US20130008797A1 - Device and process for controlling the efficiency of a metal electrodeposition bath - Google Patents
Device and process for controlling the efficiency of a metal electrodeposition bath Download PDFInfo
- Publication number
- US20130008797A1 US20130008797A1 US13/637,854 US201113637854A US2013008797A1 US 20130008797 A1 US20130008797 A1 US 20130008797A1 US 201113637854 A US201113637854 A US 201113637854A US 2013008797 A1 US2013008797 A1 US 2013008797A1
- Authority
- US
- United States
- Prior art keywords
- samples
- bath
- cathode
- current
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D17/00—Constructional parts, or assemblies thereof, of cells for electrolytic coating
- C25D17/10—Electrodes, e.g. composition, counter electrode
- C25D17/12—Shape or form
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D21/00—Processes for servicing or operating cells for electrolytic coating
- C25D21/12—Process control or regulation
Definitions
- the present invention relates to a device and a method for testing the efficiency of a metal electroplating bath (especially containing metal elements and additives) and more particularly, although not exclusively, the thickness of the metal coating deposited on the workpieces treated and its external appearance, e.g. its sheen.
- testing devices of this type are generally Hull cells (see U.S. Pat. No. 2,149,344, for example). These devices comprise a tank that contains a bath of the liquid-metal to be deposited by electroplating; electrodes, anodes and cathodes respectively, submerged in the bath; and a current generator connecting the electrodes.
- the cathode, on which the metal coating is deposited takes the form of a metal plate that is rectangular or of another shape and that is inclined relative to the anode so that the distance separating them gradually varies from one end of the plate to the other.
- the inclined cathode plate may be replaced with a rotating metal cylinder, the rotation of which results in a nonzero velocity between the cathode and the liquid of the bath.
- a device for testing the properties of a metal bath, which device comprises, in a base and a cover of the device, an insulating substrate coated with separate electrode segments or sections in which currents are made to flow in order to determine the thickness or weight of the coating deposited thereon depending on the current made to flow therein.
- a device has an irregular shape and a sizeable volume and is completely arranged in the bath and, as a result, could only be applied to industrial tanks with difficultly. It is more suited to laboratory tanks.
- the aim of the present invention is to alleviate these various drawbacks, and it relates to a device and a method for testing the efficiency of a metal electroplating bath, the design of which device allows, inter alia: a selected range of current densities to be scanned with precision; the real current density to be measured for each point; the coating deposited to be measured, and its weight, thickness, and sheen to be deduced from said measurements for a given current density; and real hydrodynamic conditions to be accounted for.
- the device for testing the efficiency of a metal electroplating bath contained in a tank especially under the conditions for producing workpieces, comprises electrodes, respectively anodes and cathodes, connected to an electrical-current generator, said cathode consisting of a number of individual samples able to be submerged in said metal electroplating bath and supplied with power by an electrical power supply that is controllable.
- the latter is connected to the current generator and comprises means for adjusting the current flowing through said cathode samples so that in each of said samples a given current flows.
- the above device is noteworthy in that the individual cathode samples are suspended from a sample holder placed above the metal bath in the tank so that practically only the samples are submerged in said bath.
- a metal coating is deposited simultaneously, and during one and the same test, on each of the individual cathode samples, each of the latter being subjected to separate current densities.
- different coatings corresponding to the current densities used, are obtained on said samples. Therefore, the weight of the coating deposited on each sample, each sample being directly subjected to a specific current density, allows the efficiency of the tested bath in question to be precisely determined (especially by weighing before and after the test) and the thickness, sheen and other properties obtained for a given current density may thus be determined.
- the sample holder can advantageously not only move vertically, to submerge the samples, but can also move horizontally, the horizontal movement of the suspended samples providing a relative velocity between the surface to be coated and the liquid-metal bath, when the latter is being tested.
- the device of the invention overcomes the drawbacks of the prior art by covering, using individual cathode samples, a preset and precise range of current densities; measurements on the coatings deposited on each individual sample, proportional to the metal weight deposited from the bath and depending on the current density applied, allowing the efficiency of the tested bath to be determined.
- the one or more workpieces to be treated are submerged in the bath and subjected to a given current corresponding to the thickness of the metal coating to be deposited.
- the testing device may thus be used periodically to monitor the bath.
- the current-adjusting means of the electrical-power-supply unit are defined, for each cathode sample, by a variable resistor connected on one side to the current generator, and on the other side to the corresponding cathode sample.
- the simplicity of the adjusting means will be noted, this simplicity ensuring the unit operates reliably.
- an instrument is advantageously provided for measuring the current flowing into the sample, the instrument being an ammeter or similar.
- the device reads the current directly and the real current density at each point on the cathode samples is calculated, or else the ammeter is graduated in a particular way in order to display the density.
- the tank is an industrial tank in which workpieces to be treated will subsequently be submerged
- the individual cathode samples are arbitrarily arranged in said bath, because the substantial size of said industrial tank means that there is little or no “interference” between the cathode samples.
- the individual cathode samples could be arranged in one and the same horizontal plane in the metal bath, the cathode samples aligned in said horizontal plane possibly being regularly spaced apart relative to one another.
- the individual cathode samples are the same size and disk shaped.
- means for stirring the metal bath are associated with the tank, especially when the latter is an industrial tank.
- the bath in the tank is furthermore provided with two anodes taking the form of preferably parallel grids or plates, between which the cathode samples are arranged.
- the invention also relates to a method for testing the properties of a metal electroplating bath contained in a tank, under the conditions for producing plated workpieces.
- This method is noteworthy in that it uses the testing device such as defined above, and in that it comprises steps consisting in:
- efficiency graphs are produced for each tested bath, these graphs showing the deposition rate as a function of the current density in each sample, and the efficiency graphs obtained during testing of the bath are used to modify at least one of the bath parameters, if required, so as to deposit coatings on workpieces under optimal production conditions.
- such a method and such a device may be used to characterize the efficiency of a bath directly, whether it is new or in use, the parameters established possibly being used in the plating of workpieces, avoiding scrappage of the latter, and may also be easily tailored to any type of tank and/or bath in a workshop or the like.
- FIG. 1 is a schematic cross-sectional view of a device for testing a metal electroplating bath, according to the invention.
- FIG. 2 is an enlarged view of one of said individual cathode samples, as viewed along the direction of the arrow F in FIG. 1 .
- FIG. 3 shows the controllable electrical power supply unit of each of the cathode samples of the device.
- FIGS. 4 and 5 show exemplary efficiency curves for various baths, obtained using the device for testing and implementing the method according to the invention.
- the testing device 1 shown schematically in FIG. 1 is associated, in this example, with an industrial tank 2 containing the liquid-metal electroplating bath 3 , it being desired to test the efficiency of the composition of this bath with respect to certain operating criteria. Specifically, the latter will then be used to adjust production parameters in order to obtain the desired result on the workpieces to be treated, especially regarding mechanical properties, external appearance, etc., which depend on the thickness of the deposited coating, and therefore on the current used.
- the metal bath is a platinum bath (Pt 2+ and Pt 4+ ions) to which additives are added with a view to depositing, by making an electrical current, supplied by a current generator 4 , flow between anodes 5 and cathodes 6 submerged in the bath 3 , a platinum coating on the vanes of a turbojet or analogous device forming the cathode, and thus improving their ability to resist oxidation and corrosion.
- a platinum bath Pt 2+ and Pt 4+ ions
- the testing device could of course be associated with another type of tank, such as a laboratory tank.
- the anode 5 is defined by two anodes in the form of metal grids or plates 7 , shown lying parallel here, though they are not necessarily parallel, the plates or grids 7 being arranged vertically along two opposite lateral sides 8 of the tank.
- the cathode 6 which will subsequently be defined by the one or more workpieces to be treated, consists, in the testing device 1 of the invention, of a plurality of individual cathode samples 9 .
- each of these samples will be subjected, as will be seen below, to a specific electrical current that is different to the currents flowing in the other samples, in order for coatings to be plated on said samples with separate currents and for the resultant weight and, therefore, thickness to be measured (it would also be possible to attempt to obtain the same weight using a given range of currents).
- the individual cathode samples 9 are the same size and, in this example, there are ten of them, all of which have a solid disk shape, as FIGS. 1 and 2 show. Furthermore, the cathode samples 9 are submerged in the metal bath 3 and the disks thereof are arranged perpendicular to the anodes and are horizontally aligned. This arrangement is not the only possible arrangement, as will be seen below. All of these samples are suspended from a sample holder, reference number 10 in FIG.
- the sample holder is moved horizontally, in this exemplary industrial tank, by a system (not shown) for holding production workpieces.
- the testing device 1 comprises a controllable electrical power supply unit 11 that is, on one side, connected to the current generator 4 , and on the other side, connected to the individual cathode samples 9 .
- the unit 11 includes means 12 for adjusting the current flowing through the samples to the desired value, which means 12 consist of as many electrically or electronically variable resistors 14 as there are individual cathode samples 9 .
- All of these individual variable resistors 14 are connected, on one side, to a common connector 15 for connection to the current generator 4 , while each of said resistors 14 is connected, on the other side, to the line 13 of the relevant cathode, by a connector 16 .
- variable resistors 14 allows the magnitude of the current flowing through each of the samples 9 , and therefore the current density (current magnitude/area of the sample) studied, to be chosen for each sample submerged in the metal bath.
- an instrument 17 is provided for measuring the current flowing through each resistor, such as an ammeter connected in series between each variable resistor 14 and its cathode sample 9 , in the unit 11 .
- the testing device 1 allows a precise and wide range of current densities to be selected and covered so as to determine, from the properties of the metal electroplating bath 3 , the efficiency of the latter.
- the ten cathode samples 9 may be subjected to separate currents for example currents of 1 to 10 amps, respectively, so as to observe, in real time, the metal deposition at each of the current densities, shown by the coating R in the enlarged portion A of FIG. 2 .
- the method of the invention is implemented in a tank under real production conditions, the bath being made to flow by stirring. Furthermore, the method involves weighing the individual cathode samples 9 before they are put in place on the sample holder 10 . Next, after the samples have been suspended from the sample holder, only the samples 9 (with a portion of their connecting wire 13 ) of the device are submerged in the bath 3 in the tank by lowering the sample holder, the samples then being subjected to the corresponding current desired for each sample, each current being read by the ammeter 17 . It will be noted that the fact that only the samples are submerged in the bath, combined with the regular geometric shape of the samples (thin disk), contributes to the accuracy and precision of the measurements.
- the latter are extracted from the bath by raising the moveable sample holder 10 , removed from the latter and weighed again.
- the difference between the two measured weights allows the weight of deposited metal, corresponding to the coating R ( FIG. 2 ) to be measured and known and, the thickness “e” of the coating R to be deduced therefrom.
- the color and the appearance of the deposited metal can be observed.
- the method thus makes it possible to define and draw the efficiency graph of the electroplating bath in question, i.e. the deposition rate (deposited weight) as a function of the current density applied to each sample. Examples of such graphs are shown in FIGS. 4 and 5 , the X-axis representing the amperage (current density) expressed in A/dm 2 , and the Y-axis representing the deposition rate expressed in g/dm 2 ⁇ h.
- Efficiency curves A and B, in FIG. 4 demonstrate the aging of a given metal bath in time and the reduction in deposition rate that results therefrom.
- testing the efficiency of the bath makes it possible to determine whether the bath properties have changed and to intervene and modify the relevant parameters so that optimal coatings are maintained on the workpieces throughout the lifetime of the bath. It may thus be seen, from curve B, that the deposition rate is higher for sample 9 B, which is subjected to a different current to sample 9 A when the bath is virgin, this higher current possibly being selected to treat the workpieces.
- a bath may thus be tested very easily and at any moment during use of the latter. It will, in addition, be recalled that practically only the disk-shaped samples are submerged in the bath, so that they do not influence the results of the measurements.
- Efficiency curves C and D, in FIG. 5 show, by way of example, the results that can be obtained with two baths of different compositions having, respectively, a pH of 4.2 ⁇ 0.3 and 6.5 ⁇ 0.3 and a temperature of 55° C. ⁇ 2° C. and 65° C. ⁇ 2° C. with standard industrial stirring.
- the thickness of the coating obtained is a function of such a current, it is then possible, after the testing device 1 has been dismantled (in this example of an industrial tank, the sample holder 10 and the controllable unit 11 ) to adjust the parameters of the tank to obtain, on the workpiece or workpieces to be treated, then submerged in the bath, the selected coating thickness, corresponding to a given current.
- the testing device 1 has been dismantled (in this example of an industrial tank, the sample holder 10 and the controllable unit 11 ) to adjust the parameters of the tank to obtain, on the workpiece or workpieces to be treated, then submerged in the bath, the selected coating thickness, corresponding to a given current.
- the testing device 1 may not only be used to determine the efficiency of a virgin bath, but also that of a bath during use, so as to periodically monitor its properties and, depending on the results of the efficiency test, modify the parameters of the bath in order to maintain the conditions of deposition on the workpieces and finally to obtain the same coatings, i.e. reproducibly identical workpieces.
- the method and the device make it possible to monitor any variation in the bath in time until its properties no longer meet the desired requirements.
- a substantial amount of time is saved carrying out these tests, compared to prior-art devices, and the actual production time saved is also substantial.
- the tank in the example is a relatively large industrial tank
- means 18 for stirring the bath such as a pump or similar, are provided so that the uniformity of the bath is ensured.
- the samples could be arbitrarily placed in the bath, instead of being horizontally aligned, and they would still receive identical coatings.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electroplating Methods And Accessories (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1052373 | 2010-03-31 | ||
FR1052373A FR2958300B1 (fr) | 2010-03-31 | 2010-03-31 | Dispositif pour controler des caracteristiques physiques d'un bain d'electrodeposition metallique. |
PCT/FR2011/050715 WO2011121240A1 (fr) | 2010-03-31 | 2011-03-30 | Dispositif et procede pour controler l'efficacite d'un bain d'electrodeposition metallique |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130008797A1 true US20130008797A1 (en) | 2013-01-10 |
Family
ID=42751439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/637,854 Abandoned US20130008797A1 (en) | 2010-03-31 | 2011-03-30 | Device and process for controlling the efficiency of a metal electrodeposition bath |
Country Status (9)
Country | Link |
---|---|
US (1) | US20130008797A1 (zh) |
EP (1) | EP2553148B1 (zh) |
JP (1) | JP5764650B2 (zh) |
CN (1) | CN102822393B (zh) |
BR (1) | BR112012024387A2 (zh) |
CA (1) | CA2794579A1 (zh) |
FR (1) | FR2958300B1 (zh) |
RU (1) | RU2553161C2 (zh) |
WO (1) | WO2011121240A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020012144A (ja) * | 2018-07-17 | 2020-01-23 | 株式会社ファシリティ | 電解処理装置 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2511395A (en) * | 1939-02-20 | 1950-06-13 | City Auto Stamping Co | Process for the electrodeposition of tin alloys |
US3470082A (en) * | 1965-09-22 | 1969-09-30 | Louis W Raymond | Electroplating method and system |
US4053383A (en) * | 1975-08-21 | 1977-10-11 | Siemens Aktiengesellschaft | Apparatus for electrodepositing aluminum |
US4721551A (en) * | 1986-11-06 | 1988-01-26 | The Regents Of The University Of California | Iridium treatment of neuro-stimulating electrodes |
US5102509A (en) * | 1988-09-07 | 1992-04-07 | Johnson Matthey Public Limited Company | Plating |
JPH04114566A (ja) * | 1990-09-04 | 1992-04-15 | Sharp Corp | テレビドアホン装置 |
US20020104754A1 (en) * | 2001-02-06 | 2002-08-08 | Danny Wu | Electroplating apparatus for wheel disk |
US20030226764A1 (en) * | 2000-08-30 | 2003-12-11 | Moore Scott E. | Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces |
US20040084316A1 (en) * | 2002-10-31 | 2004-05-06 | Renesas Technology Corp. | Plating apparatus and method |
JP2007262433A (ja) * | 2006-03-27 | 2007-10-11 | Teikoku Ion Kk | クロムめっき用ハイブリッド電極、それを用いたクロムメッキ方法及びクロムめっき装置 |
US20090038952A1 (en) * | 2007-08-09 | 2009-02-12 | Shinji Tachibana | Electrolytic copper plating process |
US20090050473A1 (en) * | 2007-08-20 | 2009-02-26 | Mitsutoshi Yahagi | Conducting belt for use with anode holder and anode holder |
US20090229986A1 (en) * | 2008-03-11 | 2009-09-17 | C. Uyemura & Co., Ltd. | Continuous copper electroplating method |
US20090272644A1 (en) * | 2008-04-30 | 2009-11-05 | Alcatel Lucent | Plating apparatus with direct electrolyte distribution system |
US20100006445A1 (en) * | 2008-04-18 | 2010-01-14 | Integran Technologies Inc. | Electroplating method and apparatus |
US20100041226A1 (en) * | 2008-08-18 | 2010-02-18 | Novellus Systems, Inc. | Process For Through Silicon Via Filing |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2149344A (en) * | 1935-03-22 | 1939-03-07 | Du Pont | Apparatus and process for the study of plating solutions |
SU127339A1 (ru) * | 1953-04-02 | 1959-11-30 | М.А. Гинцбург | Линейный ускоритель элементарных частиц и ионов |
US3132080A (en) * | 1960-10-26 | 1964-05-05 | Thompson Ramo Wooldridge Inc | Electroplating method and apparatus |
JPS5954568U (ja) * | 1982-09-30 | 1984-04-10 | 富士通株式会社 | 電着めつき装置 |
SU1108130A1 (ru) * | 1983-04-15 | 1984-08-15 | Предприятие П/Я Г-4733 | Устройство дл контрол травильной способности растворов |
JPS63138246A (ja) * | 1986-11-29 | 1988-06-10 | Oki Electric Ind Co Ltd | メツキ液撹拌状態試験方法 |
JPH0737680B2 (ja) * | 1990-07-09 | 1995-04-26 | 株式会社アルメックス | 給電方法 |
JPH04114566U (ja) * | 1991-03-20 | 1992-10-08 | アイシン精機株式会社 | メツキ処理装置 |
JPH0741998A (ja) * | 1993-07-29 | 1995-02-10 | Kawasaki Steel Corp | 鉄系電気めっき方法 |
US20040168925A1 (en) * | 2002-10-09 | 2004-09-02 | Uziel Landau | Electrochemical system for analyzing performance and properties of electrolytic solutions |
DE10323638B4 (de) * | 2003-05-26 | 2006-11-23 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Entwicklung einer elektrochemischen Messanordnung |
DE102004056158B3 (de) * | 2004-11-17 | 2006-03-30 | Siemens Ag | Verfahren zum Überwachen eines elektrochemischen Behandlungsprozesses und für dieses Verfahren geeignete Elektrodenanordnung |
US20060289299A1 (en) * | 2005-06-22 | 2006-12-28 | 3M Innovative Properties Company | Multi-channel current probe |
WO2007049209A2 (en) * | 2005-10-24 | 2007-05-03 | Nxp B.V. | Motion vector field retimer |
-
2010
- 2010-03-31 FR FR1052373A patent/FR2958300B1/fr active Active
-
2011
- 2011-03-30 BR BR112012024387A patent/BR112012024387A2/pt not_active IP Right Cessation
- 2011-03-30 CN CN201180016583.1A patent/CN102822393B/zh active Active
- 2011-03-30 JP JP2013501914A patent/JP5764650B2/ja active Active
- 2011-03-30 US US13/637,854 patent/US20130008797A1/en not_active Abandoned
- 2011-03-30 WO PCT/FR2011/050715 patent/WO2011121240A1/fr active Application Filing
- 2011-03-30 EP EP11717696.6A patent/EP2553148B1/fr active Active
- 2011-03-30 RU RU2012145547/02A patent/RU2553161C2/ru active
- 2011-03-30 CA CA2794579A patent/CA2794579A1/fr not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2511395A (en) * | 1939-02-20 | 1950-06-13 | City Auto Stamping Co | Process for the electrodeposition of tin alloys |
US3470082A (en) * | 1965-09-22 | 1969-09-30 | Louis W Raymond | Electroplating method and system |
US4053383A (en) * | 1975-08-21 | 1977-10-11 | Siemens Aktiengesellschaft | Apparatus for electrodepositing aluminum |
US4721551A (en) * | 1986-11-06 | 1988-01-26 | The Regents Of The University Of California | Iridium treatment of neuro-stimulating electrodes |
US5102509A (en) * | 1988-09-07 | 1992-04-07 | Johnson Matthey Public Limited Company | Plating |
JPH04114566A (ja) * | 1990-09-04 | 1992-04-15 | Sharp Corp | テレビドアホン装置 |
US20030226764A1 (en) * | 2000-08-30 | 2003-12-11 | Moore Scott E. | Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces |
US20020104754A1 (en) * | 2001-02-06 | 2002-08-08 | Danny Wu | Electroplating apparatus for wheel disk |
US20040084316A1 (en) * | 2002-10-31 | 2004-05-06 | Renesas Technology Corp. | Plating apparatus and method |
JP2007262433A (ja) * | 2006-03-27 | 2007-10-11 | Teikoku Ion Kk | クロムめっき用ハイブリッド電極、それを用いたクロムメッキ方法及びクロムめっき装置 |
US20090038952A1 (en) * | 2007-08-09 | 2009-02-12 | Shinji Tachibana | Electrolytic copper plating process |
US20090050473A1 (en) * | 2007-08-20 | 2009-02-26 | Mitsutoshi Yahagi | Conducting belt for use with anode holder and anode holder |
US20090229986A1 (en) * | 2008-03-11 | 2009-09-17 | C. Uyemura & Co., Ltd. | Continuous copper electroplating method |
US20100006445A1 (en) * | 2008-04-18 | 2010-01-14 | Integran Technologies Inc. | Electroplating method and apparatus |
US20090272644A1 (en) * | 2008-04-30 | 2009-11-05 | Alcatel Lucent | Plating apparatus with direct electrolyte distribution system |
US20100041226A1 (en) * | 2008-08-18 | 2010-02-18 | Novellus Systems, Inc. | Process For Through Silicon Via Filing |
Non-Patent Citations (2)
Title |
---|
Hayashi, JP H04-114566, English Translation (1992). * |
Nakamura and Anpo, English abstract and Machine Translation, JP 2007-262433 A (2007). * |
Also Published As
Publication number | Publication date |
---|---|
CA2794579A1 (fr) | 2011-10-06 |
BR112012024387A2 (pt) | 2016-05-24 |
RU2012145547A (ru) | 2014-05-10 |
RU2553161C2 (ru) | 2015-06-10 |
EP2553148A1 (fr) | 2013-02-06 |
CN102822393B (zh) | 2015-06-10 |
CN102822393A (zh) | 2012-12-12 |
FR2958300A1 (fr) | 2011-10-07 |
JP2013524011A (ja) | 2013-06-17 |
WO2011121240A1 (fr) | 2011-10-06 |
EP2553148B1 (fr) | 2014-01-08 |
JP5764650B2 (ja) | 2015-08-19 |
FR2958300B1 (fr) | 2012-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7098606B2 (ja) | ワークピース上に積層コーティングを提供するためのプロセス、およびそれから製造される物品 | |
Hakimizad et al. | Effects of pulse current mode on plasma electrolytic oxidation of 7075 Al in Na2WO4 containing solution: From unipolar to soft-sparking regime | |
Ibrahim et al. | Role of glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath | |
Gamburg et al. | Theory and practice of metal electrodeposition | |
Fashu et al. | Electrodeposition, morphology, composition, and corrosion performance of Zn-Mn coatings from a deep eutectic solvent | |
US8795504B2 (en) | Electrodeposition of platinum/iridium (Pt/Ir) on Pt microelectrodes with improved charge injection properties | |
Chai et al. | Microstructural characterization and corrosion behaviors of Ni-Cu-Co coatings electrodeposited in sulphate-citrate bath with additives | |
US20130008797A1 (en) | Device and process for controlling the efficiency of a metal electrodeposition bath | |
Jinsong et al. | Preparation of Copper-Based Superhydrophobic Surfaces by Jet-Electrodeposition | |
Shekhanov et al. | Effect of surfactants on electrodeposition of the Sn–Ni alloy from oxalate solutions | |
Bhat et al. | Development of nano-structured cyclic multilayer Zn-Ni alloy coatings using triangular current pulses | |
Seleim et al. | Electroplating in steel in presence of isopropanol-water mixture | |
JP2013524011A5 (zh) | ||
Dzedzina et al. | Effect of Additive on the Internal Stress in Galvanic Coatings | |
Safizadeh et al. | Monitoring passivation of Cu–Sb and Cu–Pb anodes during electrorefining employing electrochemical noise analyses | |
US7022212B2 (en) | Micro structured electrode and method for monitoring wafer electroplating baths | |
US5425870A (en) | Multipurpose electrolytic meter | |
JP6011874B2 (ja) | めっき液に含まれる抑制剤の評価方法 | |
Abdel-Rahman et al. | The effect of aromatic and aliphatic amines on copper electrowinning from acidic sulphate electrolyte | |
AU655096B2 (en) | Electrode and method for measuring levelling power | |
KR102373893B1 (ko) | 도금 장치 및 도금 시스템 | |
Tan et al. | Characterising nonuniform electrodeposition and electrodissolution using the novel wire beam electrode method | |
RU2784898C1 (ru) | Модифицированная ячейка Хулла для гальваностатического и потенциостатического режимов электролиза | |
Kublanovsky et al. | Electrodeposition of palladium coatings from iminodiacetate electrolyte | |
Tan | Studying non-uniform electrodeposition using the wire beam electrode method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SNECMA, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAGRANGE, FREDERIC;MOLET, HERVE;REEL/FRAME:029039/0024 Effective date: 20120816 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: SAFRAN AIRCRAFT ENGINES, FRANCE Free format text: CHANGE OF NAME;ASSIGNOR:SNECMA;REEL/FRAME:046479/0807 Effective date: 20160803 |
|
AS | Assignment |
Owner name: SAFRAN AIRCRAFT ENGINES, FRANCE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE COVER SHEET TO REMOVE APPLICATION NOS. 10250419, 10786507, 10786409, 12416418, 12531115, 12996294, 12094637 12416422 PREVIOUSLY RECORDED ON REEL 046479 FRAME 0807. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:SNECMA;REEL/FRAME:046939/0336 Effective date: 20160803 |