjusting function according to the present invention.
  • the combustion control unit 211 may read the reference RPM Ref. RPM mapped on the corresponding heat amount from the memory 201 to drive the blower 10 at the reference RPM Ref. RPM to output the heat amount requested by a user.
  • a reference of the control is the reference RPM Ref. RPM mapped on the corresponding heat amount.
  • the blower adjusting unit 213 may perform a specific blower adjusting function according to the present invention. An operation of the blower adjusting unit 213 will be described with reference to FIG. 3 .
  • the blower adjusting function according to the present invention may solve a limitation in that a corresponding reference air pressure Ref. APS is not generated and thus a desired heat amount is not outputted even though the blower 10 is driven at a predetermined reference RPM Ref. RPM.
  • RPM Ref. RPM a predetermined reference RPM Ref. RPM.
  • the flow rate may be corrected by periods to continuously correct the reference RPM Ref. RPM.
  • the combustion control unit 211 does not operate while the blower adjusting function is performed.
  • the blower adjusting unit 213 may determine whether a predetermined blower adjusting mode is started. When the blower adjusting mode is started, the following blower adjusting process is performed. Although the blower adjusting mode is started only when the combustion device 200 is initially installed, the blower adjusting mode may be started by periods according to embodiments, for example, may be started a period of 30 days to compensate the changes of the external circumstances.
  • the blower adjusting unit 213 may firstly close a gas valve 21 to block supply of the gas introduced into the blower 10 and open all of a multi-stage valve 15 .
  • the multi-stage valve 15 is fully opened.
  • the multi-stage valve 15 is a two-stage valve, two-stage opening is performed, and if the multi-stage valve 15 is a three-stage valve, three-stage opening is performed.
  • operation S 303 only air is supplied to the blower 10 but not the mixed air, and delivery ability of the blower 10 according to the control of the RPM of the blower adjusting unit 213 may be checked.
  • the blower adjusting unit 213 reads an air pressure Act. APS that is measured by the air pressure sensor 23 while driving the blower 10 at one of the reference RPM Ref. RPM stored in the memory 201 .
  • the air blower adjusting unit 213 determines whether the air pressure Act. APS measured in the operation of S 305 is equal or similar to the reference air pressure Ref. APS. In operation S 309 , the blower adjusting unit 213 determines that the air pressure is in a normal state when a difference between the measured air pressure Act. APS and the reference air pressure Ref. APS is within in a critical range.
  • the blower adjusting unit 213 determines whether a “RPM variation” according to the correction has a value greater than that of a “critical correction rate for heat amount correction”.
  • the “RPM variation” represents a ratio of the correction value to the reference RPM (the present RPM determined in the operation of S 313 ). For example, when the reference RPM is 100 , and the correction value (the present RPM) is 120 , the RPM variation is 120%.
  • the “critical correction rate for heat amount correction” may determine a critical value for applying only correction over a predetermined range as the minimum value of the RPM variation to which the correction is applied. For example, in operation S 315 , if the “critical correction rate for heat amount correction” is 103%, when the RPM variation is below 103%, the blower adjusting process is stopped without applying the heat amount correction value.
  • the blower adjusting unit 213 determines that it is impossible to correct the reference RPM.
  • the blower adjusting unit 213 applies the maximum critical RPM Max. RPM of the combustion device 200 as the RPM for controlling the corresponding heat amount to change the reference RPM Ref. RPM of the memory 201 .
  • the method for correcting the heat amount of the combustion device according to the present invention is performed as described above.
  • the combustion control unit 211 may control the blower 10 at the reference RPM Ref. RPM re-stored by the blower adjusting method of FIG. 3 to output the heat amount requested by the user.
  • the combustion device 200 may output the heat amount requested by the user as it is in spite of changes of circumstances in which seasons change, or the gas duct is gradually blocked as it is used.
  • the blower correction method of FIG. 3 may use a maximum reference air pressure Max. Ref. APS mapped on the maximum output heat amount of the combustion device 200 as a reference.
  • the reference air pressure Ref. APS for each output heat amount may be proportionally re-adjusted on the basis of the corrected maximum reference air pressure Max. Ref. APS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
US14/648,251 2012-12-28 2013-12-12 Air proportional control type combustion device and method for adjusting heat amount thereof Abandoned US20150345787A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2012-0156154 2012-12-28
KR1020120156154A KR101436867B1 (ko) 2012-12-28 2012-12-28 공기비례제어식 연소장치와 그 열량 조정방법
PCT/KR2013/011553 WO2014104626A1 (ko) 2012-12-28 2013-12-12 공기비례제어식 연소장치와 그 열량 조정방법

Publications (1)

Publication Number Publication Date
US20150345787A1 true US20150345787A1 (en) 2015-12-03

Family

ID=51021617

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/648,251 Abandoned US20150345787A1 (en) 2012-12-28 2013-12-12 Air proportional control type combustion device and method for adjusting heat amount thereof

Country Status (7)

Country Link
US (1) US20150345787A1 (ko)
EP (1) EP2940387A4 (ko)
JP (1) JP2015535586A (ko)
KR (1) KR101436867B1 (ko)
CN (1) CN104995455A (ko)
CA (1) CA2895277A1 (ko)
WO (1) WO2014104626A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336099A1 (en) * 2015-01-26 2017-11-23 A.O. Smith (China) Water Heater Co., Ltd. Combustion control system of gas water heater or wall-hanging boiler and control method thereof
US20220410598A1 (en) * 2021-06-29 2022-12-29 Seiko Epson Corporation Recording device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106051762A (zh) * 2016-06-08 2016-10-26 中山市卡洛力热能科技有限公司 一种新型全预热混燃气加热系统及其控制方法
CN109654055B (zh) * 2018-12-19 2020-01-07 珠海格力电器股份有限公司 风压异常的检测方法、检测装置、风机及空调
KR102260500B1 (ko) * 2018-12-28 2021-06-03 주식회사 경동나비엔 보일러 및 보일러의 연소 제어방법
CN114322319B (zh) * 2021-12-29 2023-06-30 芜湖美的厨卫电器制造有限公司 热水器控制方法、装置及热水器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677357A (en) * 1985-10-11 1987-06-30 Spence Scott L Furnace draft control with remote control feature
US20030013057A1 (en) * 2001-03-09 2003-01-16 Derk Vegter Regulating system for gas burners
US20030059730A1 (en) * 2001-09-10 2003-03-27 Sigafus Paul E. Variable output heating and cooling control
US20030131804A1 (en) * 2002-01-11 2003-07-17 Takagi Industrial Co., Ltd Water heater unit
US20070068511A1 (en) * 2005-09-28 2007-03-29 Hearth & Home Technologies Gas fireplace monitoring and control system
US20080124667A1 (en) * 2006-10-18 2008-05-29 Honeywell International Inc. Gas pressure control for warm air furnaces
US20080138750A1 (en) * 2005-01-28 2008-06-12 Kyungdong Network Co., Ltd. System and Control Method For Detecting an Abnormal Burning Situation Using Air Pressure Sensing and Flame Detection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565610B2 (ja) * 1995-03-29 2004-09-15 株式会社ハーマンプロ 燃焼装置
JP3569600B2 (ja) * 1996-10-02 2004-09-22 パロマ工業株式会社 ガス燃焼機器の制御装置
JP3093209B2 (ja) * 1999-11-02 2000-10-03 株式会社ハーマン 燃焼装置
KR20030041366A (ko) 2001-11-19 2003-05-27 주식회사 경동보일러 공기비례제어 온수기
KR20060087071A (ko) * 2005-01-28 2006-08-02 주식회사 경동네트웍 풍량센서를 이용한 오일 버너의 적정 공연비 제어 시스템및 그 제어방법
KR100629780B1 (ko) * 2005-09-22 2006-10-02 주식회사 경동나비엔 공기비례제어식 보일러내 풍압센서의 오차 보상방법
KR20110021551A (ko) * 2009-08-26 2011-03-04 주식회사 경동네트웍 공기비례식 보일러에서 풍압센서이상 감지방법
KR101214745B1 (ko) * 2011-03-25 2012-12-21 주식회사 경동나비엔 유로 분리형 가스-공기 혼합장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677357A (en) * 1985-10-11 1987-06-30 Spence Scott L Furnace draft control with remote control feature
US20030013057A1 (en) * 2001-03-09 2003-01-16 Derk Vegter Regulating system for gas burners
US20030059730A1 (en) * 2001-09-10 2003-03-27 Sigafus Paul E. Variable output heating and cooling control
US20030131804A1 (en) * 2002-01-11 2003-07-17 Takagi Industrial Co., Ltd Water heater unit
US20080138750A1 (en) * 2005-01-28 2008-06-12 Kyungdong Network Co., Ltd. System and Control Method For Detecting an Abnormal Burning Situation Using Air Pressure Sensing and Flame Detection
US20070068511A1 (en) * 2005-09-28 2007-03-29 Hearth & Home Technologies Gas fireplace monitoring and control system
US20080124667A1 (en) * 2006-10-18 2008-05-29 Honeywell International Inc. Gas pressure control for warm air furnaces

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336099A1 (en) * 2015-01-26 2017-11-23 A.O. Smith (China) Water Heater Co., Ltd. Combustion control system of gas water heater or wall-hanging boiler and control method thereof
US10309687B2 (en) * 2015-01-26 2019-06-04 A. O. Smith Corporation Combustion control system of gas water heater or wall-hanging boiler and control method thereof
US20220410598A1 (en) * 2021-06-29 2022-12-29 Seiko Epson Corporation Recording device
US11919293B2 (en) * 2021-06-29 2024-03-05 Seiko Epson Corporation Recording device

Also Published As

Publication number Publication date
EP2940387A4 (en) 2016-08-17
WO2014104626A1 (ko) 2014-07-03
KR20140086090A (ko) 2014-07-08
JP2015535586A (ja) 2015-12-14
EP2940387A1 (en) 2015-11-04
KR101436867B1 (ko) 2014-09-02
CN104995455A (zh) 2015-10-21
CA2895277A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
US20150345787A1 (en) Air proportional control type combustion device and method for adjusting heat amount thereof
US9879859B2 (en) Combustion apparatus supplying combustion air via suction type fan and method for controlling the same
US20110000973A1 (en) Device for control room temperature of each room adapted to heating environment and its method
US7802984B2 (en) System and method for combustion-air modulation of a gas-fired heating system
US20080118877A1 (en) System and Control Method of Oil Burner's Suitable Burning Ratio Using Air Pressure Sensor
TW200907619A (en) Flow control valve and flow control method
US20210239327A1 (en) Combined heating and hot-water boiler and control method therefor
US20220371395A1 (en) Heater
CN113260820B (zh) 用于供应热水的装置和方法
JP2018004140A (ja) ボイラ装置
KR20160117356A (ko) 회전 밸브
JP5902126B2 (ja) 燃焼装置
KR101815993B1 (ko) 가스보일러 및 그의 온수 출탕 제어방법
JP2016008803A (ja) ボイラ装置
JPH07180904A (ja) 給湯装置
JP2009250471A (ja) 給湯装置
ES2953159T3 (es) Detección del rendimiento y control de la relación de aire mediante sensores en la cámara de combustión
JP5306961B2 (ja) 空調装置及び空調用温湿度制御装置
JP3881190B2 (ja) 追焚き付き給湯器
KR20220084729A (ko) 가열 장치 및 그 온수 제공 방법
JP2020020487A (ja) 給湯器
JP2016020790A (ja) ボイラ装置
JP2016020789A (ja) ボイラ装置
JP2021017854A (ja) 送風装置
JPH02161209A (ja) 燃焼装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: KYUNGDONG NAVIEN CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, SI HWAN;PARK, SU DAE;REEL/FRAME:035792/0450

Effective date: 20150520

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION