US20150209406A1 - Methods and compositions for regenerating hair cells and/or supporting cells - Google Patents

Methods and compositions for regenerating hair cells and/or supporting cells Download PDF

Info

Publication number
US20150209406A1
US20150209406A1 US14/426,520 US201314426520A US2015209406A1 US 20150209406 A1 US20150209406 A1 US 20150209406A1 US 201314426520 A US201314426520 A US 201314426520A US 2015209406 A1 US2015209406 A1 US 2015209406A1
Authority
US
United States
Prior art keywords
cell
cells
myc
notch
hair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/426,520
Other languages
English (en)
Inventor
Zheng-Yi Chen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Eye and Ear
Original Assignee
Massachusetts Eye and Ear Infirmary
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Eye and Ear Infirmary filed Critical Massachusetts Eye and Ear Infirmary
Priority to US14/426,520 priority Critical patent/US20150209406A1/en
Assigned to MASSACHUSETTS EYE AND EAR INFIRMARY reassignment MASSACHUSETTS EYE AND EAR INFIRMARY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, Zheng-yi
Assigned to MASSACHUSETTS EYE AND EAR INFIRMARY reassignment MASSACHUSETTS EYE AND EAR INFIRMARY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHEN, Zheng-yi
Publication of US20150209406A1 publication Critical patent/US20150209406A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR reassignment NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: MASSACHUSETTS EYE AND EAR INFIRMARY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/062Sensory transducers, e.g. photoreceptors; Sensory neurons, e.g. for hearing, taste, smell, pH, touch, temperature, pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/42Notch; Delta; Jagged; Serrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector

Definitions

  • the field of the invention relates generally to methods and compositions for inducing inner ear cells to reenter the cell cycle and to proliferate. More particularly, the invention relates to increasing c-myc and/or Notch activity within cells to induce cell cycle reentry and proliferation of hair cells and/or supporting cells of the inner ear.
  • Hair cells are sensory cells in the cochlea responsible for transduction of sound into an electrical signal.
  • the human inner ear contains only about 15,000 hair cells per cochlea at birth, and, although these cells can be lost as a result of various genetic or environmental factors (e.g., noise exposure, ototoxic drug toxicity, viral infection, aging, and genetic defects), the lost or damaged cells cannot be replaced.
  • Hair cells also are found in the utricle of the vestibule, an organ which regulates balance. Therefore, hair cell regeneration is an important approach to restoring hearing and vestibular function.
  • Supporting cells underlie, at least partially surround, and physically support sensory hair cells within the inner ear.
  • Examples of supporting cells include inner rod (pillar cells), outer rod (pillar cells), inner phalangeal cells, outer phalangeal cells (of Deiters), cells of Held, cells of Hensen, cells of Claudius, cells of Boettcher, interdental cells and auditory teeth (of Huschke).
  • Transdifferentiation of supporting cells to hair cells by overexpression or activation of Protein Atonal Homolog 1 (Atoh1) in supporting cells or by exposure of supporting cells to Atoh1 agonists is one such approach to generating new hair cells.
  • inner ear non-sensory cells e.g., fibrocytes in the ligament
  • inner ear non-sensory cells can be damaged by factors such as noise and aging, which contribute to hearing loss.
  • These cell types like many of those in the inner ear, lack the capacity to regenerate spontaneously after damage.
  • the invention is based, in part, upon the discovery that increasing c-myc activity, Notch activity, or both c-myc and Notch activity in an ear cell, for example, a cell of an inner ear, promotes cell cycle reentry and proliferation of the cell.
  • an ear cell for example, a cell of an inner ear
  • the cell is, for example, a hair cell or a supporting cell
  • proliferation and subsequent differentiation of the cell into hair and/or supporting cells can restore or improve hearing and/or vestibular function.
  • the invention relates to a method of inducing proliferation or cell cycle reentry of a differentiated cochlear cell or a utricular cell.
  • the method comprises increasing both c-myc activity and Notch activity within the cell sufficient to induce proliferation or cell cycle reentry of the cochlear cell or utricular cell.
  • the cell may dedifferentiate but retain aspects of its differentiated state.
  • the cochlear or utricular cell can be, for example, a hair cell or a supporting cell.
  • the method may also include the step of inhibiting c-myc and/or Notch activity after proliferation of the cochlear or the utricular hair or supporting cell to induce differentiation or transdifferentiation of the cell and/or at least one of its daughter cells into a hair cell Inhibition of c-myc and/or Notch activity after proliferation can be important in promoting cell survival.
  • the invention in another aspect, relates to a method for regenerating a cochlear or utricular hair cell.
  • the method includes increasing both c-myc activity and Notch activity within the hair cell thereby to induce cell proliferation to produce one, two or more daughter hair cells, and, after cell proliferation, decreasing c-myc and/or Notch activity to induce and/or maintain differentiation of the daughter hair cells.
  • the cochlear or utricular cell can be, for example, a hair cell or a supporting cell.
  • steps can be performed in vivo (for example, in the inner ear of a mammal, in particular the cochlea or utricle), or ex vivo, wherein the resulting cells are cultured and/or introduced into the inner ear of a recipient.
  • the invention in another aspect, relates to a method for reducing the loss of, maintaining, or promoting hearing in a subject.
  • the method comprises increasing both c-myc activity and Notch activity within a hair cell and/or a supporting cell of the inner ear thereby to induce cell proliferation to produce daughter cells, and, after cell proliferation, decreasing c-myc and/or Notch activity, and permitting daughter cells of hair cell origin to differentiate into hair cells or permitting daughter cells of supporting cell origin to transdifferentiate into hair cells thereby to reduce the loss of, maintain or promote hearing in the subject.
  • the daughter cells of supporting cell origin can be induced to transdifferentiate into hair cells by activating Atoh1 activity, for example, by gene expression, by administration of an effective amount of Atoh1 or an Atoh1 agonist.
  • the steps can be performed in vivo (for example, in the inner ear of a mammal, in particular in the cochlea), or ex vivo, wherein the resulting cells are cultured and/or introduced into the inner
  • the invention in another aspect, relates to a method for reducing the loss of, maintaining, or promoting vestibular function in a subject.
  • the method comprises increasing both c-myc activity and Notch activity within a hair cell and/or a supporting cell of the inner ear thereby to induce cell proliferation to produce daughter cells, and, after cell proliferation, decreasing c-myc and/or Notch activity, and permitting daughter cells of hair cell origin to differentiate into hair cells or permitting daughter cells of supporting cell origin to transdifferentiate into hair cells thereby to reduce the loss of, maintain or promote vestibular function in the subject.
  • the daughter cells of supporting cell origin can be induced to transdifferentiate into hair cells by activating Atoh1 activity, for example, by gene expression, by administration of an effective amount of Atoh1 or an Atoh1 agonist.
  • the steps can be performed in vivo (for example, in the inner ear of a mammal, in particular in the utricle), or ex vivo, wherein the resulting cells are cultured and/or introduced into the inner ear of the subject.
  • c-myc activity may be increased by contacting the cell with an effective amount of a c-myc protein or a c-myc activator. After c-myc activity is increased, c-myc activity can be inhibited to limit proliferation of the cochlear cell or utricular cell and/or to promote survival of the cochlear cell or utricular cell.
  • Notch activity may be increased by contacting the cell with an effective amount of a Notch protein, a Notch Intracellular Domain (NICD) protein or a Notch activator. Notch activity can be inhibited by contacting the cell with an effective amount of a Notch inhibitor.
  • NBD Notch Intracellular Domain
  • the c-myc protein or c-myc activator may be administered to the inner ear of a subject.
  • the Notch protein, NICD protein, Notch activator, and/or Notch inhibitor may be administered to the inner ear of a subject.
  • the c-myc protein or c-myc activator may be co-administered together with the Notch protein, the NICD protein, the Notch activator, and/or the Notch inhibitor to the inner ear of the subject.
  • FIG. 1(A) shows the full-length protein sequence of human c-myc (NP — 002458.2; SEQ ID NO: 1) and (B) shows the c-myc protein consensus protein sequence (SEQ ID NO: 9).
  • FIG. 2(A) shows the full-length protein sequence of human Notch (NP — 060087.3; SEQ ID NO: 2)
  • (B) shows the protein sequence of human Notch intracellular domain (NP — 060087.3 residues 1754-2555; SEQ ID NO: 7)
  • (C) shows a consensus protein sequence of the Notch Intracellular domain (SEQ ID NO: 10).
  • FIG. 3(A) shows the full-length protein sequence of human Atoh1 (NP — 005163.1; SEQ ID NO: 3) and (B) shows an Atoh1 consensus protein sequence (SEQ ID NO: 11).
  • FIG. 4 shows the nucleic acid sequence of human c-myc mRNA (NM — 002467.4; SEQ ID NO: 4).
  • FIG. 5(A) shows the nucleic acid sequence of human Notch mRNA (NM — 017617.3; SEQ ID NO: 5) and (B) shows the nucleotide sequence of human Notch intracellular domain (NM — 017617.3 nucleotide positions 5260 to 7665; SEQ ID NO: 8).
  • FIG. 6 shows the nucleic acid sequence of human Atoh1 mRNA (NM — 005172.1; SEQ ID NO: 6).
  • FIG. 7 shows cochlear hair and supporting cells double-labeled with cell-type specific markers and BrdU 4 days (A-E), 8 days (K-O), or 12 days (P-T) post-injection of Ad-Cre-GFP virus and Ad-Myc virus into cochleas of 45-day-old NICD flox/flox mice. Solid arrows indicate BrdU labeled hair cells and open arrows indicate BrdU labeled supporting cells.
  • FIG. 7 (F-J) shows an uninjected control cochlea in which no hair and supporting cells double-labeled with cell-type specific markers and BrdU could be found.
  • FIGS. 7(A , F, K, and P) show BrdU labeling.
  • FIGS. 7(A , F, K, and P) show BrdU labeling.
  • FIGS. 7(B , G, L, and Q) show Myo7a labeling of hair cells.
  • FIGS. 7(C , H, M, and R) show Sox2 labeling of supporting cells.
  • FIGS. 7(D , I, N, and S) show DAPI labeling of cell nuclei.
  • FIGS. 7(E , J, O, and T) show merged images.
  • FIG. 8 shows cochlear hair and supporting cells double-labeled with cell-type specific markers and BrdU in the cochlear epithelium of NICD flox/flox mice 35 days post-injection of an Ad-Cre-GFP/Ad-Myc mixture followed by 5 days of daily BrdU administration.
  • FIGS. 8(A , F, and K) show BrdU labeling.
  • FIGS. 8(B , G, and L) show Myo7a labeling of hair cells.
  • FIGS. 8(C , H, and M) show Sox2 labeling of supporting cells.
  • FIGS. 8(D , I, and N) show DAPI labeling of cell nuclei.
  • FIGS. 8(E , J, and O) show merged images.
  • FIG. 8(A , F, and K) show BrdU labeling.
  • FIGS. 8(B , G, and L) show Myo7a labeling of hair cells.
  • FIG. 8(A-E) shows labeling with BrdU and Myo7a, demonstrating that proliferating hair cells survive 35 days post-injection (solid arrows, FIGS. 8A , B, C, and E).
  • FIG. 8(F-J) shows an enlarged image of two hair cells displaying stereocilia (solid arrowhead, FIG. 8J ) derived from division of one mother hair cell.
  • FIG. 8(K-O) shows cells labeled with BrdU and Sox2 (open arrows, FIGS. 8K , M, and O), demonstrating that proliferating supporting cells survive 35 days post-injection. Closed arrows in FIGS. 8 (K, L, M, and O) show Myo7a+/BrdU+ hair cells. Arrowhead in FIGS. 8 (K,L,M, and O) show Myo7a+/Sox2+/BrdU+ hair cell.
  • FIG. 9 shows cochlear hair and supporting cells double-labeled with cell-type specific markers and BrdU in the cochlear epithelium of aged NICD flox/flox mice injected with an Ad-Cre-GFP/Ad-Myc mixture over the course of 15 days.
  • FIGS. 9(A , F, and K) show Myo7a labeling of hair cells.
  • FIGS. 9(B , G, and L) show BrdU labeling of dividing cells.
  • FIGS. 9(C , H, and M) show Sox2 labeling of supporting cells.
  • FIGS. 9(D , I, and N) show DAPI labeling of cell nuclei.
  • FIGS. 9(E , J, and O) show merged images.
  • FIG. 9(A , F, and K) show Myo7a labeling of hair cells.
  • FIGS. 9(B , G, and L) show BrdU labeling of dividing cells.
  • FIG. 9(A-J) shows Myo7a+/BrdU+ hair cells (A, B, and E; arrows) and Sox2+/BrdU+ supporting cells (B, C, E, G, H, and J; arrowheads) following injection with Ad-Myc and Ad-Cre-GFP adenovirus.
  • FIG. 9(K-O) shows the same staining in 17-month old NICD flox/flox mice injected with Ad-Cre-GFP virus alone. No BrdU labeled hair cells or supporting cells were found in the latter group. Scale bars: 10 ⁇ M.
  • FIG. 10 shows BrdU ( FIGS. 10A and F), Myo7a ( FIGS. 10B and G) and Sox2 ( FIGS. 10C and H) labeled hair and supporting cells in cultured adult human cochlear ( FIG. 10A-E ) and utricular ( FIG. 10F-J ) tissue transduced with Ad-Myc/Ad-NICD for 10 days.
  • Open arrows FIGS. 10A , C, D, E, F, H, I, and J
  • indicate proliferating supporting cells Sox2+/BrdU+
  • solid arrow (F-J) indicates a proliferating hair cell (Myo7a+/BrdU+).
  • Nuclear staining is shown by DAPI (D and I).
  • FIG. 11 shows Myo7+ hair (A and F) and Sox2+ supporting (C and H) cells in adult monkey cochlear cultures. Dividing cells were labeled with EdU (B and G).
  • FIG. 11(A-E) shows Ad-GFP infected control monkey cochlea, in which no EdU+ cells were identified.
  • FIG. 11(G , H, J) shows EdU+/Sox2+ supporting cells (arrowheads) in monkey cochlea cultures exposed to Ad-Myc/Ad-NICD virus. In both control and Ad-Myc/Ad-NICD virus infected cultures, no hair cells were observed to re-enter the cell cycle (A, E, F, and J; arrows). Scale bars: 20 ⁇ M.
  • FIG. 12 shows selective induction of proliferation in supporting cells (arrows; B, C, and E), but not inner hair cells (arrowheads; A, C, and E), of rtTa/tet-on-Myc/tet-on-NICD mice exposed to doxycycline administered by an implanted osmotic pump for 9 days to induce expression of NICD and Myc.
  • Cells that reentered the cell cycle were labeled via daily EdU ( FIG. 12B ) administration during the same period.
  • Cell nuclei were stained for DAPI ( FIG. 12D ).
  • Inner hair cells were stained for Parvalbumin (Parv; FIG. 12A ).
  • Supporting cells were stained for Sox2 ( FIG. 12C ).
  • a single Parv+ hair cell is shown that also expressed Sox2 due to Notch activation (rightmost arrowhead in FIGS. 12A , C, and E). Outer hair cells are not shown as they were lost during surgical implantation of the osmotic pump. Scale bar: 20 ⁇ M.
  • FIG. 13 shows outer hair cells are selectively induced to undergo cell cycle reentry following exposure to elevated c-Myc and Notch activity in vivo.
  • rtTa/tet-on-Myc/tet-on-NICD mice were exposed to doxycycline administered by an implanted osmotic pump for 12 days to induce expression of NICD and Myc, after which tissue was harvested for staining.
  • Cells that reentered the cell cycle were labeled via daily EdU ( FIG. 13B ) administration during the period of doxycycline exposure.
  • Cell nuclei were stained for DAPI ( FIG. 13D ).
  • Inner and outer hair cells were stained for Espin (Esp; FIG. 13A ).
  • FIGS. 13(B and E; arrows) A dividing Esp+/EdU+ outer hair cell is shown in FIGS. 13(B and E; arrows), demonstrating selective induction of outer hair cell proliferation at this level of exposure to elevated c-Myc and Notch activity.
  • FIG. 14 shows Espin-positive (Esp+) hair cells labeled with FM-143FX (FM1) to reveal cells with functional membrane channels.
  • Cochlea of 45-day-old NICD flox/flox mice were exposed to Ad-Myc/Ad-Cre-GFP virus and EdU was injected once daily for 5 days following virus injection to label dividing cells. 35 days post-virus injection, cochlea were harvested, briefly exposed to FM1, fixed, and stained.
  • FIG. 14(A-E) shows an Esp+/FM1+/EdU ⁇ control hair cell that has not undergone cell cycle reentry, but which expresses Esp and takes up FM1.
  • FIG. 14(F-J) shows an Esp+/FM1+/EdU+ hair cell in a cochlea exposed to Ad-Myc/Ad-NICD virus, indicating the presence of functional membrane channels in a cell that has undergone cell cycle reentry.
  • Arrowhead ( FIG. 14H ) indicates EdU labeling;
  • arrow ( FIG. 14F ) indicates the presence of Esp+ hair bundles.
  • FIG. 15 shows that production of Myo7a+ hair cells induced to undergo cell proliferation following exposure to elevated levels of c-Myc and Notch activity is accompanied by production of neurofilament-positive (NF+; FIG. 15B ) neurofibers.
  • Cochlea of 45-day-old NICD flox/flox mice were exposed to Ad-Myc/Ad-Cre-GFP virus and BrdU was injected once daily for 15 days following virus injection to label dividing cells ( FIG. 15C ). Tissue was harvested and stained 20 days post-virus injection.
  • FIG. 15(A) shows Myo7+ hair cells. Cell nuclei were stained using DAPI ( FIG. 15D ).
  • FIGS. 15(E) shows a merge of all stains and an enlarged view of the boxed area indicated by the rightmost arrow in the panel.
  • Arrows ( FIGS. 15A , C, and E) indicate Myo7a+/BrdU+ hair cells in contact with NF+ ganglion neuron neurofibers. Scale bar: 10 ⁇ M.
  • FIG. 16(A-E) shows an example of an inner hair cell induced to proliferate via exposure to elevated levels of c-Myc and Notch activity and expressing an inner hair cell-specific marker (Vglut3; FIGS. 16B and G) and a marker of functional synapses (CtBP2; FIGS. 16A and F; brackets).
  • Cochlea of 45-day-old NICD flox/flox mice were exposed to Ad-Myc/Ad-Cre-GFP ( FIG. 16A-E ) or Ad-GFP ( FIG. 16F-J ) virus via a single injection of virus, and BrdU was injected once daily for 15 days following virus injection to label dividing cells ( FIGS. 16C and H). Tissue was then harvested and stained.
  • FIGS. 16 D and I show a CtBP2+/VGlut3+/BrdU+ inner hair cell ( FIG. 16B ; arrow) induced to proliferate following exposure to elevated c-Myc and Notch activity, and a CtBP2+/Vglut3+/BrdU ⁇ inner hair cell ( FIG. 16B ; arrowhead) that did not undergo cell cycle reentry.
  • FIG. 16F-J shows inner hair cells exposed to Ad-GFP that did not stain positive for BrdU but expressed the inner hair cell-specific marker Vglut3 and the presynaptic marker CtBP2.
  • IHC inner hair cell layer.
  • FIG. 17 shows cultured cochlear support cells from doxycycline-inducible rtTa/tet-on-Myc/tet-on-Notch mice induced to transdifferentiate or proliferate and transdifferentiate to functional hair cells following exposure to either Atoh1-expressing adenovirus alone ( FIG. 17F-J ) or doxycycline and Atoh1-expressing adenovirus (Ad-Atoh1; FIGS. 17A-E and K-O).
  • Cochlea from adult rtTa/tet-on-Myc/tet-on-Notch mice were dissected and cultured for 5 days in the presence ( FIGS. 17A-E and K-O) or absence ( FIG.
  • FIGS. 17F-J show supporting cells exposed to doxycycline followed by Ad-Atoh1, and labeled with EdU, reenter the cell cycle and/or transdifferentiate into Myo7a+/Parv+ hair cells (closed arrows in FIGS. 17A , B, C, and E). Open arrow in FIGS.
  • FIG. 17(B , C, and E) indicates the presence of a Myo7a+/Parv+ supporting cell that has transdifferentiated into a hair cell, but has not undergone cell cycle reentry.
  • Arrowhead in FIGS. 17(A and E) indicates an EdU+ supporting cell.
  • FIG. 17(F-J) shows supporting cells exposed to Ad-Atoh1, but not doxycycline, transdifferentiate to Myo7a+/Parv+ hair cells.
  • Arrow in FIGS. 17(G , H, and J) indicates a supporting cell that has transdifferentiated into a Myo7a+/Parv+ hair cell, but which has not undergone cell cycle reentry.
  • FIG. 17(K-O) shows supporting cells exposed to doxycycline followed by Ad-Atoh1 and labeled with FM1 ( FIG. 17L ) and Edu ( FIG. 17M ) have Esp+ hair bundles ( FIG. 17K ) and take up FM1 dye.
  • Arrow in FIGS. 17(K and O) indicates an Esp+/FM1+/EdU+ hair cell displaying stereocilia derived from a transdifferentiated supporting cell that has undergone cell cycle reentry.
  • Arrowhead in FIGS. 17 (K and O) indicates an Esp+/FM1+/EdU ⁇ hair cell derived from a transdifferentiated supporting cell that has not undergone cell cycle reentry.
  • Scale bar 10 ⁇ M.
  • FIG. 18 shows the results of semi-quantitative RT-PCR analysis of sets of mRNA transcripts produced in control cochlear cells and in cochlear cells following exposure to elevated c-Myc and NICD levels.
  • Adult NICD flox/flox mouse cochleas were exposed to Ad-Myc/Ad-Cre-GFP (Myc+Nicd) or Ad-GFP (Ctr) and cultured for 4 days, mRNA was extracted, and semi-quantitative RT-PCT was performed.
  • FIG. 19(A) shows the full-length protein sequence of human N-myc (NP — 005369.2; SEQ ID NO: 12) and (B) shows the nucleic acid sequence of human N-myc (NM — 005378.4; SEQ ID NO: 13).
  • FIG. 20(A) shows the full-length protein sequence of human Notch2 (NP — 077719.2; SEQ ID NO: 14) and (B) shows the nucleic acid sequence of human Notch2 (NM — 024408.3; SEQ ID NO: 15).
  • FIG. 21(A) shows the full-length protein sequence of human Notch3 (NP — 000426.2; SEQ ID NO: 16) and (B) shows the nucleic acid sequence of human Notch3 (NM — 000435.2; SEQ ID NO: 17).
  • FIG. 22(A) shows the full-length protein sequence of human Notch4 (NP — 004548.3; SEQ ID NO: 18) and (B) shows the nucleic acid sequence of human Notch4 (NM — 004557.3; SEQ ID NO: 19).
  • FIG. 23 (A) shows the full-length protein sequence of human Atoh7 (NP — 660161.1; SEQ ID NO: 20) and (B) shows the nucleic acid sequence of human Atoh7 (NM — 145178.3; SEQ ID NO: 21).
  • FIG. 24 shows the nucleic acid sequence for an Atoh1 enhancer (SEQ ID NO: 22), which controls expression in hair cells.
  • FIG. 25 shows the nucleic acid sequence for a Pou4f3 promoter (SEQ ID NO: 23), which controls expression in hair cells.
  • FIG. 26 shows the nucleic acid sequence for a Myo7a promoter (SEQ ID NO: 24), which controls expression in hair cells.
  • FIG. 27 shows the nucleic acid sequence for a HesS promoter (SEQ ID NO: 25), which controls expression in vestibular supporting cells and cochlear inner phalangeal cells, Deiters cells and Pillar cells.
  • FIG. 28 shows the nucleic acid sequence for a GFAP promoter (SEQ ID NO: 26), which controls expression in vestibular supporting cells and cochlear inner phalangeal cells, Deiters cells and Pillar cells.
  • the invention relates to methods and compositions for inducing cell cycle reentry and proliferation of hair and/or supporting cells in the ear, in particular, the inner ear.
  • the methods and compositions can be used to increase a population of hair cells and/or supporting cells diminished by environmental or genetic factors. Using the methods and compositions described herein, it may be possible to preserve or improve hearing and/or vestibular function in the inner ear.
  • c-myc and Notch activity appears to be an important step in inducing cell cycle reentry and proliferation in cells of the inner ear.
  • overexpression of c-myc and Notch in the inner ear of a mammal results in the reentry of hair and supporting cells into the cell cycle and the proliferation of those cells.
  • the proliferation of hair cells (or the proliferation of supporting cells followed by transdifferentiation of those cells into hair cells) may lead to improved hearing and/or vestibular function in a subject.
  • the term “effective amount” is understood to mean the amount of an active agent, for example, a c-myc or Notch activator, that is sufficient to induce cell cycle reentry and/or proliferation of the cells of the inner ear (e.g., a hair cell or a supporting cell).
  • the cells are contacted with amounts of the active agent effective to induce cell cycle reentry and/or proliferation.
  • “pharmaceutically acceptable” or “pharmacologically acceptable” mean molecular entities and compositions that do not produce an adverse, allergic or other untoward reaction when administered to an animal, or to a human, as appropriate.
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
  • subject is used throughout the specification to describe an animal, human or non-human, to whom treatment according to the methods of the present invention is provided.
  • Veterinary and non-veterinary applications are contemplated.
  • the term includes, but is not limited to, birds and mammals, e.g., humans, other primates, pigs, rodents such as mice and rats, rabbits, guinea pigs, hamsters, cows, horses, cats, dogs, sheep and goats.
  • Typical subjects include humans, farm animals, and domestic pets such as cats and dogs.
  • target cell and “target cells” refers to a cell or cells that are capable of reentering the cell cycle and/or proliferating and/or transdifferentiating to or towards a cell or cells that have or result in having characteristics of auditory or vestibular hair cells.
  • Target cells include, but are not limited to, e.g., hair cells, e.g., inner ear hair cells, which includes auditory hair cells (inner and outer hair cells) and vestibular hair cells (located in the utricle, saccule and three semi-circular canals, for example), progenitor cells (e.g., inner ear progenitor cells), supporting cells (e.g., Deiters' cells, pillar cells, inner phalangeal cells, tectal cells and Hensen's cells), supporting cells expressing one or more of p27 kip , p75, S100A, Jagged-1, Proxl, and/or germ cells.
  • hair cells e.g., inner ear hair cells, which includes auditory hair cells (inner and outer hair cells) and vestibular hair cells (located in the utricle, saccule and three semi-circular canals, for example
  • progenitor cells e.g., inner ear progenitor cells
  • Target cells refers to a sensory cell of the inner ear that is anatomically situated in the organ of Corti above the basilar membrane.
  • Outer hair cell refers to a sensory cell of the inner ear that is anatomically situated in the organ of Corti below the tectorial membrane near the center of the basilar membrane.
  • target cells also include fibrocytes, marginal cells or interdental cells expressing one or more of Gjb2, Slc26a4 and Gjb6.
  • each of these target cells can be identified using a defined set of one or more markers (e.g., cell surface markers) that is unique to the target cell.
  • a different set of one or more markers can also be used to identify target cells have characteristics of an auditory hair cell or supporting cell.
  • the term “host cell” refers to cells transfected, infected, or transduced in vivo, ex vivo, or in vitro with a recombinant vector or a polynucleotide.
  • Host cells may include packaging cells, producer cells, and cells infected with viral vectors.
  • host cells infected with viral vector of the invention are administered to a subject in need of therapy.
  • target cell is used interchangeably with host cell and refers to transfected, infected, or transduced cells of a desired cell type.
  • vector is used herein to refer to a nucleic acid molecule capable transferring or transporting another nucleic acid molecule.
  • the transferred nucleic acid is generally linked to, for example , inserted into, the vector nucleic acid molecule.
  • a vector may include sequences that direct autonomous replication in a cell, or may include sequences sufficient to allow integration into host cell DNA.
  • Useful vectors include, for example, plasmids (e.g., DNA plasmids or RNA plasmids), transposons, cosmids, bacterial or yeast artificial chromosomes, and viral vectors.
  • Useful viral vectors include, for example, adenoviruses, replication defective retroviruses, and lentiviruses.
  • viral vector refers either to a nucleic acid molecule that includes virus-derived nucleic acid elements that typically facilitate transfer of the nucleic acid molecule or integration into the genome of a cell or to a viral particle that mediates nucleic acid transfer. Viral particles will typically include various viral components and sometimes also host cell components in addition to nucleic acid(s).
  • viral vector may also refer either to a virus or viral particle capable of transferring a nucleic acid into a cell or to the transferred nucleic acid itself Viral vectors and transfer plasmids contain structural and/or functional genetic elements that are primarily derived from a virus.
  • retroviral vector refers to a viral vector or plasmid containing structural and functional genetic elements, or portions thereof, that are primarily derived from a retrovirus.
  • lentiviral vector refers to a viral vector or plasmid containing structural and functional genetic elements, or portions thereof, that are primarily derived from a lentivirus.
  • lentiviral vector or “lentiviral expression vector” may be used to refer to lentiviral transfer plasmids and/or infectious lentiviral particles. It is understood that nucleic acid sequence elements such as cloning sites, promoters, regulatory elements, heterologous nucleic acids, etc., are present in RNA form in the lentiviral particles of the invention and are present in DNA form in the DNA plasmids of the invention.
  • hybrid refers to a vector, LTR or other nucleic acid containing both retroviral (e.g., lentiviral) sequences and non-lentiviral viral sequences.
  • a hybrid vector may refer to a vector or transfer plasmid comprising retroviral (e.g., lentiviral) sequences for reverse transcription, replication, integration and/or packaging.
  • retroviral e.g., lentiviral
  • a hybrid vector may be used to practice the invention described herein.
  • transduction refers to the delivery of a gene(s) or other polynucleotide sequence using a retroviral or lentiviral vector by means of viral infection rather than by transfection.
  • a cell e.g., a target cell
  • a transduced cell comprises one or more genes or other polynucleotide sequences delivered by a retroviral or lentiviral vector in its cellular genome.
  • c-myc refers to a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular transformation and/or has an amino sequence or consensus amino acid sequence set forth in Section 1(i) below.
  • the full length sequence of human c-myc appears, for example, in the NCBI protein database under accession no. NP — 002458.2 (see ncbi.nlm.nih.gov and SEQ ID NO: 1).
  • a consensus sequence for c-myc built from an alignment of human, rat, mouse and chimpanzee using ClustalW is set forth in SEQ ID NO: 9.
  • C-myc functions as a transcription factor that regulates transcription of specific target genes.
  • C-myc is also known in the art as MYC, v-myc myelocytomatosis viral oncogene homolog (avian), transcription factor p64, bHLHe39, MRTL, avian myelocytomatosis viral oncogene homolog, v-myc avian myelocytomatosis viral oncogene homolog, myc proto-oncogene protein, class E basic helix-loop-helix protein 39, myc-related translation/localization regulatory factor, and proto-oncogene c-Myc, and BHLHE39.
  • Notch refers to the Notch family of signaling proteins, which includes Notch1, Notch2, Notch3 and Notch4, a NICD, and/or a protein having an amino acid sequence or consensus amino acid sequence set forth in Section (1)(i) below.
  • the full length sequence of human Notchl appears, for example, in the NCBI protein database under accession no. NP — 060087.3 (see ncbi.nlm.nih.gov and SEQ ID NO: 2).
  • Members of this Type 1 transmembrane protein family share structural characteristics including an extracellular domain consisting of multiple epidermal growth factor-like (EGF) repeats, and an intracellular domain consisting of multiple, different domain types.
  • EGF epidermal growth factor-like
  • Notch1 is cleaved in the trans-Golgi network, and presented on the cell surface as a heterodimer.
  • Notchl functions as a receptor for membrane bound ligands Jaggedl, Jagged2 and Deltal to regulate cell-fate determination.
  • ligand activation through the released notch intracellular domain (NICD) Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus.
  • Notch 1 affects the implementation of differentiation, proliferation and apoptotic programs.
  • Disclosed herein is a method of inducing proliferation or cell cycle reentry of a differentiated cochlear cell or a utricular cell.
  • the method comprises increasing c-myc, Notch or both c-myc activity and Notch activity within the cell sufficient to induce proliferation or cell cycle reentry of the cochlear cell or utricular cell.
  • the method includes increasing c-myc activity within a cell when Notch activity is already increased, for example, when Notchl has been upregulated in response to damage to the inner ear.
  • the invention relates to a method of inducing proliferation or cell cycle reentry of a differentiated cochlear cell or a utricular cell in which Notch activity is increased in response to damage to the cochlear cell or utricular cell, as compared to the level of Notch activity in undamaged cochlear cells or utricular cells, respectively.
  • the method comprises increasing c-myc activity within the cochlear cell or utricular cell sufficient to induce proliferation or cell cycle reentry of the cochlear cell or utricular cell.
  • the method includes increasing Notch activity within a cell, when c-myc activity is already increased.
  • the invention relates to a method of inducing proliferation or cell cycle reentry of a differentiated cochlear cell or a utricular cell in which c-myc activity is increased in response to damage to the cochlear cell or utricular cell, as compared to the level of c-myc activity in undamaged cochlear cells or utricular cells, respectively.
  • the method comprises increasing Notch activity within the cochlear cell or utricular cell sufficient to induce proliferation or cell cycle reentry of the cochlear cell or utricular cell.
  • Notch may be inhibited according to methods known in the art and/or described herein to cause proliferating supporting cells to transdifferentiate into hair cells.
  • Atoh1 activity can be increased to cause proliferating supporting cells to transdifferentiate into hair cells.
  • the method includes (a) increasing c-myc, Notch, or both c-myc activity and Notch activity, as appropriate, ⁇ within the hair cell thereby to induce cell proliferation to produce one, two or more daughter cells, and (b) after cell proliferation, decreasing Notch activity to induce differentiation of at least one of the cell and the daughter cells to produce a differentiated cochlear or utricular hair cell.
  • Notch activity is decreased in a cell that originated from a supporting cell to cause the supporting cell to transdifferentiate into a hair cell.
  • Atoh1 activity is increased in a cell that originated from a supporting cell to cause the supporting cell to transdifferentiate into a hair cell.
  • c-myc activity is decreased to induce differentiation of at least one of the cell and the daughter cell to produce a differentiated cochlear or utricular hair cell. Decreasing c-myc activity after proliferation can promote survival of the proliferating cell.
  • the method comprises increasing c-myc activity, Notch activity, or both c-myc activity and Notch activity, as appropriate, within a hair cell and/or a supporting cell of the inner ear thereby to induce cell proliferation to produce daughter cells, and, after cell proliferation, decreasing c-myc and/or Notch activity, and permitting daughter cells of hair cell origin to differentiate into hair cells or permitting daughter cells of supporting cell origin to transdifferentiate into hair cells thereby to reduce the loss of, maintain or promote hearing in the subject.
  • the daughter cells of supporting cell origin can be induced to transdifferentiate into hair cells by activating Atoh1 activity, for example, by gene expression, by administration of an effective amount of Atoh1 or an Atoh1 agonist.
  • the steps can be performed in vivo (for example, in the inner ear of a mammal, in particular in the cochlea), or ex vivo, wherein the resulting cells are cultured and/or introduced into the inner ear of the subject.
  • the method comprises increasing c-myc activity, Notch activity, or both c-myc activity and Notch activity, as appropriate, within a hair cell and/or a supporting cell of the inner ear thereby to induce cell proliferation to produce daughter cells, and, after cell proliferation, decreasing c-myc and/or Notch activity, and permitting daughter cells of hair cell origin to differentiate into hair cells or permitting daughter cells of supporting cell origin to transdifferentiate into hair cells thereby to reduce the loss of, maintain or promote vestibular function in the subject.
  • the daughter cells of supporting cell origin can be induced to transdifferentiate into hair cells by activating Atoh1 activity, for example, by gene expression, by administration of an effective amount of Atoh1 or an Atoh1 agonist.
  • the steps can be performed in vivo (for example, in the inner ear of a mammal, in particular in the utricle), or ex vivo, wherein the resulting cells are cultured and/or introduced into the inner ear of the subject.
  • the methods and compositions described herein can be used for treating subjects who have, or who are at risk for developing, an auditory disorder resulting from a loss of auditory hair cells, e.g., sensorineural hair cell loss.
  • Patients having an auditory disorder can be identified using standard hearing tests known in the art.
  • the method can comprise (a) increasing c-myc activity, Notch activity, or both c-myc activity and Notch activity, as appropriate, within the hair cell of the subject thereby to induce cell proliferation to produce a daughter cell, and (b) after cell proliferation, decreasing Notch activity to induce differentiation of at least one of the cell and the daughter cell to produce a differentiated cochlear or utricular hair cell.
  • the process can occur in cells (e.g., cochlear and/or utricular cells) ex vivo, after which the resulting cells are transplanted into the inner ear of the subject.
  • the methods and compositions described herein can be used to promote growth of neurites from the ganglion neurons of the inner ear.
  • the regeneration of hair cells may promote the growth of new neurites from ganglion neurons and formation of new synapses with the regenerated hair cells to transmit sound and balance signals from the hair cells to the brain.
  • the methods and compositions described herein can be used to promote growth of neurites from the ganglion neurons of the inner ear.
  • the regeneration of hair cells may promote the growth of new neurites from ganglion neurons and formation of new synapses with the regenerated hair cells to transmit sound and balance signals from the hair cells to the brain.
  • the methods and compositions described herein can be used to reestablish proper synaptic connections between hair cells and auditory neurons to treat, for example, auditory neuropathy.
  • Subjects with sensorineural hair cell loss experience the degeneration of cochlea hair cells, which frequently results in the loss of spiral ganglion neurons in regions of hair cell loss. Such subjects may also experience loss of supporting cells in the organ of Corti, and degeneration of the limbus, spiral ligament, and stria vascularis in the temporal bone material.
  • the present invention can be used to treat hair cell loss and any disorder that arises as a consequence of cell loss in the ear, such as hearing impairments, deafness, vestibular disorders, tinnitus (see, Kaltenbach et al. (2002) J N EUROPHYSIOL. 88(2):699-714s), and hyperacusis (Kujawa et al. (2009) J. N EUROSCI. 29(45):14077-14085), for example, by promoting differentiation (e.g., complete or partial differentiation) of one or more cells into one or more cells capable of functioning as sensory cells of the ear, e.g., hair cells.
  • differentiation e.g., complete or partial differentiation
  • the subject can have sensorineural hearing loss, which results from damage or malfunction of the sensory part (the cochlea) or non-sensory part (the limbus, spiral ligament and stria vascularis) or the neural part (the auditory nerve) of the ear, or conductive hearing loss, which is caused by blockage or damage in the outer and/or middle ear.
  • the subject can have mixed hearing loss caused by a problem in both the conductive pathway (in the outer or middle ear) and in the nerve pathway (the inner ear).
  • An example of a mixed hearing loss is a conductive loss due to a middle-ear infection combined with a sensorineural loss due to damage associated with aging.
  • the subject may be deaf or have a hearing loss for any reason, or as a result of any type of event.
  • a subject may be deaf because of a genetic or congenital defect; for example, a human subject can have been deaf since birth, or can be deaf or hard-of-hearing as a result of a gradual loss of hearing due to a genetic or congenital defect.
  • a human subject can be deaf or hard-of-hearing as a result of a traumatic event, such as a physical trauma to a structure of the ear, or a sudden loud noise, or a prolonged exposure to loud noises. For example, prolonged exposures to concerts, airport runways, and construction areas can cause inner ear damage and subsequent hearing loss.
  • a subject can experience chemical-induced ototoxicity, wherein ototoxins include therapeutic drugs including antineoplastic agents, salicylates, quinines, and aminoglycoside antibiotics, contaminants in foods or medicinals, and environmental or industrial pollutants.
  • ototoxins include therapeutic drugs including antineoplastic agents, salicylates, quinines, and aminoglycoside antibiotics, contaminants in foods or medicinals, and environmental or industrial pollutants.
  • a subject can have a hearing disorder that results from aging.
  • the subject can have tinnitus (characterized by ringing in the ears) or hyperacusis (heightened sensitivity to sound).
  • vestibular dysfunction is an inner ear dysfunction characterized by symptoms that include dizziness, imbalance, vertigo, nausea, and fuzzy vision and may be accompanied by hearing problems, fatigue and changes in cognitive functioning.
  • Vestibular dysfunction can be the result of a genetic or congenital defect; an infection, such as a viral or bacterial infection; or an injury, such as a traumatic or nontraumatic injury.
  • Vestibular dysfunction is most commonly tested by measuring individual symptoms of the disorder (e.g., vertigo, nausea, and fuzzy vision).
  • compositions described herein can be used prophylactically, such as to prevent, reduce or delay progression of hearing loss, deafness, or other auditory disorders associated with loss of inner ear function.
  • a composition containing one or more of the agents can be administered with (e.g., before, after or concurrently with) a second composition, such as an active agent that may affect hearing loss.
  • Such ototoxic drugs include the antibiotics neomycin, kanamycin, amikacin, viomycin, gentamycin, tobramycin, erythromycin, vancomycin, and streptomycin; chemotherapeutics such as cisplatin; nonsteroidal anti-inflammatory drugs (NSAIDs) such as choline magnesium trisalicylate, diclofenac, diflunisal, fenoprofen, flurbiprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, salsalate, sulindac, and tolmetin; diuretics; salicylates such as aspirin; and certain malaria treatments such as quinine and chloroquine.
  • NSAIDs nonsteroidal anti-inflammatory drugs
  • a human undergoing chemotherapy can be treated using the compounds and methods described herein.
  • the chemotherapeutic agent cisplatin for example, is known to cause hearing loss. Therefore, a composition containing one or more agents that increase the activity of c-myc and Notch can be administered with cisplatin therapy (e.g., before, after or concurrently with) to prevent or lessen the severity of the cisplatin side effect.
  • a composition can be administered before, after and/or simultaneously with the second therapeutic agent.
  • the two agents may be administered by different routes of administration.
  • the methods and compositions described herein can be used to increase the levels (e.g., protein levels) and/or activity (e.g., biological activity) of c-myc and
  • Notch in cells e.g., inner ear cells
  • exemplary methods and compositions include, but are not limited to methods and compositions for increasing c-myc or Notch expression (e.g., transcription and/or translation) or levels (e.g., concentration) in cells. It is contemplated that such modulation can be achieved in hair cells and/or supporting cells in vivo and ex vivo.
  • c-myc, Notch, and Atoh1 proteins including full length proteins, biologically active fragments, and homologs of c-myc and Notch can be introduced into target cells using techniques known in the art.
  • Exemplary c-myc polypeptides include, for example, NP — 002458.2 (SEQ ID NO: 1), as referenced in the NCBI protein database.
  • Exemplary Notch polypeptides include, for example, NP — 060087.3 (SEQ ID NO: 2), as referenced in the NCBI protein database.
  • Exemplary Atoh1 polypeptides include, for example, NP — 005163.1 (SEQ ID NO: 3), as referenced in the NCBI protein database.
  • nucleic acid sequences encoding c-myc, Notch, and Atoh1 family members may be used in accordance with the methods described herein.
  • Exemplary c-myc family members include N-myc, referenced in the NCBI protein database as NP — 005369.2 (SEQ ID NO: 12).
  • Exemplary Notch family members include Notch2, referenced in the NCBI protein database as NP — 077719.2 (SEQ ID NO: 14); Notch3, referenced in the NCBI protein database as NP — 000426.2 (SEQ ID NO: 16); and Notch4, referenced in the NCBI protein database as NP — 004548.3 (SEQ ID NO: 18).
  • Exemplary Atoh1 family members include Atoh7, referenced in the NCBI protein database as NP — 660161.1 (SEQ ID NO: 20).
  • a protein sequence of the invention may comprise a consensus protein sequence or a nucleotide sequence encoding a consensus protein sequence.
  • Consensus protein sequences of c-myc, Notch intracellular domain, and Atoh1 of the invention are set forth below.
  • a consensus protein sequence of c-myc built from human, mouse, rat and chimpanzee sequences using ClustalW is as follows:
  • a consensus protein sequence of the Notch intracellular domain build from human, rat and mouse sequences using ClustalW is as follows:
  • a consensus protein sequence of Atoh1 built from human, mouse and chimpanzee sequences using ClustalW is as follows:
  • Atoh1 refers to a protein belonging to the basic helix-loop-helix (BHLH) family of transcription factors that is involved in the formation of hair cells in an inner ear of a mammal, and/or is a protein having an amino sequence or consensus sequence as set forth herein.
  • BHLH basic helix-loop-helix
  • the c-myc, Notch, or Atoh1 polypeptides can be used in combination with compositions to enhance uptake of the polypeptides into biological cells.
  • the Atoh1, c-myc, or Notch polypeptides can be mutated to include amino acid sequences that enhance uptake of the polypeptides into a biological cell.
  • Atoh1, c-myc, or Notch polypeptides can be altered or mutated to increase the stability and/or activity of the polypeptide (e.g., c-myc, Notch or Atoh-1 point mutants).
  • c-myc, Notch or Atoh1 polypeptides can be altered to increase nuclear translocation of the polypeptide.
  • altered c-myc, Notch or Atohl polypeptides or biologically active fragments of c-myc, Notch, or Atoh1 retain at least 50%, 60%, 70%, 80%, 90%, or 95% of the biological activity of full length, wild type respective c-myc, Notch or Atoh1 protein in the species that is the same species as the subject that is or will be treated with the methods and compositions described herein.
  • c-myc polypeptides sequences can be 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to NP — 002458.2 (SEQ ID NO.: 1).
  • Notch polypeptides sequences are 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to NP — 060087.3 (SEQ ID NO.: 2).
  • Atoh1 polypeptides sequences can be 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to NP — 005163.1 (SEQ ID NO.: 3).
  • agents encoded by modified Atoh1, c-myc, or Notch nucleic acid sequences and Atoh1, c-myc, or Notch polypeptide sequences possess at least a portion of the activity (e.g., biological activity) of the molecules encoded by the corresponding, e g., unmodified, full-length Atoh1, c-myc, or Notch nucleic acid sequences and Atoh1, c-myc, or Notch polypeptide sequences.
  • molecules encoded by modified Atoh1, c-myc, or Notch nucleic acid sequences and modified Atoh1, c-myc, or Notch polypeptides retain 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% of the activity (e.g., biological activity) of the molecules encoded by the corresponding, e g., unmodified, respective Atoh1, c-myc, or Notch nucleic acid sequences and/or full length Atoh1, c-myc, or Notch polypeptide sequences.
  • the c-myc protein of the invention comprises functional domains at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to a Myc-N domain comprising amino acid residues 16-360 of SEQ ID NO: 1, a helix-loop-helix domain comprising amino acid residues 370-426 of SEQ ID NO: 1, a Myc leucine zipper domain comprising amino acid residues 423-454 of SEQ ID NO: 1, and/or surrounding and/or intervening sequences of SEQ ID NO: 1.
  • the Notch protein of the invention comprises functional domains at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to a Notch intracellular domain comprising amino acid residues 1754-2555 of SEQ ID NO: 2.
  • the Atoh1 protein of the invention comprises functional domains at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to a basic helix-loop-helix domain comprising amino acids 158-214 of SEQ ID NO: 3, a helix-loop-helix domain comprising amino acids 172-216 of SEQ ID NO: 3, and/or surrounding and/or intervening sequences of SEQ ID NO: 3.
  • the c-myc and Notch proteins of the invention can be administered to cells as a single protein containing both c-myc and Notch (or active domains thereof), preferably separated by a cleavable linker.
  • cleavable linkers are known in the art (see, e.g., U.S. Pat. No. 5,258,498 and U.S. Pat. No. 6,083,486.)
  • C-myc, Notch or Atoh1 levels e.g., protein levels
  • activity e.g., biological activity
  • target cells and/or in the nucleus of target cells can be assessed using standard methods such as Western Blotting, in situ hybridization, reverse transcriptase polymerase chain reaction, immunocytochemistry, viral titer detection, and genetic reporter assays.
  • Increases in c-myc, Notch or Atoh1 levels (e.g., protein levels) and/or activity (e.g., biological activity) in target cells and/or in the nucleus of target cells can be assessed by comparing c-myc, Notch or Atoh1 levels and/or activity in a first cell sample or a standard with c-myc, Notch or Atoh1 levels and/or activity in a second cell sample, e.g., contacting the cell sample with an agent contemplated to increase c-myc, Notch or Atoh1 levels and/or activity.
  • Sequence identity may be determined in various ways that are within the skill in the art, e.g., using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software, which are used to perform sequence alignments and then calculate sequence identity.
  • Exemplary software programs available from the National Center for Biotechnology Information (NCBI) on the website ncbi.nlm.nih.gov include blastp, blastn, blastx, tblastn and tblastx.
  • NCBI National Center for Biotechnology Information
  • Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
  • the search parameters for histogram, descriptions, alignments, expect i.e., the statistical significance threshold for reporting matches against database sequences
  • cutoff, matrix and filter are used at the default settings.
  • the default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., (1992) P ROC. N ATL. A CAD. S CI. USA 89:10915-10919).
  • the percent identity can be determined using the default parameters of blastp, version 2.2.26 available from the NCBI.
  • Atoh1, c-myc, or Notch can be expressed in target cells using one or more expression constructs known in the art.
  • expression constructs include, but are not limited to, naked DNA, viral, and non-viral expression vectors.
  • Exemplary c-myc nucleic acid sequences that may be expressed in target cells include, for example, NM — 002467.4 (SEQ ID NO: 4), as referenced in the NCBI gene database.
  • Exemplary Notch nucleic acid sequences that may be expressed include, for example, NM — 017617.3 (SEQ ID NO: 5), as referenced in the NCBI gene database.
  • Exemplary Atoh1 nucleic acid sequences that may be expressed in target cells include, for example, NM — 005172.1 (SEQ ID NO: 6), as referenced in the NCBI gene database.
  • c-myc, Notch, and Atoh1 family members may be used.
  • Exemplary c-myc family members include N-myc, referenced in the NCBI gene database as NM — 005378.4 (SEQ ID NO: 13).
  • Exemplary Notch family members include Notch2, referenced in the NCBI gene database as NM — 024408.3 (SEQ ID NO: 15); Notch3, referenced in the NCBI gene database as NM — 000435.2 (SEQ ID NO: 17); and Notch4, referenced in the NCBI gene database as NM — 004557.3 (SEQ ID NO: 19).
  • Exemplary Atoh1 family members include Atoh7, referenced in the NCBI gene database as NM — 145178.3 (SEQ ID NO: 21).
  • DNA encoding c-myc, Notch or Atoh1 can be an unmodified wild type sequence.
  • DNA encoding c-myc, Notch or Atoh1 can be modified using standard techniques.
  • DNA encoding c-myc, Notch or Atoh1 can be modified or mutated, e.g., to increase the stability of the DNA or resulting polypeptide. Polypeptides resulting from such altered DNAs should retain the biological activity of wild type c-myc, Notch or Atoh1.
  • DNA encoding Atoh1, c-myc, or Notch can be altered to increase nuclear translocation of the resulting polypeptide.
  • DNA encoding c-myc, Notch or Atoh1 can be modified using standard molecular biological techniques to include an additional DNA sequence that can encode one or more of, e.g., detectable polypeptides, signal peptides, and protease cleavage sites.
  • c-myc nucleic acid sequences can be 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to NM — 002467.4 (SEQ ID NO: 4).
  • Notch nucleic acid sequences are 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to NM — 017617.3 (SEQ ID NO: 5).
  • Atoh1 nucleic acid sequences are 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to NM — 005172.1 (SEQ ID NO: 6).
  • the c-myc nucleic acid sequence of the invention comprises functional domains at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to DNA encoding a Myc-N domain comprising amino acid residues 16-360 of SEQ ID NO: 1, a helix-loop-helix domain comprising amino acid residues 370-426 of SEQ ID NO: 1, DNA encoding a Myc leucine zipper domain comprising amino acid residues 423-454 of SEQ ID NO: 1, and/or DNA encoding the surrounding and/or intervening sequences of SEQ ID NO: 1.
  • the Notch nucleic acid sequence of the invention comprises functional domains at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to DNA encoding a Notch intracellular domain comprising amino acid residues 1754-2555 of SEQ ID NO: 2.
  • the Atoh1 nucleic acid sequence of the invention comprises functional domains at least 50%, 60%, 70%, 80%, 85%, 90%, 95%, 98%, 99%, or 100% identical to DNA encoding a basic helix-loop-helix domain comprising amino acids 158-214 of SEQ ID NO: 3, DNA encoding a helix-loop-helix domain comprising amino acids 172-216 of SEQ ID NO: 3, and/or DNA encoding surrounding and/or intervening sequences of SEQ ID NO: 3.
  • c-myc or Notch levels e.g., protein levels
  • activity e.g., biological activity
  • compounds or compositions that target c-myc or Notch, or one or more components of the c-myc or Notch pathway e.g., protein levels
  • Atoh1 levels e.g., protein levels
  • activity e.g., biological activity
  • Atoh1 levels can be increased using compounds that target Atoh1 or one or more components of the Atoh1 pathway.
  • Exemplary c-myc activators include microRNAs that target FBXW-7 (Ishikawa Y et al., Oncogene 2012 Jun. 4; doi:10.1038/onc.2012.213) and activators that increase c-myc expression levels or activity such as nordihydroguaiaretic acid (NDGA) (Park S et al. (2004) J. C ELL B IOCHEM. 91(5):973-86), CD19 (Chung et a.l, (2012) J. C LIN. I NVEST. 122(6):2257-2266, cohesin (McEwan et al, (2012) PLoS ONE 7(11): e49160), bryostatin 1 (Hu et al.
  • NDGA nordihydroguaiaretic acid
  • 7,544,511 B2 dexamethasone (U.S. Pat. No. 7,544,511 B2), thyroid hormones (U.S. Pat. No. 7,544,511 B2), retinoids (U.S. Pat. No. 7,544,511 B2), and ecdysone (U.S. Pat. No. 7,544,511 B2).
  • Exemplary c-myc inhibitors include 7-nitro-N-(2-phenylphenyl)-2,1,3-benzoxadiazol-4-amine (10074-G5) (Clausen D M et al., (2010) J. P HARMACOL. E XP. T HER. 335(3):715-27), thioxothiazolidinone [Z-E]-5-[4-ethylbenzylidene]-2-thioxo-1,3-thiazolidin-4-one (10058-F4) (Clausen et al. (2010) J. P HARMACOL. E XP. T HER. 335(3):715-27; Lin C P et al. (2007) A NTICANCER D RUGS.
  • 20120107317A1 cationic porphyrin TMPyP4 (U.S. Publication No. 20120107317A1), tyrphostin and tryphostin-like compounds (European Patent No. EP2487156A1), AG490 (European Patent No. EP2487156A1), FBXW-7 expression vectors (Ishikawa Y et al., supra), and siRNAs targeting c-Myc transcript (Id.).
  • Exemplary Notch activators include microRNAs that target FBXW-7 (Ishikawa Y et al. supra), AG-370, 5 (U.S. Pat. No. 8,114,422), AG-1296 (6,7-dimethoxy-3-phenylquinoxaline) (Id.), nigericin.Na (Id.), cytochalasin D (Id.), FCCP (carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone) (Id.), SP60012 (Id.), and vectors that produce protein of or isolated protein of Jagged-1, Jagged-2, Jagged-3, Serrate, any member of the Jagged/Serrate protein family, Delta, Delta-like-1, Delta-like-3, Delta-like-4, Delta-like homolog-1 (DLK1), any member of the Delta protein family, and any portion of any of these proteins (PCT Publication WO2004090110A3).
  • Exemplary Notch activators may also include chemical activators such as
  • Notch inhibitors include gamma-secretase inhibitors such as an arylsulfonamide, a benzodiazepine, L-685,458 (U.S. Patent Publication No. 2001/0305674), MK-0752 (Purow B. (2012) A DV. E XP. M ED. B IOL. 727:305-19; Imbimbo BP (2008) C URR. T OP. M ED. C HEM. 8(1):54-61), DAPT ([N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) (Id.; Ishikawa Y et al.
  • Patent Publication No. 20090181944A1), GSI-IX (EP1949916B1), GSI-X (EP1949916B1), tocopherol derivatives PCT Publication WO2009040423A1), [(2S)-2- ⁇ [(3,5-Difluorophenyl)acetyl]amino ⁇ -N-[(3S)1-methyl-2-oxo-5-phenyl-2,3-dihydro-1H-1,4-benzodiazepin-3-yl]propanamide] (PCT Publication WO2009005688A3), N-[N-(3,5-difluorophenacetyl)-L-alanyl]-Sphenylglycine-t-butylester (Id.), [1,1′-Biphenyl]-4-acetic acid (Id.), 2-fluoro-alpha-methyl (Id.), NGX-555 (Id.), LY-411575 (Id
  • suitable gamma secretase inhibitors include: semagacestat (also known as LY450139, (2S)-2-hydroxy-3-methyl-N-[(1S)-1-methyl-2-oxo-2-[[(1S)-2,3,4,5-tetrahydro-3-methyl-2-oxo-1H-3-benzazepin-1-yl]amino]ethyl]butanamide, available from Eli Lilly; WO 02/47671 and U.S. Pat. No.
  • LY411575 N-2((2S)-2-(3,5-difluorophenyl)-2-hydroxyethanoyl)-N1-((7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)-L-alaninamide, available from Eli Lilly, Fauq et al., (2007) B IOORG M ED C HEM L ETT 17: 6392-5);begacestat (also known as GSI-953, U.S. Pat. No.
  • N-[N-3,5-Difluorophenacetyl]-L-alanyl-S-phenylglycine Methyl Ester also known as DAPM, gamma-Secretase Inhibitor XVI, available from EMD Millipore
  • Compound W (3,5-bis(4-Nitrophenoxy)benzoic acid, available from Tocris Bioscience); L-685,458 ((5S)-(tert-Butoxycarbonylamino)-6-phenyl-(4R)-hydroxy-(2R)-benzylhexanoyl)-L-leucy-L-phenylalaninamide, available from Sigma-Aldrich, Shearmen et al., (2000) B IOCHEMISTRY 39, 8698-8704); BMS-289948 (4-chloro-N-(2,5-difluorophenyl)-N-((1R)- ⁇
  • MRK-560 N-[cis-4-[(4-Chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoro-methanesulfonamide, Best et. al., (2006) J P HARMACOL E XP Ther.
  • RO-4929097 also known as R4733, (S)-2,2-dimethyl-N1-(6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)-N3-(2,2,3,3,3-pentafluoropropyl)malonamide, available from Hoffman-La Roche Inc., Tolcher et al., (2012) J C LIN. O NCOL. 30(19):2348-2353); JLK6 (also known as 7-Amino-4-chloro-3-methoxyisocoumarin, available from Santa Cruz Biotechnology, Inc., Petit et al., (2001) N AT. C ELL. B IOL.
  • Tarenflurbil also known as (R)-Flurbiprofen, (2R)-2-(3-fluoro-4-phenylphenyl)propanoic acid
  • ALX-260-127 also known as Compound 11, described by Wolfe et al., (1998) J. M ED. C HEM. 41: 6
  • Sulindac sulfide SSide, et al., (2003) J B IOL C HEM.
  • gamma-Secretase Inhibitor I also known as Z-Leu-Leu-Nle-CHO, benzyloxycarbonyl-leucyl-leucyl-norleucinal, available from Calbiochem
  • gamma-secretase inhibitor II gamma-secretase inhibitor II:
  • gamma secretase inhibitor XIII (Z-Tyr-Ile-Leu-CHO, available from Calbiochem); gamma secretase inhibitor XIV, (Z-Cys(t-Bu)-Ile-Leu-CHO, available from Calbiochem); gamma secretase inhibitor XVII, (also known as WPE-III-31C),
  • gamma secretase inhibitor XX also known as dibenzazepine, (S,S)-2-[2-(3,5-Difluorophenyl)acetylamino]-N-(5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl)propionamide.
  • gamma-secretase inhibitors are disclosed in U.S. Patent Application Publication Nos. 2004/0029862, 2004/0049038, 2004/0186147, 2005/0215602, 2005/0182111, 2005/0182109, 2005/0143369, 2005/0119293, 2007/0190046, 2008/008316, 2010/0197660 and 2011/0020232; U.S. Pat. Nos. 6,756,511; 6,890,956; 6,984,626; 7,049,296; 7,101,895; 7,138,400; 7,144,910; 7,183,303; 8,188,069; and International Publication Nos.
  • Notch inhibitors include nonsteroidal anti-inflammatory drugs (NSAIDs) such as flurbiprofen (Purow B, supra), MPC-7869 (Imbimbo BP, supra), ibuprofen (Id.), sulindac sulphide, indomethacin, alpha-secretase inhibitors (ASIs) (Purow B, supra), the Na+/H+ antiporter Monensin (Id.); small molecules that block Notch binding to interacting proteins such as Jagged, Numb, Numb-like, CBF1 transcription factor, and mastermind-like (MAML) (Id.; Ishikawa Y et al, supra.); antibodies that bind Notch proteins or Notch ligands such as Delta-Like-4 (Purow B, supra); stapled peptides that bind Notch such as SAHM1 (Id.); dominant-negative forms of genes such as MAML (Id; Ishikawa Y et al., supra), N-secret
  • Atoh1 activators include, for example, ⁇ -Catenin or ⁇ -catenin pathway agonists, e.g., Wnt ligands, DSH/DVL1, 2, 3, LRP6 ⁇ N, WNT3A, WNT5A, and WNT3A, 5A. Additional Wnt/ ⁇ -catenin pathway activators and inhibitors are reviewed in the art (Moon et al., Nature Reviews Genetics, 5:689-699, 2004).
  • suitable Wnt/ ⁇ -catenin pathway agonists can include antibodies and antigen binding fragments thereof, and peptides that bind specifically to frizzled (Fzd) family of receptors.
  • CK1 casein kinase 1
  • GSK3 ⁇ glycogen synthase kinase 3 ⁇
  • GSK3 ⁇ inhibitors include, but are not limited to, lithium chloride (LiCl), Purvalanol A, olomoucine, alsterpaullone, kenpaullone, benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8), 2-thio(3-iodobenzyl)-5-(1-pyridyl)[1,3,4]-oxadiazole (GSK3 inhibitor II), 2,4-dibenzyl-5-oxothiadiazolidine-3-thione (OTDZT), (2′Z,3′E)-6-Bromoindirubin-3′-oxime (BIO), ⁇ -4-Dibromoacetophenone (i.e., Tau Protein Kinase I (TPK I) Inhibitor), 2-Chloro-1-(4,5-dibromo-thiophen-2-yl)-ethanone, N-(4-Methoxybenzyl)-N
  • suitable kinase inhibitors can include RNAi and siRNA designed to decrease GSK3 ⁇ and/or CK1 protein levels.
  • useful kinase inhibitors include FGF pathway inhibitors.
  • FGF pathway inhibitors include, for example, SU5402.
  • Atoh1 activators include gamma secretase inhibitors (e.g., arylsulfonamides, dibenzazepines, benzodiazepines, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine t-butyl ester (DAPT; EMD Biosciences, San Diego, Calif., USA), L-685,458, or MK0752ho, in addition to those listed above under Notch inhibitors), gentamycin, and the combination of transcription factors Eya1 and Six1 (and optionally Sox2), as described in Ahmed et al. (2012) D EV. C ELL 22(2):377-390.
  • gamma secretase inhibitors e.g., arylsulfonamides, dibenzazepines, benzodiazepines, N-[N-(3,5-difluorophenacetyl)-L-al
  • Atoh1 activators are described in U.S. Pat. No. 8,188,131, including a compound represented by Formula I:
  • each of R 118 , R 119 , R 120 , and R 121 is, independently selected from H, halo, OH, CN, NO 2 , C 1 -C 3 alkyl, C 1 -C 3 haloalkyl, C 1 -C 3 alkoxy, and C 1 -C 3 haloalkoxy;
  • R 122 is hydrogen or —Z—R a ; wherein:
  • Z is O or a bond
  • R a is:
  • R 123 is:
  • R b at each occurrence is, independently:
  • R c at each occurrence is, independently:
  • R d at each occurrence is, independently:
  • Atoh1 activators described in U.S. Pat. No. 8,188,131 include 4-(4-chlorophenyl)-1-(5H-pyrimido[5,4-b]indo1-4-yl)-1H-pyrazol-3-amine; 6-chloro-1-(2-chlorobenzyloxy)-2-phenyl-1H-benzo[d]imidazole; 6-chloro-1-(2-chlorobenzyloxy)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole; 6-chloro-2-(4-methoxyphenyl)-1-(4-methylbenzyloxy)-1H-benzo[d]imidazole; 6-chloro-1-(3,5-dimethylbenzyloxy)-2-(4-methoxyphenyl)-1H-benzo[d]imidazole; 6-chloro-1-(4-methoxybenzyloxy)-2-(4-methoxyphenyl)-2
  • the method of delivery of modulators of c-myc, Notch or Atoh1 activity will depend, in part, upon whether the hair cells or supporting cells are being contacted with the agents of interest in vivo or ex vivo.
  • the agents are delivered into the inner ear of a mammal
  • the ex vivo approach cells are contacted with the agents ex vivo.
  • the resulting hair cells can then be transplanted into the inner ear of a recipient using techniques known and used in the art.
  • c-myc activity is increased by administering c-myc protein or a c-myc activator in the inner ear of a recipient to give, for example, a final concentration of greater than about 30 ⁇ M, for example, in the range of about 30 ⁇ M to about 1000 ⁇ M.
  • the c-myc protein or c-myc activator can be administered in an amount sufficient to give a final concentration of greater than about 30 ⁇ M.
  • the c-myc protein or c-myc activator may be administered in an amount sufficient to give a final concentration in the range from about 30 ⁇ M to about 1000 ⁇ M, to about 1000 ⁇ M, 80 ⁇ M, to about 1000 ⁇ M, about 100 ⁇ M to about 1000 ⁇ M, about 150 ⁇ M, to about 1000 ⁇ M, from about 200 ⁇ M, to about 800 ⁇ M, or from about 200 ⁇ M, to about 600 ⁇ M.
  • c-myc protein or a c-myc activator is administered at a dose from about 0.025 mg to about 4 mg, from about 0.035 mg to about 2 mg, from about 0.05 mg to about 2 mg, from about 0.1 mg to about 2 mg, from about 0.2 mg to about 1 mg, or from about 0.2 mg to about 0.8 mg of the c-myc protein or c-myc activator can be administered locally to the inner ear of a mammal In one embodiment, 0.5 mg of c-myc protein or c-myc activator is administered locally to the inner ear.
  • from about 0.05 mg to about 2 mg, from about 0.2 mg to about 2 mg, from about 0.05 mg to about 1.5 mg, from about 0.15 mg to about 1.5 mg, from about 0.4 mg to about 1 mg, or from about 0.5 mg to about 0.8 mg of c-myc protein or c-myc activator can be administered locally to the inner ear of a mammal.
  • Notch activity is increased by administering a Notch protein, a NICD protein or a Notch activator to an inner ear of a recipient to give a final concentration of greater than about 30 ⁇ M, for example, in the range of about 30 ⁇ M to about 1000 ⁇ M.
  • a Notch protein, NICD protein or Notch activator can be administered in an amount sufficient to give a final concentration of greater than about 30 ⁇ M.
  • the Notch protein, NICD protein or Notch activator may be administered in an amount sufficient to give a final concentration in the range from about 30 ⁇ M to about 1000 ⁇ M, 50 ⁇ M to about 1000 ⁇ M, 80 ⁇ M to about 1000 ⁇ M, about 100 ⁇ M to about 1000 ⁇ M, about 150 ⁇ M to about 1000 ⁇ M, from about 200 ⁇ M to about 800 ⁇ M, or from about 200 ⁇ M to about 600 ⁇ M.
  • Notch protein, NICD protein or Notch activator is administered at a dose from about 0.025 mg to about 4 mg, from about 0.035 mg to about 2 mg, from about 0.05 mg to about 2 mg, from about 0.1 mg to about 2 mg, from about 0.2 mg to about 1 mg, or from about 0.2 mg to about 0.8 mg of the Notch protein, NICD protein or Notch activator can be administered locally to the inner ear of a mammal In one embodiment, 0.5 mg of Notch protein, NICD protein or Notch activator is administered locally to the inner ear of a mammal In certain other embodiments, from about 0.05 mg to about 2 mg, from about 0.2 mg to about 2 mg, from about 0.05 mg to about 1.5 mg, from about 0.15 mg to about 1.5 mg, from about 0.4 mg to about 1 mg, or from about 0.5 mg to about 0.8 mg of Notch protein, NICD protein or Notch activator can be administered locally to the inner ear of a mammal.
  • Notch activity is inhibited by administering a Notch inhibitor.
  • a Notch inhibitor can be administered to give a final concentration of greater than about 30 ⁇ M, for example, in the range of about 30 ⁇ M to about 1000 ⁇ M.
  • a Notch inhibitor can be administered in an amount sufficient to give a final concentration of greater than about 30 ⁇ M.
  • the Notch inhibitor may be administered in an amount sufficient to give a final concentration in the range from about 30 ⁇ M to about 1000 ⁇ M, 50 ⁇ M to about 1000 ⁇ M, 80 ⁇ M to about 1000 ⁇ M, about 100 ⁇ M to about 1000 ⁇ M, about 150 ⁇ M to about 1000 ⁇ M, from about 200 ⁇ M to about 800 ⁇ M, or from about 200 ⁇ M to about 600 ⁇ M.
  • the Notch inhibitor is administered in an amount sufficient to give a final concentration of about 400 ⁇ M.
  • a Notch inhibitor is administered at a dose from about 0.025 mg to about 4 mg, from about 0.035 mg to about 2 mg, from about 0.05 mg to about 2 mg, from about 0.1 mg to about 2 mg, from about 0.2 mg to about 1 mg, or from about 0.2 mg to about 0.8 mg of the Notch inhibitor can be administered locally to the inner ear of a mammal
  • 0.5 mg of Notch inhibitor is administered locally to the inner ear of a mammal
  • from about 0.05 mg to about 2 mg, from about 0.2 mg to about 2 mg, from about 0.05 mg to about 1.5 mg, from about 0.15 mg to about 1.5 mg, from about 0.4 mg to about 1 mg, or from about 0.5 mg to about 0.8 mg of Notch inhibitor can be administered locally to the inner ear of a mammal
  • about 0.7 mg Notch inhibitor is administered locally to the inner ear of a mammal
  • Atoh1 activity is increased by administering Atoh1 protein or an Atoh1 activator in the inner ear of a recipient to give, for example, a final concentration of greater than about 30 ⁇ M, for example, in the range of about 30 ⁇ M to about 1000 ⁇ M.
  • the Atohlprotein or Atoh1 activator can be administered in an amount sufficient to give a final concentration of greater than about 30 ⁇ M.
  • the Atoh1 protein or Atoh1 activator may be administered in an amount sufficient to give a final concentration in the range from about 30 ⁇ M to about 1000 ⁇ M, 50 ⁇ M to about 1000 ⁇ M, 80 ⁇ M to about 1000 ⁇ M, about 100 ⁇ M to about 1000 ⁇ M, about 150 ⁇ M to about 1000 ⁇ M, from about 200 ⁇ M to about 800 ⁇ M, or from about 200 ⁇ M to about 600 ⁇ M.
  • Atoh1 protein or a Atoh1 activator is administered at a dose from about 0.025 mg to about 4 mg, from about 0.035 mg to about 2 mg, from about 0.05 mg to about 2 mg, from about 0.1 mg to about 2 mg, from about 0.2 mg to about 1 mg, or from about 0.2 mg to about 0.8 mg of the Atoh1 protein or Atoh1 activator can be administered locally to the inner ear of a mammal In one embodiment, 0.5 mg of Atoh1 protein or Atoh1 activator is administered locally to the inner ear.
  • from about 0.05 mg to about 2 mg, from about 0.2 mg to about 2 mg, from about 0.05 mg to about 1.5 mg, from about 0.15 mg to about 1.5 mg, from about 0.4 mg to about 1 mg, or from about 0.5 mg to about 0.8 mg of Atoh1 protein or Atoh1 activator can be administered locally to the inner ear of a mammal.
  • the activity of c-myc, Notch or Atoh1 can be increased in a target cell using expression constructs known in the art, e.g., naked DNA constructs, DNA vector based constructs, and/or viral vector and/or viral based constructs to express nucleic acids encoding a desired c-myc, Notch or Atoh1 protein.
  • expression constructs known in the art e.g., naked DNA constructs, DNA vector based constructs, and/or viral vector and/or viral based constructs to express nucleic acids encoding a desired c-myc, Notch or Atoh1 protein.
  • a single DNA construct expressing c-myc and Notch or NICD as two separate genes can be delivered into the inner ear of a subject.
  • a single DNA construct expressing c-myc and Notch or NICD and Atoh1 as three separate genes can be delivered into the inner ear of a subject.
  • Exemplary expression constructs can be formulated as a pharmaceutical composition, e.g., for administration to a subject.
  • DNA constructs and the therapeutic use of such constructs are well known to those of skill in the art (see, e.g., Chiarella et al. (2008) R ECENT P ATENTS A NTI - INFECT. D RUG D ISC. 3:93-101; Gray et al. (2008) E XPERT O PIN. B IOL. T HER. 8:911-922; Melman et al. (2008) H UM. G ENE T HER. 17:1165-1176).
  • Naked DNA constructs typically include one or more therapeutic nucleic acids (e.g., DNA encoding c-myc and/or Notch) and a promoter sequence.
  • a naked DNA construct can be a DNA vector, commonly referred to as pDNA.
  • naked DNA typically do not integrate into chromosomal DNA.
  • naked DNA constructs do not require, or are not used in conjunction with, the presence of lipids, polymers, or viral proteins.
  • Such constructs may also include one or more of the non-therapeutic components described herein.
  • DNA vectors are known in the art and typically are circular double stranded DNA molecules. DNA vectors usually range in size from three to five kilo-base pairs (e.g., including inserted therapeutic nucleic acids). Like naked DNA, DNA vectors can be used to deliver and express one or more therapeutic proteins in target cells. DNA vectors do not integrate into chromosomal DNA.
  • DNA vectors include at least one promoter sequence that allows for replication in a target cell. Uptake of a DNA vector may be facilitated by combining the DNA vector with, for example, a cationic lipid, and forming a DNA complex.
  • viral vectors are double stranded circular DNA molecules that are derived from a virus. Viral vectors typically are larger in size than naked DNA and DNA vector constructs and have a greater capacity for the introduction of foreign (i.e., not virally encoded) genes. Like naked DNA and DNA vectors, viral vectors can be used to deliver and express one or more therapeutic nucleic acids in target cells. Unlike naked DNA and DNA vectors, certain viral vectors stably incorporate themselves into chromosomal DNA.
  • viral vectors include at least one promoter sequence that allows for replication of one or more vector encoded nucleic acids, e.g., a therapeutic nucleic acid, in a host cell.
  • Viral vectors may optionally include one or more non-therapeutic components described herein.
  • uptake of a viral vector into a target cell does not require additional components, e.g., cationic lipids. Rather, viral vectors transfect or infect cells directly upon contact with a target cell.
  • the approaches described herein include the use of retroviral vectors, adenovirus-derived vectors, and/or adeno-associated viral vectors as recombinant gene delivery systems for the transfer of exogenous genes in vivo, particularly into humans. Protocols for producing recombinant retroviruses and for infecting cells in vitro or in vivo with such viruses can be found in Current Protocols in Molecular Biology, Ausubel, F. M. et al. (eds.) Greene Publishing Associates, (1989), Sections 9.10-9.14, and other standard laboratory manuals.
  • Viruses that are used as transduction agents of DNA vectors and viral vectors such as adenoviruses, retroviruses, and lentiviruses may be used in practicing the present invention.
  • Illustrative retroviruses include, but are not limited to: Moloney murine leukemia virus (M-MuLV), Moloney murine sarcoma virus (MoMSV), Harvey murine sarcoma virus (HaMuSV), murine mammary tumor virus (MuMTV), gibbon ape leukemia virus (GaLV), feline leukemia virus (FLV), spumavirus, Friend murine leukemia virus, Murine Stem Cell Virus (MSCV) and Rous Sarcoma Virus (RSV)) and lentivirus.
  • M-MuLV Moloney murine leukemia virus
  • MoMSV Moloney murine sarcoma virus
  • Harvey murine sarcoma virus HaMuSV
  • murine mammary tumor virus
  • lentivirus refers to a group (or genus) of complex retroviruses.
  • Illustrative lentiviruses include, but are not limited to: HIV (human immunodeficiency virus; including HIV type 1, and HIV type 2); visna-maedi virus (VMV) virus; the caprine arthritis-encephalitis virus (CAEV); equine infectious anemia virus (EIAV); feline immunodeficiency virus (FIV); bovine immune deficiency virus (BIV); and simian immunodeficiency virus (SIV).
  • HIV human immunodeficiency virus
  • VMV visna-maedi virus
  • CAEV caprine arthritis-encephalitis virus
  • EIAV equine infectious anemia virus
  • FV feline immunodeficiency virus
  • BIV bovine immune deficiency virus
  • SIV simian immunodeficiency virus
  • an adenovirus can be used in accordance with the methods described herein.
  • the genome of an adenovirus can be manipulated such that it encodes and expresses a gene product of interest but is inactivated in terms of its ability to replicate in a normal lytic viral life cycle.
  • Suitable adenoviral vectors derived from the adenovirus strain Ad type 5 d1324 or other strains of adenovirus are known to those skilled in the art.
  • Recombinant adenoviruses can be advantageous in certain circumstances in that they are not capable of infecting nondividing cells and can be used to infect a wide variety of cell types, including epithelial cells
  • the virus particle is relatively stable and amenable to purification and concentration, and as above, can be modified so as to affect the spectrum of infectivity.
  • introduced adenoviral DNA (and foreign DNA contained therein) is not integrated into the genome of a host cell but remains episomal, thereby avoiding potential problems that can occur as a result of insertional mutagenesis in situ where introduced DNA becomes integrated into the host genome (e.g., retroviral DNA).
  • the carrying capacity of the adenoviral genome for foreign DNA is large (up to 8 kilobases) relative to other gene delivery vectors.
  • Adeno-associated virus is a naturally occurring defective virus that requires another virus, such as an adenovirus or a herpes virus, as a helper virus for efficient replication and a productive life cycle. It is also one of the few viruses that may integrate its DNA into non-dividing cells, and exhibits a high frequency of stable integration.
  • one or more viral vectors that expresses a therapeutic transgene or transgenes encoding a polypeptide or polypeptides of the invention is administered by direct injection to a cell, tissue, or organ of a subject, in vivo.
  • cells are transduced in vitro or ex vivo with such a vector encapsulated in a virus, and optionally expanded ex vivo.
  • the transduced cells are then administered to the inner ear of a subject.
  • Cells suitable for transduction include, but are not limited to stem cells, progenitor cells, and differentiated cells.
  • the transduced cells are embryonic stem cells, bone marrow stem cells, umbilical cord stem cells, placental stem cells, mesenchymal stem cells, neural stem cells, liver stem cells, pancreatic stem cells, cardiac stem cells, kidney stem cells, hematopoietic stem cells, inner ear hair cells, iPS cells, inner ear supporting cells, cochlear cells, or utricular cells.
  • host cells transduced with viral vector of the invention that expresses one or more polypeptides are administered to a subject to treat and/or prevent an auditory disease, disorder, or condition.
  • Other methods relating to the use of viral vectors can be found in, e.g., Kay (1997) C HEST 111(6 Supp.):138S-142S; Ferry et al. (1998) H UM. G ENE T HER. 9:1975-81; Shiratory et al. (1999) L IVER 19:265-74; Oka et al. (2000) C URR. O PIN. L IPIDOL. 11:179-86; Thule et al.
  • cell, cell type, cell lineage or tissue specific expression control sequence it may be desirable to use a cell, cell type, cell lineage or tissue specific expression control sequence to achieve cell type specific, lineage specific, or tissue specific expression of a desired polynucleotide sequence, for example, to express a particular nucleic acid encoding a polypeptide in only a subset of cell types, cell lineages, or tissues, or during specific stages of development.
  • cell, cell type, cell lineage or tissue specific expression control sequences include, but are not limited to: an Atoh1 enhancer for all hair cells (see, e.g., FIG. 24 ); a Pou4f3 promoter for all hair cells (see, e.g., FIG.
  • FIG. 25 a Myo7a promoter for all hair cells (see, e.g., FIG. 26 ); a HesS promoter for vestibular supporting cells and cochlear inner phalangeal cells, Deiters cells and Pillar cells (see, e.g., FIG. 27 ); and GFAP promoter for vestibular supporting cells and cochlear inner phalangeal cells, Deiters cells and Pillar cells (see, e.g., FIG. 28 ).
  • Certain embodiments of the invention provide conditional expression of a polynucleotide of interest.
  • expression is controlled by subjecting a cell, tissue, organism, etc., to a treatment or condition that causes the polynucleotide to be expressed or that causes an increase or decrease in expression of the polynucleotide encoded by the polynucleotide of interest.
  • inducible promoters/systems include, but are not limited to, steroid-inducible promoters such as promoters for genes encoding glucocorticoid or estrogen receptors (inducible by treatment with the corresponding hormone), metallothionine promoter (inducible by treatment with various heavy metals), MX-1 promoter (inducible by interferon), the “GeneSwitch” mifepristone-regulatable system (Sirin et al., 2003, G ENE, 323:67), the cumate inducible gene switch (WO 2002/088346), tetracycline-dependent regulatory systems, etc.
  • steroid-inducible promoters such as promoters for genes encoding glucocorticoid or estrogen receptors (inducible by treatment with the corresponding hormone), metallothionine promoter (inducible by treatment with various heavy metals), MX-1 promoter (inducible by interferon), the “GeneSwitch”
  • Conditional expression can also be achieved by using a site specific DNA recombinase.
  • the vector comprises at least one (typically two) site(s) for recombination mediated by a site specific recombinase.
  • recombinase or “site specific recombinase” include excisive or integrative proteins, enzymes, co-factors or associated proteins that are involved in recombination reactions involving one or more recombination sites (e.g., two, three, four, five, seven, ten, twelve, fifteen, twenty, thirty, fifty, etc.), which may be wild-type proteins (see Landy (1993) C URRENT O PINION IN B IOTECHNOLOGY 3:699-707), or mutants, derivatives (e.g., fusion proteins containing the recombination protein sequences or fragments thereof), fragments, and variants thereof
  • recombinases suitable for use in particular embodiments of the present invention include, but are not limited to: Cre, Int, IHF, Xis, Flp, Fis, Hin, Gin, OC31 , Cin, Tn3 resolvase, TndX, XerC, X
  • the vectors may comprise one or more recombination sites for any of a wide variety of site specific recombinases. It is to be understood that the target site for a site specific recombinase is in addition to any site(s) required for integration of a vector (e.g., a retroviral vector or lentiviral vector).
  • a vector e.g., a retroviral vector or lentiviral vector.
  • vectors comprise a selection gene, also termed a selectable marker.
  • selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, hygromycin, methotrexate, Zeocin, Blastocidin, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for Bacilli. Any number of selection systems may be used to recover transformed cell lines.
  • herpes simplex virus thymidine kinase (Wigler et al., (1977) C ELL 11:223-232) and adenine phosphoribosyltransferase (Lowy et al., (1990) C ELL 22:817-823) genes which can be employed in tk- or aprt-cells, respectively.
  • DNA delivery may occur auricularly, parenterally, intravenously, intramuscularly, or even intraperitoneally as described, for example, in U.S. Pat. Nos. 5,543,158; 5,641,515; and 5,399,363 (each specifically incorporated herein by reference in its entirety).
  • Solutions of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
  • Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • DNA delivery may occur by use of liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, optionally mixing with cell penetrating polypeptides, and the like, for the introduction of the compositions of the present invention into suitable host cells.
  • the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, a nanoparticle or the like.
  • the formulation and use of such delivery vehicles can be carried out using known and conventional techniques.
  • Exemplary formulations for ex vivo DNA delivery may also include the use of various transfection agents known in the art, such as calcium phosphate, electroporation, heat shock and various liposome formulations (i.e., lipid-mediated transfection).
  • various transfection agents known in the art, such as calcium phosphate, electroporation, heat shock and various liposome formulations (i.e., lipid-mediated transfection).
  • Particular embodiments of the invention may comprise other formulations, such as those that are well known in the pharmaceutical art, and are described, for example, in Remington: The Science and Practice of Pharmacy, 20th Edition. Baltimore, Md.: Lippincott Williams & Wilkins, 2000.
  • the duration of c-myc, Notch and Atoh1 activation can be varied to achieve a desired result. For example, it may be beneficial to expose a target cell to a c-myc protein or c-myc activator and a Notch protein, NICD protein, or a Notch activator for one to six days, one week, two weeks, three weeks, one month, three months, six months, nine months, one year, two years or more.
  • c-myc is increased by constitutive activation (e.g., using an adenovirus to overexpress c-myc)
  • the duration of increased c-myc activity can be controlled by administering a c-myc inhibitor following administration of a myc protein or a myc activator. Inhibiting c-myc activity after a period of increased c-myc activity can be used to control proliferation, promote cell survival, and avoid tumorigenesis.
  • the duration of increased Notch activity can be controlled by administering a Notch inhibitor, as discussed above, following administration of a Notch protein, NICD protein, or a Notch activator.
  • the route of administration will vary depending on the disease being treated. Hair cell loss, sensorineural hearing loss, and vestibular disorders can be treated using direct therapy using systemic administration and/or local administration. In certain embodiments, the route of administration can be determined by a subject's health care provider or clinician, for example following an evaluation of the subject.
  • the invention provides (i) a composition for use in proliferating or regenerating a cochlear or a utricular hair cell, (ii) a composition for use in proliferating or regenerating a cochlear or a utricular supporting cell, (iii) a composition for use in reducing the loss of, maintaining, or promoting hearing in a subject, and (iv) a composition for use in reducing the loss of, maintaining, or promoting vestibular function in a subject.
  • the invention provides a first composition comprising an agent, for example, each of the agents discussed hereinabove, for example, an agent that increases c-myc activity and/or an agent that increases Notch activity within a hair or supporting cell, either alone or in combination with a pharmaceutically acceptable carrier for use in each of the foregoing approaches.
  • the invention provides a second composition comprising an agent, for each of the agents discussed hereinabove, for example, an agent that reduces or inhibits c-myc activity and/or an agent that reduces or inhibits Notch activity within a hair or supporting cell, either alone or in combination with in a pharmaceutically acceptable carrier for use in each of the foregoing approaches.
  • the invention provides a third composition comprising an agent, for example, an agent for increasing Atoh1 activity, to induce transdifferentiation of a proliferated supporting cell into a hair cell.
  • a c-myc protein or c-myc activator and a Notch protein, NICD protein or Notch activator can be formulated as a pharmaceutical composition containing the appropriate carriers and/or excipients.
  • the c-myc protein or activator and/or the Notch protein, NICD protein, or Notch activator, and/or the Atoh1 protein or activator can be solubilized in a carrier, for example, a viscoelastic carrier, that is introduced locally into the inner ear.
  • a carrier for example, a viscoelastic carrier
  • the c-myc protein or activator and/or the Notch protein, NICD protein, or Notch activator, and/or Atoh1 protein or activator can be solubilized in a liposome or microsphere. Methods for delivery of a drug or combination of drugs in liposomes and/or microspheres are well-known in the art.
  • c-myc protein or activator and/or the Notch protein, NICD protein, or Notch activator, and/or Atoh1 protein or activator can be formulated so as to permit release of one or more proteins and/or activators over a prolonged period of time.
  • a release system can include a matrix of a biodegradable material or a material, which releases the incorporated active agents.
  • the active agents can be homogeneously or heterogeneously distributed within a release system.
  • release systems may be useful in the practice of the invention, however, the choice of the appropriate system will depend upon the rate of release required by a particular drug regime. Both non-degradable and degradable release systems can be used.
  • Suitable release systems include polymers and polymeric matrices, non-polymeric matrices, or inorganic and organic excipients and diluents such as, but not limited to, calcium carbonate and sugar (for example, trehalose). Release systems may be natural or synthetic.
  • the agents can be administered to a subject, e.g., a subject identified as being in need of treatment for hair cell loss, using a systemic route of administration.
  • Systemic routes of administration can include, but are not limited to, parenteral routes of administration, e.g., intravenous injection, intramuscular injection, and intraperitoneal injection; enteral routes of administration, e.g., administration by the oral route, lozenges, compressed tablets, pills, tablets, capsules, drops (e.g., ear drops), syrups, suspensions and emulsions; rectal administration, e.g., a rectal suppository or enema; a vaginal suppository; a urethral suppository; transdermal routes of administration; and inhalation (e.g., nasal sprays).
  • parenteral routes of administration e.g., intravenous injection, intramuscular injection, and intraperitoneal injection
  • enteral routes of administration e.g., administration by the oral
  • the agents can be administered to a subject, e.g., a subject identified as being in need of treatment for hair cell loss, using a local route of administration.
  • a local route of administration include administering one or more compounds into the ear of a subject and/or the inner ear of a subject, for example, by injection and/or using a pump.
  • the agents may be injected into the ear (e.g., auricular administration), such as into the luminae of the cochlea (e.g., the Scala media, Sc vestibulae, and Sc tympani).
  • the agents can be administered by intratympanic injection (e.g., into the middle ear), and/or injections into the outer, middle, and/or inner ear.
  • intratympanic injection e.g., into the middle ear
  • injections into the outer, middle, and/or inner ear e.g., for the administration of steroids and antibiotics into human ears.
  • Injection can be, for example, through the round window of the ear or through the cochlea capsule.
  • the agents can be delivered via nanoparticles, for example, protein-coated nanoparticles.
  • Nanoparticles can be targeted to cells of interest based on cell-type specific receptor affinity for ligands coating the nanoparticles.
  • the dosage of the agent can be modulated by regulating the number of nanoparticles administered per dose.
  • the agent may be administered to the inner ear using a catheter or pump.
  • a catheter or pump can, for example, direct the agent into the cochlea luminae or the round window of the ear.
  • Exemplary drug delivery systems suitable for administering one or more compounds into an ear, e.g., a human ear, are described in U.S. Patent Publication No. 2006/0030837 and U.S. Pat. No. 7,206,639.
  • a catheter or pump can be positioned, e.g., in the ear (e.g., the outer, middle, and/or inner ear) of a subject during a surgical procedure.
  • the agents can be delivered in combination with a mechanical device such as a cochlea implant or a hearing aid, which is worn in the outer ear.
  • a mechanical device such as a cochlea implant or a hearing aid, which is worn in the outer ear.
  • An exemplary cochlea implant that is suitable for use with the present invention is described in U.S. Patent Publication No. 2007/0093878.
  • the modes of administration described above may be combined in any order and can be simultaneous or interspersed.
  • the agents may be administered to a subject simultaneously or sequentially. It will be appreciated that when administered simultaneously, the agents may be in the same pharmaceutically acceptable carrier (e.g., solubilized in the same viscoelastic carrier that is introduced into the inner ear) or the two agents may be dissolved or dispersed in separate pharmaceutical carriers, which are administered at the same time. Alternatively, the agents may be provided in separate dosage forms and administered sequentially.
  • the agents may be administered according to any of the Food and Drug Administration approved methods, for example, as described in CDER Data Standards Manual, version number 004 (which is available at fda.give/cder/dsm/DRG/drg00301.htm).
  • the hair cells and supporting cells can be harvested and cultured using techniques known and used in the art.
  • the agents protein expression vectors, activators and inhibitors (for example, as discussed above)
  • the agents can then be contacted with the cultured hair cells or supporting cells to induce the cells to reenter the cell cycle, and proliferate. Thereafter, once the cells have proliferated, the c-myc and Notch activities can be inhibited using appropriate inhibitors, for example, those discussed above.
  • the resulting hair cells can then be maintained in culture for any number of uses, including, for example, to study the biological, biophysical, physiological and pharmacological characteristics of hair cells and/or supporting cells.
  • the resulting hair cells can then be implanted in to the inner ear of a recipient using standard surgical procedures.
  • suitable cells can be derived from a mammal, such as a human, mouse, rat, pig, sheep, goat, or non-human primate.
  • the cells can be harvested from the inner ear of a subject, and cells can be obtained from the cochlea organ of Corti, the modiolus (center) of the cochlea, the spiral ganglion of the cochlea, the vestibular sensory epithelia of the saccular macula, the utricular macula, or the cristae of the semicircular canals.
  • methods include obtaining tissue from the inner ear of the animal, where the tissue includes at least a portion of the utricular maculae.
  • Tissue isolated from a subject can be suspended in a neutral buffer, such as phosphate buffered saline (PBS), and subsequently exposed to a tissue-digesting enzyme (e.g., trypsin, leupeptin, chymotrypsin, and the like) or a combination of enzymes, or a mechanical (e.g., physical) force, such as trituration, to break the tissue into smaller pieces.
  • a tissue-digesting enzyme e.g., trypsin, leupeptin, chymotrypsin, and the like
  • a mechanical force such as trituration
  • the tissue can be incubated in about 0.05% enzyme (e.g., about 0.001%, 0.01%, 0.03%, 0.07%, or 1.0% of enzyme) for about 5, 10, 15, 20, or 30 minutes, and following incubation, the cells can be mechanically disrupted.
  • the disrupted tissue can be passed through a device, such as a filter or bore pipette, that separates a stem cell or progenitor cell from a differentiated cell or cellular debris.
  • the separation of the cells can include the passage of cells through a series of filters having progressively smaller pore size.
  • the filter pore size can range from about 80 ⁇ m or less, about 70 ⁇ m or less, about 60 ⁇ m or less, about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 35 ⁇ m or less, or about 20 ⁇ m or less.
  • Partially and/or fully differentiated cells can be maintained in culture for a variety of uses, including, for example, to study the biological, biophysical, physiological and pharmacological characteristics of hair cells and/or supporting cells.
  • Cell cultures can be established using inner ear cells from subjects with hearing loss and/or loss in vestibular function to develop potential treatments (e.g., to screen for drugs effective in treating the hearing loss and/or loss in vestibular function).
  • the methods of the present invention can be used in combination with induced pluripotent stem (iPS) cell technology to establish cell lines (e.g., hair cell lines and/or supporting cell lines).
  • iPS induced pluripotent stem
  • fibroblasts from a subject with hearing loss can be induced to form iPS cells using known techniques (see, for example, Oshima et al. (2010) C ELL 141(4):704-716).
  • the methods provided herein can be used in combination with iPS cell technology to produce sufficient numbers of cells to establish cell lines (e.g., hair cell lines and/or supporting cell lines).
  • Partially and/or fully differentiated cells can be transplanted or implanted, such as in the form of a cell suspension, into the ear by injection, such as into the luminae of the cochlea. Injection can be, for example, through the round window of the ear or through the bony capsule surrounding the cochlea.
  • the cells can be injected through the round window into the auditory nerve trunk in the internal auditory meatus or into the scala tympani.
  • the cells described herein can be used in a cochlea implant, for example, as described in U.S. Patent Publication No. 2007/0093878.
  • cells can be modified prior to differentiation.
  • the cells can be engineered to overexpress one or more anti-apoptotic genes.
  • the Fak tyrosine kinase or Akt genes are candidate anti-apoptotic genes that can be used for this purpose; overexpression of FAK or Akt can prevent cell death in spiral ganglion cells and encourage engraftment when transplanted into another tissue, such as an explanted organ of Corti (see, for example, Mangi et al., (2003) N AT. M ED. 9:1195-201).
  • Neural progenitor cells overexpressing ⁇ v ⁇ 3 integrin may have an enhanced ability to extend neurites into a tissue explant, as the integrin has been shown to mediate neurite extension from spiral ganglion neurons on laminin substrates (Aletsee et al., (2001) A UDIOL. N EUROOTOL. 6:57-65).
  • ephrinB2 and ephrinB3 expression can be altered, such as by silencing with RNAi or overexpression with an exogenously expressed cDNA, to modify EphA4 signaling events.
  • Spiral ganglion neurons have been shown to be guided by signals from EphA4 that are mediated by cell surface expression of ephrin-B2 and -B3 (Brors et al., (2003) J. C OMP. N EUROL. 462:90-100). Inactivation of this guidance signal may enhance the number of neurons that reach their target in an adult inner ear. Exogenous factors such as the neurotrophins BDNF and NT3, and LIF can be added to tissue transplants to enhance the extension of neurites and their growth towards a target tissue in vivo and in ex vivo tissue cultures. Neurite extension of sensory neurons can be enhanced by the addition of neurotrophins (BDNF, NT3) and LIF (Gillespie et al. (2010) N EUROREPORT 12:275-279).
  • BDNF neurotrophins
  • NT3 neurotrophins
  • LIF neurotrophins
  • the methods and compositions described herein can be used to induce cells, e.g., adult mammalian inner ear cells, to reenter the cell cycle and proliferate.
  • the number of hair cells can be increased about 2-, 3-, 4-, 6-, 8-, or 10-fold, or more, as compared to the number of hair cells before treatment.
  • the hair cell can be induced to reenter the cell cycle in vivo or ex vivo. It is contemplated that using these approaches it may be possible to improve the hearing of a recipient.
  • using the methods and compositions described herein it may be possible to improve the hearing of a recipient by at least about 5, 10, 15, 20, 40, 60, 80, or 90% relative to the hearing prior to the treatment. Tests of auditory or vestibular function also can be performed to measure hearing improvement.
  • Cells that have been contacted with (i) a c-myc protein or c-myc activator and/or (ii) a Notch protein, NICD protein or Notch activator can be assayed for markers indicative of cell cycle reentry and proliferation.
  • a cell can be assayed for incorporation of EdU (5-ethynyl-2′-deoxyuridine) followed sequentially by BrdU (5-bromo-2′-deoxyuridine) by using, for example, an anti-EdU antibody and an anti-BrdU antibody. Labelling by EdU and/or BrdU is indicative of cell proliferation.
  • double labeling of EdU and BrdU can be used to demonstrate that a cell has undergone division at least two times.
  • a cell can be assayed for the presence of phosphorylated histone H3 (Ph3) or aurora B, which are indicative of a cell that has reentered the cell cycle and is undergoing metaphase and cytokinesis.
  • Ph3 phosphorylated histone H3
  • aurora B which are indicative of a cell that has reentered the cell cycle and is undergoing metaphase and cytokinesis.
  • Cell markers can also be used to determine whether a target cell, e.g., a hair cell or a supporting cell, has entered the cell cycle.
  • exemplary markers indicative of hair cells include Myo7a, Myo6, Prestin, Lhx3, Dner, espin, parvalbumin, and calretinin.
  • Exemplary markers indicative of supporting cells include Sox2, S100a1, Prox1, Rps6, and Jag1. Double labeling of a cell cycle and/or proliferation marker and a cell-type molecule can be used to determine which cells have reentered the cell cycle and are proliferating.
  • neuronal markers e.g., acetylated tubulin, neurofilament and CtBP2
  • neurofilament and CtBP2 can be used to detect neuronal structure, to determine whether proliferating hair cells are in contact with neurons.
  • the presence of neuronal markers adjacent to or in contact with hair cells suggests that newly-generated hair cells have formed synapses with neurons (e.g., ganglion neurons) and that the hair cells are differentiated.
  • the subject for example, a human subject
  • the subject can be tested for an improvement in hearing or in other symptoms related to inner ear disorders.
  • Methods for measuring hearing are well-known and include pure tone audiometry, air conduction, auditory brainstem response (ABR) and bone conduction tests. These exams measure the limits of loudness (intensity) and pitch (frequency) that a human can hear. Hearing tests in humans include behavioral observation audiometry (for infants to seven months), visual reinforcement orientation audiometry (for children 7 months to 3 years) and play audiometry for children older than 3 years. Oto-acoustic emission testing can be used to test the functioning of the cochlea hair cells, and electro-cochleography provides information about the functioning of the cochlea and the first part of the nerve pathway to the brain. In certain embodiments, treatment can be continued with or without modification or can be stopped.
  • compositions are described as having, including, or comprising specific components, or where processes are described as having, including, or comprising specific process steps, it is contemplated that compositions of the present invention also consist essentially of, or consist of, the recited components, and that the processes of the present invention also consist essentially of, or consist of, the recited processing steps. Further, it should be understood that the order of steps or order for performing certain actions are immaterial so long as the invention remains operable. Moreover, two or more steps or actions may be conducted simultaneously.
  • This example demonstrates that providing c-myc and Notch to cells of the inner ear of an adult animal can induce cell cycle reentry and cell proliferation among differentiated cochlear hair and supporting cells.
  • mice used were either wild type (WT) background mice or mice harboring a LoxP-flanked NICD cassette (NICD flox/flox ) susceptible to Cre-mediated recombination resulting in activation of NICD expression.
  • the NICD cassette encoded (from 5′ to 3′) an intracellular fragment of mouse Notch1 (amino acids 1749-2293, lacking the C-terminal PEST domain, see Murthaugh et al. (2003) P ROC. N ATL.
  • mice were anaesthetized and cochleostomy was performed to allow injection of adenovirus.
  • Virus was injected via the scala media, facilitating infection of hair and supporting cells within the cochlear sensory epithelium.
  • a mixture of adenovirus carrying a combination of either human c-myc (Ad-Myc) and CRE-GFP (Ad-Cre-GFP) expression cassettes or c-myc and NICD (Ad-NICD) expression cassettes was injected into the cochlea of either NICD flox/flox or WT mice, respectively.
  • One ear per mouse was injected, while the other ear served as an uninjected control.
  • Ad-Cre-GFP Ad-Cre-GFP alone.
  • Ad-Myc induced myc overexpression
  • Ad-NICD induced NICD overexpression
  • Ad-CRE-GFP induced overexpression of CRE-GFP, recombination at loci flanked by LoxP sequences, and—in the case of NICD flox/flox mice—NICD overexpression.
  • Virus titered at 2 ⁇ 10 12 plaque-forming units (pfu) was mixed in equal parts, and a total of 0.6 ⁇ L virus was injected per animal. Following viral injection, 5-bromo-2-deoxyuridine (BrdU) was injected daily between 1 and 5 days.
  • Cochlea were harvested at either 4, 8, 12, 35, or 60 days post-viral injection. Cochlea were dissected, fixed, and decalcified prior to whole mount immunostaining. Hair cells were identified via labeling with antibodies directed against Myo7a and espin. Supporting cells were identified via labeling with antibodies directed against Sox2. Cell cycle reentry and proliferation were assessed via labeling antibodies directed against BrdU. Nuclear labeling was achieved via DAPI exposure.
  • the following example demonstrates that providing c-myc and Notch to cells of the inner ear can also induce cell cycle reentry and cell proliferation among differentiated cochlear hair and supporting cells in aged animal subjects.
  • Ad-Myc and Ad-Cre-GFP were injected once into 17-month old NICD flox/flox mouse cochlear scala media via cochleostomy and the animals were harvested 15 days later.
  • 0.3 ⁇ l of a mixture of an equal amount of Ad-Cre-GFP and Ad-Myc with a titer of 2 ⁇ 10 12 was injected.
  • BrdU 50 ⁇ g/g body weight
  • Cochlear tissue harvested following BrdU and virus injection demonstrated that cells of the aged mouse cochlea underwent cell re-entry, as evidenced by the presence of double-labeled hair (BrdU+/Myo7a+) and supporting (BrdU+/Sox2+; FIG. 9 , A-J; arrows identify double-labeled hair cells; arrowheads identify double-labeled support cells).
  • BrdU+/Myo7a+ double-labeled hair
  • FIG. 9 A-J
  • arrows identify double-labeled hair cells
  • arrowheads identify double-labeled support cells.
  • no BrdU labeling was observed in Sox2+ support or Myo7a+ hair cells in 17-month old NICD flox/flox control animals injected with Ad-Cre alone and subjected to the same BrdU labeling time course ( FIG. 9K-O ).
  • a working viral titer of 10 8 was used for 5 mL of culture. Cultures of harvested tissue and transduced cultured cells were contacted with a mixture of Ad-Myc and Ad-NICD, to elevate cellular levels of c-myc and NICD. Following virus exposure, the cycling cells were labeled via 3 ⁇ g/ml BrdU administration to the culture. As in the in vivo studies of transduced mouse tissue, BrdU-labeled supporting (Sox2+) cells and at least one BrdU-labeled hair (Myo7a+) cell in cultured human tissue ( FIG. 10 ) were identified.
  • Sox2+ BrdU-labeled supporting
  • Myo7a+ BrdU-labeled hair
  • BrdU+/Sox2+ supporting cells were identified in the cochlear cultures ( FIG. 10A , C, D, E) and utricular cultures ( FIG. 10F , H, I, J; all panels, open arrows).
  • the cochlear cell cultures contained virtually no hair cells, so no BrdU-labeled cochlear hair cells were detected.
  • the culture medium contained DMEM/F12 supplied with N2 and B27 without serum.
  • Cultured cochlea were exposed to an Ad-Myc/Ad-NICD mixture (final titer of 10 9 ) for 16 hours, and the medium was replaced with fresh medium for 4 days.
  • EdU was added at the final concentration of 10 ⁇ M. Cycling cells were additionally labeled via EdU administration. Cultured cochlea were fixed and stained for hair and supporting cell markers, as well as EdU. Cycling Sox2+/EdU+ supporting cells were observed following exposure to elevated levels of c-Myc and NICD ( FIG. 11G , H, J; arrowheads).
  • this example demonstrates that cells of the monkey inner ear can also be induced to proliferate following exposure to elevated levels of c-Myc and Notch activity, suggesting that the disclosed method can be applied to mammals other than mice, e.g., primates.
  • c-Myc and Notch activity In cultured control monkey cochlea infected with Ad-Cre in the presence of EdU, no EdU labeled cells were seen ( FIG. 11A-E ), a demonstration that no cells underwent proliferation. It is generally observed, both in cultured mouse and monkey cochlea that surviving inner hair cells rarely re-entered cell cycle, in contrast to mouse cochlea in vivo, in which inner hair cells could readily be induced to proliferation by the combination of c-Myc and NICD.
  • the following example illustrates that different populations of cochlear hair cells are induced to proliferate upon varying degrees of exposure to c-myc and Notch activity.
  • osmotic pump (Alzet) was implanted in the back of adult (45-day-old) doxycycline-inducible mice (rtTa/tet-on-Myc/tet-on-NICD) with tubing inserted to the round window niche to continuously dispense doxycycline (150 mg/ml in DMSO) at a rate of 1 ⁇ l per hour for 9 days, with concurrent EdU administration (200 ⁇ g/g body weight) by ip injection once daily to label proliferating cells.
  • c-Myc and NICD were activated in all cochlear cell types including supporting cells and hair cells (data not shown).
  • rTta/Tet-on-myc/Tet-on-NICD mouse model was used to examine induction of proliferation in outer hair cells.
  • rTta/Tet-on-myc/Tet-on-NICD mice were exposed to doxycycline exposure for 12 days, accompanied by EdU administration once daily during the 12 day period to label cycling cells, following the same procedure described for FIG. 12 .
  • Tissue was then harvested and stained for markers of hair cells (Esp) and supporting cells (Sox2). In this case, EdU+/Esp+ proliferating outer hair cells were observed following tissue harvest and staining ( FIG. 13A , B, E; arrows). No cell proliferation was observed in inner hair cells.
  • this example demonstrates that exposure of outer hair cells to elevated c-Myc and Notch activity can selectively induce outer hair cell cycle reentry and proliferation.
  • fewer supporting cells (compared to outer hair cells) labeled with EdU were also seen (data not shown), which is consistent with the observation that outer hair cells have a greater capacity for cell cycle re-entry following c-Myc and NICD activation.
  • This sample ( FIG. 13 ) contrasts with the sample shown in FIG. 12 in that most of the outer hair cells survived and showed heightened proliferation capacity. It further indicates that after loss of outer hair cells, supporting cells can be induced to proliferate upon c-Myc and NICD activation ( FIG. 12 ).
  • FIG. 14 shows that control Esp+ hair cells that did not undergo cell cycle reentry following EdU exposure (EdU-) took up FM1-43FX ( FIG. 14 , A-E). Significantly, Esp+ hair cells that reenter the cell cycle following Ad-Myc/Ad-NICD virus injection and EdU exposure (EdU+) also took up FM1-43FX ( FIG. 14 , F-J). As FM1-43FX rapidly enters hair cells through functional transduction channels, labeling by FM1-43FX demonstrates the presence of functional transduction channels in proliferating hair cells similar to non-proliferating hair cells. This result demonstrates that hair cells produced by exposure to elevated Myc and Notch activity possess functional membrane channels that are essential for hair cell function.
  • NICD flox/flox mice were transduced with an Ad-Myc/Ad-Cre virus mixture, exposed to BrdU administration, and analyzed for evidence of functional synapse formation as described for FIG. 9 .
  • Tissue was harvested 20 days post-injection of virus and stained for neurofilament (NF) to identify neurofibers of ganglion neurons. Analysis of stained sections revealed the presence of proliferating hair cells (Myo7a+/BrdU+) that were in contact with NF+ neurofibers ( FIG. 15A , C, E; arrows). This result suggests that production of hair cells via the methods disclosed herein is accompanied by regrowth of neurofibers and formation of functional synapses crucial for hair cell function.
  • NF neurofilament
  • the following example illustrates that inner hair cells produced in vivo via induced proliferation of existing inner hair cells maintain characteristics specific to inner hair cells.
  • Cochlea of adult NICD flox/flox mice were transduced in vivo with an Ad-Myc/Ad-Cre virus mixture for 15 days with BrdU injected daily for the first 5 days. The methods used are the same as those described for FIG. 9 .
  • Cochlear tissue was harvested and analyzed for inner hair cell-specific markers. Both inner hair cells that underwent cell cycle reentry ( FIG. 16A-E ; arrow) and those that did not undergo cell cycle reentry ( FIG. 16A-E ; arrowhead) stained positive for Vesicular Glutamate Transporter-3 (Vglut3), an inner hair cell-specific marker.
  • Vglut3 Vesicular Glutamate Transporter-3
  • mice model capable of expressing elevated levels of myc and Notch following doxycycline induction were performed using a mouse model capable of expressing elevated levels of myc and Notch following doxycycline induction (rTta/Tet-on-Myc/Tet-on-NICD).
  • Adult mouse (rTta/Tet-on-Myc/Tet-on-NICD) cochlea was dissected, with three holes drilled to the bone for efficient media exposure and cultured in the DMEM/F12 supplied with N2 and B27 without serum.
  • Doxycycline (1 mg/ml) was added to the culture for 5 days to activate c-Myc/NICD, followed by Ad-Atoh1 (2 ⁇ 10 12 , 1:100 dilution) infection for 16 hours.
  • the culture was exchanged with fresh medium for additional 14 days, with medium changed every 3 days.
  • EdU final concentration 10 ⁇ M
  • Support cells induced to express elevated NICD and myc levels via doxycycline exposure were observed to undergo cell proliferation as evidenced by EdU labeling ( FIG. 17A-E , arrowheads and closed arrows).
  • Ad-Atoh1 resulted in transdifferentiation of both cycling ( FIG. 17A , C, E, closed arrows) and non-cycling ( FIG. 17B , C, E, open arrow) support cells to a hair cell fate as evidenced by Myo7a and Parvalbumin (Parv) staining.
  • cultured rTta/Tet-on-Myc/Tet-on-NICD support cells exposed to Ad-Atoh1, but not doxycycline, underwent transdifferentiation but failed to undergo cell cycle reentry ( FIG. 17F-J , arrow), as evidenced by the presence of Myo7a+/Parv+/EdU ⁇ cells.
  • cultured cochlear supporting cells harvested from rTta/Tet-on-Myc/Tet-on-NICD mice were exposed to doxycycline and Ad-Atoh1 virus, and then exposed to FM1-43FX (3 ⁇ M) for 30 seconds to investigate whether hair cells produced by this process possess characteristics of functional hair cells.
  • Esp staining of cells subjected to this protocol revealed the presence of hair bundles in transdifferentiated supporting cells that also stained positive for FM1 uptake, revealing the presence of functional membrane channels ( FIG. 17K , O; arrow).
  • Other transdifferentiated cells were labeled with FM1, but did not show signs of cell cycle reentry as they are EdU negative ( FIG. 17K , O; arrowhead).
  • exposure of cultured cochlear support cells to elevated levels of myc and Notch, followed by Atoh1 induced proliferation of supporting cells and transdifferentiation to a hair cell fate, where the cells generated possessed characteristics of functional hair cells.
  • NICD flox/flox mouse cochleas were cultured and infected with Ad-Myc/Ad-Cre-GFP overnight (2 ⁇ 10 12 in 1:100 dilution). Beginning the next day, the media was changed daily for the next 4 days.
  • Ad-Cre-GFP infected NICD flox/flox mouse cochleas were used as controls. The infected cochleas were harvested for mRNA isolation using QIAGEN mRNA isolation kit. cDNAs were synthesized using Life Science Technology SuperScript III reverse transcriptase kit. Semi-quantitative RT-PCR was performed using standard protocol.
  • stem cell gene transcripts e.g., Nanog, ALPL, SSEA
  • stem cell gene transcripts e.g., Nanog, ALPL, SSEA
  • most of the analyzed transcripts specific to ear progenitor cells e.g., Eya1, DLX5 , Six2, Pax2, p27kip1, NICD, Prox1, HesS
  • GAPDH served as an internal control for normalization of signal intensity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Acoustics & Sound (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US14/426,520 2012-09-07 2013-09-06 Methods and compositions for regenerating hair cells and/or supporting cells Abandoned US20150209406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/426,520 US20150209406A1 (en) 2012-09-07 2013-09-06 Methods and compositions for regenerating hair cells and/or supporting cells

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261698246P 2012-09-07 2012-09-07
US14/426,520 US20150209406A1 (en) 2012-09-07 2013-09-06 Methods and compositions for regenerating hair cells and/or supporting cells
PCT/US2013/058626 WO2014039908A1 (en) 2012-09-07 2013-09-06 Methods and compositions for regenerating hair cells and/or supporting cells

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/058626 A-371-Of-International WO2014039908A1 (en) 2012-09-07 2013-09-06 Methods and compositions for regenerating hair cells and/or supporting cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/842,309 Continuation US20200338160A1 (en) 2012-09-07 2020-04-07 Methods and compositions for regenerating hair cells and/or supporting cells

Publications (1)

Publication Number Publication Date
US20150209406A1 true US20150209406A1 (en) 2015-07-30

Family

ID=50237658

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/426,520 Abandoned US20150209406A1 (en) 2012-09-07 2013-09-06 Methods and compositions for regenerating hair cells and/or supporting cells
US16/842,309 Pending US20200338160A1 (en) 2012-09-07 2020-04-07 Methods and compositions for regenerating hair cells and/or supporting cells

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/842,309 Pending US20200338160A1 (en) 2012-09-07 2020-04-07 Methods and compositions for regenerating hair cells and/or supporting cells

Country Status (7)

Country Link
US (2) US20150209406A1 (de)
EP (1) EP2892523B1 (de)
JP (1) JP6486272B2 (de)
CN (2) CN104869987B (de)
AU (4) AU2013312305B2 (de)
CA (1) CA2884309A1 (de)
WO (1) WO2014039908A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017053939A1 (en) * 2015-09-26 2017-03-30 Kung, Hsing-Jien Method and composition for treatment of hair loss
WO2017096233A1 (en) * 2015-12-04 2017-06-08 Massachusetts Eye And Ear Infirmary Treatment of hearing loss by inhibition of casein kinase 1
WO2017132530A1 (en) * 2016-01-29 2017-08-03 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof
WO2017136764A1 (en) * 2016-02-05 2017-08-10 The General Hospital Corporation Hybrid system for efficient gene delivery to cells of the inner ear
WO2018111926A3 (en) * 2016-12-16 2018-07-26 Sirocco Therapeutics, Inc. Methods of treating cochlear synaptopathy
WO2020077295A1 (en) * 2018-10-11 2020-04-16 Decibel Therapeutics, Inc. Aav1 vectors and uses thereof for treatment of otic indications
US10898492B2 (en) 2012-09-07 2021-01-26 Massachusetts Eye And Ear Infirmary Treating hearing loss
US11286487B2 (en) 2014-08-06 2022-03-29 Massachusetts Eye And Ear Infirmary Increasing ATOH1 life to drive sensorineural hair cell differentiation
US11542472B2 (en) 2006-11-15 2023-01-03 Massachusetts Eye & Ear Infirmary Generation of inner ear cells
CN115814097A (zh) * 2016-06-03 2023-03-21 霍夫耳科研究所 用于内耳感觉毛细胞再生/替换的联合疗法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009246876B2 (en) 2008-05-16 2015-04-02 Taiga Biotechnologies, Inc. Antibodies and processes for preparing the same
CN104869987B (zh) * 2012-09-07 2020-10-16 麻省眼耳医院 用于再生毛细胞和/或支持细胞的方法及组合物
PT2970890T (pt) 2013-03-14 2020-04-24 Massachusetts Inst Technology Composições e métodos para expansão e cultura de células estaminais epiteliais
JP6773645B2 (ja) 2014-09-03 2020-10-21 ザ ブリガム アンド ウィミンズ ホスピタル,インコーポレイテッド 聴覚障害の治療のための内耳毛細胞を生成するための組成物、システムおよび方法
TWI710635B (zh) 2014-10-09 2020-11-21 美商珍維克公司 編碼人類無調同源物-1(hath1)之腺病毒載體
CN107530399B (zh) * 2014-10-10 2022-03-18 马萨诸塞眼科耳科诊所 治疗分子在体外和体内的有效递送
EP3212773B1 (de) * 2014-10-29 2021-09-15 Massachusetts Eye and Ear Infirmary Effiziente abgabe von therapeutischen molekülen an zellen des innenohres
AU2017205194A1 (en) 2016-01-08 2018-07-19 Massachusetts Institute Of Technology Production of differentiated enteroendocrine cells and insulin producing cells
US9913848B2 (en) 2016-03-02 2018-03-13 Frequency Therapeutics, Inc. Methods for controlled proliferation of stem cells / generating inner ear hair cells using 1,2,3,4-tetrahydro-[1,4]diazepino[6,7, 1-hi]indolyl based compounds
US11260130B2 (en) 2016-03-02 2022-03-01 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using a GSK3 inhibitor: IV
US10016507B2 (en) 2016-03-02 2018-07-10 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using GSK3 inhibitors: III
US9913835B2 (en) 2016-03-02 2018-03-13 Frequency Therapeutics, Inc. Methods for controlled proliferation of stem cells / generating inner ear hair cells using N-(alkylcarbamoyl)-1H-pyrazol-4-yl)-nicotinamide based compounds
US9968615B2 (en) 2016-03-02 2018-05-15 Frequency Therapeutics, Inc. Methods for controlled proliferation of stem cells / generating inner ear hair cells using 3-(pyridin-2-yl)-1H-indol-2-ol based compounds
US10213511B2 (en) 2016-03-02 2019-02-26 Frequency Therapeutics, Inc. Thermoreversible compositions for administration of therapeutic agents
US10201540B2 (en) 2016-03-02 2019-02-12 Frequency Therapeutics, Inc. Solubilized compositions for controlled proliferation of stem cells / generating inner ear hair cells using GSK3 inhibitors: I
BR112019013388A2 (pt) 2016-12-30 2020-03-03 Frequency Therapeutics, Inc. Compostos de 1h-pirrol-2,5-diona e métodos de uso dos mesmos para induzir a autorrenovação de células de suporte tronco/progenitoras
CN107384852A (zh) * 2017-07-27 2017-11-24 山东兴瑞生物科技有限公司 一种支持细胞分化为内耳毛细胞的方法及应用
US11590152B2 (en) 2018-01-26 2023-02-28 Massachusetts Eye And Ear Infirmary Treatment of hearing loss
WO2020037326A1 (en) 2018-08-17 2020-02-20 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by downregulating foxo
WO2020037323A1 (en) 2018-08-17 2020-02-20 Frequency Therapeutics, Inc. Compositions and methods for generating hair cells by upregulating jag-1
CN110129368B (zh) * 2019-04-22 2021-03-09 中国科学院脑科学与智能技术卓越创新中心 一种感染支持细胞和毛细胞的aav载体
TW202124719A (zh) * 2019-11-04 2021-07-01 美商迪賽博治療公司 前庭支持細胞啟動子及其用途
CN112125969A (zh) * 2020-09-30 2020-12-25 东南大学 生物因子rimbp2在维持内耳毛细胞特性上的应用
CN112194717B (zh) * 2020-09-30 2021-12-14 东南大学 一种促进耳蜗毛细胞再生的肽段Tr及其应用
CN114736924A (zh) * 2021-01-07 2022-07-12 中国科学院脑科学与智能技术卓越创新中心 异位联合过表达Atoh1和Ikzf2再生耳蜗外毛细胞及其应用
CN112870383A (zh) * 2021-02-20 2021-06-01 东南大学 Hippo调控内耳干细胞增殖分化方法及在毛细胞再生中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024278A1 (en) * 2004-01-23 2006-02-02 The General Hospital Corporation Methods and products related to the production of inner ear hair cells
US20120156179A1 (en) * 2009-07-08 2012-06-21 Michael Sieweke Method for inducing extended self-renewal of functionally differentiated somatic cells
US20120207744A1 (en) * 2009-03-19 2012-08-16 Mendlein John D Reprogramming compositions and methods of using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE274510T1 (de) 1998-06-19 2004-09-15 Chiron Corp Glycogen synthase kinase 3 inhibitoren
PT1237880E (pt) 1999-12-17 2008-03-05 Novartis Vaccines & Diagnostic Inibidores baseados em pirazina da cinase 3 da glicogénio sintase
JP2006117536A (ja) * 2004-10-19 2006-05-11 Kyoto Univ 内耳の有毛細胞を誘導するための医薬
CA2669693C (en) * 2006-11-15 2018-06-12 Massachusetts Eye & Ear Infirmary Generation of inner ear cells
US20090136466A1 (en) * 2007-11-21 2009-05-28 Creighton University Methods for making skin cell derived stem cells
EP2254572B1 (de) * 2008-02-07 2013-10-16 Massachusetts Eye & Ear Infirmary Verbindungen zur verstärkung der atoh-1-expression
US10143711B2 (en) * 2008-11-24 2018-12-04 Massachusetts Eye & Ear Infirmary Pathways to generate hair cells
CN101891824B (zh) * 2010-07-08 2012-05-09 中国人民解放军第四军医大学 一种血管靶向可溶性融合蛋白TrxHis-hDll1-RGD
US20150079110A1 (en) * 2012-03-05 2015-03-19 Wake Forest University Health Sciences Regeneration of inner ear cells
CN104869987B (zh) * 2012-09-07 2020-10-16 麻省眼耳医院 用于再生毛细胞和/或支持细胞的方法及组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024278A1 (en) * 2004-01-23 2006-02-02 The General Hospital Corporation Methods and products related to the production of inner ear hair cells
US20120207744A1 (en) * 2009-03-19 2012-08-16 Mendlein John D Reprogramming compositions and methods of using the same
US20120156179A1 (en) * 2009-07-08 2012-06-21 Michael Sieweke Method for inducing extended self-renewal of functionally differentiated somatic cells

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Coclea hair cell, Wikipedia, 2017 *
Liao ("The CBF1-independente Notch1 signal pathway activates human cMyc expression partially via transcription factor YY1", Carcinogenesis, 2007, Vol. 28, No. 9, pg 1867-1876 *
Notch patway, Wikipedia, 2017 *
Palomero (PNAS, Nov. 28, 2006, Vol. 103, No. 48, pg 18261-18266) *
Song (J. Immunol., May 1, 2016, Vol. 196, Supp. 1) *
Tsai, Cancer Res., May 2012, Vol. 72, No. 10, pg 2622-2633 *
Utricular cell, Wikipedia, 2017 *
Weng (Genes & Develop., 2006, Vol. 20, pg 2096-2109) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542472B2 (en) 2006-11-15 2023-01-03 Massachusetts Eye & Ear Infirmary Generation of inner ear cells
US10898492B2 (en) 2012-09-07 2021-01-26 Massachusetts Eye And Ear Infirmary Treating hearing loss
US11286487B2 (en) 2014-08-06 2022-03-29 Massachusetts Eye And Ear Infirmary Increasing ATOH1 life to drive sensorineural hair cell differentiation
WO2017053939A1 (en) * 2015-09-26 2017-03-30 Kung, Hsing-Jien Method and composition for treatment of hair loss
US11185536B2 (en) 2015-12-04 2021-11-30 Massachusetts Eye And Ear Infirmary Treatment of hearing loss by inhibition of casein kinase 1
WO2017096233A1 (en) * 2015-12-04 2017-06-08 Massachusetts Eye And Ear Infirmary Treatment of hearing loss by inhibition of casein kinase 1
WO2017132530A1 (en) * 2016-01-29 2017-08-03 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof
US11466252B2 (en) 2016-01-29 2022-10-11 Massachusetts Eye And Ear Infirmary Expansion and differentiation of inner ear supporting cells and methods of use thereof
AU2017212655B2 (en) * 2016-01-29 2024-01-18 Decibel Therapeutics, Inc. Expansion and differentiation of inner ear supporting cells and methods of use thereof
WO2017136764A1 (en) * 2016-02-05 2017-08-10 The General Hospital Corporation Hybrid system for efficient gene delivery to cells of the inner ear
CN115814097A (zh) * 2016-06-03 2023-03-21 霍夫耳科研究所 用于内耳感觉毛细胞再生/替换的联合疗法
WO2018111926A3 (en) * 2016-12-16 2018-07-26 Sirocco Therapeutics, Inc. Methods of treating cochlear synaptopathy
US10925872B2 (en) 2016-12-16 2021-02-23 Pipeline Therapeutics, Inc. Methods of treating cochlear synaptopathy
RU2757276C2 (ru) * 2016-12-16 2021-10-12 Пайплайн Терапьютикс, Инк. Способы лечения кохлеарной синаптопатии
WO2020077295A1 (en) * 2018-10-11 2020-04-16 Decibel Therapeutics, Inc. Aav1 vectors and uses thereof for treatment of otic indications

Also Published As

Publication number Publication date
AU2018236841A1 (en) 2018-10-18
US20200338160A1 (en) 2020-10-29
EP2892523B1 (de) 2019-05-01
CN104869987B (zh) 2020-10-16
CN112359018A (zh) 2021-02-12
AU2020217408A1 (en) 2020-09-03
WO2014039908A1 (en) 2014-03-13
EP2892523A1 (de) 2015-07-15
JP6486272B2 (ja) 2019-03-20
AU2018236841B2 (en) 2020-05-14
AU2013312305B2 (en) 2018-06-28
JP2015529226A (ja) 2015-10-05
AU2013312305A1 (en) 2015-03-26
CN104869987A (zh) 2015-08-26
AU2023258414A1 (en) 2023-11-23
AU2020217408B2 (en) 2023-08-03
CA2884309A1 (en) 2014-03-13
EP2892523A4 (de) 2016-03-16

Similar Documents

Publication Publication Date Title
US20200338160A1 (en) Methods and compositions for regenerating hair cells and/or supporting cells
US20220281941A1 (en) Efficient delivery of therapeutic molecules to cells of the inner ear
JP6527431B2 (ja) 有毛細胞を産生するための経路
US11963968B2 (en) Treatment of hearing loss
ES2768229T3 (es) Método mejorado para diferenciación de células madre in vivo mediante la administración de morfógenos con sílice mesoporosa y principios activos farmacéuticos correspondientes
US20170189477A1 (en) Methods and Compositions of P27KIP1 Transcriptional Modulators
JP2024505078A (ja) 成体哺乳動物の内耳において有毛細胞を再生するための方法および組成物
Ringuette The role of signaling pathway integration in Neurogenesis
Pessina Necdin enhances muscle reconstitution of dystrophic muscle by mesoangioblast cells

Legal Events

Date Code Title Description
AS Assignment

Owner name: MASSACHUSETTS EYE AND EAR INFIRMARY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, ZHENG-YI;REEL/FRAME:031230/0979

Effective date: 20130916

AS Assignment

Owner name: MASSACHUSETTS EYE AND EAR INFIRMARY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHEN, ZHENG-YI;REEL/FRAME:035696/0309

Effective date: 20130916

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH - DIRECTOR DEITR, MARYLAND

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS EYE AND EAR INFIRMARY;REEL/FRAME:062851/0199

Effective date: 20230223