US20120145358A1 - Thinned flat plate heat pipe fabricated by extrusion - Google Patents
Thinned flat plate heat pipe fabricated by extrusion Download PDFInfo
- Publication number
- US20120145358A1 US20120145358A1 US13/287,193 US201113287193A US2012145358A1 US 20120145358 A1 US20120145358 A1 US 20120145358A1 US 201113287193 A US201113287193 A US 201113287193A US 2012145358 A1 US2012145358 A1 US 2012145358A1
- Authority
- US
- United States
- Prior art keywords
- flat plate
- hole
- heat pipe
- plate heat
- thinned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001125 extrusion Methods 0.000 title claims abstract description 9
- 239000012530 fluid Substances 0.000 claims abstract description 26
- 239000012528 membrane Substances 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 7
- 238000004049 embossing Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 20
- 239000010409 thin film Substances 0.000 abstract description 9
- 238000001816 cooling Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/48—Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
- H01L21/4814—Conductive parts
- H01L21/4871—Bases, plates or heatsinks
- H01L21/4878—Mechanical treatment, e.g. deforming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/08—Making wire, bars, tubes
- B21C23/085—Making tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/046—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/12—Elements constructed in the shape of a hollow panel, e.g. with channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2255/00—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
- F28F2255/16—Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49353—Heat pipe device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4935—Heat exchanger or boiler making
- Y10T29/49355—Solar energy device making
Definitions
- the present disclosure relates to a thinned flat plate heat pipe fabricated by extrusion. More particularly, the present disclosure relates to a thinned flat plate heat pipe that has a thin flat shape in which a predetermined through-hole is formed therein and includes a plurality of grooves having one or more edges formed on the inner surface of the through-hole to allow a liquid working fluid to flow by capillary force generated from the edge so as to further improve heat-transfer performance.
- the plurality of grooves are not formed throughout the inner surface of the through-hole but on only a part of one side or both side surfaces of the through-hole in order to ensure a steam flowing space which is a very important factor in the heat-transfer performance.
- the present disclosure relates to a thinned flat plate heat pipe which can be variously applied to electronic equipment having a small-sized and thin-film structure and the thinned flat plate heat pipe structure according to the exemplary embodiment of the present disclosure can be fabricated through a simple extrusion process, thereby further improving productivity.
- Chips and systems packaged in electronic equipment have gradually been high-integrated and miniaturized with the development of a semiconductor manufacturing technology. Following this trend, since heat emission density of components included in the electronic equipments is significantly increased, a cooling mechanism for effectively dissipating the emitted heat is required. In particular, since the electronic equipments are thinned together with miniaturization, an adopted cooling device also needs to be small-sized and thinned.
- a heat sink, a fan, and a small-sized heat pipe having a circular cross section having a diameter of 3 mm or more may be used.
- the heat sink can be fabricated with flexible sizes and thicknesses, the heat sink has been widely used as a basic form of a cooling means in the meantime.
- a heat dissipation rate is relatively low with a decrease in a heat-transfer area.
- the fan is limited in fabricating the fan with the micro size and reliability is relatively low.
- the small-sized heat pipe having the circular structure cross section with the diameter of 3 mm or more may be crimped and used to be suitable for the thin film structure.
- the small-sized heat pipe having the circular structure cross section has a cross section which is initially designed in a circular shape, when the small-sized heat pipe is crimped to be suitable for electronic equipment having the small-sized and thin-film structure, the heat-transfer performance is significantly reduced due to a structural change of a wick.
- the present disclosure has been made in an effort to provide a thinned flat plate heat pipe that has a thin flat shape in which a predetermined through-hole is formed therein and includes a plurality of grooves having one or more edges formed on the inner surface of the through-hole to allow a liquid working fluid to flow by capillary force generated from the edge so as to further improve heat-transfer performance.
- the present disclosure has been made in an effort to provide a thinned flat plate heat pipe in which the plurality of grooves are not formed throughout the inner surface of the through-hole but on only a part of one side or both side surfaces of the through-hole in order to ensure a steam flowing space which is a very important factor in the heat-transfer performance of a thinned flat plate heat pipe structure, such that the thinned flat plate heat pipe structure is fabricated through a simple extrusion process to thereby further improve productivity and be variously applied to electronic equipment having small-sized and thin-film structure.
- An exemplary embodiment of the present disclosure provides a thinned flat plate heat pipe including: a body part having a flat plate shape; a through-hole formed in the longitudinal direction of the body part; and one or more grooves formed on at least one side of the inner wall of the through-hole and allowing a working fluid to flow.
- Another exemplary embodiment of the present disclosure provides a method for fabricating a thinned flat plate heat pipe, including: forming a body part having a flat plate shape by using an extrusion process; forming a through-hole in the longitudinal direction of the body part; and forming one or more grooves allowing a working fluid to flow on at least one side of an inner wall of the through-hole.
- a thinned flat plate heat pipe that has a thin flat shape in which a predetermined through-hole is formed therein and includes a small number of grooves having one or more edges formed on the inner surface of the through-hole to allow a liquid working fluid to flow by capillary force generated from the edge, such that the excellent capillary force can be acquired through structural transformation of the heat pipe itself without an additional wick for allowing the liquid working fluid therein to flow and heat-transfer performance can be further improved.
- the thinned flat plate heat pipe is fabricated in a simple process to further improve productivity and be variously applied to small-sized and thin-film structure electronic equipments.
- a plurality of separation membranes are formed in one thinned flat plate heat pipe, such that a plurality of passages can be formed using one thinned flat plate heat pipe.
- the grooves are not formed throughout the inner surface of the through-hole but a small number of grooves are formed on only one side or both side surfaces of the through-hole, such that a relatively large steam flowing passage space can be ensured on the inner wall of the through-hole on which the groove is not formed and an interface friction flowing resistance between gas and liquid can be fundamentally removed to achieve high heat-transfer performance.
- the grooves are formed on only a part of the inner wall of the through-hole to implement the thinned flat plate heat pipe having a small thickness.
- the grooves are formed on only a part of the inner wall of the through-hole to implement the thinned flat plate heat pipe having the small thickness, but the capillary force required for liquid flowing may be difficult to generate due to the small number of grooves. Therefore, a very thin wire bundle is inserted into the small number of grooves formed at one side or both sides of the through-hole to generate significant capillary force.
- FIGS. 1A and 1B are a perspective view and a cross-sectional view for describing a thinned flat plate heat pipe according to a first exemplary embodiment of the present disclosure.
- FIGS. 2A and 2B are cross-sectional views for describing a thinned flat plate heat pipe according to a second exemplary embodiment of the present disclosure.
- FIG. 3 is a cross-sectional view for describing a thinned flat plate heat pipe according to a third exemplary embodiment of the present disclosure.
- FIGS. 4A and 4B are cross-sectional views for describing a thinned flat plate heat pipe according to a fourth exemplary embodiment of the present disclosure.
- FIG. 5 is a cross-sectional view for describing a thinned flat plate heat pipe according to a fifth exemplary embodiment of the present disclosure.
- FIGS. 6A and 6B are a cross-sectional view for describing a thinned flat plate heat pipe according to a sixth exemplary embodiment of the present disclosure.
- FIGS. 1A and 1B are a perspective view and a cross-sectional view for describing a thinned flat plate heat pipe according to a first exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipe has a thinned flat plate-shaped body part 100 .
- Flat plate-shaped body part 100 may be constituted by a pipe-type metallic plate fabricated using an extrusion process.
- a through-hole 101 having an empty space of a predetermined shape to transport a working fluid injected from the outside is formed in body part 100 .
- a plurality of ‘ ’-shaped grooves 102 extended in the same longitudinal direction as through-hole 101 are formed on the inner surface of through-hole 101 .
- Grooves 102 may be formed by concave spaces generated among a plurality of convex portions 103 formed on the inner surface of the through-hole 101 .
- Capillary force is generated by edges of a lower portion of ‘ ’-shaped groove 102 , such that a liquid working fluid flows.
- grooves 102 are not formed throughout the inner surface of each through-hole 101 but only one side surface of through-hole 101 .
- grooves 101 may be formed on only a left side surface of the first through-hole and the grooves 102 may be formed on only a right side surface of the second through-hole.
- An appropriate number of separation membranes 104 may be formed in through-hole 104 in order to form a plurality of passages.
- the liquid working fluid flows by the capillary force generated from the edges of plural ‘ ’-shaped grooves 102 formed in through-hole 101 , instead of a wick in the related art serving as a passage for allowing the liquid working fluid to flow (return) from a condenser section to an evaporator section. That is, an edge part of each ‘ ’-shaped groove 102 may serve as the wick in the related art.
- the edge part of groove 102 may have a polygonal structure having edges to allow the working fluid to flow and may have various shapes such as a triangular shape, a rectangular shape, a trapezoidal shape, a hemispherical shape, and a parabolic shape.
- FIGS. 2A and 2B are cross-sectional views for describing a thinned flat plate heat pipe according to a second exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipe according to the second exemplary embodiment of the present disclosure is constituted by a thinned flat plate shaped body part 200 similarly as in the first exemplary embodiment of the present disclosure.
- a through-hole 201 having an empty space of a predetermined shape to transport the working fluid injected from the outside is formed in body part 200 and a plurality of ‘ ’-shaped grooves 202 extended in the same longitudinal direction as through-hole 201 are formed on the inner surface of through-hole 201 .
- ‘ ’-shaped groove 202 is formed by a plurality of convex portions 203 formed on the inner surface of through-hole 201 .
- the capillary force is generated by edges of a lower portion of ‘ ’-shaped groove 202 , such that the liquid working fluid flows.
- An appropriate number of separation membranes 204 may be formed in through-hole 204 in order to form a plurality of passages.
- plural grooves 202 extended in the longitudinal direction are formed on the inner surface of through-hole 201 , however, grooves 202 are not formed throughout the inner surface of through-hole 201 but both side surfaces of through-hole 201 .
- grooves 202 extended in the longitudinal direction are formed on the inner surface of through-hole 201 , however, grooves 202 are not formed throughout the inner surface of through-hole 201 but only one side surface of through-hole 201 and grooves 202 are formed in the same direction for each through-hole 201 .
- groove 202 may be formed on only a left surface of through-hole 201 .
- the thinned flat plate heat pipe according to the second exemplary embodiment of the present disclosure has the same operations and effects as the first exemplary embodiment of the present disclosure, a detailed description thereof may refer to the first exemplary embodiment of the present disclosure.
- FIG. 3 is a cross-sectional view for describing a thinned flat plate heat pipe according to a third exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipe according to the third exemplary embodiment of the present disclosure is constituted by a thinned flat plate shaped body part 300 similarly as in the first and second exemplary embodiments of the present disclosure.
- the thinned flat plate heat pipe according to the third exemplary embodiment of the present disclosure basically has the same structure and function as the first and second exemplary embodiments.
- grooves 302 are formed as intaglio on the wall surface of a through-hole 301 . Therefore, the capillary force is generated by edges formed in a lower portion of groove 302 formed as intaglio between portions not dug as intaglio on the wall surface of the through-hole 301 , such that the liquid working fluid flows.
- the thicknesses of the walls of the through-holes 101 and 201 are relatively thin to significantly ensure a steam flowing space
- the thickness of the wall of through-hole 301 is relatively thick to make the structure of the thinned flat plate heat pipe strong.
- the thinned flat plate heat pipe according to the third exemplary embodiment of the present disclosure has the same operations and effects as the first and second exemplary embodiments of the present disclosure, a detailed description thereof can refer to the first and second exemplary embodiments of the present disclosure.
- FIGS. 4A and 4B are cross-sectional views for describing a thinned flat plate heat pipe according to a fourth exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipe according to the fourth exemplary embodiment of the present disclosure is constituted by a thinned flat plate-shaped body part 400 similarly as in the first, second, and third exemplary embodiments of the present disclosure.
- the thinned flat plate heat pipe according to the fourth exemplary embodiment of the present disclosure basically has the same structure and function as the first, second, and third exemplary embodiments.
- grooves 402 in a through-hole 401 have cross sections which have not a quadrangular shape but a ‘V’ shape.
- the grooves formed in through-hole 401 may have various shapes such as the triangular shape, a spire shape, the rectangular shape, the trapezoidal shape, the hemispherical shape, and the parabolic shape.
- a trapezoidal convex portion 403 is formed in through-hole 401 as intaglio, such that ‘V’-shaped groove 402 is formed between convex portions 403 .
- ‘V’-shaped groove 402 is formed in through-hole 401 as intaglio.
- An appropriate number of separation membranes 404 may be formed in through-hole 401 in order to form a plurality of passages.
- the thinned flat plate heat pipe according to the fourth exemplary embodiment of the present disclosure has the same operations and effects as the first, second, and third exemplary embodiments of the present disclosure, a detailed description thereof can refer to the first, second, and third exemplary embodiments of the present disclosure.
- FIG. 5 is a cross-sectional view and a partially enlarged diagram for describing a thinned flat plate heat pipe according to a fifth exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipe according to the fifth exemplary embodiment of the present disclosure is constituted by a thinned flat plate-shaped body part 500 .
- the flat plate-shaped body part 500 may be configured as a pipe-type metallic plate fabricated using the extrusion process. Further, a through-hole 501 having an empty space of a predetermined shape is formed in body part 500 to transport the working fluid injected from the outside.
- a small number of ‘ ’-shaped grooves 502 extended in the same longitudinal direction as through-hole 501 are formed on the inner surface of through-hole 501 .
- an appropriate number of separation membranes 504 may be formed in through-hole 504 in order to form a plurality of passages.
- Groove 502 is formed by a space between convex portion 503 and separation membrane 504 formed on the inner surface of through-hole 501 .
- each one ‘ ’-shaped groove 502 may be formed by one convex portion 503 formed on one side surface of each through-hole 501 .
- wires 505 are inserted into ‘ ’-shaped groove 502 and the capillary force is generated through a gap formed between wires 505 , such that the liquid working fluid can flow more effectively.
- Several strands of wires 505 may have a circular bundle shape.
- the liquid working fluid flows by the capillary force generated by the gap of the strand of wires 505 installed inside ‘ ’-shaped groove 502 in each through-hole, instead of the wick in the related art serving as the passage for allowing the liquid working fluid to flow (return) from the condenser section to the evaporator section.
- the internal heat is emitted to the outside caused by the phase changes between gas and liquid caused by the injected liquid working fluid while the vacuum state is maintained in the heat pipe.
- FIGS. 6A and 6B are a cross-sectional view for describing a thinned flat plate heat pipe according to a sixth exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipe according to the sixth exemplary embodiment of the present disclosure is constituted by a thinned flat plate-shaped body part 600 similarly as in the fifth exemplary embodiment of the present disclosure.
- a through-hole 601 having an empty space of a predetermined shape is formed in body part 600 to transport the working fluid injected from the outside and an appropriate number of separation membranes 604 may be formed in through-hole 601 in order to form a plurality of passages.
- a small number of ‘ ’-shaped grooves 602 extended in the same longitudinal direction as through-hole 601 are formed on the inner surface of through-hole 601 .
- Groove 602 is formed by a space between convex portion 603 and separation membrane 604 formed on the inner surface of through-hole 601 .
- the liquid working fluid flows by the capillary force generated from a gap between the strand of wires 605 installed inside ‘ ’-shaped grooves 602 .
- small number of grooves 602 extended in the longitudinal direction are formed on the inner surface of through-hole 601 , however, grooves 602 are not formed throughout the inner surface of through-hole 601 but both side surfaces of through-hole 601 .
- small number of grooves 602 extended in the longitudinal direction are formed on the inner surface of through-hole 601 , however, grooves 602 are not formed throughout the inner surface of through-hole 601 but one side surface of through-hole 601 in a predetermined direction.
- the flat plate heat pipe according to the sixth exemplary embodiment of the present disclosure has the same operations and effects as the fifth exemplary embodiment of the present disclosure, a detailed description thereof can refer to the fifth exemplary embodiment of the present disclosure.
- the thinned flat plate heat pipes according to the first to sixth exemplary embodiment of the present disclosure have minute and excellent heat dissipation and heat-transfer performance with the thickness of approximately 2 mm or less, the thinned flat plate heat pipes may be effectively used as cooling means of electronic apparatuses having small-sized and thin-film structure.
- grooves 102 to 602 according to the first to sixth exemplary embodiments of the present disclosure have the ‘ ’ and ‘V’ shapes, but are not limited thereto and can be modified to various shapes to have one or more edge parts in grooves 102 to 602 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Disclosed is a thinned flat plate heat pipe fabricated by extrusion and provides a thinned flat plate heat pipe including: a body part having a flat plate shape; a through-hole formed in the longitudinal direction of the body part; and one or more grooves formed on at least one side of an inner wall of the through-hole and allowing a working fluid to flow. According to exemplary embodiments of the present disclosure, a relative wide steam flowing space can be ensured and an interface friction flowing resistance between gas and liquid can be further reduced through portions without the groove and the thickness of the thinned flat plate heat pipe can be maximally reduced, a thin-film type cooling element having a simple structure and a low manufacturing cost can be fabricated.
Description
- This application is based on and claims priority from Korean Patent Application No. 10-2010-0126778, filed on Dec. 13, 2010, with the Korean Intellectual Property Office, the present disclosure of which is incorporated herein in its entirety by reference.
- The present disclosure relates to a thinned flat plate heat pipe fabricated by extrusion. More particularly, the present disclosure relates to a thinned flat plate heat pipe that has a thin flat shape in which a predetermined through-hole is formed therein and includes a plurality of grooves having one or more edges formed on the inner surface of the through-hole to allow a liquid working fluid to flow by capillary force generated from the edge so as to further improve heat-transfer performance. Further, in the present disclosure, in a thinned flat plate heat pipe structure, the plurality of grooves are not formed throughout the inner surface of the through-hole but on only a part of one side or both side surfaces of the through-hole in order to ensure a steam flowing space which is a very important factor in the heat-transfer performance.
- The present disclosure relates to a thinned flat plate heat pipe which can be variously applied to electronic equipment having a small-sized and thin-film structure and the thinned flat plate heat pipe structure according to the exemplary embodiment of the present disclosure can be fabricated through a simple extrusion process, thereby further improving productivity.
- Chips and systems packaged in electronic equipment have gradually been high-integrated and miniaturized with the development of a semiconductor manufacturing technology. Following this trend, since heat emission density of components included in the electronic equipments is significantly increased, a cooling mechanism for effectively dissipating the emitted heat is required. In particular, since the electronic equipments are thinned together with miniaturization, an adopted cooling device also needs to be small-sized and thinned.
- As an example of the cooling device in the related art which can be adopted in the miniaturized electronic equipment, a heat sink, a fan, and a small-sized heat pipe having a circular cross section having a diameter of 3 mm or more may be used.
- First, since the heat sink can be fabricated with flexible sizes and thicknesses, the heat sink has been widely used as a basic form of a cooling means in the meantime. However, when a significant micro size is required, a heat dissipation rate is relatively low with a decrease in a heat-transfer area.
- Second, the fan is limited in fabricating the fan with the micro size and reliability is relatively low.
- Third, the small-sized heat pipe having the circular structure cross section with the diameter of 3 mm or more may be crimped and used to be suitable for the thin film structure. However, since the small-sized heat pipe having the circular structure cross section has a cross section which is initially designed in a circular shape, when the small-sized heat pipe is crimped to be suitable for electronic equipment having the small-sized and thin-film structure, the heat-transfer performance is significantly reduced due to a structural change of a wick.
- Accordingly, a thin-film type minute heat pipe of approximately 1 mm or less suitable for the electronic equipment having the small-sized and thin-film structure has been required to be developed.
- The present disclosure has been made in an effort to provide a thinned flat plate heat pipe that has a thin flat shape in which a predetermined through-hole is formed therein and includes a plurality of grooves having one or more edges formed on the inner surface of the through-hole to allow a liquid working fluid to flow by capillary force generated from the edge so as to further improve heat-transfer performance.
- Further, the present disclosure has been made in an effort to provide a thinned flat plate heat pipe in which the plurality of grooves are not formed throughout the inner surface of the through-hole but on only a part of one side or both side surfaces of the through-hole in order to ensure a steam flowing space which is a very important factor in the heat-transfer performance of a thinned flat plate heat pipe structure, such that the thinned flat plate heat pipe structure is fabricated through a simple extrusion process to thereby further improve productivity and be variously applied to electronic equipment having small-sized and thin-film structure.
- An exemplary embodiment of the present disclosure provides a thinned flat plate heat pipe including: a body part having a flat plate shape; a through-hole formed in the longitudinal direction of the body part; and one or more grooves formed on at least one side of the inner wall of the through-hole and allowing a working fluid to flow.
- Another exemplary embodiment of the present disclosure provides a method for fabricating a thinned flat plate heat pipe, including: forming a body part having a flat plate shape by using an extrusion process; forming a through-hole in the longitudinal direction of the body part; and forming one or more grooves allowing a working fluid to flow on at least one side of an inner wall of the through-hole.
- According to exemplary embodiments of the present disclosure, a thinned flat plate heat pipe that has a thin flat shape in which a predetermined through-hole is formed therein and includes a small number of grooves having one or more edges formed on the inner surface of the through-hole to allow a liquid working fluid to flow by capillary force generated from the edge, such that the excellent capillary force can be acquired through structural transformation of the heat pipe itself without an additional wick for allowing the liquid working fluid therein to flow and heat-transfer performance can be further improved. And the thinned flat plate heat pipe is fabricated in a simple process to further improve productivity and be variously applied to small-sized and thin-film structure electronic equipments.
- Further, according to exemplary embodiments of the present disclosure, a plurality of separation membranes are formed in one thinned flat plate heat pipe, such that a plurality of passages can be formed using one thinned flat plate heat pipe.
- In addition, according to exemplary embodiments of the present disclosure, the grooves are not formed throughout the inner surface of the through-hole but a small number of grooves are formed on only one side or both side surfaces of the through-hole, such that a relatively large steam flowing passage space can be ensured on the inner wall of the through-hole on which the groove is not formed and an interface friction flowing resistance between gas and liquid can be fundamentally removed to achieve high heat-transfer performance. As described above, the grooves are formed on only a part of the inner wall of the through-hole to implement the thinned flat plate heat pipe having a small thickness.
- Moreover, in the exemplary embodiments of the present disclosure, the grooves are formed on only a part of the inner wall of the through-hole to implement the thinned flat plate heat pipe having the small thickness, but the capillary force required for liquid flowing may be difficult to generate due to the small number of grooves. Therefore, a very thin wire bundle is inserted into the small number of grooves formed at one side or both sides of the through-hole to generate significant capillary force.
- The foregoing summary is illustrative only and is not intended to be in any way limiting. In addition to the illustrative aspects, embodiments, and features described above, further aspects, embodiments, and features will become apparent by reference to the drawings and the following detailed description.
-
FIGS. 1A and 1B are a perspective view and a cross-sectional view for describing a thinned flat plate heat pipe according to a first exemplary embodiment of the present disclosure. -
FIGS. 2A and 2B are cross-sectional views for describing a thinned flat plate heat pipe according to a second exemplary embodiment of the present disclosure. -
FIG. 3 is a cross-sectional view for describing a thinned flat plate heat pipe according to a third exemplary embodiment of the present disclosure. -
FIGS. 4A and 4B are cross-sectional views for describing a thinned flat plate heat pipe according to a fourth exemplary embodiment of the present disclosure. -
FIG. 5 is a cross-sectional view for describing a thinned flat plate heat pipe according to a fifth exemplary embodiment of the present disclosure. -
FIGS. 6A and 6B are a cross-sectional view for describing a thinned flat plate heat pipe according to a sixth exemplary embodiment of the present disclosure. - In the following detailed description, reference is made to the accompanying drawing, which form a part hereof. The illustrative embodiments described in the detailed description, drawing, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.
- Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
-
FIGS. 1A and 1B are a perspective view and a cross-sectional view for describing a thinned flat plate heat pipe according to a first exemplary embodiment of the present disclosure. - Referring to
FIG. 1A , the thinned flat plate heat pipe has a thinned flat plate-shaped body part 100. Flat plate-shaped body part 100 may be constituted by a pipe-type metallic plate fabricated using an extrusion process. - Referring to
FIG. 1B , a through-hole 101 having an empty space of a predetermined shape to transport a working fluid injected from the outside is formed inbody part 100. - Referring to
FIGS. 1A and 1B , a plurality of ‘’-shaped grooves 102 extended in the same longitudinal direction as through-hole 101 are formed on the inner surface of through-hole 101.Grooves 102 may be formed by concave spaces generated among a plurality ofconvex portions 103 formed on the inner surface of the through-hole 101. Capillary force is generated by edges of a lower portion of ‘’-shaped groove 102, such that a liquid working fluid flows. - Referring to
FIGS. 1A and 1B ,grooves 102 are not formed throughout the inner surface of each through-hole 101 but only one side surface of through-hole 101. For example,grooves 101 may be formed on only a left side surface of the first through-hole and thegrooves 102 may be formed on only a right side surface of the second through-hole. - An appropriate number of
separation membranes 104 may be formed in through-hole 104 in order to form a plurality of passages. - As described above, in the thinned flat plate heat pipe according to the first exemplary embodiment of the present disclosure, the liquid working fluid flows by the capillary force generated from the edges of plural ‘’-shaped
grooves 102 formed in through-hole 101, instead of a wick in the related art serving as a passage for allowing the liquid working fluid to flow (return) from a condenser section to an evaporator section. That is, an edge part of each ‘’-shapedgroove 102 may serve as the wick in the related art. - The edge part of
groove 102 may have a polygonal structure having edges to allow the working fluid to flow and may have various shapes such as a triangular shape, a rectangular shape, a trapezoidal shape, a hemispherical shape, and a parabolic shape. - In the thinned flat plate heat pipe according to the first exemplary embodiment of the present disclosure configured as above, internal heat is emitted to the outside caused by the phase changes between gas and liquid caused by the injected liquid working fluid while a vacuum state is maintained in the heat pipe.
-
FIGS. 2A and 2B are cross-sectional views for describing a thinned flat plate heat pipe according to a second exemplary embodiment of the present disclosure. - Referring to
FIGS. 2A and 2B , the thinned flat plate heat pipe according to the second exemplary embodiment of the present disclosure is constituted by a thinned flat plate shapedbody part 200 similarly as in the first exemplary embodiment of the present disclosure. - A through-
hole 201 having an empty space of a predetermined shape to transport the working fluid injected from the outside is formed inbody part 200 and a plurality of ‘’-shapedgrooves 202 extended in the same longitudinal direction as through-hole 201 are formed on the inner surface of through-hole 201. ‘’-shapedgroove 202 is formed by a plurality ofconvex portions 203 formed on the inner surface of through-hole 201. -
- An appropriate number of
separation membranes 204 may be formed in through-hole 204 in order to form a plurality of passages. - In the thinned flat plate heat pipe shown in
FIG. 2A ,plural grooves 202 extended in the longitudinal direction are formed on the inner surface of through-hole 201, however,grooves 202 are not formed throughout the inner surface of through-hole 201 but both side surfaces of through-hole 201. - In the thinned flat plate heat pipe shown in
FIG. 2B ,plural grooves 202 extended in the longitudinal direction are formed on the inner surface of through-hole 201, however,grooves 202 are not formed throughout the inner surface of through-hole 201 but only one side surface of through-hole 201 andgrooves 202 are formed in the same direction for each through-hole 201. For example, as shown inFIG. 2B , groove 202 may be formed on only a left surface of through-hole 201. - Meanwhile, since the thinned flat plate heat pipe according to the second exemplary embodiment of the present disclosure has the same operations and effects as the first exemplary embodiment of the present disclosure, a detailed description thereof may refer to the first exemplary embodiment of the present disclosure.
-
FIG. 3 is a cross-sectional view for describing a thinned flat plate heat pipe according to a third exemplary embodiment of the present disclosure. - Referring to
FIG. 3 , the thinned flat plate heat pipe according to the third exemplary embodiment of the present disclosure is constituted by a thinned flat plate shapedbody part 300 similarly as in the first and second exemplary embodiments of the present disclosure. - The thinned flat plate heat pipe according to the third exemplary embodiment of the present disclosure basically has the same structure and function as the first and second exemplary embodiments. However,
grooves 302 are formed as intaglio on the wall surface of a through-hole 301. Therefore, the capillary force is generated by edges formed in a lower portion ofgroove 302 formed as intaglio between portions not dug as intaglio on the wall surface of the through-hole 301, such that the liquid working fluid flows. - In the first and second exemplary embodiments, as
grooves convex portions holes groove 302 is fabricated as intaglio, the thickness of the wall of through-hole 301 is relatively thick to make the structure of the thinned flat plate heat pipe strong. - In the meantime, since the thinned flat plate heat pipe according to the third exemplary embodiment of the present disclosure has the same operations and effects as the first and second exemplary embodiments of the present disclosure, a detailed description thereof can refer to the first and second exemplary embodiments of the present disclosure.
-
FIGS. 4A and 4B are cross-sectional views for describing a thinned flat plate heat pipe according to a fourth exemplary embodiment of the present disclosure. - Referring to
FIGS. 4A and 4B , the thinned flat plate heat pipe according to the fourth exemplary embodiment of the present disclosure is constituted by a thinned flat plate-shapedbody part 400 similarly as in the first, second, and third exemplary embodiments of the present disclosure. - The thinned flat plate heat pipe according to the fourth exemplary embodiment of the present disclosure basically has the same structure and function as the first, second, and third exemplary embodiments. However,
grooves 402 in a through-hole 401 have cross sections which have not a quadrangular shape but a ‘V’ shape. Besides, the grooves formed in through-hole 401 may have various shapes such as the triangular shape, a spire shape, the rectangular shape, the trapezoidal shape, the hemispherical shape, and the parabolic shape. - In the thinned flat plate heat pipe shown in
FIG. 4A , a trapezoidalconvex portion 403 is formed in through-hole 401 as intaglio, such that ‘V’-shapedgroove 402 is formed betweenconvex portions 403. Meanwhile, in the thinned flat plate heat pipe shown inFIG. 4B , ‘V’-shapedgroove 402 is formed in through-hole 401 as intaglio. - An appropriate number of
separation membranes 404 may be formed in through-hole 401 in order to form a plurality of passages. - Meanwhile, since the thinned flat plate heat pipe according to the fourth exemplary embodiment of the present disclosure has the same operations and effects as the first, second, and third exemplary embodiments of the present disclosure, a detailed description thereof can refer to the first, second, and third exemplary embodiments of the present disclosure.
-
FIG. 5 is a cross-sectional view and a partially enlarged diagram for describing a thinned flat plate heat pipe according to a fifth exemplary embodiment of the present disclosure. - Referring to
FIG. 5 , the thinned flat plate heat pipe according to the fifth exemplary embodiment of the present disclosure is constituted by a thinned flat plate-shapedbody part 500. - The flat plate-shaped
body part 500 may be configured as a pipe-type metallic plate fabricated using the extrusion process. Further, a through-hole 501 having an empty space of a predetermined shape is formed inbody part 500 to transport the working fluid injected from the outside. - A small number of ‘’-shaped
grooves 502 extended in the same longitudinal direction as through-hole 501 are formed on the inner surface of through-hole 501. Further, an appropriate number ofseparation membranes 504 may be formed in through-hole 504 in order to form a plurality of passages.Groove 502 is formed by a space betweenconvex portion 503 andseparation membrane 504 formed on the inner surface of through-hole 501. - Referring to
FIG. 5 , small number ofgrooves 502 extended in the longitudinal direction are formed on the inner surface of through-hole 501, however, grooves 5 are not formed throughout the inner surface of through-hole 501 but only one side surface of through-hole 501. For example, as shown inFIG. 5 , each one ‘’-shapedgroove 502 may be formed by oneconvex portion 503 formed on one side surface of each through-hole 501. -
- As described above, in the thinned flat plate heat pipe according to the fifth exemplary embodiment of the present disclosure, the liquid working fluid flows by the capillary force generated by the gap of the strand of
wires 505 installed inside ‘’-shapedgroove 502 in each through-hole, instead of the wick in the related art serving as the passage for allowing the liquid working fluid to flow (return) from the condenser section to the evaporator section. - In the thinned flat plate heat pipe according to the fifth exemplary embodiment of the present disclosure configured as above, the internal heat is emitted to the outside caused by the phase changes between gas and liquid caused by the injected liquid working fluid while the vacuum state is maintained in the heat pipe.
-
FIGS. 6A and 6B are a cross-sectional view for describing a thinned flat plate heat pipe according to a sixth exemplary embodiment of the present disclosure. - Referring to
FIGS. 6A and 6B , the thinned flat plate heat pipe according to the sixth exemplary embodiment of the present disclosure is constituted by a thinned flat plate-shapedbody part 600 similarly as in the fifth exemplary embodiment of the present disclosure. - A through-
hole 601 having an empty space of a predetermined shape is formed inbody part 600 to transport the working fluid injected from the outside and an appropriate number ofseparation membranes 604 may be formed in through-hole 601 in order to form a plurality of passages. -
-
- Referring to
FIG. 6A , small number ofgrooves 602 extended in the longitudinal direction are formed on the inner surface of through-hole 601, however,grooves 602 are not formed throughout the inner surface of through-hole 601 but both side surfaces of through-hole 601. - Referring to
FIG. 6B , small number ofgrooves 602 extended in the longitudinal direction are formed on the inner surface of through-hole 601, however,grooves 602 are not formed throughout the inner surface of through-hole 601 but one side surface of through-hole 601 in a predetermined direction. - Meanwhile, since the flat plate heat pipe according to the sixth exemplary embodiment of the present disclosure has the same operations and effects as the fifth exemplary embodiment of the present disclosure, a detailed description thereof can refer to the fifth exemplary embodiment of the present disclosure.
- As described above, since the thinned flat plate heat pipes according to the first to sixth exemplary embodiment of the present disclosure have minute and excellent heat dissipation and heat-transfer performance with the thickness of approximately 2 mm or less, the thinned flat plate heat pipes may be effectively used as cooling means of electronic apparatuses having small-sized and thin-film structure.
- Although the flat plate heat pipe according to the exemplary embodiments of the present disclosure has been described, various modifications can be made within the scopes of the appended claims, the detailed description of the present disclosure, and the accompanying drawings are also included in the present disclosure.
-
- From the foregoing, it will be appreciated that various embodiments of the present disclosure have been described herein for purposes of illustration, and that various modifications may be made without departing from the scope and spirit of the present disclosure. Accordingly, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
Claims (14)
1. A thinned flat plate heat pipe, comprising:
a body part having a flat plate shape;
a through-hole formed in the longitudinal direction of the body part; and
one or more grooves formed on at least one side of inner wall of the through-hole and allowing a working fluid to flow.
2. The thinned flat plate heat pipe of claim 1 , wherein an inside of the through-hole is maintained in a vacuum state.
3. The thinned flat plate heat pipe of claim 1 , wherein the groove is formed on the inner wall of the through hole by intaglio or embossing.
4. The thinned flat plate heat pipe of claim 1 , wherein the groove is a concave space formed between one or more convex portions formed on the inner wall of the through-hole.
5. The thinned flat plate heat pipe of claim 1 , wherein a cross section of the groove has a polygonal structure having edges to generate capillary force in the working fluid.
6. The thinned flat plate heat pipe of claim 5 , wherein the polygonal structure includes triangular, spire, rectangular and trapezoidal shapes.
7. The thinned flat plate heat pipe of claim 1 , wherein the through-hole is separated into a plurality of through-holes by one or more separation membranes.
8. The thinned flat plate heat pipe of claim 7 , wherein all of the grooves formed in each through-hole divided by the separation membranes are formed only in the same direction at the inner wall side of each through-hole.
9. The thinned flat plate heat pipe of claim 7 , wherein the groove is the concave space formed between the convex portion formed on the inner wall of the through-hole and the separation membrane.
10. The thinned flat plate heat pipe of claim 1 , wherein a bundle of wires is formed in the groove.
11. A method for fabricating a thinned flat plate heat pipe, comprising:
forming a body part having a flat plate shape by using an extrusion process;
forming a through-hole in the longitudinal direction of the body part; and
forming one or more grooves on at least one side of an inner wall of the through-hole to allow a working fluid to flow
12. The method of claim 11 , further comprising forming one or more separation membranes for separating the through-hole into a plurality of through-holes.
13. The method of claim 11 , further comprising forming a bundle of wires in the groove.
14. The method of claim 11 , wherein the forming of the one or more grooves includes forming one or more convex portions on the inner wall of the through-hole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/825,412 US20150348802A1 (en) | 2010-12-13 | 2015-08-13 | Thinned flat plate heat pipe fabricated by extrusion |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100126778A KR20120065575A (en) | 2010-12-13 | 2010-12-13 | Thinned flat plate heat pipe fabricated by extrusion |
KR10-2010-0126778 | 2010-12-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/825,412 Division US20150348802A1 (en) | 2010-12-13 | 2015-08-13 | Thinned flat plate heat pipe fabricated by extrusion |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120145358A1 true US20120145358A1 (en) | 2012-06-14 |
Family
ID=46198128
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/287,193 Abandoned US20120145358A1 (en) | 2010-12-13 | 2011-11-02 | Thinned flat plate heat pipe fabricated by extrusion |
US14/825,412 Abandoned US20150348802A1 (en) | 2010-12-13 | 2015-08-13 | Thinned flat plate heat pipe fabricated by extrusion |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/825,412 Abandoned US20150348802A1 (en) | 2010-12-13 | 2015-08-13 | Thinned flat plate heat pipe fabricated by extrusion |
Country Status (3)
Country | Link |
---|---|
US (2) | US20120145358A1 (en) |
JP (1) | JP5528419B2 (en) |
KR (1) | KR20120065575A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2998657A1 (en) * | 2012-11-28 | 2014-05-30 | Renault Sa | Reversible flat heat pipe for use in cooling or reheating plate of traction battery of e.g. electric vehicle, has wall whose surface comprises tear drop-shaped grooves, where axes of tear drop-shaped grooves are horizontal |
CN104457360A (en) * | 2015-01-02 | 2015-03-25 | 季弘 | Plate type heat pipe with capillary narrow clearances |
WO2015193683A1 (en) * | 2014-06-19 | 2015-12-23 | Flint Engineering Ltd | Heat transfer apparatus |
CN105793660A (en) * | 2013-12-05 | 2016-07-20 | Ttm株式会社 | Thin heat pipe having wicks of crisscross structure |
US9549486B2 (en) * | 2013-07-24 | 2017-01-17 | Asia Vital Components Co., Ltd. | Raised bodied vapor chamber structure |
CN106604621A (en) * | 2017-01-23 | 2017-04-26 | 苏州天脉导热科技有限公司 | Micro-channel aluminum vapor chamber |
US20170314871A1 (en) * | 2016-04-29 | 2017-11-02 | Intel Corporation | Wickless capillary driven constrained vapor bubble heat pipes for application in heat sinks |
US20170350657A1 (en) * | 2016-06-02 | 2017-12-07 | Tai-Sol Electronics Co., Ltd. | Heat spreader with a liquid-vapor separation structure |
CN107660099A (en) * | 2016-07-26 | 2018-02-02 | 东莞爵士先进电子应用材料有限公司 | Flat thin membrane type heat abstractor |
US20190017740A1 (en) * | 2016-04-14 | 2019-01-17 | Qingdao Haier Special Refrigerator Co., Ltd. | Temperature homogenizing container and refrigerator having same |
US20190215988A1 (en) * | 2018-01-05 | 2019-07-11 | Getac Technology Corporation | Vapor chamber and heat dissipation device |
US20190234692A1 (en) * | 2018-01-30 | 2019-08-01 | Shinko Electric Industries Co., Ltd. | Loop heat pipe |
EP3553445A1 (en) * | 2018-04-11 | 2019-10-16 | Commissariat à l'énergie atomique et aux énergies alternatives | Improved heat pipe with capillar structures having reentering slots |
US11009295B2 (en) * | 2015-10-29 | 2021-05-18 | Uacj Corporation | Extruded aluminum flat multi-hole tube and heat exchanger |
US11105562B2 (en) * | 2018-12-19 | 2021-08-31 | Shinko Electric Industries Co., Ltd. | Loop-type heat pipe |
US11215403B2 (en) * | 2015-01-22 | 2022-01-04 | Pimems, Inc. | High performance two-phase cooling apparatus |
US11333443B2 (en) * | 2018-09-25 | 2022-05-17 | Shinko Electric Industries Co., Ltd. | Loop heat pipe |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6121854B2 (en) * | 2013-09-18 | 2017-04-26 | 東芝ホームテクノ株式会社 | Sheet-type heat pipe or personal digital assistant |
CN104114010A (en) * | 2014-04-03 | 2014-10-22 | 东莞汉旭五金塑胶科技有限公司 | Uniform temperature plate with cooling fins |
CN105318753A (en) * | 2014-06-17 | 2016-02-10 | 珠海兴业新能源科技有限公司 | Independent phase change heat transfer type antifreezing corrosion-preventing heat pipe |
JP6057952B2 (en) * | 2014-07-09 | 2017-01-11 | 東芝ホームテクノ株式会社 | Sheet type heat pipe |
CN107835926A (en) * | 2015-06-19 | 2018-03-23 | 株式会社Innotm | Thin type heat pipe and its manufacture method |
KR102458425B1 (en) * | 2017-10-13 | 2022-10-27 | 한국전자통신연구원 | Heat dissipating device |
WO2019088301A1 (en) * | 2017-11-06 | 2019-05-09 | 大日本印刷株式会社 | Vapor chamber, electronic device, vapor chamber sheet, and methods for manufacturing vapor chamber sheet and vapor chamber |
JP7243135B2 (en) | 2018-01-22 | 2023-03-22 | 大日本印刷株式会社 | Vapor chambers, electronics, and sheets for vapor chambers |
CN110542327B (en) * | 2018-05-29 | 2021-05-28 | 佳世诠股份有限公司 | Flat plate-like heat exchanger and refrigerating apparatus |
DE102021120492A1 (en) * | 2021-08-06 | 2023-02-09 | Volkswagen Aktiengesellschaft | battery cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4322737A (en) * | 1979-11-20 | 1982-03-30 | Intel Corporation | Integrated circuit micropackaging |
US5871043A (en) * | 1994-09-06 | 1999-02-16 | Nippondenso Co., Ltd. | Cooling apparatus using boiling and condensing refrigerant |
US20080185128A1 (en) * | 2005-04-19 | 2008-08-07 | Seok Hwan Moon | Flat Plate-Type Heat Pipe |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58127091A (en) * | 1982-01-25 | 1983-07-28 | Fujikura Ltd | Long heat pipe for heat transport |
JPS6264421A (en) * | 1985-09-13 | 1987-03-23 | Kobe Steel Ltd | Manufacture of heat exchanger tube |
JP2656270B2 (en) * | 1987-11-30 | 1997-09-24 | 宇宙開発事業団 | Heat exchange equipment |
JP2596219Y2 (en) * | 1992-03-12 | 1999-06-07 | 株式会社東芝 | Flat heat pipe |
JPH08303970A (en) * | 1995-04-28 | 1996-11-22 | Fujikura Ltd | Flat heat pipe for cooling portable personal computer and its manufacturing method |
JP2003247791A (en) * | 2002-02-21 | 2003-09-05 | Fujikura Ltd | Heat pipe |
TWI285251B (en) * | 2005-09-15 | 2007-08-11 | Univ Tsinghua | Flat-plate heat pipe containing channels |
JP2007113864A (en) * | 2005-10-21 | 2007-05-10 | Sony Corp | Heat transport apparatus and electronic instrument |
JP4874664B2 (en) * | 2006-02-08 | 2012-02-15 | 株式会社フジクラ | heat pipe |
HUE029949T2 (en) * | 2008-11-03 | 2017-04-28 | Guangwei Hetong Energy Tech (Beijing) Co Ltd | Heat pipe with micro tubes array and making method thereof and heat exchanging system |
-
2010
- 2010-12-13 KR KR1020100126778A patent/KR20120065575A/en not_active Application Discontinuation
-
2011
- 2011-11-02 US US13/287,193 patent/US20120145358A1/en not_active Abandoned
- 2011-12-01 JP JP2011263796A patent/JP5528419B2/en not_active Expired - Fee Related
-
2015
- 2015-08-13 US US14/825,412 patent/US20150348802A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4322737A (en) * | 1979-11-20 | 1982-03-30 | Intel Corporation | Integrated circuit micropackaging |
US5871043A (en) * | 1994-09-06 | 1999-02-16 | Nippondenso Co., Ltd. | Cooling apparatus using boiling and condensing refrigerant |
US20080185128A1 (en) * | 2005-04-19 | 2008-08-07 | Seok Hwan Moon | Flat Plate-Type Heat Pipe |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2998657A1 (en) * | 2012-11-28 | 2014-05-30 | Renault Sa | Reversible flat heat pipe for use in cooling or reheating plate of traction battery of e.g. electric vehicle, has wall whose surface comprises tear drop-shaped grooves, where axes of tear drop-shaped grooves are horizontal |
US9549486B2 (en) * | 2013-07-24 | 2017-01-17 | Asia Vital Components Co., Ltd. | Raised bodied vapor chamber structure |
CN105793660A (en) * | 2013-12-05 | 2016-07-20 | Ttm株式会社 | Thin heat pipe having wicks of crisscross structure |
US10222132B2 (en) * | 2014-06-19 | 2019-03-05 | Flint Engineering Ltd. | Heat transfer apparatus |
WO2015193683A1 (en) * | 2014-06-19 | 2015-12-23 | Flint Engineering Ltd | Heat transfer apparatus |
US20170146300A1 (en) * | 2014-06-19 | 2017-05-25 | Flint Engineering Ltd. | Heat Transfer Apparatus |
GB2527338B (en) * | 2014-06-19 | 2018-11-07 | ECONOTHERM UK Ltd | Heat transfer apparatus |
CN104457360A (en) * | 2015-01-02 | 2015-03-25 | 季弘 | Plate type heat pipe with capillary narrow clearances |
US11215403B2 (en) * | 2015-01-22 | 2022-01-04 | Pimems, Inc. | High performance two-phase cooling apparatus |
US11009295B2 (en) * | 2015-10-29 | 2021-05-18 | Uacj Corporation | Extruded aluminum flat multi-hole tube and heat exchanger |
US20190017740A1 (en) * | 2016-04-14 | 2019-01-17 | Qingdao Haier Special Refrigerator Co., Ltd. | Temperature homogenizing container and refrigerator having same |
US10739061B2 (en) * | 2016-04-14 | 2020-08-11 | Qingdao Haier Special Refrigerator Co., Ltd. | Temperature homogenizing container and refrigerator having same |
EP3444552A4 (en) * | 2016-04-14 | 2019-11-20 | Qingdao Haier Special Refrigerator Co., Ltd | Temperature homogenizing container and refrigerator having same |
US20170314871A1 (en) * | 2016-04-29 | 2017-11-02 | Intel Corporation | Wickless capillary driven constrained vapor bubble heat pipes for application in heat sinks |
US11324139B2 (en) | 2016-04-29 | 2022-05-03 | Intel Corporation | Wickless capillary driven constrained vapor bubble heat pipes |
US10694641B2 (en) | 2016-04-29 | 2020-06-23 | Intel Corporation | Wickless capillary driven constrained vapor bubble heat pipes for application in electronic devices with various system platforms |
US10917994B2 (en) | 2016-04-29 | 2021-02-09 | Intel Corporation | Wickless capillary driven constrained vapor bubble heat pipes for application in rack servers |
US20170350657A1 (en) * | 2016-06-02 | 2017-12-07 | Tai-Sol Electronics Co., Ltd. | Heat spreader with a liquid-vapor separation structure |
CN107660099A (en) * | 2016-07-26 | 2018-02-02 | 东莞爵士先进电子应用材料有限公司 | Flat thin membrane type heat abstractor |
CN106604621A (en) * | 2017-01-23 | 2017-04-26 | 苏州天脉导热科技有限公司 | Micro-channel aluminum vapor chamber |
US20190215988A1 (en) * | 2018-01-05 | 2019-07-11 | Getac Technology Corporation | Vapor chamber and heat dissipation device |
US20190234692A1 (en) * | 2018-01-30 | 2019-08-01 | Shinko Electric Industries Co., Ltd. | Loop heat pipe |
US11193717B2 (en) * | 2018-01-30 | 2021-12-07 | Shinko Electric Industries Co., Ltd. | Loop heat pipe |
FR3080172A1 (en) * | 2018-04-11 | 2019-10-18 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | CAPILLARY PUMP HEAT PUMP WITH REENSITIVE GROOVES PROVIDING IMPROVED OPERATION |
EP3553445A1 (en) * | 2018-04-11 | 2019-10-16 | Commissariat à l'énergie atomique et aux énergies alternatives | Improved heat pipe with capillar structures having reentering slots |
US11333443B2 (en) * | 2018-09-25 | 2022-05-17 | Shinko Electric Industries Co., Ltd. | Loop heat pipe |
US11105562B2 (en) * | 2018-12-19 | 2021-08-31 | Shinko Electric Industries Co., Ltd. | Loop-type heat pipe |
Also Published As
Publication number | Publication date |
---|---|
JP2012127642A (en) | 2012-07-05 |
JP5528419B2 (en) | 2014-06-25 |
US20150348802A1 (en) | 2015-12-03 |
KR20120065575A (en) | 2012-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120145358A1 (en) | Thinned flat plate heat pipe fabricated by extrusion | |
KR100631050B1 (en) | Flat plate type heat pipe | |
US9179577B2 (en) | Flat heat pipe and fabrication method thereof | |
US20120145357A1 (en) | Thin plate heat pipe | |
US10082340B2 (en) | Heat pipe structure | |
US10107557B2 (en) | Integrated heat dissipation device | |
US20130213612A1 (en) | Heat pipe heat dissipation structure | |
US20140060780A1 (en) | Flat heat pipe and fabrication method thereof | |
US7011147B1 (en) | Heat pipe type circular radiator with sector cooling fins | |
JP2011138974A (en) | Heat sink | |
US20130105131A1 (en) | Flattened heat pipe | |
US9854706B2 (en) | Heat sink | |
US20130306274A1 (en) | Heat dissipation structure for heat dissipation unit | |
US20130175008A1 (en) | Thin heat pipe | |
KR101880533B1 (en) | Sintered flat panel heat dissipation structure comprising Aluminum powder | |
KR100609714B1 (en) | Micro heat pipe having a cross section of a polygon structure manufactured by extrusion and drawing process | |
US20130306275A1 (en) | Heat dissipation structure for heat dissipation device | |
US20150168082A1 (en) | Heat dissipating fin and heat dissipating device | |
KR102034041B1 (en) | Plate type heat pipe | |
US20200309465A1 (en) | Heat exchange device | |
JP2007180353A (en) | Heat sink | |
US20070285894A1 (en) | Heat sink | |
JP2005123260A (en) | Water-cooled heatsink | |
KR102368500B1 (en) | Flat Plate Type Heat Dissipation Device that Could be Separated to Cool Several Heat Sources Simultaneously | |
JP2008159757A (en) | Cooling structure of heat generating substance, and manufacturing method of same cooling structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOON, SEOK HWAN;REEL/FRAME:027160/0387 Effective date: 20110909 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |