US20140329112A1 - Magnetic recording medium - Google Patents
Magnetic recording medium Download PDFInfo
- Publication number
- US20140329112A1 US20140329112A1 US14/250,097 US201414250097A US2014329112A1 US 20140329112 A1 US20140329112 A1 US 20140329112A1 US 201414250097 A US201414250097 A US 201414250097A US 2014329112 A1 US2014329112 A1 US 2014329112A1
- Authority
- US
- United States
- Prior art keywords
- layer
- magnetic recording
- recording medium
- substrate
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7369—Two or more non-magnetic underlayers, e.g. seed layers or barrier layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/64—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
- G11B5/65—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
- G11B5/658—Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/62—Record carriers characterised by the selection of the material
- G11B5/73—Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
- G11B5/7368—Non-polymeric layer under the lowermost magnetic recording layer
- G11B5/7379—Seed layer, e.g. at least one non-magnetic layer is specifically adapted as a seed or seeding layer
Definitions
- the present technology relates to a magnetic recording medium including a flexible substrate.
- a magnetic recording medium in which a film of a CoCrPt-based metal material having a high magnetic anisotropy is formed on a flexible substrate, for example, by a sputtering method, and in addition, this material is crystallized and oriented in a direction perpendicular to the surface of the substrate.
- this magnetic recording medium it has been desired to improve the magnetic characteristics by improvement of the orientation of a magnetic recording layer, and hence, various techniques to satisfy this desire have been studied in recent years. For example, according to Japanese Unexamined Patent Application Publication No.
- a magnetic recording medium in which an amorphous layer, a seed layer, an under layer, a magnetic layer, and a protective layer are at least sequentially laminated on a substrate.
- the seed layer is formed from one of Ti, Cr, Mo, W, Zr, a Ti alloy, a Cr alloy, and a Zr alloy
- the under layer is formed from Ru
- the magnetic layer is formed to have a granular structure.
- a crack may be generated in the above laminate film formed on the substrate in some cases.
- the durability and the reliability of the magnetic recording medium are degraded.
- a magnetic recording medium including a flexible substrate, an amorphous seed layer, an under layer containing Ru, and a recording layer having a granular structure.
- the seed layer is provided between the substrate and the under layer, and the thickness of the under layer is in a range of 5 to 50 nm.
- a magnetic recording medium which is able to improve the magnetic characteristics and which is able to suppress the crack generation can be provided.
- FIG. 1 is a schematic cross-sectional view showing one example of the structure of a magnetic recording medium according to an embodiment of the present technology
- FIG. 2 is a schematic view showing one example of the structure of a sputtering apparatus used for manufacturing a magnetic recording medium according to an embodiment of the present technology
- FIG. 3 is a schematic view illustrating a method for evaluating a crack-resistant load
- FIG. 4A is a graph showing an evaluation result of an under-layer thickness dependence of crack-resistant load of a magnetic tape of each of Examples 1-1 to 1-4, Comparative Example 1-1, Examples 2-1 to 2-4, Comparative Example 2-1, and Examples 3-1 to 3-5; and
- FIG. 4B is a graph showing an evaluation result of an under-layer thickness dependence of coercive force Hc in a direction perpendicular to a magnetic tape of each of Examples 1-1 to 1-4, Comparative Example 1-1, Examples 2-1 to 2-4, Comparative Example 2-1, and Examples 3-1 to 3-5.
- a “crack-resistant load” indicates a load measured by the following procedure.
- a magnetic recording medium according to an embodiment of the present technology is formed by cutting to have a rectangular shape with a width of 12.75 mm.
- the load is increased, and a load at which a crack is generated in a laminate film provided on a substrate surface is measured. This measured load is defined as the “crack-resistant load”.
- a seed layer, an under layer, and a recording layer each may have either a single-layer structure or a multilayer structure.
- a layer having a multilayer structure is preferably used.
- a double-layer structure is preferably used in the multilayer structure.
- FIG. 1 is a cross-sectional view schematically showing one example of the structure of a magnetic recording medium according to an embodiment of the present technology.
- the magnetic recording medium according to this embodiment is a so-called single-layer perpendicular magnetic recording medium, and as shown in FIG. 1 , this magnetic recording medium includes a substrate 11 , a seed layer 12 provided on the surface of the substrate 11 , an under layer 13 provided on the surface of the seed layer 12 , a magnetic recording layer 14 provided on the surface of the under layer 13 , a protective layer 15 provided on the surface of the magnetic recording layer 14 , and a top coat layer 16 provided on the surface of the protective layer 15 .
- a magnetic recording medium having no soft magnetic lining layer is called a “single-layer perpendicular magnetic recording medium”, and a magnetic recording medium having a soft magnetic lining layer is called a “double-layer perpendicular magnetic recording medium”.
- This magnetic recording medium is suitably used as a data archive-purpose storage medium which is expected to be increasingly in demand from now on.
- This magnetic recording medium is able to realize 10 times or more the surface recording density of a current storage-purpose coating type magnetic recording medium, that is, to realize a surface recording density of 50 Gb/in 2 .
- a linear recording type data cartridge is formed using a magnetic recording medium having the surface recording density as described above, a large capacity recording of 50 TB or more per one data cartridge can be realized.
- the crack-resistant load of the magnetic recording medium is preferably 200 [g/12.75 mm] or more, more preferably in a range of 200 to 730 [g/12.75 mm], and even more preferably in a range of 200 to 500 [g/12.75 mm].
- the crack-resistant load is less than 200 [g/12.75 mm]
- the crack-resistant load is 730 [g/12.75 mm] or less
- a flexible high molecular weight material which is common for the magnetic recording medium may be used.
- the substrate 11 is a support supporting a laminate film provided on the surface of this substrate 11 .
- the substrate 11 is, for example, a long film.
- a flexible non-magnetic substrate is preferably used.
- a material for the non-magnetic substrate for example, a flexible high molecular weight material which is common for the magnetic recording medium may be used.
- the high molecular weight material as described above for example, there may be mentioned a polyester-based resin, a polyolefin-based resin, a cellulose derivative, a vinyl-based resin, a polyimide-based resin, a polyamide-based resin, and a polycarbonate-based resin.
- the polyester-based resin for example, a copolymer or a mixture containing 10 percent by mass or more of a polyester may be used.
- the Young's modulus of the substrate 11 is preferably in a range of 6,250 to 16,000 N/mm 2 and more preferably in a range of 6,250 to 7,000 N/mm 2 .
- the Young's modulus of the substrate 11 is 6,250 N/mm 2 or more, if the thickness of the under layer 13 is set to 50 nm or less as described below, the crack-resistant load can be set to 200 [g/12.75 mm] or more.
- a flexible high molecular weight material which is common for the magnetic recording medium may be used as the material for the substrate 11 .
- the materials mentioned above by way of example may be mentioned.
- a particularly inexpensive material may be used. Hence, the cost of the magnetic recording medium may be further reduced.
- a polyester-based resin, a polyolefin-based resin, a cellulose derivative, a vinyl-based resin, and a polycarbonate-based resin may be mentioned.
- the thickness of the substrate 11 is preferably 10.0 ⁇ m or less and more preferably in a range of 4.0 to 10.0 ⁇ m. The reason for this is that if the thickness of the substrate 11 is more than 10.0 ⁇ m, when a linear recording type data cartridge is formed using the magnetic recording medium according to this embodiment, the recording capacity is remarkably decreased.
- the seed layer 12 is provided between the substrate 11 and the under layer 13 .
- the seed layer 12 has an amorphous state.
- columnar shapes in association with the crystalline growth become apparent, and irregularities of the surface of the substrate 11 are emphasized, so that the crystalline orientation of the under layer 13 is degraded. That is, the seed layer 12 in an amorphous state has a function to reduce the irregularities of the surface of the substrate 11 .
- the seed layer 12 preferably includes an alloy containing Ti and Cr and preferably has an amorphous state.
- the “seed layer” does not indicate an intermediate layer which has a crystalline structure similar to that of the under layer 13 and which is provided for the crystalline growth purpose but indicates an intermediate layer which improves the perpendicular orientation of the under layer 13 by the flatness and the amorphous state of the seed layer 12 .
- the “alloy” indicates, for example, at least one of a solid solution, a eutectic compound, and an intermetallic compound, each of which contains Ti and Cr.
- the “amorphous state” indicates a state in which a halo pattern is observed by an electron diffraction method, and in which the crystalline structure is difficult to be identified.
- the seed layer 12 which includes an alloy containing Ti and Cr and which has an amorphous state has a function to suppress an influence on a laminate film, such as the under layer 13 , caused by an O 2 gas and/or H 2 O, which is released from the inside of the substrate 11 or which is adsorbed to the surface of the substrate 11 .
- the seed layer 12 also has functions to reduce fine irregularities of the surface of the substrate 11 , to form a smooth metal surface on the surface of the substrate 11 , and to improve the perpendicular orientation of the under layer 13 .
- the rate of O with respect to the total mass of Ti, Cr, and O (oxygen) contained in the seed layer 12 is preferably 15 atomic percent (atomic %: at %) or less and more preferably 10 at % or less.
- rate of O is more than 15 at %, since a TiO 2 crystal starts to grow, crystalline nucleus formation of the under layer 13 formed on the surface of the seed layer 12 is influenced, and as a result, the orientation of the under layer 13 is remarkably degraded.
- the rate of Ti with respect to the total mass of Ti and Cr contained in the seed layer 12 is, for example, 10 at % or more, preferably in a range of 30 to 100 at %, and more preferably in a range of 50 to 100 at %.
- rate of Ti is less than 30 at %, since the (100) plane of the body-centered cubic lattice (bcc) structure of Cr is oriented, and as a result, the orientation of the under layer 13 formed on the surface of the seed layer 12 is degraded.
- the rate of the above element can be obtained as described below.
- analysis by an Auger electron spectroscopy is performed on the outermost surface of the seed layer 12 thus etched, and the rate of the average atomic number with respect to the thickness is regarded as the rate of the element.
- the analysis is performed on three elements, Ti, Cr, and O, and the element amount on the percentage rate is identified.
- the alloy included in the seed layer 12 may also contain at least one element other than Ti and Cr as an additive element.
- this additive element for example, there may be mentioned at least one element selected from the group consisting of Nb, Ni, Mo, Al, and W.
- the thickness of the seed layer 12 is, for example, in a range of 1.0 to 10.0 nm.
- the under layer 13 preferably has a crystalline structure similar to that of the magnetic recording layer 14 .
- the under layer 13 preferably contains a material having a hexagonal close-packed (hcp) structure similar to that of the Co-based alloy, and the c axis of this structure is preferably oriented in a direction perpendicular to the film surface (that is, in a film thickness direction).
- hcp hexagonal close-packed
- a material containing Ru is preferably used, and in particular, a Ru element or a Ru alloy is preferable.
- a Ru alloy for example, a Ru alloy oxide, such as Ru—SiO 2 , Ru—TiO 2 , or Ru—ZrO 2 , may be mentioned.
- the content of Ru in the under layer 13 is, for example, 10 at % or more.
- the thickness of the under layer 13 is, for example, in a range of 3.0 to 80.0 nm, preferably in a range of 5.0 to 50.0 nm, and even more preferably in a range of 10.0 to 50.0 nm.
- a coercive force Hc is remarkably decreased, and the function as the recording medium may be difficult to obtain.
- the thickness of the under layer 13 is 50.0 nm or less, by the use of a substrate 11 having a Young's modulus of 6,250 N/mm 2 or more, a crack-resistant load of 200 [g/12.75 mm] or more can be obtained.
- the crack-resistant load is less than 200 [g/12.75 mm]
- a crack is liable to be generated.
- the thickness of the under layer 13 may be measured using a cross-sectional transmission electron microscope (TEM) image of the magnetic recording medium taken by a TEM.
- the magnetic recording layer 14 is a perpendicular recording layer in which a magnetic recording material is oriented in a perpendicular direction.
- the magnetic recording layer 14 is preferably a granular magnetic layer containing a Co-based alloy.
- This granular magnetic layer is formed of ferromagnetic crystalline grains containing a Co-based alloy and non-magnetic grain boundaries (non-magnetic material) surrounding the ferromagnetic crystalline grains.
- this granular magnetic layer is formed of columns (columnar crystals) containing a Co-based alloy and non-magnetic grain boundaries (oxides such as SiO 2 ) which surround those columns and magnetically separate the columns from each other.
- the magnetic recording layer 14 can be formed so that the columns are magnetically separated from each other.
- the content of Co of the magnetic recording layer 14 is, for example, 10 at % or more.
- the Co-based alloy has a hexagonal close-packed (hcp) structure, and the c axis thereof is oriented in a perpendicular direction (film thickness direction) to the film surface.
- hcp hexagonal close-packed
- a CoCrPt-based alloy containing at least Co, Cr, and Pt is preferably used.
- the CoCrPt-based alloy is not particularly limited, and the CoCrPt-based alloy may further contain another additive element.
- the additive element for example, at least one element selected from the group consisting of Ni and Ta may be mentioned.
- the non-magnetic grain boundary surrounding the ferromagnetic crystalline grain contains a non-magnetic metal material.
- the metal includes a half metal.
- the non-magnetic metal material for example, either a metal oxide or a metal nitride may be used, and in order to more stably maintain the granular structure, a metal oxide is preferably used.
- a metal oxide containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf may be mentioned, and a metal oxide including at least a Si oxide (that is, SiO 2 ) is preferable.
- the metal oxide for example, SiO 2 , Cr 2 O 3 , CoO, Al 2 O 3 , TiO 2 , Ta 2 O 5 , ZrO 2 , or HfO 2 may be mentioned.
- the metal nitride for example, a metal nitride containing at least one element selected from the group consisting of Si, Cr, Co, Al, Ti, Ta, Zr, Ce, Y, and Hf may be mentioned.
- the metal nitride for example, SiN, TiN, and AlN may be mentioned.
- the non-magnetic grain boundary preferably contains the metal oxide.
- the CoCrPt-based alloy contained in the ferromagnetic crystal grain and the Si oxide contained in the non-magnetic grain boundary preferably have an average composition represented by the following formula (1).
- the reason for this is that since a saturated magnetization amount Ms is realized which suppresses the influence of a demagnetizing field and which can secure a sufficient reproduction output, a high SNR can be secured.
- the above composition may be obtained as described below.
- analysis by an Auger electron spectroscopy is performed on the outermost surface of the magnetic recording layer 14 thus etched, and the rate of the average atomic number with respect to the thickness is regarded as the rate of the element.
- the analysis is performed on five elements, Co, Pt, Cr, Si, and O, and the element amount on the percentage rate is identified.
- the magnetic recording medium according to this embodiment is a single-layer magnetic recording medium having no lining layer (soft magnetic lining layer) containing a soft magnetic material
- this type of magnetic recording medium when the influence of the demagnetizing field caused by the magnetic recording layer 14 is large in a perpendicular direction, sufficient recording in a perpendicular direction tends to be difficult to perform.
- the demagnetizing field is increased in proportion to the saturated magnetization amount Ms of the magnetic recording layer 14 , in order to suppress the demagnetizing field, the saturated magnetization amount Ms is preferably decreased. However, when the saturated magnetization amount Ms is decreased, a residual magnetization amount Mr is decreased, and as a result, a reproduction output is decreased.
- a material contained in the magnetic recording layer 14 is preferably selected so that the influence of the demagnetizing field can be suppressed (that is, the saturated magnetization amount Ms is decreased), and at the same time, a residual magnetization amount Mr which can secure a sufficient reproduction output can be obtained.
- the average composition of the above formula (1) those characteristics can both be satisfied, and a high SNR can be secured.
- the thickness of the magnetic recording layer 14 is, for example, in a range of 3.0 to 20.0 nm.
- the protective layer 15 contains, for example, a carbon material or silicon dioxide (SiO 2 ), and in view of the film strength of the protective layer 15 , a carbon material is preferably contained.
- the content of the carbon material in the protective layer 15 is, for example, 10% or more.
- As the carbon material for example, there may be mentioned graphite, diamond-like carbon (DLC), or diamond.
- the thickness of the protective layer 15 is, for example, in a range of 1.0 to 10.0 nm.
- the top coat layer 16 contains, for example, a lubricant agent.
- a lubricant agent for example, a silicone lubricant agent, a hydrocarbon lubricant agent, or a fluorinated hydrocarbon lubricant agent may be used.
- FIG. 2 is a schematic view showing one example of the structure of a sputtering apparatus used for manufacturing a magnetic recording medium according to an embodiment of the present technology.
- This sputtering apparatus is a continuous winding type sputtering apparatus used for film formation of the seed layer 12 , the under layer 13 , and magnetic recording layer 14 , and as shown in FIG. 2 , the sputtering apparatus includes a film formation chamber 21 , a drum 22 , cathodes 23 a to 23 c , a feeding reel 24 , and a winding reel 25 .
- the sputtering apparatus is a DC (direct current) magnetron sputtering type apparatus, the sputtering method is not limited to this method.
- the film formation chamber 21 is connected to a vacuum pump (not shown) via an exhaust port 26 , and by this vacuum pump, the atmosphere inside the film formation chamber 21 is set to a predetermined degree of vacuum.
- a vacuum pump not shown
- the rotatable drum 22 , the feeding reel 24 , and the winding reel 25 are disposed.
- the substrate 11 which is unwound out of the feeding reel 24 is wound by the winding reel 25 through the drum 22 .
- the drum 22 is provided with a cooling mechanism (not shown) and is cooled, for example, to approximately ⁇ 20° C. in sputtering.
- the cathodes 23 a to 23 c are disposed to face the cylindrical surface of the drum 22 .
- Targets are set to the respective cathodes 23 a to 23 c .
- the targets to form the seed layer 12 , the under layer 13 , and the magnetic recording layer 14 are set to the cathodes 23 a , 23 b , and 23 c , respectively.
- cathodes 23 a to 23 c a plurality of types of films, that is, the seed layer 12 , the under layer 13 , and the magnetic recording layer 14 , are simultaneously formed.
- the atmosphere of the film formation chamber 21 in sputtering is set, for example, to approximately 1 ⁇ 10 ⁇ 5 to 5 ⁇ 10 ⁇ 5 Pa.
- the film thickness and the characteristics (such as magnetic characteristics) of each of the seed layer 12 , the under layer 13 , and the magnetic recording layer 14 may be controlled, for example, by adjusting a tape line speed for winding the substrate 11 , the pressure (sputtering gas pressure) of an Ar gas introduced in sputtering, and an input electric power.
- a magnetic recording medium according to an embodiment of the present technology may be formed, for example, as described below.
- the seed layer 12 , the under layer 13 , and the magnetic recording layer 14 are formed on the substrate 11 .
- the film formation is performed as described below.
- the inside of the film formation chamber 21 is vacuumed to a predetermined pressure.
- a process gas such as an Ar gas
- the targets set to the cathodes 23 a to 23 c are sputtered, so that the seed layer 12 , the under layer 13 , and the magnetic recording layer 14 are sequentially formed on the surface of the substrate 11 .
- the protective layer 15 is formed on the surface of the magnetic recording layer 14 .
- a method for forming the protective layer 15 for example, a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method may be used.
- CVD chemical vapor deposition
- PVD physical vapor deposition
- a lubricant agent is applied on the surface of the protective layer 15 to form the top coat layer 16 .
- various application methods such as gravure coating and dip coating, may be used.
- the amorphous seed layer 12 , the under layer 13 containing Ru, and the magnetic recording layer 14 having a granular structure are laminated on the surface of the flexible substrate 11 .
- the thickness of the under layer is set to 50.0 nm or less. Hence, when a tensile stress or a load is applied to the magnetic recording medium, or when the magnetic recording medium is bent, the crack generation in the laminate film on the surface of the substrate 11 can be suppressed. Hence, the reliability of the magnetic recording medium as a finished product can be improved.
- the thickness of the under layer 13 is set to 5.0 nm or more, the magnetic characteristics can be improved.
- the amorphous seed layer 12 including an alloy containing Ti and Cr is provided between the substrate 11 and the under layer 13 , the influence of an O 2 gas, H 2 O, and the like, which are adsorbed to the substrate 11 , on the under layer 13 can be suppressed.
- the orientation of the under layer 13 and that of the magnetic recording layer 14 can be improved. Hence, superior magnetic characteristics are achieved, and improvement in performance of the medium, such as increase in output and reduction in noise, can be realized.
- the Young's modulus of a high molecular weight film used as a non-magnetic substrate was measured as described below. First, from a high molecular weight film, a test piece having a width of 10 mm and a length of 50 mm was obtained by cutting. Next, the Young's modulus of this test piece was measured by a Tensilon tensile tester at a tensile rate of 20 mm/min and at a room temperature of 25° C.
- the thickness of each layer laminated on the non-magnetic substrate was measured as described below. First, a magnetic tape was cut in a direction perpendicular to its primary surface, and the cross-section thereof is photographed by a TEM. Next, from a TEM image thus photographed, the thickness of each layer was obtained.
- a TiCr seed layer having a thickness of 5.0 nm was formed on this film under the following film formation conditions.
- Target Ti 50 Cr 50 target
- a Ru under layer was formed on the TiCr seed layer to have a thickness in a range of 5.0 to 55.0 nm.
- Target (Co 75 Cr 10 Pt 15 ) 90 —(SiO 2 ) 10 target
- a protective layer having a thickness of 5.0 nm was formed from carbon on the (CoCrPt)—(SiO 2 ) magnetic recording layer.
- Target carbon target
- a fluorinated lubricant agent was applied on the protective layer to form a top coat layer on the protective layer. Accordingly, a magnetic tape functioning as a perpendicular magnetic recording medium was obtained.
- Example 1-1 Except that the amorphous TiCr seed layer was not formed between the non-magnetic substrate and the Ru under layer, a magnetic tape was obtained in a manner similar to that of Example 1-1.
- Example 1-1 Except that a TiCr seed layer having a crystalline state was formed between the non-magnetic substrate and the Ru under layer, a magnetic tape was obtained in a manner similar to that of Example 1-1.
- a method for evaluating the crack-resistant load will be described.
- a test piece having a width of 12.75 mm and a length of 500 mm was obtained from the magnetic tape by cutting, and one end of this test piece in a longitudinal direction was fixed to a fixing portion of a stage.
- a spring balance push-pull gauge
- a load was applied to the test piece by pulling the spring balance in a predetermined direction, and the surface of the magnetic tape was observed by an optical microscope.
- the tensile load at this stage was read by the scale of the spring balance, and this value was defined as the “crack-resistant load”.
- the results are shown in Table 1 and FIG. 4A .
- the “crack-resistant load” indicates a tensile load at which a crack starts to be generated.
- this evaluation was performed to estimate, when a magnetic tape is set to a recording and reproducing apparatus, such as a drive, whether or not the magnetic tape is able to withstand a tensile stress applied by a mechanism which drives the magnetic tape.
- a coercive force Hc of the magnetic recording layer in a perpendicular direction thereof was measured using a vibrating sample magnetometer (VSM). The results are shown in Table 1 and FIG. 4B .
- Table 1 shows the structure of the magnetic tape and the evaluation results of each of Examples 1-1 to 1-4 and Comparative Example 1-1.
- Example 1-1 Example 1-2
- Example 1-3 Example 1-4
- Example 1-1 Young's Modulus of 6250 Substrate [N/mm 2 ] Thickness of Under 5.0 10.0 30.0 50.0 55.0 Layer [nm] Crystalline State of Seed Amorphous Amorphous Amorphous Amorphous Amorphous Layer Orientation State of Good Good Good Good Good Under Layer Crack-Resistant Load [g] 285 280 260 200 155 Perpendicular Hc [Oe] 800 1500 2800 3200 3240
- Table 2 shows the structure of the magnetic tape and the evaluation results of each of Examples 2-1 to 2-4 and Comparative Example 2-1.
- Example 2-1 Example 2-2
- Example 2-3 Example 2-4
- Example 2-1 Young's Modulus of 6680 Substrate [N/mm 2 ] Thickness of Under 5.0 10.0 30.0 50.0 55.0 Layer [nm] Crystalline State of Seed Amorphous Amorphous Amorphous Amorphous Amorphous Layer Orientation State of Good Good Good Good Good Under Layer Crack-Resistant Load [g] 345 340 310 240 180 Perpendicular Hc [Oe] 750 1480 2600 3120 3150
- Table 3 shows the structure of the magnetic tape and the evaluation results of each of Examples 3-1 to 3-5.
- Example 3-1 Example 3-2
- Example 3-3 Example 3-4
- Example 3-5 Young's Modulus of 16000 Substrate [N/mm 2 ] Thickness of Under 5.0 10.0 30.0 50.0 55.0 Layer [nm] Crystalline State of Seed Amorphous Amorphous Amorphous Amorphous Amorphous Layer Orientation State of Good Good Good Good Good Under Layer Crack-Resistant Load [g] 730 725 670 520 390 Perpendicular Hc [Oe] 810 1550 2760 3280 3300
- Table 4 shows the structure of the magnetic tape and the evaluation results of each of Comparative Examples 3 and 4.
- the crack-resistant load tends to decrease.
- the thickness of the under layer is in a range of 5.0 to 50.0 nm
- the crack-resistant load tends to gradually decrease.
- the thickness of the under layer is in a range of 50.0 to 55.5 nm
- the crack-resistant load tends to remarkably decrease.
- this remarkable decrease tendency is significant for a magnetic tape using a high molecular weight film having a highest Young's modulus (Young's modulus: 16,000 N/mm 2 ).
- the thickness of the under layer is preferably set to 50 nm or less.
- a high molecular weight film having a Young's modulus of approximately 6,250 or 6,680 N/mm 2 is preferably used as the non-magnetic substrate.
- a usable high molecular weight film is not limited to the above high molecular weight film, but any film having a Young's modulus in a range of 6,250 to 7,000 N/mm 2 may also be used in view of the reduction in manufacturing cost.
- the coercive force Hc in a perpendicular direction tends to increase.
- the thickness of the under layer is in a range of 5.0 to 50.0 nm
- the coercive force Hc tends to remarkably increase.
- the thickness of the under layer is in a range of 50.0 to 55.5 nm, as the thickness of the under layer is increased, the coercive force Hc tends to gradually increase.
- the thickness of the under layer is preferably in a range of 5.0 to 50.0 nm.
- the structure, the method, the step, the shape, the material, the numeral, and the like disclosed in the above embodiments have been described by way of example, and as occasion calls, a structure, a method, a step, a shape, a material, a numeral, and the like, each of which is different from that described above, may also be used.
- the seed layer having a single-layer structure may have a double-layer structure including a first seed layer and a second seed layer.
- the first seed layer is provided at an under layer side
- the second seed layer is provided at a substrate side.
- the first seed layer a seed layer similar to that in the above one embodiment may be used.
- the second seed layer contains, for example, a material having a composition different from that of the first seed layer. As particular examples of this material, NiW, Ta, or the like may be mentioned.
- the magnetic recording medium includes a seed layer having a double-layer structure as described above, the orientation of the under layer and that of the magnetic recording layer can be further improved, and hence, the magnetic characteristics can be further improved.
- the seed layer may have a multilayer structure including at least three layers.
- the under layer having a single-layer structure may have a double-layer structure including a first under layer and a second under layer.
- the first under layer is provided at a magnetic recording layer side
- the second under layer is provided at a seed layer side.
- the thickness of the first under layer is preferably larger than that of the second under layer. The reason for this is that the characteristics of the magnetic recording medium can be improved.
- the under layer may have a multilayer structure including at least three layers.
- present technology may also employ the following structures.
- a magnetic recording medium comprising a flexible substrate; an amorphous seed layer; an under layer containing Ru; and a recording layer having a granular structure, wherein the seed layer is provided between the substrate and the under layer, and the under layer has a thickness in a range of 5 to 50 nm.
- the seed layer includes an alloy containing Ti and Cr.
- the seed layer reduces surface irregularities of the substrate.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Magnetic Record Carriers (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/879,976 US10311908B2 (en) | 2013-05-01 | 2015-10-09 | Magnetic recording medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-096503 | 2013-05-01 | ||
JP2013096503A JP6186859B2 (ja) | 2013-05-01 | 2013-05-01 | 磁気記録媒体 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/879,976 Continuation US10311908B2 (en) | 2013-05-01 | 2015-10-09 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140329112A1 true US20140329112A1 (en) | 2014-11-06 |
Family
ID=51807097
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/250,097 Abandoned US20140329112A1 (en) | 2013-05-01 | 2014-04-10 | Magnetic recording medium |
US14/879,976 Active 2035-01-06 US10311908B2 (en) | 2013-05-01 | 2015-10-09 | Magnetic recording medium |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/879,976 Active 2035-01-06 US10311908B2 (en) | 2013-05-01 | 2015-10-09 | Magnetic recording medium |
Country Status (3)
Country | Link |
---|---|
US (2) | US20140329112A1 (enrdf_load_stackoverflow) |
JP (1) | JP6186859B2 (enrdf_load_stackoverflow) |
CN (1) | CN104134446B (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10311908B2 (en) | 2013-05-01 | 2019-06-04 | Sony Corporation | Magnetic recording medium |
US10424329B2 (en) | 2013-06-05 | 2019-09-24 | Sony Corporation | Magnetic recording medium |
US10803897B2 (en) | 2013-10-22 | 2020-10-13 | Sony Corporation | Magnetic recording medium |
US10978636B2 (en) * | 2018-09-06 | 2021-04-13 | Toshiba Memory Corporation | Magnetic storage device |
US11423936B2 (en) | 2013-05-17 | 2022-08-23 | Sony Corporation | Magnetic recording medium and method of producing the same |
US11437066B2 (en) * | 2018-03-30 | 2022-09-06 | Sony Corporation | Magnetic recording tape and magnetic recording tape cartridge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030219630A1 (en) * | 2002-05-23 | 2003-11-27 | Fuji Photo Film Co., Ltd. | Perpendicular magnetic recording medium |
US6833173B1 (en) * | 1999-09-27 | 2004-12-21 | Fuji Photo Film Co., Ltd. | Floppy disk including a seed layer and a primer layer with specified relative properties |
US20050064243A1 (en) * | 2003-09-18 | 2005-03-24 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
US20050233178A1 (en) * | 2004-04-14 | 2005-10-20 | Fujitsu Limited | Vertical magnetic recording medium, magnetic recording apparatus and manufacturing method of a vertical magnetic recording medium |
US20110311841A1 (en) * | 2008-12-05 | 2011-12-22 | Wd Media (Singapore) Pte. Ltd. | Magnetic disk and method for manufacturing same |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002260215A (ja) * | 2001-02-28 | 2002-09-13 | Fuji Electric Co Ltd | 記録媒体用基板および記録媒体 |
JP2005196885A (ja) * | 2004-01-08 | 2005-07-21 | Sony Corp | 磁気記録媒体 |
JP2006286106A (ja) * | 2005-03-31 | 2006-10-19 | Fujitsu Ltd | 垂直磁気記録媒体および磁気記憶装置 |
JP2007164826A (ja) * | 2005-12-09 | 2007-06-28 | Fujifilm Corp | 磁気記録媒体、磁気記録媒体の製造方法及びターゲット |
JP2007257679A (ja) * | 2006-03-20 | 2007-10-04 | Fujitsu Ltd | 磁気記録媒体、その製造方法、および磁気記憶装置 |
JP2008210498A (ja) * | 2007-01-30 | 2008-09-11 | Toray Ind Inc | 強磁性金属薄膜型磁気記録媒体用支持体および強磁性金属薄膜型磁気記録媒体 |
JP5569111B2 (ja) * | 2009-06-23 | 2014-08-13 | ソニー株式会社 | 磁気記録媒体およびその製造方法 |
JP6186859B2 (ja) | 2013-05-01 | 2017-08-30 | ソニー株式会社 | 磁気記録媒体 |
JP6307879B2 (ja) | 2013-05-17 | 2018-04-11 | ソニー株式会社 | 磁気記録媒体およびその製造方法 |
JP6205871B2 (ja) | 2013-06-05 | 2017-10-04 | ソニー株式会社 | 磁気記録媒体 |
JP6318540B2 (ja) | 2013-10-22 | 2018-05-09 | ソニー株式会社 | 磁気記録媒体 |
-
2013
- 2013-05-01 JP JP2013096503A patent/JP6186859B2/ja active Active
-
2014
- 2014-04-10 US US14/250,097 patent/US20140329112A1/en not_active Abandoned
- 2014-04-24 CN CN201410168632.9A patent/CN104134446B/zh active Active
-
2015
- 2015-10-09 US US14/879,976 patent/US10311908B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6833173B1 (en) * | 1999-09-27 | 2004-12-21 | Fuji Photo Film Co., Ltd. | Floppy disk including a seed layer and a primer layer with specified relative properties |
US20030219630A1 (en) * | 2002-05-23 | 2003-11-27 | Fuji Photo Film Co., Ltd. | Perpendicular magnetic recording medium |
US20050064243A1 (en) * | 2003-09-18 | 2005-03-24 | Fuji Photo Film Co., Ltd. | Magnetic recording medium |
US20050233178A1 (en) * | 2004-04-14 | 2005-10-20 | Fujitsu Limited | Vertical magnetic recording medium, magnetic recording apparatus and manufacturing method of a vertical magnetic recording medium |
US20110311841A1 (en) * | 2008-12-05 | 2011-12-22 | Wd Media (Singapore) Pte. Ltd. | Magnetic disk and method for manufacturing same |
Non-Patent Citations (1)
Title |
---|
Maruzen Petrochemical Co website (http://www.chemiway.co.jp/en/product/data/hi_data01.html ). * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10311908B2 (en) | 2013-05-01 | 2019-06-04 | Sony Corporation | Magnetic recording medium |
US11423936B2 (en) | 2013-05-17 | 2022-08-23 | Sony Corporation | Magnetic recording medium and method of producing the same |
US10424329B2 (en) | 2013-06-05 | 2019-09-24 | Sony Corporation | Magnetic recording medium |
US10803897B2 (en) | 2013-10-22 | 2020-10-13 | Sony Corporation | Magnetic recording medium |
US11430477B2 (en) | 2013-10-22 | 2022-08-30 | Sony Corporation | Magnetic recording medium |
US11437066B2 (en) * | 2018-03-30 | 2022-09-06 | Sony Corporation | Magnetic recording tape and magnetic recording tape cartridge |
US10978636B2 (en) * | 2018-09-06 | 2021-04-13 | Toshiba Memory Corporation | Magnetic storage device |
Also Published As
Publication number | Publication date |
---|---|
US20160099018A1 (en) | 2016-04-07 |
JP2014220022A (ja) | 2014-11-20 |
JP6186859B2 (ja) | 2017-08-30 |
CN104134446B (zh) | 2019-01-15 |
US10311908B2 (en) | 2019-06-04 |
CN104134446A (zh) | 2014-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6307879B2 (ja) | 磁気記録媒体およびその製造方法 | |
US10311908B2 (en) | Magnetic recording medium | |
US10424329B2 (en) | Magnetic recording medium | |
US7993765B2 (en) | Perpendicular magnetic recording medium | |
JP6083389B2 (ja) | 磁気記録媒体 | |
US20180182423A1 (en) | Magnetic recording medium and magnetic storage apparatus | |
US7592080B2 (en) | Perpendicular magnetic recording medium | |
US20140376127A1 (en) | Magnetic recording medium and magnetic storage apparatus | |
US8628866B2 (en) | Magnetic recording medium, manufacturing method thereof, and magnetic recording/reproducing device | |
JP4380577B2 (ja) | 垂直磁気記録媒体 | |
US7862915B2 (en) | Magnetic recording medium and magnetic recording/reproducing apparatus | |
JP4534711B2 (ja) | 垂直磁気記録媒体 | |
US20020182446A1 (en) | Perpendicular magnetic recording medium | |
CN100405465C (zh) | 垂直磁记录媒体、其制造方法以及磁记录装置 | |
JP5569213B2 (ja) | 垂直磁気記録媒体 | |
US20150129415A1 (en) | Magnetic recording medium, method of manufacturing the same, and magnetic recording/reproduction apparatus | |
US8846219B2 (en) | Perpendicular magnetic recording medium | |
US9299378B2 (en) | Magnetic recording medium having a recording layer with a diffraction peak of magnetic atoms | |
US20060014051A1 (en) | Perpendicular magnetic recording medium and method of manufacturing the same | |
US11232813B2 (en) | Film-forming apparatus and method for manufacturing magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SONY CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AIZAWA, TAKASHI;REEL/FRAME:032715/0141 Effective date: 20140324 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |