US20130330169A1 - Water Turbine - Google Patents

Water Turbine Download PDF

Info

Publication number
US20130330169A1
US20130330169A1 US13/639,536 US201113639536A US2013330169A1 US 20130330169 A1 US20130330169 A1 US 20130330169A1 US 201113639536 A US201113639536 A US 201113639536A US 2013330169 A1 US2013330169 A1 US 2013330169A1
Authority
US
United States
Prior art keywords
water turbine
operating position
gap
stationary
revolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/639,536
Other languages
English (en)
Inventor
Manfred Stummer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voith Patent GmbH
Original Assignee
Voith Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voith Patent GmbH filed Critical Voith Patent GmbH
Assigned to VOITH PATENT GMBH reassignment VOITH PATENT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STUMMER, MANFRED
Publication of US20130330169A1 publication Critical patent/US20130330169A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/183Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/002Injecting air or other fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • F03B11/006Sealing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/10Machines or engines of reaction type; Parts or details peculiar thereto characterised by having means for functioning alternatively as pumps or turbines
    • F03B3/103Machines or engines of reaction type; Parts or details peculiar thereto characterised by having means for functioning alternatively as pumps or turbines the same wheel acting as turbine wheel and as pump wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/04Helico-centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/57Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a water turbine, a pump turbine or a water pump. It especially relates to the field of labyrinth seals and the blade wheel. Reference is hereby made to DE 198 08 877 A1 for such a hydraulic machine.
  • Labyrinth seals are known for sealing. They are available in a large number of configurations. The simplest form is the so-called smooth labyrinth, in which the boundary walls of the clearance gap are free from discontinuities and extend more or less parallel next to one another. A further embodiment is the so-called stepped labyrinth in which the mutually cooperating surfaces are arranged in a stepped manner. Furthermore, numerous labyrinths are known which comprise a large number of small annular chambers and channels in the shape of annular gaps which connect the chambers with one another. The invention relates to such a generic labyrinth seal. Such known labyrinth seals are disclosed for example in DE 1 551 223 A, DE 18 92 39 C and U.S. Pat. No. 5,924,844.
  • DE 1 807 443 describes a method and a device for operating a pump turbine installation which is operated temporarily without any working medium (which is water).
  • working medium which is water.
  • stepped labyrinths or smooth labyrinths are used.
  • the blade wheel of the turbine will then revolve in air.
  • the gap widths of the labyrinth seals of the turbine will be minimized conversely, and those of the pump will be maximized, with the pump blade wheel then also revolving in air.
  • the entire turbine shaft with the pump and turbine blade wheel will be displaced in the axial direction.
  • the water-free state occurs especially in a set of machines which comprises a water turbine and a water pump which are disposed on one and the same shaft and are coupled with one another in a torsion-proof way, as is the case for example in storage power stations.
  • One of the machines is filled with water during a specific period of time, whereas the other revolves in air.
  • the invention is based on the object of providing a machine according to the preamble of claim 1 in such a way that no-load losses where water does not flow through the machine are minimized.
  • the subject matter disclosed and claimed herein in one aspect thereof, comprises a water turbine or water pump or other hydraulic machine that comprises a stationary and a revolving component.
  • the invention also comprises a sealing gap that is disposed between the stationary and revolving components, which is sealed by a labyrinth seal and through which a leakage flow for cooling or lubricating the seal will flow during operation of the hydraulic machine.
  • the invention also provides a connection on the sealing gap for its evacuation.
  • the entire blade wheel region or at least the sealing gap will be evacuated in the work-free phases of the machine.
  • a connection for applying a negative pressure will therefore be associated to each or at least one sealing gap or the entire blade wheel region.
  • the connection is disposed at a respective location which allows efficient evacuation of the sealing gap, e.g. at the guide wheel ring or the cover of a water turbine or a water pump.
  • the evacuation can occur intermittently. It can be automated in that a suction device will only be activated during idle running of the machine and is deactivated again during the working phases.
  • the width of the sealing gap can also be changed, as defined in claims 2 through 8 and as shown in FIGS. 2 a through 4 b.
  • the measures as described and illustrated therein can be applied. This is not mandatory however.
  • FIG. 1 illustrates an axial sectional view of a Francis turbine in an axial sectional view in accordance with the disclosed architecture.
  • FIGS. 2 a and 2 b illustrate a perspective view of different embodiments of the labyrinth seal In an operating position and a non-operating position of the stationary component in accordance with the disclosed architecture.
  • FIGS. 3 a and 3 b illustrate an enlarged schematic illustration of the detailed view A of the labyrinth seal of FIG. 1 in accordance with the disclosed architecture.
  • FIGS. 4 a and 4 b illustrate an enlarged schematic illustration of the detailed view B of the labyrinth seal according to FIG. 1 in accordance with the disclosed architecture.
  • the Francis turbine shown in FIG. 1 comprises a blade wheel 8 as the main element, a guide wheel ring 9 , turbine cover 10 , a suction pipe 11 and a scroll case 12 .
  • the blade wheel 8 comprises a blade wheel crown 8 . 1 , a blade wheel rim 8 . 2 and a plurality of blades 8 . 3 . It is arranged in a torsion-proof manner with the turbine shaft 14 which revolves about a rotational axis 13 .
  • a labyrinth seal 3 is arranged between the blade wheel 8 , the guide wheel ring 9 and the suction pipe 11 (detailed sectional view A), and the blade wheel 8 and turbine cover 10 (detailed sectional view B).
  • Each of the two labyrinth seals 3 comprises a stationary component 1 and a revolving component 2 , which are arranged in the present case in a concentric manner in relation to the rotational axis 13 of the turbine shaft 14 of the blade wheel and in the manner of a circular ring.
  • the relevant parts of the invention are the vacuum connections 20 and the feed lines 21 .
  • a vacuum channel 21 which extends from the outside to the inside is disposed in the suction pipe 11 .
  • the vacuum connection 20 is disposed on the outside surface of the other end of the suction pipe 11 (see detailed sectional view A).
  • a further vacuum connection 20 with vacuum line 21 is associated with the labyrinth seal 3 in the detailed sectional view B.
  • a vacuum channel 21 extends through the turbine cover 10 .
  • FIGS. 2 a and 2 b show the precise configuration of the two components 1 and 2 of the labyrinth seal 3 in accordance with the invention in detail.
  • Recesses are incorporated in the two components 1 and 2 .
  • the boundary surfaces 1 . 1 and 2 . 1 of the two components 1 and 2 which are produced in this manner form annular chambers 4 with one another in this case and channels 5 which are shaped in the manner of annular gaps and which connect said chambers in a conductive manner with one another.
  • the mutually facing boundary surfaces 1 . 1 and 2 . 1 of the two components 1 and 2 of the labyrinth seal 3 extend in a conical manner in FIG. 2 a , thus leading to a stepped labyrinth.
  • they are cylindrical (smooth labyrinth).
  • the chambers 4 could merely be provided in one of the components, e.g. exclusively in the rotating or in the stationary component, both in the conical and also in the stepped configuration of the two components 1 and 2 . This is not mandatorily necessary however.
  • FIGS. 2 a and 2 b show the initial position of the stationary component 1 in relation to the revolving component 2 . This corresponds to an operating position in which the labyrinth seal 3 of the hydraulic machine allows a defined leakage flow of working medium.
  • the respective right-hand illustration in the two drawings 2 a and 2 b shows a position in which the stationary component 1 is displaced in relation to the revolving component 2 in the direction of a leakage flow, which means in the axial direction.
  • the two components have an enlarged mutual radial distance (non-operating position).
  • the gap width of the annular-gap-shaped channels 5 is increased considerably in the non-operating position in particular. It now allows air to flow through the enlarged gap width instead of the conventional working medium when the working medium has been switched off.
  • the air flowing through the blade wheel of the hydraulic machine which now revolves in air ensures on the one hand that ventilation losses are avoided and on the other hand that the labyrinth seal is cooled in this case exclusively by the air moved in this manner.
  • the change in the gap width is therefore caused by the fact that the two components 1 and 2 have a stepped configuration on their mutually facing surfaces. In the embodiment according to FIG. 2 b , this concerns regular steps. In the right-hand illustration of FIG. 2 b it can be seen that the respective projections of the one component correspond to the gaps of the other component.
  • FIGS. 3 a and 3 b show an enlarged illustration of a labyrinth seal in accordance with the invention according to the detailed view A as shown in FIG. 1 .
  • the left-hand illustration according to FIG. 3 a corresponds to the operating position
  • the illustration according to FIG. 3 b corresponds to the non-operating position of the stationary component 1 .
  • the stationary component 1 is arranged as a so-called split ring 6 .
  • the latter is associated with a displacing device in order to displace the split ring between the operating position and the non-operating position.
  • the displacing device comprises a piston which is formed by the split ring 6 itself, with the piston partly delimiting a first piston chamber 7 . 1 and a second piston chamber 7 . 2 (together with the guide wheel ring 9 and a suction pipe 11 ).
  • the split ring 6 is enclosed between the blade wheel 8 , which acts in this case as the revolving component 2 , and the guide wheel ring 9 .
  • the two piston chambers 7 . 1 and 7 . 2 are connected with a pressure supply (not shown) via an indicated feed line in order to selectively supply the two piston chambers 7 . 1 and 7 . 2 with pressure medium.
  • a pressure supply not shown
  • the split ring 6 is displaced upwardly in the position as shown in FIG. 3 a (i.e. in the operating position), whereas when the piston chamber 7 . 2 is pressurized alone it is moved in the direction towards the non-operating position.
  • the end positions are mechanically limited by limit stops.
  • FIGS. 4 a and 4 b show an enlarged schematic illustration of the labyrinth seal of FIG. 1 in accordance with the invention in the detailed view B.
  • FIG. 4 a shows the operating position
  • FIG. 4 b shows the non-operating position of the stationary component 1 .
  • the split ring 6 is enclosed by the turbine cover 10 and a further split ring 16 which revolves together with the blade wheel 8 . Both split rings 6 and 16 can be exchanged relatively simply in case of wear and tear.
  • seals can be provided between the split ring 6 and the turbine cover 10 , as shown in the preceding drawings.
  • a vacuum connection 20 is indicated in all FIGS. 2 a to 4 b.
  • the split ring 6 could also be actuated magnetically, electrically, electromagnetically or mechanically. In the latter case it is possible to use actuating drives, threaded spindles or the like for this purpose.
  • the ventilation losses are approximately 1% of the nominal power of the hydraulic machine. In atmospheric air the ventilation losses are approximately 0.5% of the nominal power.
  • the two measures can be applied, which means the evacuation of the entire blade wheel region or a part thereof as well as the enlargement of the gap width, respectively in non-operation. In any case, the friction and ventilation losses are effectively minimized.
  • the air circulation in the labyrinth seal will be improved by enlarging the gap width in the non-operation of the hydraulic machine, which occurs when no water impinges on its blade wheel.
  • the air friction between the revolving component and the air will be minimized, leading to a lower development of heat in the labyrinth seal.
  • Ventilation losses can be reduced substantially with the labyrinth seal in accordance with the invention. Both air friction and the development of heat will simultaneously be reduced to a considerable extent in this process, despite the fact that the labyrinth seal will exclusively be cooled with air in non-operation.
  • the labyrinth seals can be displaced selectively for each machine into the one or the other position, i.e. the operating position or non-operating position.
  • the labyrinth seals of all machines or some machines can be brought to one and the same position.
US13/639,536 2011-01-18 2011-11-10 Water Turbine Abandoned US20130330169A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011008869.5 2011-01-18
DE102011008869A DE102011008869A1 (de) 2011-01-18 2011-01-18 Wasserturbine oder Pumpturbine oder sonstige hydraulische Maschine
PCT/EP2011/005655 WO2012097839A1 (de) 2011-01-18 2011-11-10 Wasserturbine oder wasserpumpe oder sonstige hydraulische maschine

Publications (1)

Publication Number Publication Date
US20130330169A1 true US20130330169A1 (en) 2013-12-12

Family

ID=45094561

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/639,536 Abandoned US20130330169A1 (en) 2011-01-18 2011-11-10 Water Turbine

Country Status (4)

Country Link
US (1) US20130330169A1 (de)
EP (1) EP2516868B1 (de)
DE (1) DE102011008869A1 (de)
WO (1) WO2012097839A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281046B2 (en) * 2015-06-05 2019-05-07 Danfoss Commercial Compressors Fluid machine having a labyrinth seal
JP2020165415A (ja) * 2019-03-29 2020-10-08 三菱重工業株式会社 回転機械
CN113700587A (zh) * 2021-08-23 2021-11-26 湖南云箭集团有限公司 一种水轮机转轮可拆式泵板结构
GB2596547A (en) * 2020-06-30 2022-01-05 Dyson Technology Ltd Seal for a compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017007860A1 (de) * 2017-08-23 2019-02-28 Wilo Se Abdichtung am Saugmund eines Pumpenlaufrades
DE102022112451A1 (de) 2022-05-18 2023-03-23 Voith Patent Gmbh Hydraulische Maschine mit einer Überwachungseinrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516757A (en) * 1967-07-03 1970-06-23 Escher Wyss Ltd Labyrinth seal for a hydraulic rotary machine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE189239C (de) 1906-09-28
DE851630C (de) * 1940-11-24 1952-10-06 Voith Gmbh J M Spaltdichtung
GB1006299A (en) * 1962-10-15 1965-09-29 English Electric Co Ltd Improvements in or relating to hydraulic pumps and reversible pump turbines
GB1009900A (en) * 1962-10-15 1965-11-17 English Electric Co Ltd Improvements in or relating to hydraulic pumps and reversible pump turbines
DE1551223A1 (de) 1966-06-21 1970-02-12 Voith Gmbh J M Spaltabdichtung zwischen einem rotierenden und einem feststehenden Teil von Stroemungsmaschinen,insbesondere von Wasserturbinen und Kreiselpumpen
FR2002467A1 (de) 1968-02-23 1969-10-17 Serck Ind
DE1750454A1 (de) * 1968-05-03 1971-03-11 Messerschmitt Boelkow Blohm Einrichtung zum Konstanthalten eines gewuenschten Schmiermittelniveaus bei schnellaufenden Waelzlagern
DE1807443A1 (de) 1968-11-07 1970-06-11 Voith Gmbh J M Verfahren und Einrichtung zum Betrieb einer Turbine oder Kreiselpumpe,die voruebergehend ohne Betriebsmittel gefahren wird
DE3512641A1 (de) * 1984-04-12 1985-10-24 Kabushiki Kaisha Toshiba, Kawasaki, Kanagawa Mehrstufige, hydraulische maschine
US4643635A (en) * 1984-07-02 1987-02-17 Chandler Evans Inc. Vapor core centrifugal pump having main and low flow impellers
US5823740A (en) 1997-02-25 1998-10-20 Voith Hydro, Inc. Dissolved gas augmentation with mixing chambers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3516757A (en) * 1967-07-03 1970-06-23 Escher Wyss Ltd Labyrinth seal for a hydraulic rotary machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281046B2 (en) * 2015-06-05 2019-05-07 Danfoss Commercial Compressors Fluid machine having a labyrinth seal
JP2020165415A (ja) * 2019-03-29 2020-10-08 三菱重工業株式会社 回転機械
GB2596547A (en) * 2020-06-30 2022-01-05 Dyson Technology Ltd Seal for a compressor
CN113700587A (zh) * 2021-08-23 2021-11-26 湖南云箭集团有限公司 一种水轮机转轮可拆式泵板结构

Also Published As

Publication number Publication date
DE102011008869A1 (de) 2012-07-19
EP2516868B1 (de) 2019-07-03
EP2516868A1 (de) 2012-10-31
WO2012097839A1 (de) 2012-07-26

Similar Documents

Publication Publication Date Title
US20130330169A1 (en) Water Turbine
US3516757A (en) Labyrinth seal for a hydraulic rotary machine
EP1790886B1 (de) Dichtring mit variablem Radialspiel
US20130011245A1 (en) Axial shaft seal for a turbomachine
KR102266614B1 (ko) 피스턴 작동형 로터리 유니언
EP1942294A1 (de) Dichtungsvorrichtung für eine Turbine
US20130045086A1 (en) Pump-Turbine Plant
EP2028345A2 (de) Dampfturbine
US11619307B2 (en) Mechanical face seal assembly, in particular for hot media, and pump assembly
JP5441002B2 (ja) 遠心圧縮機用の軸シール固定構造
CN110293415B (zh) 一种电主轴管路布局系统
US8608435B2 (en) Turbo engine
KR101414226B1 (ko) 원심 펌프
KR101990847B1 (ko) 터빈 로터 회전용 유압구동장치
CN208487054U (zh) 泵多机械密封快速更换装置
US8403625B2 (en) Pitot tube pump
KR101514640B1 (ko) 수력 기계, 그 수력 기계를 포함하는 에너지 변환 설비, 및 그 수력 기계의 정압 래버린스 베어링의 사용
KR20100102664A (ko) 수압 기계, 이를 포함하는 에너지 변환 설비 및 이를 조정하는 방법
WO2013119369A2 (en) Seal arrangement along the shaft of a liquid ring pump
JP5364426B2 (ja) ターボ機械
JP5010518B2 (ja) 軸受箱シール構造
CN218564214U (zh) 高速传动轴承装置
CN211950652U (zh) 用于发动机冷却系统的水泵
JP2018053813A (ja) 蒸気タービンのシール装置および蒸気タービン
JP2017096374A (ja) 軸封装置およびポンプ装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOITH PATENT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STUMMER, MANFRED;REEL/FRAME:029081/0814

Effective date: 20120924

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION