US20130092707A1 - Ice storage container and refrigerator having same - Google Patents

Ice storage container and refrigerator having same Download PDF

Info

Publication number
US20130092707A1
US20130092707A1 US13/651,592 US201213651592A US2013092707A1 US 20130092707 A1 US20130092707 A1 US 20130092707A1 US 201213651592 A US201213651592 A US 201213651592A US 2013092707 A1 US2013092707 A1 US 2013092707A1
Authority
US
United States
Prior art keywords
ice
case
ejector
separating device
storage container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/651,592
Other languages
English (en)
Inventor
Yonghyun KIM
Siyeon AN
Changwoo Lee
Jaesung Park
Sangmin Lee
Woonbong HWANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Academy Industry Foundation of POSTECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc, Academy Industry Foundation of POSTECH filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: An, Siyeon, Hwang, Woonbong, Kim, Yonghyun, LEE, CHANGWOO, LEE, SANGMIN, PARK, JAESUNG
Assigned to LG ELECTRONICS INC., POSTECH ACADEMY - INDUSTRY FOUNDATION reassignment LG ELECTRONICS INC. CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NOT PREVIOUSLY RECORDED ON REEL 029126 FRAME 0986. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: An, Siyeon, Hwang, Woonbong, Kim, Yonghyun, LEE, CHANGWOO, LEE, SANGMIN, PARK, JAESUNG
Publication of US20130092707A1 publication Critical patent/US20130092707A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • F25C5/24Distributing ice for storing bins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2500/00Problems to be solved
    • F25C2500/08Sticking or clogging of ice

Definitions

  • This relates to an ice storage container, and in particular, to an ice storage container which may separate ice pieces which have been frozen together and/or maintain such a separated state of ice pieces.
  • An ice maker may be installed in a refrigerator or a water purifier to automatically produce ice pieces (cubes).
  • a refrigerating apparatus may also include an ice dispenser which may dispense ice made by the ice maker without opening a door.
  • Such a dispenser may dispense a predetermined quantity of the ice cubes stored in an ice bucket in response to a user request.
  • FIG. 1 is a perspective view of an exemplary refrigerator including an ice maker and an ice dispenser;
  • FIGS. 2 and 3 are perspective views of an ice bucket of the ice dispenser shown in FIG. 1 ;
  • FIG. 4 is a perspective view of an ice bucket in accordance with an embodiment as broadly described herein;
  • FIG. 5 is a sectional view of the ice bucket shown in FIG. 4 .
  • An automatic ice maker may automatically make ice and store the ice in an ice storage bin or bucket, to be dispensed by a dispenser in response to a user request for ice.
  • a dispenser may employ, for example, one or more blades which rotate to draw the ice from a storage portion of the ice storage bucket into a chute for dispensing through the dispenser.
  • the ice cubes stored in the ice bucket may not be properly ejected. For example, when ice cubes located above the blades are left in the storage portion of the ice bucket for a long time, they may be frozen into a cluster.
  • this cluster may be too large to flow from the storage portion into the discharge portion of the ice bucket, and the blades may not be able to reach the ice cubes, causing the blades to rotate idly and making the ice difficult to dispense/discharge.
  • FIGS. 1 to 3 an exemplary ice bucket installed in a refrigerator will be described with reference to FIGS. 1 to 3 .
  • a refrigerator may keep items fresh in a refrigerated or frozen state, and may include a refrigerator main body having a cooling chamber formed therein, and a refrigeration cycle system for providing cold air into the cooling chamber.
  • the refrigerating cycle system may be, for example, a vapor compression type refrigeration cycle system including a compressor for compressing a refrigerant, a condenser for condensing the refrigerant, an expansion apparatus for decompressing and expanding the refrigerant, and an evaporator for evaporating the refrigerant with ambient heat adsorbed.
  • the refrigerator may include a main body 10 having a freezing chamber 20 and a refrigerating chamber 30 , and a freezing chamber door 25 and a refrigerating chamber door 35 for opening and closing the freezing chamber 20 and the refrigerating chamber 30 , respectively.
  • a dispenser 27 may be provided in the refrigerator to dispense water and/or ice without opening the door 25
  • an ice maker 40 may be installed in the freezing chamber 20 for making ice cubes.
  • An ice bucket 1 for storing the ice cubes made in the ice maker and discharging the ice cubes to the dispenser may be disposed below the ice maker 40 .
  • the dispenser 27 may be installed, for example, at the freezing chamber door 25 , or other location as appropriate, such that ice cubes may be retrieved without opening the freezing chamber 20 .
  • An inlet port 29 through which ice cubes discharged from the ice bucket 1 may be introduced into the dispenser 27 may be formed through an upper surface of the dispenser 27 .
  • the ice bucket 1 may include a case main body 100 forming an internal ice storage space and having an ice discharge port formed at a lower portion thereof for discharging ice to the inlet port 29 of the dispenser 27 , and an ice ejector 200 rotatably installed in the case main body 100 for ejecting the ice.
  • the case main body 100 may include an upper case 110 and a lower case 120 .
  • the upper case 110 may be transparent or semi-transparent to allow a user to visibly verify how much ice is left in the internal ice storage space, and the ice ejector 200 may be provided within the lower case 120 .
  • the ice ejector 200 may include a blade mounting shaft 240 protruding from an inner surface of a lower portion of the lower case 120 , and a plurality of blades 230 disposed on an outer circumferential surface of the blade mounting shaft 240 .
  • An inclined inner wall 125 may be formed at an upper portion of the case main body 100 so as to guide ice dropped from the ice maker 40 into the ice ejector 200 .
  • ice cubes made in the ice maker 40 are stacked up to an upper portion of the ice storage space within the case main body 100 .
  • the inclined inner wall 125 may cause the ice cubes to be continuously guided downward toward a lower portion of the case main body 100 where the ice ejector 200 is installed.
  • the ice pieces may still be frozen together in a cluster.
  • the inclined inner wall 125 directs the ice cubes downward toward the ejector 20 , if the ice ejector 200 is driven with the ice cubes in this frozen together state, the ice pieces will remain frozen together within the ice bucket, while the ice ejector 200 performs an idle rotation such that the ice cubes cannot be ejected to the outside, thus disabling the ice dispensing function. Furthermore, the frozen ice pieces would have to be manually separated or broken into pieces, causing user dissatisfaction.
  • FIG. 4 is a perspective view of an ice bucket in accordance with an embodiment as broadly described herein, and FIG. 5 is a sectional view of the ice bucket shown in FIG. 4 .
  • An ice bucket 1 capable of automatically breaking apart/separating ice pieces for dispensing may include a case main body 100 forming an internal ice storage space and having an ice discharge port 121 formed at a lower portion thereof.
  • An ice ejector 200 may be rotatably disposed at one end of the case main body 100 .
  • the ice ejector 200 may include a motor rotation shaft 220 , a blade mounting shaft 240 , and a plurality of blades 230 protruding from the blade mounting shaft 240 in a radial direction and with spaced distances therebetween.
  • the ice bucket 1 may also include an ice separating device 300 for preventing ice cubes located above the ice ejector 200 from being frozen together into a cluster.
  • the case main body 100 may include an upper case 110 formed of a transparent or semi-transparent material so that an amount of ice cubes received therein may be viewed from an outside of the case main body 100 , and a lower case 120 having the ice ejector 200 mounted therein for connection to an external driving motor.
  • the ice discharge port 121 may be formed through the lower portion of the lower case 120 to communicate with a dispenser of the refrigerator.
  • the ice ejector 200 may be installed within the lower case 120 .
  • the ice separating device 300 may be mounted on one side surface of the ice bucket 1 , for example, the side surface thereof which is mounted on the refrigerator, so that the opposite side of the ice bucket 1 may be visible through the transparent or semi-transparent upper case 110 , and not obstructed by the ice separating device 300 .
  • the ice ejector 200 may be rotatable in response to a rotational force transferred thereto by an external driving motor installed in the refrigerator.
  • the ice ejector 200 may include the motor rotation shaft 220 fixed to a shaft of the external driving motor, and a motor rotational force transfer device 260 for transferring the rotational force received from the external driving motor.
  • the ice ejector 200 may include the blade mounting shaft 240 integrally or fixedly connected to the motor rotation shaft 220 in a lengthwise direction to be inserted into the ice bucket 1 .
  • the plurality of blades 230 may be provided on an outer circumferential surface of the blade mounting shaft 240 so as to transfer ice cubes from the ice maker above the ice bucket 1 to a dispenser below the ice bucket 1 via the ice discharge port 121 .
  • the ice separating device 300 may include a rotational shaft 320 rotatably installed on an upper portion of the case main body 100 , and an auger 330 protruding into an upper portion of the storage space within the case main body 100 to separate ice cubes that have been frozen into a cluster and/or to maintain ice cubes in a separated state in response to rotation of the rotational shaft 320 .
  • the auger 330 may protrude in a lateral direction of the ice separating device 300 , and may include a plurality of augers 330 installed in parallel each other, and in parallel to the rotational shaft 320 , performing a circular motion within the ice bucket 1 in response to the rotation of the rotational shaft 320 . Accordingly, the augers 330 may stir the ice cubes received in the upper portion of the case main body 100 , to separate and/or maintain the separated state of the ice cubes.
  • the ice separating device 300 may include a rotational cam 310 rotatably centered on the rotational shaft 320 , and the plurality of augers 330 may be installed on the rotational cam 310 in parallel to the rotational shaft 310 .
  • the rotational cam 310 may be formed as a circular plate having a predetermined thickness, and may be rotatable based upon rotation of the rotational shaft 310 .
  • the plurality of augers 330 may protrude from one surface of the rotational cam 310 , in an axial direction of the cam 310 , to be in parallel to the rotational shaft 310 .
  • the plurality of augers 330 protruding into the case main body 100 in parallel to the rotational shaft 320 may separate and/or maintain the separated states of the ice cubes. That is, as the rotational cam 310 rotates, the augers 330 may perform a circular motion to break apart ice cubes located above the ice ejector 200 into individual pieces even when the ice cubes are frozen together into a cluster.
  • the case main body 100 may include an ejector mount 122 formed through one side of the lower case 120 for installation of the ice ejector 200 thereat.
  • a separating device mount 123 may be formed above the ejector mount 122 for installation of the ice separating device 300 thereat.
  • the ejector mount 122 may be formed as a circular through hole to be connected to an external driving motor.
  • the separating device mount 123 may be formed through the case main body 100 to be connected to an external driving motor when the external driving motor is provided separately. However, as shown in the exemplary embodiment, the separating device mount 123 may not have to be formed as a separate through hole when being rotated by receiving the rotational force of the ice ejector 200 .
  • the ice separating device 300 may perform a rotary motion based on rotation of the rotational shaft 320 .
  • This rotary motion may be performed by receiving an external rotational force.
  • rotational forces may be separately applied to the ice ejector 200 and to the ice separating device 300 , respectively, allowing independent operation of the ice ejector 200 and the ice separating device 300 .
  • both functions of separating and ejecting ice cubes may be implemented in response to a single rotational force.
  • the ice separating device 300 may simultaneously be rotated by receiving the rotational force of the ice ejector 200 .
  • the ice ejector 200 may simultaneously be rotated so that the ice ejector 200 may be rotated in response to rotational force applied to the ice separating device 300 without a separate external rotational force applied to the ice ejector 200 .
  • the ice ejector 200 and the ice separating device 300 may receive a rotational force via a driving force transfer device 400 .
  • the motor rotational force transfer device 260 may transfer a received rotational force directly to the blades 230 of the ice ejector 200 .
  • the motor rotational force transfer device 260 may be connected to a driving motor at an outer wall of the lower case 120 .
  • the motor rotational force transfer device 260 may be installed on an outer circumference of the motor rotation shaft 220 of the ice ejector 200 , receiving the rotational force of the motor.
  • the ice ejector 200 may include a rotational cam 210 rotatable in response to a rotational force of an external driving motor via the motor rotational force transfer device 260 .
  • the ice separating device 300 may include the rotational cam 310 rotatable in response to a rotational force from the rotational cam 210 of the ice ejector 200 .
  • the rotational cam 210 of the ice ejector 200 and the rotational cam 310 of the ice separating device 300 may be allowed to mutually transfer their rotational forces by virtue of the driving force transfer device 400 .
  • the driving force transfer device 400 may employ a variety of rotational force transfer elements, such as gears, pulleys and belts and the like.
  • teeth 211 formed on an outer circumferential surface of the rotational cam 210 of the ice ejector 200 may engage teeth 311 formed on an outer circumferential surface of the rotational cam 310 of the ice separating device 300 .
  • the rotational cams 210 and 310 having the gear-like structure with the mutually engaged teeth 211 and 311 may allow a rotational force applied to one of the ejector 200 or the ice separating device 3000 to also be applied to the other of the ejector 200 or the separating device 300 .
  • the ice separating device 300 may be rotatable in response to the rotational force transferred from the ice ejector 200 by the mutually engaged teeth 211 and 311 of the driving force transfer device 400 of the embodiment shown in FIG. 4 . Therefore, when the ice ejector 200 is driven, the ice separating device 300 may operate simultaneously. Accordingly, ice cubes which may be frozen together in a cluster above the blades 330 due to being stored for a long time, may be separated into pieces. The separated ice cubes may be transferred downward, and ejected by the ice ejector 200 via the ice discharge port 121 to a dispenser.
  • the driving force transfer device 400 may be implemented such that the transfer of a rotational force between a pulley formed at the ice ejector 200 and a pulley formed at the ice separating device 300 is enabled via belts. Therefore, the rotational cams 210 and 310 of the ice ejector 200 and the ice separating device 300 may be formed as pulleys having belts mounted thereon.
  • a refrigerator as embodied and broadly described herein may include doors 25 and 35 for opening and closing a cooling chamber, an ice maker 40 disposed in the cooling chamber, an ice bucket 1 disposed below the ice maker 40 , and a dispenser 27 connected to the ice bucket 1 .
  • the ice bucket 1 may include a case main body 100 forming an ice storage space therein and having an ice discharge port 121 at a lower portion thereof.
  • An ice ejector 200 may be rotatably disposed at one side of the case main body 100 and may include a plurality of blades 330 .
  • the ice bucket 1 may also include an ice separating device 300 having a rotational shaft 320 and augers 330 performing a circular motion in response to rotation of the rotational shaft 320 to prevent ice cubes located above the ice ejector 200 from being frozen together.
  • the ice separating device 300 may include a rotational cam 310 rotatably centered on the rotational shaft 320 , and the plurality of augers 330 may be installed on the rotational cam 310 , spaced apart from the rotational shaft 320 , and in parallel to each other.
  • the ice ejector 200 and the ice separating device 300 may receive a rotational force transferred by a driving force transfer device 400 .
  • the driving force transfer device 400 may have a gear-like structure such that teeth 211 formed on an outer circumferential surface of the rotational cam 210 of the ice ejector 200 engage teeth 311 formed on an outer circumferential surface of the rotational cam 310 of the ice separating device 300 .
  • the ice separating device 300 may be rotated in response to a rotational force transferred from the ice ejector 200 .
  • the driving force transfer device 400 may be implemented such that the rotational cam 210 of the ice ejector 200 and the rotational cam 310 of the ice separating device 300 are formed as pulleys to transfer a rotational force by the use of belts.
  • An ice bucket having a function of unlaying ice curdling, or separating and maintaining separation of ice pieces.
  • the ice bucket may be capable of allowing an ice ejecting member to eject ice cubes to outside by unlaying, or separating, the ice cubes frozen in a curdled, or frozen together, state into individual ice pieces by use of augers.
  • the augers may be rotated within a storage space of the ice bucket to unlay, or separate, the ice cubes, upon ejecting the ice cubes from an ice dispensing apparatus installed in a refrigerator or a water purifier.
  • An ice bucket as embodied and broadly described herein may include a case main body forming an ice storage space therein and having an ice discharge port formed at a lower portion thereof.
  • the ice bucket may include an ice ejecting member rotatably disposed at one side of the main body and having a motor rotation shaft, a blade mounting shaft, and a plurality of blades protruding from the blade mounting shaft in a radial direction and disposed in a circumferential direction with spaced distances.
  • the ice bucket may include an ice curdling unlaying member configured to prevent ice cubes located above the ice ejecting member from being frozen in a curdled state.
  • the ice curdling unlaying member may include a rotational shaft rotatably installed at an upper portion of one side of the main body.
  • the ice curdling unlaying member may include an auger protruding from an upper portion within the main body in an axial direction of the rotational shaft to unlay the upper curdled ice cubes in response to rotation of the rotational shaft.
  • the auger may be installed by being spaced apart from the rotational shaft and performs a circular motion in response to the rotation of the rotational shaft to prevent ice curdling at an upper portion with the main body, and provided in plurality.
  • the ice curdling unlaying member may include a rotational cam rotatable centering on the rotational shaft, and the auger may be installed in plurality on the rotational cam to be in parallel to the rotation shaft.
  • the case main body may include an upper case formed of a transparent or semi-transparent material to allow a stored state of ice cubes to be viewed from outside, and a lower case having an ice ejecting member mounted onto one side therein and allowing the ice ejecting member to be connected to an external driving motor.
  • the ice discharge port may be formed at a lower portion of the lower case, and the ice curdling unlaying member may be formed on one side within the lower case.
  • the ice ejecting member and the ice curdling unlaying member may receive a rotational force transferred by a driving force transfer unit.
  • the ice ejecting member may include a rotational cam rotatable by receiving the rotational force of an external driving motor
  • the ice curdling unlaying member may include a rotational cam rotatable by receiving a rotational force transferred from the rotational cam of the ice ejecting member.
  • the driving force transfer unit may have a gear-like structure that teeth formed on an outer circumferential surface of the rotational cam of the ice ejecting member and teeth formed on an outer circumferential surface of the rotational cam of the ice curdling unlaying member are engaged with each other.
  • the ice curdling unlaying member may be rotatable by the rotational force of the ice ejecting member.
  • the case main body may include an ejecting member mounting portion formed through one side thereof for installation of the ice ejecting member thereon, and a curdling unlaying member mounting portion formed above the ejecting member mounting portion for installation of the ice curdling unlaying member thereon.
  • the driving force transfer unit may be implemented such that transfer of a rotational force between a pulley formed on the ice ejecting member and a pulley formed on the ice curdling unlaying member is enabled via belts.
  • a refrigerator as embodied and broadly described herein may include a refrigerator main body having a cooling chamber therein, a door to open or close the cooling chamber, an ice maker disposed in the cooling chamber, an ice bucket disposed below the ice maker, and a dispenser connected to the ice bucket.
  • the ice bucket may include a case main body forming an ice storage space therein and having an ice discharge port formed at a lower portion thereof, an ice ejecting member rotatably disposed on one side of the main body and having a plurality of blades, and an ice curdling unlaying member having a rotational shaft and an auger rotatable with performing a circular motion in response to rotation of the rotational shaft and configured to prevent ice cubes located above the ice ejecting member from being frozen in a curdled state.
  • the ice curdling unlaying member may include a rotational cam rotatable centering on the rotational shaft, and the auger may be provided in plurality disposed on the rotational cam to be in parallel to the rotational shaft.
  • the ice ejecting member and the ice curdling unlaying member may receive a rotational force transferred by a driving force transfer unit.
  • the driving force transfer unit may have a gear-like structure that teeth formed on an outer circumferential surface of the ice ejecting member and teeth formed on an outer circumferential surface of the ice curdling unlaying member are engaged with each other, and the ice curdling unlaying member may be rotatable by the rotational force of the ice ejecting member.
  • ice cubes in a frozen together, clustered state may be separated by augers provided within a storage space of an ice bucket, and the separated ice cubes may be ejected to outside by an ice ejector.
  • ice cubes when ice cubes are stored for a long time in the storage space of the ice bucket without being ejected out of an ice dispending apparatus, even if the ice ejecting member is driven, ice cubes which are attached to each other may still exist at an upper portion of the storage space of the ice bucket.
  • the ice cubes may be separated into pieces so as to prevent mis-operation of the ice ejector, resulting in enhanced user convenience, reliability and economical efficiency.
  • any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc. means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention.
  • the appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)
US13/651,592 2011-10-17 2012-10-15 Ice storage container and refrigerator having same Abandoned US20130092707A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110106133A KR101392927B1 (ko) 2011-10-17 2011-10-17 얼음엉김 해제기능을 갖는 아이스버킷 및 이를 구비한 냉장고
KR10-2011--0106133 2011-10-17

Publications (1)

Publication Number Publication Date
US20130092707A1 true US20130092707A1 (en) 2013-04-18

Family

ID=47522235

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/651,592 Abandoned US20130092707A1 (en) 2011-10-17 2012-10-15 Ice storage container and refrigerator having same

Country Status (5)

Country Link
US (1) US20130092707A1 (ko)
EP (2) EP3176523B1 (ko)
KR (1) KR101392927B1 (ko)
CN (1) CN103047804A (ko)
ES (1) ES2616764T3 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176882A1 (en) * 2013-12-20 2015-06-25 Samsung Electronics Co., Ltd. Refrigerator
US20160054044A1 (en) * 2014-08-22 2016-02-25 Samsung Electronics Co., Ltd. Refrigerator
CN106257176A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 冰箱的冰选择器、粉碎冰的方法以及减速器
US20170292752A1 (en) * 2016-04-12 2017-10-12 Dongbu Daewoo Electronics Corporation Ice bin and refrigerator provided with the ice bin
US20170292755A1 (en) * 2016-04-12 2017-10-12 Dongbu Daewoo Electronics Corporation Ice bin and refrigerator provided with the ice bin
US20200348070A1 (en) * 2019-05-03 2020-11-05 Haier Us Appliance Solutions, Inc. Refrigerator appliance having a removable ice storage bin
CN112041622A (zh) * 2018-02-16 2020-12-04 青岛海尔电冰箱有限公司 制冰组件联接器
US11680741B2 (en) 2015-12-31 2023-06-20 Hisense Ronshen (Guangdong) Refrigerator Co., Ltd. Refrigerator having transmission assembly
US11709009B2 (en) 2020-05-07 2023-07-25 Haier Us Appliance Solutions, Inc. Ice bucket agitator and refrigerator appliance

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329892B (zh) * 2014-05-21 2017-02-15 青岛海尔股份有限公司 冰箱
CN104329844B (zh) * 2014-05-21 2017-01-11 青岛海尔股份有限公司 刨冰机
KR101658553B1 (ko) 2015-01-22 2016-09-21 엘지전자 주식회사 냉장고
KR102358107B1 (ko) 2017-05-17 2022-02-07 삼성전자주식회사 냉장고 및 그 제어 방법
KR101951899B1 (ko) * 2017-06-14 2019-02-25 최영환 얼음 컵 성형장치
KR101979407B1 (ko) * 2017-08-14 2019-05-16 최영환 아이스 컵 제조기
CN110617656A (zh) * 2018-06-20 2019-12-27 佛山市顺德区美的饮水机制造有限公司 满冰处理方法及装置、制冰机、存储介质
CN109695982B (zh) * 2018-09-11 2020-08-28 海尔智家股份有限公司 碎冰装置及冰箱
KR20230125369A (ko) * 2022-02-21 2023-08-29 엘지전자 주식회사 관리 서버 및 이의 제어 방법과, 상기 관리 서버에 관리되는 가전 기기

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3151668A (en) * 1961-06-29 1964-10-06 North American Vending Mfg Cor Coin-operated automatic ice cube and bag vending machines
US3651656A (en) * 1969-12-31 1972-03-28 Schneider Metal Mfg Co Agitator for storage bin of ice cube maker
US3858765A (en) * 1973-05-18 1975-01-07 Servend Distributors Dispensing apparatus
US3918266A (en) * 1972-12-01 1975-11-11 Gindy Distributing Company Ice weighing machine
US4942983A (en) * 1986-12-18 1990-07-24 Bradbury John R Apparatus for storing and dispensing particulate ice
US5910164A (en) * 1996-12-12 1999-06-08 Hoshizaki America, Inc. Ice cube dispenser for compressed flaked ice cubes
US6039220A (en) * 1997-07-10 2000-03-21 Imi Cornelius Inc. Low profile ice dispenser
US6425259B2 (en) * 1998-12-28 2002-07-30 Whirlpool Corporation Removable ice bucket for an ice maker
US20080156826A1 (en) * 2006-12-28 2008-07-03 Lg Electronics Inc. Ice dispensing apparatus and refrigerator
US20110067429A1 (en) * 2009-09-03 2011-03-24 Lg Electronics Inc. Refrigerator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273219A (en) * 1993-01-11 1993-12-28 White Consolidated Industries, Inc. Ice dispenser
JP2006242457A (ja) * 2005-03-02 2006-09-14 Hoshizaki Electric Co Ltd アイスディスペンサ
KR20080016370A (ko) * 2006-08-18 2008-02-21 삼성전자주식회사 냉장고
KR100780836B1 (ko) * 2006-09-12 2007-11-30 엘지전자 주식회사 냉장고용 아이스뱅크 고정장치 및 이를 포함하는 냉장고
KR100820816B1 (ko) * 2006-10-24 2008-04-11 엘지전자 주식회사 얼음취출장치 및 이를 구비하는 냉장고
KR100852668B1 (ko) * 2006-11-01 2008-08-19 엘지전자 주식회사 얼음취출장치 및 이를 구비하는 냉장고
KR100934185B1 (ko) * 2007-10-31 2009-12-29 엘지전자 주식회사 아이스 메이킹 장치
JP5147545B2 (ja) * 2008-05-30 2013-02-20 日立アプライアンス株式会社 冷蔵庫
CN102278843A (zh) * 2011-05-27 2011-12-14 合肥美的荣事达电冰箱有限公司 碎冰装置及具有该碎冰装置的冰箱
CN102226612A (zh) * 2011-05-27 2011-10-26 合肥美的荣事达电冰箱有限公司 用于冰箱的碎冰装置及具有该碎冰装置的冰箱

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3151668A (en) * 1961-06-29 1964-10-06 North American Vending Mfg Cor Coin-operated automatic ice cube and bag vending machines
US3651656A (en) * 1969-12-31 1972-03-28 Schneider Metal Mfg Co Agitator for storage bin of ice cube maker
US3918266A (en) * 1972-12-01 1975-11-11 Gindy Distributing Company Ice weighing machine
US3858765A (en) * 1973-05-18 1975-01-07 Servend Distributors Dispensing apparatus
US4942983A (en) * 1986-12-18 1990-07-24 Bradbury John R Apparatus for storing and dispensing particulate ice
US5910164A (en) * 1996-12-12 1999-06-08 Hoshizaki America, Inc. Ice cube dispenser for compressed flaked ice cubes
US6039220A (en) * 1997-07-10 2000-03-21 Imi Cornelius Inc. Low profile ice dispenser
US6425259B2 (en) * 1998-12-28 2002-07-30 Whirlpool Corporation Removable ice bucket for an ice maker
US20080156826A1 (en) * 2006-12-28 2008-07-03 Lg Electronics Inc. Ice dispensing apparatus and refrigerator
US20110067429A1 (en) * 2009-09-03 2011-03-24 Lg Electronics Inc. Refrigerator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102199803B1 (ko) 2013-12-20 2021-01-08 삼성전자주식회사 냉장고
KR20150073037A (ko) * 2013-12-20 2015-06-30 삼성전자주식회사 냉장고
US20150176882A1 (en) * 2013-12-20 2015-06-25 Samsung Electronics Co., Ltd. Refrigerator
US20160054044A1 (en) * 2014-08-22 2016-02-25 Samsung Electronics Co., Ltd. Refrigerator
US11378322B2 (en) 2014-08-22 2022-07-05 Samsung Electronics Co., Ltd. Ice storage apparatus and method of use
US10495366B2 (en) * 2014-08-22 2019-12-03 Samsung Electronics Co., Ltd. Ice storage apparatus and method of use
CN106257176A (zh) * 2015-06-17 2016-12-28 东部大宇电子株式会社 冰箱的冰选择器、粉碎冰的方法以及减速器
US11680741B2 (en) 2015-12-31 2023-06-20 Hisense Ronshen (Guangdong) Refrigerator Co., Ltd. Refrigerator having transmission assembly
CN107289700A (zh) * 2016-04-12 2017-10-24 东部大宇电子株式会社 储冰盒以及设置有储冰盒的冰箱
US20170292755A1 (en) * 2016-04-12 2017-10-12 Dongbu Daewoo Electronics Corporation Ice bin and refrigerator provided with the ice bin
US20170292752A1 (en) * 2016-04-12 2017-10-12 Dongbu Daewoo Electronics Corporation Ice bin and refrigerator provided with the ice bin
CN112041622A (zh) * 2018-02-16 2020-12-04 青岛海尔电冰箱有限公司 制冰组件联接器
US20200348070A1 (en) * 2019-05-03 2020-11-05 Haier Us Appliance Solutions, Inc. Refrigerator appliance having a removable ice storage bin
US11262116B2 (en) * 2019-05-03 2022-03-01 Haier Us Appliance Solutions, Inc. Refrigerator appliance having a removable ice storage bin
US11709009B2 (en) 2020-05-07 2023-07-25 Haier Us Appliance Solutions, Inc. Ice bucket agitator and refrigerator appliance

Also Published As

Publication number Publication date
EP3176523A1 (en) 2017-06-07
EP2584293A2 (en) 2013-04-24
EP2584293B1 (en) 2016-11-30
EP3176523B1 (en) 2022-05-04
EP2584293A3 (en) 2013-05-15
ES2616764T3 (es) 2017-06-14
KR101392927B1 (ko) 2014-05-14
CN103047804A (zh) 2013-04-17
KR20130041700A (ko) 2013-04-25

Similar Documents

Publication Publication Date Title
US20130092707A1 (en) Ice storage container and refrigerator having same
KR100845859B1 (ko) 얼음배출장치
US7571619B2 (en) Refrigerator
US8387408B2 (en) Ice dispensing apparatus and refrigerator
KR101658674B1 (ko) 얼음 저장 장치 및 그 제어 방법
US7395672B2 (en) Ice dispenser assembly and method of assembling same
US9239181B2 (en) Refrigerator with ice maker in freezing compartment and transfer device to ice bank in refrigerating compartment
US20060248911A1 (en) Ice dispenser and refrigerator comprising the same
US9995522B2 (en) Ice bin and method of crushing ice using the same
KR20060125302A (ko) 냉장고
US7841204B2 (en) Ice dispensing apparatus and refrigerator
US6973802B1 (en) Ice supply device and refrigerator having the same
KR20120006879A (ko) 제빙 유니트 및 이를 갖는 냉장고
KR20080020126A (ko) 냉장고
KR102280935B1 (ko) 냉장고 및 냉장고용 오거의 제조방법
KR101555756B1 (ko) 아이스 빈 및 이를 이용한 얼음 이송 방법
KR100611490B1 (ko) 제빙기의 얼음 취출장치
KR20110039883A (ko) 제빙기의 얼음 분리 저장 장치
KR101565416B1 (ko) 냉장고
KR101565415B1 (ko) 냉장고
KR100781269B1 (ko) 얼음배출장치
KR101257934B1 (ko) 디스펜서 기능을 갖는 제빙장치
KR20060128071A (ko) 냉장고
KR100777293B1 (ko) 얼음 저장 용기 및 이를 이용한 냉장고
KR200342122Y1 (ko) 냉장고 자동 이빙장치

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, YONGHYUN;AN, SIYEON;LEE, CHANGWOO;AND OTHERS;REEL/FRAME:029126/0986

Effective date: 20121008

AS Assignment

Owner name: POSTECH ACADEMY - INDUSTRY FOUNDATION, KOREA, REPU

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NOT PREVIOUSLY RECORDED ON REEL 029126 FRAME 0986. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:KIM, YONGHYUN;AN, SIYEON;LEE, CHANGWOO;AND OTHERS;REEL/FRAME:029155/0305

Effective date: 20121008

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NOT PREVIOUSLY RECORDED ON REEL 029126 FRAME 0986. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:KIM, YONGHYUN;AN, SIYEON;LEE, CHANGWOO;AND OTHERS;REEL/FRAME:029155/0305

Effective date: 20121008

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION