US20130248696A1 - Sunlight collection structure, multi light collection method, and sunlight transmission device - Google Patents

Sunlight collection structure, multi light collection method, and sunlight transmission device Download PDF

Info

Publication number
US20130248696A1
US20130248696A1 US13/990,037 US201113990037A US2013248696A1 US 20130248696 A1 US20130248696 A1 US 20130248696A1 US 201113990037 A US201113990037 A US 201113990037A US 2013248696 A1 US2013248696 A1 US 2013248696A1
Authority
US
United States
Prior art keywords
light
sunlight
pipe
paraboloidal reflector
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/990,037
Other languages
English (en)
Inventor
Ki Ho Hong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20130248696A1 publication Critical patent/US20130248696A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0006Coupling light into the fibre
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a method and structure for collecting sunlight that form a parallel beam by collection sunlight of a natural state in a high density using a paraboloidal reflector, and light transmitting technology of concentrating high density light in a super high density by combining in a multistage manner and transmitting sunlight collected in a super high density to a remote place, and checking and selectively adjusting a quantity of sunlight of a super high density and transmitting the sunlight with high efficiency while blocking, separating, and combining the sunlight.
  • US Patent Laid-Open Publication No. 2008-0092877 relates to a method of collecting sunlight at a focus using a fresnel lens, reflecting the sunlight to a plane reflector, reflecting the sunlight downward to a central funnel type reflector, collecting the sunlight, and transmitting the sunlight to a transmitting pipe, but when plane reflected light is applied to a funnel type (cone type) downward reflector, light is radially reflected and thus parallel light is not formed and collected, whereby even if light is returned to the pipe, the light becomes diffused reflection light, and when light is transmitted to a remote place, much transmission loss occurs, and particularly, when light passes through a joint portion or a bending portion, much light loss occurs and thus the method has very bad transmitting efficiency and cannot transmit intended light.
  • Korean Patent Laid-Open Publication No. 1989-000905 and Korean Patent Laid-Open Publication No. 1988-058282 relates to a method of collecting light using a convex lens and transmitting the light to an optical fiber, and as chromatic aberration and diffused reflection occur, transmitting efficiency is very bad, and thus the method cannot transmit high density light to a remote place.
  • Korean Patent Laid-Open Publication No. 10-2003-0027529 relates to a method of forming a small module with a plurality of small dish type reflectors, a second reflector provided at a periphery of a focus of each reflector, each second reflector, and an optical fiber bundle formed with optical fibers disposed directly under the each second reflector and for applying collected sunlight and transmitting sunlight to a far separated absorber using the optical fibers and performing thermal conversion of the sunlight, and in this time, because light of wave lengths in a ultraviolet ray area and a far infrared ray area is absorbed to the optical fiber, thermal efficiency is not good, and while transmitting the sunlight, a loss by diffused reflection occurs in a bending portion of a transmission pipe and thus transmitting efficiency is not good.
  • the present invention is made to overcome the above mentioned problems, and it is an object of the present invention to develop collecting technology and transmitting technology in order to highly concentrate sunlight and to transmit the sunlight to a super remote place; to minimize a loss of sunlight while preventing a heat from occurring in parts to which sunlight is applied when collecting sunlight using a paraboloidal reflector; to improve transmitting efficiency in order to transmit sunlight of an entire wave length area to a remote place; and to simplify a structure of a product and to improve weather resistance in order to easily perform mass production and maintenance.
  • Another object of the present invention is to reduce a light loss and to improve light collecting efficiency in order to obtain a transmitting rate of high efficiency; and to form sunlight in super concentration by combining sunlight in a multistage manner and to improve light collecting and transmitting efficiency.
  • Another object of the present invention is to combine diffused reflected sunlight in high concentration.
  • a gradient of a reflector is changed to an applied angle to be larger than a threshold angle, an aspheric reflector is formed in two layers, and by forming a reflecting path that passes through a through-hole in a lower portion, applied parallel light is formed in parallel concentration light.
  • the inlet of the first reflector is formed with a transparent protective film.
  • sunlight when collecting sunlight, sunlight can be transmitted as parallel light even at a flexure segment by a joint for minimizing the flexure segment, and at a segment of a predetermined distance or more, and by installing an alignment device for aligning transmitting light to parallel light, even if sunlight is transmitted to a super remote place, a loss of sunlight is minimized and thus transmitting efficiency is maximized.
  • a transmission amount is adjusted, light can be dispersed with a filtering valve on a wave length basis, and a use amount of sunlight in an absorber or a reacting path can be adjusted.
  • a first paraboloidal reflector 100 and a second paraboloidal reflector 200 sharing a focus F with the first paraboloidal reflector 100 exist, and when two applied light vertically applied to the paraboloidal reflectors are AB and DC, respectively and when a transmission line thereof is BA′ and CD′, if the two applied light and the transmission line are parallel, by an optical principle of a paraboloid,
  • AA′ is parallel to DD′.
  • AB is parallel to CD′.
  • an applied angle ⁇ ABM is k/2, and in this case, when an angle k/2 is larger than a threshold angle, total reflection is performed.
  • the second paraboloidal reflector in a first paraboloidal reflector in which ⁇ ABM is smaller than a threshold angle, in order to advance reflected light downward, the second paraboloidal reflector should be formed in a upward convex form.
  • FIG. 1 illustrates a total reflection threshold angle optical principle
  • FIG. 2 is a perspective view illustrating an assembled complete light collection structure according to an exemplary embodiment of the present invention.
  • FIG. 3 is a perspective view illustrating an example of a multi light collection structure according to an exemplary embodiment of the present invention.
  • FIG. 4 illustrates a structure of a transmission pipe combination condenser and an applied light collection principle according to an exemplary embodiment of the present invention.
  • FIG. 5 is a partial enlarged view illustrating a structure of a wide width combination condenser and an applied light collection principle according to an exemplary embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating a total reflection joint according to an exemplary embodiment of the present invention.
  • FIG. 7 illustrates a total reflection joint according to an exemplary embodiment of the present invention.
  • FIG. 8 illustrates a transmission pipe combination condenser set according to an exemplary embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an optical principle according to an exemplary embodiment of the present invention.
  • the present invention includes a paraboloidal reflector 1 for receiving and collecting sunlight;
  • a sunlight collecting unit 3 for collecting sunlight at one location with a plurality of light transmitting pipes 2 and for forming the sunlight into one light.
  • the second aspheric reflector 15 shares a focus with the paraboloidal reflector 1 , has a reduced form, and reflects sunlight downward, when sunlight is applied to a lower side surface of the paraboloidal reflector 1 , and by forming an applied angle to be larger than a threshold angle, total reflection occurs, and thus a heat does not occur at the second aspheric reflector 15 , whereby deformation and loss does not occur at the second aspheric reflector 15 .
  • a transparent body 5 formed with glass or a synthetic resin is mounted to prevent rainwater, dust, or a foreign substance from being injected to the inside and thus sunlight can be effectively collected.
  • Sunlight is transmitted to a remote place through the light transmitting pipe 2 , and in a bending portion and a joint portion of the light transmitting pipe 2 , two reflectors 6 are mounted to enable an applied angle of sunlight to be larger than a threshold angle and thus total reflection occurs, whereby a heat does not occur in the reflector 6 and a thermal loss is prevented.
  • a joint 7 is formed, the light transmitting pipe 2 can freely rotate, and in an upper end portion of the joint 7 , a bending portion 8 is formed, and in the bending portion 8 , two reflectors 9 are mounted to form an applied angle to be larger than a threshold angle and thus total reflection occurs, and the bending portion 8 can rotate, and in a lower portion of the bending portion 8 , a connection pipe 10 is formed.
  • connection pipe 10 can change a direction while rotating.
  • the sunlight block valve 20 is installed, and thus when sunlight is unnecessary, by closing the sunlight block valve 20 , sunlight is not passed through.
  • the sunlight block valve 20 is mounted across the light transmitting pipe 2 , and at one side thereof, a motor 21 is formed, and by forming a penetration pipe 22 and a block plate 23 adjacent to the motor 21 , while the sunlight block valve 20 laterally moves by the motor, the sunlight block valve 20 passes through or blocks sunlight.
  • the sunlight sensor unit 24 determines whether sunlight passes through, and when a work is performed, the sunlight sensor unit 24 can recognize the work.
  • the sunlight collecting unit 3 is mounted in an intermediate portion.
  • the sunlight collecting unit 3 in order to enable parts for reflecting applied sunlight to perform total reflection, a structure of the parts is formed so that an applied angle is larger than a threshold angle,
  • the transmitting pipe combining light collecting device 3 is a device for collecting sunlight separated into several sunlight at one location and integrating to one light and may be installed in several pieces.
  • the transmitting pipe combining light collecting device 3 When only one paraboloidal reflector 1 is used, the transmitting pipe combining light collecting device 3 is unnecessary, and when two or more paraboloidal reflectors 1 are used, by connecting the two or more paraboloidal reflectors 1 , the transmitting pipe combining light collecting device 3 collects sunlight.
  • connection portion 40 is formed integrally with the transmitting pipe combining light collecting device 3 , and in order to a portion connected to the transmitting pipe combining light collecting device 3 to perform total reflection, the connection portion 40 enables a region having a slope of a contact point in which sunlight applied to a paraboloid reflects downward to exceed 90%.
  • FIG. 5 is a diagram illustrating a configuration of an entire network that collects sunlight using a condenser of the present invention and that transmits and uses sunlight to a remote place using a light pipe and an optical fiber, and the network is a system that can exchange sunlight between countries as well as a local area.
  • a paraboloid having a rapid second function value is formed so that a segment in which a tangent slope of a paraboloid of a first concave paraboloidal reflector is more than 40° becomes 90% or more, the first concave paraboloidal reflector has an opening in a lower portion of a focus, and a paraboloid condenser cell by coupling the first concave paraboloidal reflector and a wedge-shaped small second convex paraboloidal reflector formed in a lower portion of the inside of the first concave paraboloidal reflector while sharing the same focus is formed, a light pipe and light pipe elbow are coupled to a lower opening of a first condenser cell, the light pipe elbow forms a polygonal specular surface to emit light in one side direction, and a plurality of plane reflectors are coupled to a specular surface of a flexure portion, and by attaching a light pipe elbow for coupling a plurality of reflectors for reflecting sunlight in an applied angle and a light emitting angle larger than 45
  • the condenser cell forms a cover, and by transparently forming the cover, contamination of a reflector is prevented.
  • a first concave aspheric reflector and a second convex aspheric reflector are transparently integrally formed, and by shaping the second convex aspheric reflector in a hole form in an upper portion, the second convex aspheric reflector can be easily produced at one time, and in this case, in portions, except for a portion under a focus, parallel light, diffused reflection light, or entire applied light performs total reflection and is thus reflected to a lower light emitting port,
  • a method of connecting a light applying elbow of a pipe condenser and a lower light pipe elbow of each condenser cell with a light transmitting pipe is performed.
  • a light pipe which is a transmitting means uses a hollow pipe shape and is made of glass or a metal, an inner surface thereof is processed to have gloss, and a light pipe that enhances a reflectivity by coating a reflector to a transparent pipe with a mirror processing is used, and a common glass fiber or an optical fiber of a synthetic resin material is used.
  • a hollow multi pipe formed with at least twofold clothes may be used, and by forming an inside pipe to have a refractive index larger than that of an outside pipe, total reflection easily occurs.
  • a heat withdrawal system light pipe is a light pipe in which a first pipe at innermost of a multi pipe is a hollow pipe and in which a second pipe is formed at an outer edge of the first pipe, and the light pipe is formed by filling a liquid between the inside first pipe and the outside second pipe and exchanges a heat by absorbing a heat lost when transmitting light.
  • a first paraboloidal reflector forms a paraboloid having a second function value with a steep slope
  • an opening is formed in a direct lower portion adjacent to a focus of the paraboloid, i.e., a focus of a paraboloid is positioned between an upper point and a lower point of an upper opening, is formed at a distance adjacent to the lower point, and does not exceed 50 mm from the lower point
  • the second convex paraboloidal reflector is formed not to overpass a diameter width of 30 mm while sharing the focus
  • a cover is formed in an upper opening of the first concave paraboloidal reflector, and at the cover, a plurality of pipe holes that can insert and attach a light pipe are formed, and at a central axis of the cover, the second convex paraboloidal reflector is coupled and attached to the support.
  • the second convex paraboloidal reflector is characterized by screw combining to the support coupled and attached to a cover and adjusting a focus position of the second convex paraboloidal reflector and the first concave paraboloidal reflector by adjusting a screw,
  • FIG. 13A is a cross-sectional view of a light pipe.
  • a light pipe is made of a metal, glass, or an optical fiber, and at a cover of the glass pipe, a reflective glass pipe coated with a reflector may be used, and in a multiple glass pipe, a medium having a high refractive index is used for an inside pipe of the inside pipe and an outside pipe, and thus this is similar to a state in which a pupil is formed at an inside core of an optical fiber.
  • FIG. 13B is a cross-sectional view of a multi-pipe, and in another exemplary embodiment, space is formed between an inside pipe and an outside pipe with a multi-pipe, and the multi-pipe is formed by filling a solvent at this space, and as a solvent absorbs an optical loss heat while transmitting, an additional waste heat withdrawal system that absorbs a heat of a solvent and that exchanges the heat is provided, and an inside light pipe is made of a dense material, and a medium of a solvent that encloses the light pipe is thin, and thus light is transmitted by total reflection.
  • FIG. 14 illustrates a light pipe joint of the present invention.
  • first, second, third, fourth, and fifth pipes 220 , 230 , 240 , 250 , and 260 for transmitting the sunlight 10 have reflective optical paths, respectively and individually perform a rotation motion at a position of a horizontal axis and a vertical axis.
  • an elbow 210 for connecting the first, second, third, fourth, and fifth pipes 220 , 230 , 240 , 250 , and 260 is fixed, but the first, second, third, fourth, and fifth pipes 220 , 230 , 240 , 250 , and 260 horizontally and vertically connected about each elbow 210 can perform a vertical and lateral rotation.
  • a light transmitting pipe 200 has a rotation bending portion, and the light transmitting pipe 200 having multiple rotation bending portions at a connection portion thereof connects two or more of the elbow 210 , i.e., a rotation bending portion at every predetermined distance upon a remote place piping, and each elbow 210 mounts a reflector 130 at a bent corner, and an applied angle and a reflection angle of the reflector 130 are installed to correspond to a central axis of the elbow 210 , and by continuously installing a plurality of elbows, as needed, the light transmitting pipe 200 that can increase flexibility, absorptiveness of a displacement, and buffering power is a rotation bending pipe.
  • This is characterized by transmitting sunlight in all directions or in an extensile and contractile direction of a pipe by providing flexibility and absorptiveness of a displacement to the light transmitting pipe 200 , when inducing sunlight 10 transmitted as high density parallel light that maintains linearity to a remote place, even if sunlight is moved by the light transmitting pipe 200 .
  • the reason of providing flexibility and absorptiveness of a displacement to the light transmitting pipe 200 is to limit an angle range to an angle within 45° while giving a reflection angle of two times to a reflected light path of sunlight that maintains linearity in order to provide flexibility and absorptiveness of a displacement to the light transmitting pipe 200 , when inducing sunlight 10 transmitted as high density parallel light that maintains linearity to a remote place by moving by the light transmitting pipe 200 for transmitting sunlight 10 through the first, second, third, fourth, and fifth pipes 220 , 230 , 240 , 250 , and 260 formed in a condenser 400 .
  • Sunlight of a natural state can be collected to a desired density, and highly collected sunlight can be transmitted to a remote place, and this provides many application fields, and by transmitting sunlight while forming a network to a short distance and a remote place, natural lighting can be performed to a shadow location within a building or a deep location of underground, and when light is collected with a center concentration method and thermal conversion is performed, solar thermal power generation can be performed using a high temperature heat, and sunlight as a thermal energy source can be used in an industrial blast furnace and be applied to a heat for a chemical reaction process, i.e., the present invention can be applied to various fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)
US13/990,037 2010-11-27 2011-11-15 Sunlight collection structure, multi light collection method, and sunlight transmission device Abandoned US20130248696A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020100119245A KR101313723B1 (ko) 2010-11-27 2010-11-27 태양광 집광 구조와 다중집광 방법 및 태양광 송광장치
KR1020100119245 2010-11-27
PCT/KR2011/008691 WO2012070799A2 (ko) 2010-11-27 2011-11-15 태양광 집광 구조와 다중집광 방법 및 태양광 송광장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008691 A-371-Of-International WO2012070799A2 (ko) 2010-11-27 2011-11-15 태양광 집광 구조와 다중집광 방법 및 태양광 송광장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/690,837 Continuation US10416361B2 (en) 2010-11-27 2017-08-30 Multiple sunlight collection structure

Publications (1)

Publication Number Publication Date
US20130248696A1 true US20130248696A1 (en) 2013-09-26

Family

ID=46146251

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/990,037 Abandoned US20130248696A1 (en) 2010-11-27 2011-11-15 Sunlight collection structure, multi light collection method, and sunlight transmission device
US15/690,837 Active US10416361B2 (en) 2010-11-27 2017-08-30 Multiple sunlight collection structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/690,837 Active US10416361B2 (en) 2010-11-27 2017-08-30 Multiple sunlight collection structure

Country Status (7)

Country Link
US (2) US20130248696A1 (zh)
EP (1) EP2645011B1 (zh)
JP (2) JP2014509434A (zh)
KR (1) KR101313723B1 (zh)
CN (2) CN103403470A (zh)
ES (1) ES2881294T3 (zh)
WO (1) WO2012070799A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160784A1 (en) * 2012-12-11 2014-06-12 King Abdulaziz City For Science And Technology Secondary optic for concentrating photovoltaic device
CN106195910A (zh) * 2016-08-29 2016-12-07 山东国舜建设集团有限公司 地下室光导管照明系统
WO2018052753A1 (en) * 2016-09-15 2018-03-22 Rodluvan Inc. Method for conveying concentrated solar power
CN109654752A (zh) * 2016-11-11 2019-04-19 江苏桑力太阳能产业有限公司 一种调光式太阳能热水器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT6174B (lt) 2013-10-09 2015-06-25 Uab "Elmo Technologijos" Apšvietimo sistema, naudojant dienos šviesą
KR101588283B1 (ko) * 2015-07-22 2016-02-12 (주)에스디파트너스건축사사무소 자연채광을 활용하여 시공된 친환경 건축물
US10448476B2 (en) 2016-05-20 2019-10-15 JST Performance, LLC Method and apparatus for a signal indicator light
CN107272176B (zh) * 2017-06-29 2019-07-09 大连宏海新能源发展有限公司 一种太阳能碟式聚光镜系统及其设计方法
JP6976557B2 (ja) * 2017-09-27 2021-12-08 株式会社RightNow 波動方向変換装置、波動方向変換方法
KR102045145B1 (ko) * 2018-05-10 2019-11-14 전자부품연구원 광결정 반사판을 이용한 집광형 태양전지

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586488A (en) * 1983-12-15 1986-05-06 Noto Vincent H Reflective solar tracking system
US6299317B1 (en) * 1999-12-13 2001-10-09 Ravi Gorthala Method and apparatus for a passive solar day lighting system
US6385371B1 (en) * 2000-04-03 2002-05-07 Cogent Light Technologies, Inc. Optical system including coupling for transmitting light between a single fiber light guide and multiple single fiber light guides
US6614972B1 (en) * 1998-12-02 2003-09-02 3M Innovative Properties Company Coupler for transporting and distributing light to multiple locations with uniform color and intensity
US6618530B1 (en) * 1998-12-02 2003-09-09 3M Innovative Properties Company Apparatus for transporting and distributing light using multiple light fibers
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
US20060001842A1 (en) * 2004-07-02 2006-01-05 Engle T S Projection apparatus with three light source units to output light bundles into an integrating tunnel from a direction nonparallel to output direction
US20070187104A1 (en) * 2006-02-13 2007-08-16 Mecham Travis W Solar blackbody waveguide for solar assisted oil recovery applications
US20080137205A1 (en) * 2006-12-07 2008-06-12 Mark Spencer Shield for solar radiation collector
US20090013990A1 (en) * 2006-02-24 2009-01-15 Raymond Mattioli Concentrating solar collector
US20110073149A1 (en) * 2009-09-28 2011-03-31 Daniel Ray Ladner Concentrated solar thermoelectric power system and numerical design model
US8007157B2 (en) * 2009-03-17 2011-08-30 Hon Hai Precision Industry Co., Ltd. Light pipe and light guiding device with same
US20130008430A1 (en) * 2010-03-16 2013-01-10 Sang Chun Lee Solar collection apparatus and steam generator using the same
US8705917B2 (en) * 2010-07-21 2014-04-22 Jorge A Garza Solar energy device

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149359A (zh) * 1974-05-21 1975-11-29
JPS54119261A (en) * 1978-03-09 1979-09-17 Tsurunosuke Ochiai Solar energy transmitter
US4307936A (en) * 1979-09-17 1981-12-29 Tsurunosuke Ochiai System for collecting solar energy
JPS57146205A (en) 1981-03-04 1982-09-09 Takashi Mori Sunlight collector
JPS60105101A (ja) * 1983-11-10 1985-06-10 森 敬 投光器
JPS613953A (ja) * 1984-06-15 1986-01-09 Kubota Ltd 太陽熱集熱装置
JPH0142885Y2 (zh) * 1985-12-23 1989-12-14
JPS63310010A (ja) 1987-06-11 1988-12-19 Mitsubishi Rayon Co Ltd 太陽光追尾装置
JPH0171808U (zh) * 1987-10-31 1989-05-15
CN1035223A (zh) * 1988-02-21 1989-09-06 亘重信 蘑菇的栽培方法及栽培装置
JPH04190303A (ja) * 1990-11-26 1992-07-08 Hazama Gumi Ltd 太陽光採光システムの集光型光伝送装置
JPH05224018A (ja) * 1991-07-30 1993-09-03 Nippondenso Co Ltd 導光装置
JPH0547907U (ja) * 1991-11-28 1993-06-25 株式会社間組 採光装置
KR100252687B1 (ko) * 1994-10-05 2000-04-15 히사오 이즈미 태양광을 장파장과 단파장으로 분리함에 의해서 발전 및 가열을 하기 위한 혼성 태양광 집광기
KR0181201B1 (ko) * 1994-12-14 1999-03-20 박화랑 태양광 집광기 및 집광광 이용장치
KR960024111U (ko) * 1994-12-29 1996-07-22 냉장고의 도어 수납부 구조
KR0151563B1 (ko) * 1995-11-30 1998-10-01 최훈 태양광 집광기의 광추적장치 및 방법
KR970028246U (ko) * 1995-12-30 1997-07-24 자동차의 휠
JPH11287521A (ja) * 1998-04-01 1999-10-19 Exedy Corp 複合放物面を有する反射板組立体、及びそれを用いた集熱装置
KR20030002752A (ko) 2001-06-29 2003-01-09 주식회사 하이닉스반도체 반도체 소자의 제조 방법
JP2003227661A (ja) * 2002-02-06 2003-08-15 Takeo Saito 光ファイバーソーラーコレクタ
JP2003240356A (ja) * 2002-02-18 2003-08-27 Seishiro Munehira 太陽追尾システム
US6899097B1 (en) * 2004-05-26 2005-05-31 Travis W. Mecham Solar blackbody waveguide for efficient and effective conversion of solar flux to heat energy
DE102004035601A1 (de) 2004-07-22 2006-02-16 Siemens Ag Röngtenstrahlendetektor und Computertomographiegerät mit einem solchen Röngtenstrahlendetektor
CN2862089Y (zh) * 2005-12-15 2007-01-24 比亚迪股份有限公司 一种导光板及背光模组
AU2007207583A1 (en) * 2006-01-17 2007-07-26 Soliant Energy, Inc. A hybrid primary optical component for optical concentrators
CN200989672Y (zh) * 2006-05-22 2007-12-12 夏秋 一种高性能太阳能装置
US8689784B2 (en) * 2006-09-14 2014-04-08 James Matthew Monsebroten Solar concentrator system
KR100997752B1 (ko) * 2008-02-29 2010-12-01 홍원배 태양광 집광 모듈
CN101634745A (zh) * 2008-07-22 2010-01-27 台湾基材科技股份有限公司 太阳光收集装置
CN101726843A (zh) * 2008-10-14 2010-06-09 程斌 同轴共焦旋转抛物面镜聚光器
CN101576649A (zh) * 2009-06-24 2009-11-11 黄建文 一种利用抛物面镜传送光能的装置
CN201637922U (zh) * 2010-03-25 2010-11-17 黄建文 一种具有导光器的抛物面镜聚光系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586488A (en) * 1983-12-15 1986-05-06 Noto Vincent H Reflective solar tracking system
US6614972B1 (en) * 1998-12-02 2003-09-02 3M Innovative Properties Company Coupler for transporting and distributing light to multiple locations with uniform color and intensity
US6618530B1 (en) * 1998-12-02 2003-09-09 3M Innovative Properties Company Apparatus for transporting and distributing light using multiple light fibers
US6299317B1 (en) * 1999-12-13 2001-10-09 Ravi Gorthala Method and apparatus for a passive solar day lighting system
US6385371B1 (en) * 2000-04-03 2002-05-07 Cogent Light Technologies, Inc. Optical system including coupling for transmitting light between a single fiber light guide and multiple single fiber light guides
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
US20060001842A1 (en) * 2004-07-02 2006-01-05 Engle T S Projection apparatus with three light source units to output light bundles into an integrating tunnel from a direction nonparallel to output direction
US20070187104A1 (en) * 2006-02-13 2007-08-16 Mecham Travis W Solar blackbody waveguide for solar assisted oil recovery applications
US20090013990A1 (en) * 2006-02-24 2009-01-15 Raymond Mattioli Concentrating solar collector
US20080137205A1 (en) * 2006-12-07 2008-06-12 Mark Spencer Shield for solar radiation collector
US8007157B2 (en) * 2009-03-17 2011-08-30 Hon Hai Precision Industry Co., Ltd. Light pipe and light guiding device with same
US20110073149A1 (en) * 2009-09-28 2011-03-31 Daniel Ray Ladner Concentrated solar thermoelectric power system and numerical design model
US20130008430A1 (en) * 2010-03-16 2013-01-10 Sang Chun Lee Solar collection apparatus and steam generator using the same
US8705917B2 (en) * 2010-07-21 2014-04-22 Jorge A Garza Solar energy device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160784A1 (en) * 2012-12-11 2014-06-12 King Abdulaziz City For Science And Technology Secondary optic for concentrating photovoltaic device
US9318636B2 (en) * 2012-12-11 2016-04-19 International Business Machines Corporation Secondary optic for concentrating photovoltaic device
CN106195910A (zh) * 2016-08-29 2016-12-07 山东国舜建设集团有限公司 地下室光导管照明系统
WO2018052753A1 (en) * 2016-09-15 2018-03-22 Rodluvan Inc. Method for conveying concentrated solar power
CN109654752A (zh) * 2016-11-11 2019-04-19 江苏桑力太阳能产业有限公司 一种调光式太阳能热水器

Also Published As

Publication number Publication date
EP2645011A4 (en) 2017-09-27
JP2014509434A (ja) 2014-04-17
JP2015222167A (ja) 2015-12-10
CN103403470A (zh) 2013-11-20
ES2881294T3 (es) 2021-11-29
US20170363782A1 (en) 2017-12-21
US10416361B2 (en) 2019-09-17
KR101313723B1 (ko) 2013-10-01
CN105588341B (zh) 2019-03-19
WO2012070799A3 (ko) 2012-10-11
JP6204944B2 (ja) 2017-09-27
KR20120058701A (ko) 2012-06-08
EP2645011B1 (en) 2021-06-09
CN105588341A (zh) 2016-05-18
WO2012070799A2 (ko) 2012-05-31
EP2645011A2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US10416361B2 (en) Multiple sunlight collection structure
US7558452B2 (en) Apparatus and method for collecting energy
CN101660845B (zh) 复合曲面二次反射聚光集热器
CN102313975B (zh) 聚光系统
US20100043779A1 (en) Solar Trough and Receiver
WO2009058619A2 (en) Combination non-imaging concentrator
CN101576649A (zh) 一种利用抛物面镜传送光能的装置
WO2008039510A1 (en) Optical concentrators having one or more spot focus and related methods
CN102252441A (zh) 高次聚焦集成光热收集系统
CN101581502B (zh) 槽式顺向聚焦轴向传光太阳能聚光器
CN104143954B (zh) 一种适用于太阳能光伏和光热的免跟踪式聚光器
CN101111729A (zh) 太阳能收集系统的反射器和接收器
US20120260906A1 (en) Solar heating device
KR20110125494A (ko) 태양광 집광기
WO2011087194A1 (ko) 태양광 집광장치
KR20110121305A (ko) 고효율 집광부를 이용한 선라이트시스템
CA3030595C (en) Light collection device
KR100996688B1 (ko) 태양광 수광유닛 및 이를 구비한 태양광 발전시스템
KR102371831B1 (ko) 집광형 태양광발전시스템용 내부반사형 집광렌즈
KR101130765B1 (ko) 측면 태양광 집광기
KR20130054507A (ko) 태양광 다중집광 방법과 하이브리드 태양광발전 시스템
CN110352323A (zh) 跟日太阳能系统
KR100420868B1 (ko) 태양광 집광 모듈
KR200277016Y1 (ko) 태양광 집광 모듈

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION