US20150068702A1 - Dew condensation detecting device, cooling system and cooling medium flow rate controlling method - Google Patents

Dew condensation detecting device, cooling system and cooling medium flow rate controlling method Download PDF

Info

Publication number
US20150068702A1
US20150068702A1 US14/546,013 US201414546013A US2015068702A1 US 20150068702 A1 US20150068702 A1 US 20150068702A1 US 201414546013 A US201414546013 A US 201414546013A US 2015068702 A1 US2015068702 A1 US 2015068702A1
Authority
US
United States
Prior art keywords
dew condensation
cooling medium
cooled
pipe
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/546,013
Other languages
English (en)
Inventor
Tsuyoshi So
Norihisa Takahashi
Yoshinori Uzuka
Junichi Ogo
Susumu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Assigned to FUJITSU LIMITED reassignment FUJITSU LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OGO, Junichi, SO, TSUYOSHI, TAKAHASHI, NORIHISA, TAKAHASHI, SUSUMU, UZUKA, YOSHINORI
Publication of US20150068702A1 publication Critical patent/US20150068702A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • G01N25/66Investigating or analyzing materials by the use of thermal means by investigating moisture content by investigating dew-point

Definitions

  • the embodiments discussed herein are directed to a dew condensation detecting device for detecting water droplets created by a dew condensation.
  • a dew condensation occurs on the component part of the electronic device. Water droplets created by the dew condensation may cause a corrosion of a metal part of the electronic device or short-circuiting between electrodes of an electric circuit provided in the electronic device. Thus, a malfunction may occur in the electronic device due to the dew condensation.
  • a temperature and humidity of an environment, in which a liquid-cooling electronic device is located, and a temperature of a cooling liquid used in the liquid-cooling electronic device are controlled and managed in order to prevent an occurrence of a dew condensation in the liquid-cooling electronic device.
  • a failure occurs in an air-conditioner or a temperature abnormality occurs in a cooling-liquid outputting device
  • the temperature of the cooling liquid reaching the electronic device may become lower than the dew point, which results in the interior of the electronic device being set in a dew condensed state. Even in such a condition, there may be a case where a power of the electric device is turned on or the electronic device is continuously operated.
  • short-circuiting may occur between electrodes of an electric circuit in the electronic device.
  • the short-circuiting in the electric circuit may cause a failure in the electronic device, such as a malfunction of the electric circuit, a burnout of the electric circuit, etc.
  • a dew condensation sensor in an electronic device to detect a dew condensation in order to take measures for preventing a failure due to the dew condensation. That is, for example, if a dew condensation is detected by the dew condensation sensor, the electric device is prohibited from being turned on or the interior of the electronic device is subjected to a dehydration treatment.
  • dew condensation sensors There are several types of dew condensation sensors. There if known a dew condensed water detecting sensor that detects a dew condensation by detecting a water droplet, which is created by a dew condensation and flows to a detecting part.
  • a dew condensed water detecting sensor generally includes a water droplet sensor (liquid sensor) and a measuring object formed of a metal on which a dew condensation tends to occur.
  • the measuring object is provided to a cold water supply passage between a cold water supply apparatus and an electronic device so as to be cooled by cold water supplied from the cold water supply apparatus. Accordingly, if a temperature of the measuring object becomes lower than a dew point of the atmosphere, a dew condensation occurs on the measuring object. That is, the cold water supplied from the cold water supply apparatus first cools the measuring object of the dew condensed water detecting sensor, and, thereafter, the cold water is supplied to the electronic device so as to cool heat-radiating parts in the electronic device.
  • the temperature of the cold water entering the electronic device after cooling the measuring object is nearly equal to the temperature of the cold water supplied from the cold water supply apparatus to the measuring object.
  • a dew condensation may simultaneously occur on a cold water passage in the electronic device.
  • the dew condensation sensor detects a dew condensation by detecting a water droplet due to the dew condensation, it takes a certain time from the time at which a dew condensation begins until the time at which an amount of a water droplet due to the dew condensation reaches a measurable amount. Accordingly, during the period from the time at which the dew condensation begins in the dew condensation sensor and the electronic device until the time at which the dew condensation sensor detects the dew condensation, water droplets may be created due to the dew condensation even in the electronic device. The water droplets due to the dew condensation in the electronic device may cause the above-mentioned failure.
  • a dew condensation detecting device including: a dew condensation detector provided to a supply pipe, which supplies a cooling medium from a cooling medium supply apparatus to a device to be cooled, the dew condensation detector detecting a dew condensation by detecting a water droplet due to the dew condensation; and a heat transfer part that transfers heat from the cooling medium flowing in a return pipe, which returns the cooling medium from the device to be cooled to the cooling medium supply apparatus, to the cooling medium flowing in the supply pipe between the dew condensation detector and the device to be cooled.
  • a cooling system including: a device to be cooled that incorporates an internal part to be cooled by a cooling medium; a cooling medium supply apparatus that creates the cooling medium supplied to the device to be cooled; a supply pipe that connects the device to be cooled to the cooling medium supply apparatus in order to supply the cooling medium from the cooling medium supply apparatus to the device to be cooled; a return pipe that connects the device to be cooled to the cooling medium supply apparatus in order to return the cooling medium from the device to be cooled to the cooling medium supply apparatus; a dew condensation detector provided in a middle of the supply pipe; and a heat transfer part that transfers heat from the cooling medium flowing in a return pipe to the cooling medium flowing in the supply pipe between the dew condensation detector and the device to be cooled.
  • a cooling medium flow rate controlling method for controlling a flow rate of a cooling medium supplied to a device to be cooled, the cooling medium flow rate controlling method including: detecting a temperature of the cooling medium discharged from the device to be cooled; and comparing the detected temperature with a temperature threshold value and controlling the flow rate of the cooling medium supplied to the device to be cooled based on a result of the comparison.
  • FIG. 1 is an outline diagram illustrating an entire structure of an electronic device cooling system provided with a dew condensation detecting device according to a first embodiment
  • FIG. 2 is an enlarged cross-sectional view of a heat transferring part
  • FIG. 3 is an enlarged cross-sectional view of another heat transferring part
  • FIG. 4 is a flowchart of a dew condensation detecting process
  • FIG. 5 is an outline diagram illustrating an entire structure of an electronic device cooling system provided with a dew condensation detecting device according to a second embodiment
  • FIG. 6 is an enlarged cross-sectional view of a portion A encircled by dashed line in FIG. 5 ;
  • FIG. 7 is a perspective view of a connection pipe
  • FIG. 8 is a cross-sectional view of a variation of the connection pipe
  • FIG. 9 is a flowchart of a cold water flow amount controlling process
  • FIG. 10 is an outline diagram illustrating an entire structure of an electronic device cooling system provided with a dew condensation detecting device according to a third embodiment
  • FIG. 11 is a flowchart of a cold water flow amount controlling process performed in the electronic device cooling system illustrated in FIG. 10 ;
  • FIGS. 12( a )-( e ) are time charts indicating operations and temperatures in the electronic device cooling system when the cold water flow amount controlling process illustrated in FIG. 11 is performed.
  • FIG. 1 is an outline diagram illustrating an entire structure of an electronic device cooling system provided with a dew condensation detection device according to a first embodiment.
  • An electronic device 10 illustrated in FIG. 1 is an example of a device to be cooled.
  • the electronic device 10 is a liquid cooling type electronic device such as, for example, a computer, server, etc.
  • a cold cooling water (hereinafter, referred to as the “cold water”) is supplied from a cold water supply apparatus 12 to the electronic device 10 to cool heat-generating parts provided in the electronic device 10 .
  • the heat-generating parts include, for example, a semiconductor device, power supply circuit, etc.
  • the cold water created by the cold water supply apparatus 12 is supplied to a cooling water passage (not illustrated in the figure) of the electronic device 10 through a cold water supply pipe 14 .
  • the heat-generating parts are arranged in the middle of the cooling water passage in the electronic device 10 so that the heat-generating parts are cooled by the cold water, which absorbs heat from the heat-generating parts, while flowing through the cooling water passage.
  • the cooling water warmed by cooling the heat-generating parts (hereinafter, referred to as the “warm water”), is returned from the cooling water passage of the electronic device 10 to the cold water supply apparatus 12 through a warm water return pipe 16 .
  • the cold water supply apparatus 12 is a known cooling-water cooling apparatus provided with a refrigerating machine and a heat exchanger, a cold water supply apparatus having any structure may be used if it can supply cold water by cooling the warm water discharged from the electronic device 10 .
  • the cooling water is used as a coolant in the present embodiment, the coolant is not limited to the cooling water and a coolant such as a cooling liquid may be used.
  • the cold water supply apparatus 12 creates cold water of a predetermined temperature by cooling the warm water flowing out of the warm water return pipe 16 , and discharges the cold water to the cold water supply pipe 14 at a constant flow rate.
  • the cold water supply apparatus 12 is provided with water temperature sensors 12 a and 12 b to detect the temperature of the warm water flowing into the cold water supply apparatus 12 from the warm water return pipe 16 and the temperature of the cold water supplied from the cold water supply apparatus 12 to the cold water supply pipe 14 , respectively.
  • the cold water supply apparatus 12 is provided with a flow rate controller 12 c to adjust a flow rate of the cold water supplied to the cold water supply pipe 14 .
  • the flow rate controller 12 c may be a flow rate adjust valve provided to the flow path of the cold water, or may be a mechanism to adjust a flow rate by adjusting a revolution speed of a pump for delivering the cold water.
  • the cold water supply apparatus 12 is provided with a control part 12 d for controlling the flow rate controller 12 c based on the temperatures detected by the water temperature sensors 12 a and 12 b .
  • the control part 12 d is configured by a microcomputer including a CPU, a memory, etc.
  • a plurality of electronic devices 10 are provided to one cold water supply apparatus 12 .
  • the dew condensation sensor 20 which is an example of a dew condensation detector, is provided in the middle of the cold water supply pipe 14 connecting the cold water supply apparatus 12 and the electronic device 40 . If the cold water supply pipe 14 is relatively short, the dew condensation sensor 20 may be provided at any position along the cold water supply pipe 14 . If the cold water supply pipe 14 is relatively long, the dew condensation sensor 20 is preferably arranged at a position close to (in the vicinity of) the electronic device 10 . This is because if an environment around the dew condensation sensor 20 is substantially equal to an environment inside the electronic device 10 or around the electronic device 10 , the dew condensation detection by the dew condensation sensor 20 can be regarded as a dew condensation detection in the electronic device 10 .
  • the dew condensation sensor 20 detects a water droplet due to a dew condensation on the measuring object and outputs a dew condensation detection signal.
  • the dew condensation detection signal output by the dew condensation sensor 20 is supplied to a service processor 10 b provided in a control part 10 a of the electronic device 10 .
  • the service processor 10 b is a CPU performing a control for causing some functions even when the main power supply of the electric device 10 is shut off and the main function of the electronic device 10 is inactive. For example, if the dew condensation detection signal is supplied to the electronic device 10 , the service processor 10 b can stop the operation of the electronic device by tuning off the main power of the electronic device 10 .
  • a heat transfer part 30 which is an example of a heat transferring means to transfer heat from the warm water to the cold water, is provided between the dew condensation sensor 20 and the electronic device 10 .
  • the heat transfer part 30 is provided to increase the temperature of the cold water entering the electronic device 10 by supplying heat to the cold water passed through the dew condensation sensor 20 . That is, the heat transfer part 30 is provided for raising the temperature of the cold water flowing into the electronic device 10 by a predetermined temperature (for example, 2° C.) by transferring a part of the heat of the warm water flowing out of the electronic device 16 to the warm water return pipe 16 .
  • a metal member 40 is used as the heat transfer part 30 .
  • the metal member 40 is formed by a metal as a heat transfer material such as, for example, copper, copper alloy, aluminum, aluminum alloy, etc.
  • the metal member 40 has a shape, which can fits in a space between the cold water supply pipe 14 and the warm water return pipe 16 . Portions of the metal member 40 that contact with the cold water supply pipe 14 and the warm water return pipe 16 are joined to the cold water supply pipe 14 and the warm water return pipe 16 , respectively, by welding, brazing, soldering, etc., using a thermally meltable joining material.
  • the heat of the warm water is transferred from the warm water return pipe 16 to the metal member 40 and then transferred to the cold water supply pipe 14 and further transferred to the cold water flowing in the cold water pipe supply pipe 14 because the temperature of the warm water flowing in the warm water return pipe 16 is higher than the temperature of the cold water flowing in the cold water supply pipe 14 .
  • the cold water flowing in the cold water supply pipe 14 is warmed by the transferred heat, and the cold water flowing into the electronic device 10 is raised.
  • the temperature of the cold water passing through the dew condensation sensor 20 is 21° C.
  • a heat is supplied to the cold water of 21° C. to raise the temperature of the cold water to 23° C. so that the cold water of 23° C. is caused to flow into the electronic device 10 .
  • the cold water after cooling the electronic parts by flowing through the electronic device 10 is changed into the warm water of, for example, 33° C., and is discharged from the electronic device 10 to the warm water return pipe 16 .
  • the environment in the server room in which the electronic device 10 is installed is maintained at a room temperature of 25° C. and a relative humidity of 50%, and the temperature of the cold water supplied from the cold water supply apparatus 12 is 21° C.
  • a dew point in the dew condensation sensor 20 and electronic device 10 acquired from the psychrometric chart is 13.9° C.
  • the temperature in the dew condensation sensor 20 21° C. the same as the cold water
  • the temperature of the cooling water passage in the electronic device 10 23° C. the same as the cold water warmed by the heat transfer part 30 serving as a heater
  • the dew point (13.9° C.
  • the environment in the server room is changed, for example, due to a failure of an air-conditioner of the server room, and the temperature and relative humidity in the server room are raised to 28° C. and 70%.
  • the dew point in the environment of the server room is raised to 22° C., which is higher than the temperature 21° C. of the cold water.
  • a dew condensation occurs in the dew condensation sensor 20 having the same temperature of 21° C. as the cold water.
  • a dew condensation does not occur in the electronic device 10 because the cooling water passage in the electronic device 10 is at 23° C., which is the same as the temperature of the cold water heated by the heat transfer part 30 .
  • the dew point is further raised from 22° C. Then, the dew point exceeds the temperature 23° C. of the cold water, a dew condensation occurs also in the electronic device 10 .
  • a certain period of time is passed from the time at which the dew point reaches the temperature of 21° C., which is the temperature of the dew condensation sensor 20 , until the time at which the dew point reaches the temperature of 23° C., which is the temperature of the cooling water passage in the electronic device 10 .
  • the dew condensation progresses and water droplets grow, which results in a sufficient amount of water droplets detectable by the dew condensation sensor 20 . That is, a dew condensation is not initiated in the electronic device 10 and water droplets are not created in the electronic device 10 during the period from the time at which a dew condensation is initiated in the dew condensation sensor 20 until the time at which the dew condensation sensor 20 outputs the dew condensation detection signal.
  • the heat transfer part 30 is not limited to the metal part 40 , and the heat transfer part 30 may be formed by a material having an excellent heat transfer property, such as a ceramic material, thermo conductive plastic, thermo conductive rubber, etc. If the thermo conductive plastic is used, a thermo conductive adhesive may be used as a joining material. If the thermo conductive rubber is used, it is desirable to apply a thermo conductive grease or liquid on a connecting part.
  • a material having an excellent heat transfer property such as a ceramic material, thermo conductive plastic, thermo conductive rubber, etc. If the thermo conductive plastic is used, a thermo conductive adhesive may be used as a joining material. If the thermo conductive rubber is used, it is desirable to apply a thermo conductive grease or liquid on a connecting part.
  • the size and shape of the metal member 40 are determined according to an amount of heat to be transferred.
  • the amount of heat to be transferred is, for example, an amount of heat that can raise the temperature of the cold water from 21° C. to 23° C. or an amount of heat that causes the temperature of the warm water to drop from 33° C. to 31° C. in the above description.
  • the amount of heat transferrable by the metal member 40 is determined by the thermal conductivity of the metal member 40 and the heat transfer coefficient between the metal member 40 , cold water supply pipe 14 and warm water return pipe 16 .
  • the heat transfer part 30 illustrated in FIG. 3 includes a coupling cover 52 wound on the cold water supply pipe 14 and warm water return pip 16 to bundle the cold water supply pipe 14 and warm water return pip 16 .
  • the coupling cover 52 is preferably formed by a thermo conductive material.
  • the coupling cover 52 is formed by a metal plate such as a copper plate, aluminum plate, etc.
  • a filling material 54 (heat transfer material) having a heat transfer property is filled in a space between the cold water supply pipe 14 and warm water return pipe 16 that are covered by the coupling cover 52 .
  • the filling material 54 is a material having an excellent thermal conductivity, such as a thermal sheet, thermal compound, etc. If a sufficient amount of heat can be transferred by only the thermal conduction of the filling material 54 , the coupling cover 54 is not necessarily formed by a material having a heat transfer property, and may be formed by, for example, a plastic sheet, vinyl sheet, etc.
  • the heat transfer property of the heat transfer part 30 may be improved by attaching the metal member 40 as illustrated in FIG. 2 and further attaching the coupling cover 54 to the circumference of the portion attached with the metal member 40 .
  • FIG. 4 is a flowchart of a dew condensation detecting process.
  • the service processor 10 b of the control part 10 a of the electronic device 10 acquires a signal from the dew condensation sensor 20 (step S 1 ) when the electronic device 10 is operated to cool the heat-generating parts in the electronic device 10 . Subsequently, the service processor 10 b of the electronic device 10 determines whether the signal from the dew condensation sensor 20 is a dew condensation detection signal, which indicates that a dew condensation is detected (step S 2 ). If it is determined in step S 2 that the signal from the dew condensation sensor 20 is not the dew condensation detection signal, the process returns to step S 1 to retrieve the signal from the dew condensation sensor 20 .
  • step S 2 if it is determined in step S 2 that the signal from the dew condensation sensor 20 is the dew condensation detection signal, the process proceeds to step S 3 .
  • step S 3 the service processor 10 b performs a process for interrupting (turning off) the power of the electronic device 10 .
  • a management person may be notified of the dew condensation state by the display apparatus. The notification may be made by issuing an alarm.
  • a process for dehydrating inside the electronic device 10 may be performed.
  • the temperature of the cold water after passing through the dew point sensor 20 and before entering the electronic device 10 is raised by the heat transferred by the heat transfer part 30 , and is set to a temperature higher than the temperature of the cold water in the dew condensation sensor 20 . Accordingly, during a period from an initiation of a dew condensation in the dew condensation sensor 20 until a detection of the dew condensation by the dew condensation sensor 20 , no dew condensation is initiated in the electronic device 10 .
  • measures for preventing a dew condensation such as turning off the power of the electronic device 10 may be taken to prevent an occurrence of a failure of the electronic device 10 due to a dew condensation in the electronic device 10 .
  • the dew condensation sensor 20 and the heat transfer part 30 are arranged outside and in the vicinity of the electronic device 10 , the dew condensation sensor 20 and the heat transfer part 30 may be provided in the electronic device 10 if a sufficient space can be reserved within the electronic device 10 .
  • FIG. 5 is an outline diagram illustrating an entire structure of the electronic device cooling system provided with a dew condensation detecting device according to the second embodiment.
  • parts that are the same as the parts illustrated n FIG. 1 are given the same reference numerals, and descriptions thereof will be omitted.
  • a coupling pipe 60 is used as the heat transfer part 30 for transferring heat to the cold water. That is, instead of transferring heat by the metal member 40 , a part of the warm water flowing in the warm water return pipe 16 is returned to the cold water supply pipe 14 through the coupling pipe 60 to mix the part of the warm water into the cold water to raise the temperature of the cold water.
  • the coupling pipe 60 serves as the heat transfer part 30 because the coupling pipe 60 transfers the heat of the warm water flowing in the warm water return pipe 16 to the cold water flowing in the cold water supply pipe 14 .
  • FIG. 6 is an enlarged cross-sectional view of the part encircled by a dashed line A in FIG. 5 .
  • the coupling pipe 60 is provided between the cold water supply pipe 14 and the warm water return pipe 16 in a state where an end 60 a of the coupling pipe 60 is inserted into the interior of the warm water return pipe 16 in the vicinity of the electronic device 10 and the other end 60 b of the coupling pipe 60 is inserted into the interior of the cold water supply pipe 14 between the dew condensation sensor and the electronic device 10 .
  • a flow-in opening 62 is provided in the end 60 a of the coupling pipe 60 a and a flow-out opening 64 is formed on the outer end 60 b of the coupling pipe 60 .
  • the flow-in opening 62 is open toward an upstream of the flow of the warm water in the warm water return pipe 16 .
  • the flow-out opening 64 is open toward a downstream of the flow of the cold water in the cold water supply pip 14 . Accordingly, when the warm water discharged from the electronic device 10 flows in the warm water return pipe 16 , a part of the warm water flowing in the warm water return pipe 16 flows into the flow-in opening 62 of the coupling pipe 60 . Then, the warm water flows through the coupling pipe 60 and flows into the cold water supply pipe 14 through the flow-out opening 64 . That is, a part of the warm water discharged from the electronic device 10 flows though the coupling pipe 60 and is mixed with the cold water immediately before the electronic device 10 . Thereby, the temperature of the cold water supplied to the electronic device 10 can be raised by the heat of the warm water mixed to the cold water.
  • the temperature of the cold water passing though the dew condensation sensor 20 is 21° C.
  • the temperature of the cold water is raised to, for example, 23° C. by mixing the warm water so that the cold water of 23° C. enters the electronic device 10 .
  • the cold water which has cooled the electronic parts by passing through the electronic device 10 is turned into the warm water of, for example, 33° C., and then discharged from the electronic device 10 to the warm water return pipe 16 .
  • the environment in the serve room in which the electronic device 10 is installed is maintained at a room temperature of 25° C. and a relative humidity of less than or equal to 50%, and the temperature of the cold water supplied from the cold water supply apparatus 12 is 21° C.
  • a flow rate of the warm water (33° C.) flowing through the coupling pipe 60 is 450 ml/min. The warm water is supplied to the cold water after being passed though the dew condensation sensor 20 through the coupling pipe 60 .
  • the cold water of 450 ml/min mixed with the warm water (33° C.) of 150 ml/min is supplied to the electronic device 10 .
  • the temperature of the cold water supplied to the electronic device 10 is raised due to the joining of the warm water and turned to 23° C.
  • the cold water (23° C.) of 600 ml/min is supplied to the electronic device 10 .
  • the cold water of the temperature of 23° C. and the flow rate of 600 ml/min turns into the warm water of the temperature of 33° C. by absorbing the amount of heat of 420 W, and is discharged into the warm water return pipe 16 .
  • a part of the warm water of 33° C. (150 ml/min as mentioned above) flows into the coupling pipe 60 immediately after being discharged from the electronic device 10 , and the rest of the warm water (33° C.) of 450 ml/min returns to the cold water supply device 12 .
  • the cold water supply apparatus 12 cools the warm water (33° C.) of 450 ml/min to create the cold water (21° C.) of 450 ml/min, and supplies the created cold water to the cold water supply pipe 14 .
  • the dew point in the dew condensation sensor 20 and the electronic device is acquired as 13.9° C. from the psychrometric chart. Accordingly, in this environment, there is no dew condensation occurs in the dew condensation sensor 20 and also in the cooling water passage in the electronic device 10 because both the temperature in the dew condensation sensor 20 (21° C. which is the same as the cold water) and the temperature in the cooling water passage in the electronic device 10 (23° C. which is the same as the cold water heated by the heat transfer part 30 serving as a heater) are lower than the dew point (13.9° C.).
  • the environment in the serve room is changed due to, for example, a failure in the air-conditioner of the server room and the room temperature is raised to 28° C. and the relative humidity is raised to 70%.
  • the dew point in the environment in the server room is raised to 22° C., which is higher than the temperature 21° C. of the cold water.
  • a dew condensation occurs in the dew condensation sensor 20 having the temperature of 21° C., which is the same as the cold water.
  • the cooling water passage in the electronic device 10 is at 23° C., which is the same as the temperature of the cold water, which is raised by the heat transfer part 30 .
  • a dew condensation does not occur in the electronic device 10 because the temperature of the cooling water passage in the electronic device 10 (23° C.) is higher than the dew point 22° C.
  • the dew point is raised further from 22° C. Then, if the dew point exceeds the temperature 23° C. of the cold water, a dew condensation occurs also in the electronic device 10 .
  • the temperature of the cold water after passing through the dew condensation sensor 20 can be raised in the present embodiment, thereby providing the same effect as the first embodiment. Accordingly, a failure of the electronic device 10 due to a dew condensation can be prevented by taking measures such as interrupting the power of the electronic device 10 upon receipt of the dew condensation detection signal from the dew condensation sensor 20 .
  • the shape of the coupling pipe 60 is not limited to that illustrated in FIG. 7 .
  • inclination plates 72 and 74 may be provided to both ends 70 a and 70 b of a cylindrical pipe 70 having open ends, respectively, as illustrated in FIG. 8 so as to control a flow of the warm water.
  • both ends of the cylindrical pipe 70 may be cut obliquely and the cylindrical pipe 70 may be attached to the warm water return pipe 16 and cold water supply pipe 14 so that the obliquely cut surface is directed toward the upstream side of the flow of the warm water on the side of the warm water return pipe 16 and the obliquely cut surface is directed toward the downstream side of the flow of the cold water on the side of the cold water supply pipe 14 .
  • the amount of heat generated by the electronic parts, which are heat-generating parts, in the electronic device 10 is fixed, a difference in the temperature between the dew condensation sensor 20 and the electronic parts in the electronic device 10 is fixed. Accordingly, a period of time from the time at which a dew condensation is detected by the dew condensation sensor 20 until the time when a dew condensation occurs in the electronic device 10 is fixed.
  • the electronic device 10 such as a server or the like may generate a different amount of heat depending on the type of the electronic device 10 .
  • the amount of heat generated by the same electronic device 10 may vary due to a fluctuation in a load applied to the electronic parts.
  • an appropriate temperature difference may be set by adjusting an amount of heat transferred by the heat transfer part 30 so that an operation of the electronic device 10 is stopped safely by interrupting a system power supply after the dew condensation sensor 20 detects a dew condensation and before a dew condensation occurs in the electronic device 10 . If an appropriate design is performed beforehand with respect to an electronic device having a small load fluctuation, measures for a dew condensation can be taken by merely providing the heat transfer part 30 as is in the first and second embodiments.
  • an amount of heat transferred by the heat transfer part 30 is set in accordance with a state where a load to electronic parts is smallest (a state where an amount of heat generation is small), cooling for the electronic parts is insufficient when the load is increased. Thus, an operating temperature of the electronic parts is raised, which may cause a reduction in the service life and an increase in the failure rate of the electronic parts.
  • the amount of heat transferred by the heat transfer part 30 is set in accordance with a state where the load to the electronic parts is largest, a temperature difference between the temperature of the dew condensation sensor 20 and the temperature inside the electronic device 10 is decreased.
  • a period of time from the time at which the dew condensation sensor 20 detects a dew formation until the time at which a dew condensation occurs in the electronic device 10 is short, and there may be a case where the electronic device 10 cannot be stopped by reliably interrupting the system power supply.
  • a flow rate of the cold water supplied from the cold water supply apparatus 12 is controlled and adjusted based on the temperature of the warm water returning to the cold water supply apparatus 12 by flowing through the warm water return pipe 16 . That is, a measurement is taken for the temperature of the warm water returned to the cold water supply apparatus 12 to control a flow rate of the cold water created by the cold water supply apparatus 12 base on the measured temperature. In this case, an amount of supply of the cold water is set to a flow rate corresponding to a state where the load is smallest in the initial setting.
  • the cooling capacity of the cold water with respect to electronic parts is increased based on an increase in the flow rate of the cold water supplied to the electronic device 10 , thereby suppressing the operating temperature of the electronic parts.
  • the temperature difference between the temperature of the dew condensation sensor 20 and the temperature of the electronic parts can be maintained to fall within a fixed range.
  • FIG. 9 is a flowchart of a cold water flow rate controlling process for adjusting an amount of supply of the cold water.
  • the cold water flow rate controlling process is performed repeatedly at each time interval.
  • the control part 12 d of the cold water supply apparatus 12 acquires a temperature Tw of the warm water returned to the cold water supply apparatus 12 by flowing through the warm water return pipe 16 (step S 11 ).
  • the temperature Tw of the warm water can be detected by a water temperature sensor 12 a.
  • the control part 12 d of the cold water supply apparatus 12 compares the acquired temperature Tw with a temperature threshold vale (step S 12 ).
  • the temperature threshold includes an upper limit threshold value UTH and a lower limit threshold value LTH. If the temperature Tw of the warm water is lower than or equal to the upper limit threshold value UTH and higher than or equal to the lower limit threshold vale LTH, it is determined that the temperature of the warm water returned is an appropriate temperature and cooling for the electronic parts in the electronic device 10 is performed appropriately, and the process is ended.
  • the cold water flow rate controlling process is repeatedly performed at a fixed time interval, the process may return to step S 11 so that a subsequent process is initiated immediately after the process is ended.
  • step S 13 the flow rate of the cold water (21° C.) supplied to the cold water supply pipe 14 (that is, the electronic device 10 ) from the cold water supply apparatus 12 ) is increased by a predetermined amount, and, thereafter, the process is ended.
  • the cold water flow rate controlling process is repeatedly performed at a fixed time interval, the process may return to step S 11 after completing the process of step S 13 so that a subsequent process is initiated immediately after the process is ended.
  • step S 14 the flow rate of the cold water (21° C.) supplied to the cold water supply pipe 14 (that is, the electronic device 10 ) from the cold water supply apparatus 12 is decreased by a predetermined amount, and, thereafter, the process is ended.
  • the cold water flow rate controlling process is repeatedly performed at a fixed time interval, the process may return to step S 11 after completing the process of step S 14 so that a subsequent process is initiated immediately after the process is ended.
  • FIG. 10 is an outline diagram illustrating an entire structure of an electronic device cooling system provided with a dew condensation detecting device according to the third embodiment.
  • parts that are the same as the parts illustrated in FIG. 5 are given the same reference numerals, and descriptions thereof will be omitted.
  • the coupling pipe 60 is used as the heat transfer part 30 for transferring heat to the cold water.
  • the metal member 40 may be used as the heat transfer part 30 as is in the first embodiment.
  • a heater 80 as an example of a heating part is provided between the dew condensation sensor 20 and the electronic device 10 .
  • the heater 80 is provided for raising the temperature of the cold water entering the electronic device 10 by heating the cold water passed though the dew condensation sensor 20 .
  • the temperature of the cold water passed through the dew condensation sensor 20 is raised by the heat transferred through the heat transfer part 30 so that the cold water becomes the cold water having a higher temperature by a predetermined temperature, and is supplied to the electronic device 10 .
  • the electronic device 10 is set in a standby state and a load to the electronic parts becomes extremely small, there may be a case where the temperature of the warm water discharged from the electronic device 10 becomes extremely low. In such a case, the temperature difference between the temperature of the dew condensation sensor 20 and the temperature inside the electronic device 10 cannot be sufficient large. Thus, a period of time from the time at which a dew condensation is detected by the dew condensation sensor 20 until the time at which a dew condensation occurs in the electronic device 10 cannot be sufficiently large.
  • a dew condensation in the electronic device 10 is suppressed by raising the temperature of the cold water supplied to the electronic device 10 by driving the heater 80 to heat the cold water by the heat generated by the heater 80 .
  • the dew condensation sensor 20 , heat transfer part 30 (coupling pipe 60 ) and heater 80 are arranged outside the electronic device 10 but in the vicinity of the electronic device 10 in FIG. 10 , the dew condensation sensor 20 , heat transfer part 30 (coupling pipe 60 ) and heater 80 may be arranged in the electronic device 10 if a sufficient space can be reserved in the electronic device 10 .
  • the heater 80 is provided between the coupling pipe 60 and the electronic device 10 in FIG. 10
  • the heater may be provided between the dew condensation sensor 20 and the coupling pipe 60 , or the heater 80 may be attached to the dew condensation sensor 20 .
  • an insulating material is preferably provided between the heater and the dew condensation sensor 20 so that the heat of the heater 80 is not transferred to the dew condensation sensor 20 .
  • the heater 80 may be arranged at any position if it can raise the temperature of the cold water after exiting the dew condensation sensor 20 and before entering the electronic device 10 .
  • the dew condensation sensor 20 , heat transfer part 30 (coupling pipe) and heater 80 together constitute a dew condensation detecting device.
  • a heater that performs heating using an electric energy such as an electric heater (resistance heating heater) or conductive heater may be used as the heater 80 .
  • heating may be performed using heat from a heating-radiating member of a peripheral device of the electric device 10 .
  • FIG. 11 is a flowchart of a cold water flow rate controlling process performed in the electronic device cooling system illustrated in FIG. 10 .
  • the cold water flow rate controlling process is performed repeatedly at a fixed time interval.
  • steps that are the same as the steps illustrated in FIG. 9 are given the same step numbers, and descriptions thereof will be omitted.
  • step S 12 determines whether a flow rate of the cold water (21° C.) supplied from the cold water supply apparatus 12 to the cold water supply pipe 14 (that is, the electronic device 10 ) is higher than or equal to a flow rate lower limit value.
  • step S 21 If the flow rate of the cold water supplied to the electronic device 10 is higher than or equal to the flow rate lower limit value (YES in step S 21 ), the process proceeds to step S 22 .
  • step S 22 the flow rate of the cold water (21° C.) supplied from the cold water supply apparatus 12 to the cold water supply pipe 14 (that is, the electronic device 10 ) is reduced by a predetermined amount, and, thereafter, the process is ended.
  • the cold water flow rate controlling process is repeatedly performed at a fixed time interval, the process may return to step S 11 after completing the process of step S 22 so that a subsequent process is initiated immediately after the process is ended.
  • step S 23 the flow rate of the cold water (21° C.) supplied from the cold water supply apparatus 12 to the cold water supply pipe 14 (that is, the electronic device 10 ) is maintained unchanged, and the heater 80 is activated. Thereby, the temperature of the cold water supplied to the electronic device 10 is raised by the heating by the heater 80 , which results in a sufficient temperature difference between the temperature of the dew condensation sensor 20 and the temperature inside the electronic device 10 .
  • the process is ended.
  • the cold water flow rate controlling process is repeatedly performed at a fixed time interval, the process may return to step S 11 after completing the process of step S 23 so that a subsequent process is initiated immediately after the process is ended.
  • FIGS. 12( a )-( e ) are time charts indicating changes in operations and temperatures of various parts when the cold water flow rate controlling process illustrated in FIG. 11 is performed.
  • the electronic parts in the electronic device 10 are operated and a certain amount of heat is generated by the electronic parts, and the electronic parts are sufficiently cooled by a certain amount of the cold water supplied from the cold water supply apparatus 12 until time A. Accordingly, the temperature of the warm water discharged from the electronic device 10 (that is, the temperature of the warm water returning to the cold water supply apparatus 12 ) is maintained at a fixed temperature. Thus, a temperature difference between the temperature of the dew condensation sensor 20 and the temperature inside the electronic device 10 is maintained constant at a sufficient temperature difference.
  • the operating state of the electronic device 10 begins to change and the load to the electronic parts begins to decrease at time A, and, thereby, the amount of heat generated by the electronic parts decreases as illustrated in FIG. 12( a ).
  • the temperature of the warm water discharged from the electronic device 10 begins to fall with a slight time difference (slight time delay).
  • the control part 12 d of the cold water supply apparatus 12 causes, as illustrated in FIG. 12( b ), the amount of supply of the cold water (flow rate of the cold water) to decrease by a predetermined flow rate.
  • the operating state of the electronic device 10 begins to change and the load to the electronic parts begins to increase, and, thereby, as illustrated in FIG. 12( a ), the amount of heat generated by the electronic parts begins to increase at time B.
  • the temperature of the warm water discharged from the electronic device 10 begins to rise with a slight time difference (slight time delay).
  • the control part 12 d of the cold water supply apparatus 12 causes, as illustrated in FIG. 12( b ), the amount of supply of the cold water (the flow rate of the cold water) to increase by a predetermined flow rate.
  • the operating state of the electronic device 10 begins to change and the load to the electronic parts begins to greatly decrease, and, thereby, as illustrated in FIG. 12( a ), the amount of heat generated by the electronic parts begins to greatly decease at time C.
  • the temperature of the warm water discharged from the electronic device 10 begins to fall with a slight time difference (slight time delay).
  • the control part 12 d of the cold water supply apparatus 12 causes the amount of supply of the cold water (flow rate of the cold water) to decrease by a predetermined flow rate.
  • the amount of supply of the cold water greatly decreases, and becomes smaller than the flow rate lower limit value as illustrated in FIG. 12( b ).
  • the heater 80 is turned on so that a voltage is applied to the heater 80 , as illustrated in FIG. 12( c ), in order to maintain the temperature difference by raising the temperature of the cold water.
  • the heater 80 generates heat and the cold water supplied to the electronic device 10 is heated.
  • the temperature of the warm water discharged from the electronic device 10 is raised again and returns to the original temperature difference as illustrated in FIG. 12( d ). Thereby, the temperature difference also increases and returns to the original temperature difference.
  • a sufficient period of time from the time at which the condensation sensor 20 detects a dew condensation until the time at which a dew condensation occurs in the electronic device 10 can be reserved, which allows taking measures for preventing a dew condensation in the electronic device 10 , such as turning off the system power supply.
  • the state changes after time C correspond to the state changes due to the process of steps S 11 , S 12 , S 21 , S 22 , S 112 , S 12 , S 21 and S 23 in the flowchart illustrated in FIG. 11 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)
US14/546,013 2012-06-14 2014-11-18 Dew condensation detecting device, cooling system and cooling medium flow rate controlling method Abandoned US20150068702A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065276 WO2013186904A1 (fr) 2012-06-14 2012-06-14 Dispositif de détection de condensation de rosée, système de refroidissement, et procédé de régulation du débit d'un fluide de refroidissement

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065276 Continuation WO2013186904A1 (fr) 2012-06-14 2012-06-14 Dispositif de détection de condensation de rosée, système de refroidissement, et procédé de régulation du débit d'un fluide de refroidissement

Publications (1)

Publication Number Publication Date
US20150068702A1 true US20150068702A1 (en) 2015-03-12

Family

ID=49757766

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/546,013 Abandoned US20150068702A1 (en) 2012-06-14 2014-11-18 Dew condensation detecting device, cooling system and cooling medium flow rate controlling method

Country Status (3)

Country Link
US (1) US20150068702A1 (fr)
JP (1) JPWO2013186904A1 (fr)
WO (1) WO2013186904A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180163985A1 (en) * 2016-12-14 2018-06-14 Dell Products L.P. Systems and methods for reliability control of information handling system
CN108700526A (zh) * 2016-02-09 2018-10-23 株式会社岛津制作所 Icp分析装置
JP2020502817A (ja) * 2016-12-22 2020-01-23 タレス 周波数ドリフトおよび複数の出力を有する増幅器システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470991B2 (ja) * 2015-02-04 2019-02-13 東京瓦斯株式会社 室内用輻射式冷暖房システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262489U (fr) * 1985-10-09 1987-04-17
JPH04320399A (ja) * 1991-04-19 1992-11-11 Fujitsu Ltd 電子機器の冷却装置
JPH06119083A (ja) * 1992-10-07 1994-04-28 Toshiba Corp 電子機器の冷却装置
JPH06164178A (ja) * 1992-11-27 1994-06-10 Mitsubishi Electric Corp 冷却装置
JPH07218075A (ja) * 1994-02-02 1995-08-18 Hitachi Ltd コンピュータ冷却装置
JP4372633B2 (ja) * 2004-07-14 2009-11-25 東芝三菱電機産業システム株式会社 電力変換装置
JP4816974B2 (ja) * 2008-03-24 2011-11-16 株式会社日立プラントテクノロジー 電子機器の冷却システム
JP2011237887A (ja) * 2010-05-06 2011-11-24 Hitachi Plant Technologies Ltd 電子機器の冷却方法及び冷却システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700526A (zh) * 2016-02-09 2018-10-23 株式会社岛津制作所 Icp分析装置
US20180163985A1 (en) * 2016-12-14 2018-06-14 Dell Products L.P. Systems and methods for reliability control of information handling system
US10823439B2 (en) * 2016-12-14 2020-11-03 Dell Products L.P. Systems and methods for reliability control of information handling system
JP2020502817A (ja) * 2016-12-22 2020-01-23 タレス 周波数ドリフトおよび複数の出力を有する増幅器システム
JP7223694B2 (ja) 2016-12-22 2023-02-16 タレス 周波数ドリフトおよび複数の出力を有する増幅器システム

Also Published As

Publication number Publication date
WO2013186904A1 (fr) 2013-12-19
JPWO2013186904A1 (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
US20150068702A1 (en) Dew condensation detecting device, cooling system and cooling medium flow rate controlling method
US9887513B2 (en) Laser apparatus having condensation prevention function
WO2021098232A1 (fr) Procédé de détection d'anomalie d'une conduite de dissipation de chaleur, radiateur refroidi par eau et automobile
US8950206B2 (en) Compressor assembly having electronics cooling system and method
US20150059358A1 (en) Controlling method for thermoelectric cooling device and heat-dissipating module employing same
JP5360226B2 (ja) ループ型ヒートパイプシステム及び情報処理装置
US20120216992A1 (en) Dew-condensation detecting apparatus, electronic equipment cooling system, and dew-condensation detecting method
US9841459B2 (en) Device and method for controlling IC temperature
JP2009508461A (ja) スイッチング電源の動作方法
US20160368347A1 (en) Fluid heating device for a motor vehicle and corresponding heating and/or air-conditioning apparatus
WO2015111279A1 (fr) Dispositif de chauffage liquide
KR20160091002A (ko) 냉각수 가열식 히터의 안전 제어 방법 및 장치
CN108692421B (zh) 冷媒冷却装置及其异常检测方法和空调系统
US9345175B2 (en) Electronic apparatus and cooling method
JP2010175404A (ja) X線分析装置
CN112965586A (zh) 一种边缘服务器的温控方法、系统、装置及边缘服务器
CN116867249A (zh) 散热方法及其相关设备
US9722514B2 (en) Motor drive and method of controlling a temperature of a motor drive
US20030200758A1 (en) Semiconductor cooling device and method of controlling same
JP2010225111A (ja) 電子機器
US7512162B2 (en) Dynamic thermal management of laser devices
WO2013161052A1 (fr) Appareil de refroidissement et système de refroidissement
JP2002163042A (ja) 携帯型情報機器
WO2021068327A1 (fr) Unité extérieure de climatiseur et procédé de commande associé
JP2004150777A (ja) ペルチェ式クーラの異常検出方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: FUJITSU LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SO, TSUYOSHI;TAKAHASHI, NORIHISA;UZUKA, YOSHINORI;AND OTHERS;REEL/FRAME:034205/0626

Effective date: 20141104

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION