US20120052271A1 - Two-step method for strengthening glass - Google Patents

Two-step method for strengthening glass Download PDF

Info

Publication number
US20120052271A1
US20120052271A1 US13/211,661 US201113211661A US2012052271A1 US 20120052271 A1 US20120052271 A1 US 20120052271A1 US 201113211661 A US201113211661 A US 201113211661A US 2012052271 A1 US2012052271 A1 US 2012052271A1
Authority
US
United States
Prior art keywords
glass
mol
cations
layer
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/211,661
Other languages
English (en)
Inventor
Sinue Gomez
Lisa Ann Lamberson
Robert Michael Morena
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Priority to US13/211,661 priority Critical patent/US20120052271A1/en
Assigned to CORNING INCORPORATED reassignment CORNING INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAMBERSON, LISA ANN, MORENA, ROBERT MICHAEL, GOMEZ, SINUE
Publication of US20120052271A1 publication Critical patent/US20120052271A1/en
Priority to US14/504,755 priority patent/US10227253B2/en
Priority to US16/295,685 priority patent/US11078106B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block
    • Y10T428/315Surface modified glass [e.g., tempered, strengthened, etc.]

Definitions

  • the disclosure relates to strengthened alkali aluminoborosilicate glasses. More particularly, the disclosure relates to a method of strengthening such glasses. Even more particularly, the disclosure relates to strengthening such glasses by ion exchange.
  • the ion exchange process can be used to strengthen alkali-containing glasses by creating compressive stress layers in the surface region of the glass.
  • lithium-containing aluminosilicate glasses are ion exchanged more readily than sodium-containing glasses and greater depths of compression can be obtained in lithium-containing aluminosilicate glasses at lower temperatures and shorter times.
  • such lithium-containing aluminosilicate glasses tend to have lower strain and anneal points, and lower temperatures are required for treatment to avoid structural relaxation.
  • the exchange of sodium for lithium in the glass results in lower surface compression—which translates into lower surface strength—when compared to the surface compression achieved with the exchange of potassium for sodium in the glass.
  • a method of strengthening an alkali aluminoborosilicate glass is provided.
  • a compressive layer extending from a surface of the glass to a depth of layer is formed by exchanging larger metal cations for smaller metal cations present in the glass.
  • metal cations in the glass are exchanged for larger metal cations to a second depth that is less than the depth of layer.
  • the second step increases the compressive stress of the compressive layer. For example, sodium cations are exchanged in the first step for lithium cations that are present in the glass to the depth of layer, and potassium cations are then exchanged in the second step for sodium cations and lithium cations in the glass to the second depth.
  • the exchange of the potassium cations for sodium and lithium cations increases the compressive stress of the layer. Formation of the compressive layer and replacement of cations with larger cations can be achieved by a two-step ion exchange process.
  • An alkali aluminoborosilicate glass having a compressive layer and a crack indentation threshold of at least 3000 gf is also provided.
  • one aspect of the disclosure is to provide a method of strengthening an alkali aluminoborosilicate glass.
  • the method comprises the steps of: providing an alkali aluminoborosilicate glass comprising alkali metal cations; forming a compressive layer extending from a surface of the glass to a depth of layer, wherein the compressive layer is under a compressive stress; and replacing at least a portion of the alkali metal cations with a larger alkali metal cation to a second depth that is less than the depth of layer, and wherein replacing the alkali metal cations with the larger alkali metal cation increases the compressive stress.
  • a second aspect of the disclosure is to provide a method of strengthening an alkali aluminoborosilicate glass.
  • the method comprises the steps of: providing the alkali aluminoborosilicate glass comprising lithium cations and sodium cations; replacing at least a portion of the lithium cations with sodium cations to form a compressive layer that extends from a surface of the glass to a depth of layer and is under compressive stress; and replacing at least a portion of the sodium cations and the lithium cations with potassium cations to a second depth that is less than the depth of layer, wherein the compressive layer is enriched in potassium cations to the second depth, and wherein replacing sodium cations and lithium cations with potassium cations increases the compressive stress of the compressive layer.
  • a third aspect of the disclosure is to provide an alkali aluminoborosilicate glass.
  • the glass comprises lithium cations, sodium cations, and potassium cations.
  • the glass has a surface having a compressive layer extending from the surface to a depth of layer and is enriched in potassium cations to a second depth that is less than the depth of layer.
  • the surface of the glass has a crack initiation threshold of at least 3000 gf upon indentation with a Vickers indenter.
  • FIG. 1 is a schematic cross-sectional view of a glass sheet, described herein, having strengthened surfaces
  • FIG. 2 is a plot of crack initiation loads obtained for alkali aluminoborosilicate glasses measured before strengthening and following strengthening by ion exchange processes;
  • FIG. 3 a is plot of Na 2 O concentration profile following the first step of a two-step ion exchange process.
  • FIG. 3 b is plot of K 2 O concentration profile following the second step of a two-step ion exchange process.
  • the term “enriched,” unless otherwise specified, means that the concentration of a specified element or ionic specie is greater than the average concentration of that element or ionic specie within the bulk of the glass.
  • glass refers to alkali aluminoborosilicate glasses, unless otherwise specified.
  • the method comprises the steps of: providing the alkali aluminoborosilicate glass; initially forming a compressive layer extending from a surface of the glass to a depth of layer; and replacing at least a portion of alkali metal cations with a larger alkali metal cation to a second depth that is less than the depth of layer. Replacing the alkali metal cations with the larger alkali metal cation increases the compressive stress in the compressive layer and increases the damage resistance of the surface of the glass.
  • the compressive layer inhibits the introduction of flaws at the surface and prevents crack initiation and propagation through the depth of the layer.
  • the method is carried out through the use of a two-step ion exchange process.
  • an alkali aluminoborosilicate glass is provided.
  • the glass is provided in the form of a sheet having a thickness of about 2 mm or less.
  • Such sheets can be formed by down-draw methods known in the art such as slot-draw or fusion-draw processes, or by other methods known in the art.
  • the glass in some embodiments, comprises monovalent lithium cations, and sodium cations.
  • the glass can additionally include monovalent potassium cations.
  • the presence of such alkali metal cations in the glass is typically represented by the oxide species Li 2 O, Na 2 O, and K 2 O.
  • the alkali aluminoborosilicate glass comprises, consists essentially of, or consists of: 50-70 mol % SiO 2 ; 5-15 mol % Al 2 O 3 ; 5-20 mol % B 2 O 3 ; 2-15 mol % Li 2 O; 0-20 mol % Na 2 O; and 0-10 mol % K 2 O.
  • the glass can further comprise at least one of: 0-10 mol % P 2 O 5 ; 0-5 mol % MgO; 0-1 mol % CeO 2 ; and 0-1 mol % SnO 2 .
  • Non-limiting compositions and physical properties of representative glasses are listed in Table 1.
  • Crack initiation thresholds which were determined by indentation with a Vickers indenter, are also listed for the compositions in Table 1.
  • the alkali aluminoborosilicate glass as provided has intrinsically high damage resistance; i.e., the glass has high damage resistance prior to—or without—any chemical or thermal strengthening or tempering. Such damage resistance is measured or characterized by the resistance of the glass to crack formation and/or crack propagation upon indentation with a Vickers indenter.
  • the glass has a crack initiation threshold (i.e., the Vickers indenter load at which cracks are first observed) of at least about 1000 gf before strengthening and, in particular embodiments, in a range from about 1000 gf up to about 2000 gf, prior to strengthening. Examples of glass compositions that intrinsically have crack initiation thresholds in this range are listed in Table 2.
  • soda-lime glasses have low damage tolerance, and form cracks when indented at loads as low as 100 gf. Even when ion-exchanged, soda-lime glass typically has a damage tolerance of less than 1000 gf.
  • the formation of the compressive layer and increase damage resistance described herein can, in some embodiments, be achieved by a two-step ion exchange process.
  • ions in the surface layer of the glass are replaced by—or exchanged with—larger ions having the same valence or oxidation state as the ions present in the glass.
  • the exchange of metal cations is typically carried out in a molten salt bath, with larger cations from the bath typically replacing smaller cations within the glass.
  • Ion exchange is limited to a region extending from the surface of the glass article to a depth (depth of layer, or “DOL”) below the surface.
  • ion exchange of alkali metal-containing glasses can be achieved by immersing the glass in at least one molten salt bath containing a salt such as, but not limited to, nitrates, sulfates, and chlorides of at least one alkali metal ion.
  • a salt such as, but not limited to, nitrates, sulfates, and chlorides of at least one alkali metal ion.
  • the temperature of such molten salt baths is typically in a range from about 380° C. up to about 450° C., with immersion times ranging up to about 16 hours. However, temperatures and immersion times that are different from those described herein can also be used.
  • the replacement or exchange of smaller cations within the glass with larger cations from the bath creates a compressive stress in the region near the surface of the glass to the depth of layer. The compressive stress near the surface gives rise to a central tension in an inner or central region of the glass so as to balance forces within the glass.
  • the step of initially forming the compressive layer provides a compressive layer having an unusually deep depth of layer.
  • the step of forming the compressive layer comprises replacing smaller alkali metal cations with larger alkali metal cations.
  • this step comprises replacing lithium cations in the glass with sodium cations from, for example, a molten salt bath, by ion exchange to the depth of layer below the surface of the glass.
  • the exchange of Na + ions for Li + ions achieves an advantageously deep depth of layer (e.g., d 1 , d 2 , in FIG. 1 ).
  • the depth of layer is at least 50 ⁇ m, and can, in some embodiments, extend from the surface to a depth in a range from about 70 ⁇ m up to about 290 ⁇ m.
  • the exchange of Na + ions for Li + ions can be achieved by immersing the glass in a first ion exchange bath comprising at least one molten sodium salt.
  • the sodium salt is sodium nitrate (NaNO 3 ).
  • the ion exchange bath contains only sodium salt; i.e., no other metal salts are intentionally added to the bath.
  • the first ion exchange bath further includes salts of other alkali metals such as, but not limited to, potassium nitrate (KNO 3 ).
  • the first ion exchange bath comprises 40% NaNO 3 and 60% KNO 3 by weight.
  • the first ion exchange bath comprises 20% NaNO 3 and 80% KNO 3 by weight.
  • the small alkali metal cations (e.g., Li + , Na + ) in the compressive layer are replaced by a single, larger alkali metal cation specie to a second depth (e.g., d 1 ′, d 2 ′, in FIG. 1 ) that is less than the depth of layer.
  • this is achieved by exchanging potassium ions for at least one of sodium ions and lithium ions in the glass.
  • the exchange of K + ions for Na + ions and Li + to the second depth increases the surface compressive stress of the glass.
  • the second depth extends from the surface to a depth in a range from about 5 ⁇ m up to about 20 ⁇ m.
  • Such ion exchange is achieved by immersing the glass in a second ion exchange bath comprising a potassium sodium salt.
  • the potassium salt is potassium nitrate (KNO 3 ).
  • the glass After the glass has been strengthened by forming the deep compressive layer and replacing smaller ions with larger ions to a lesser depth using the two-step ion exchange process described hereinabove, the glass has a crack initiation threshold of at least 3000 gf when indented with a Vickers indenter, a compressive stress of at least 500 MPa, and a depth of layer of at least 50 ⁇ m.
  • An alkali aluminoborosilicate glass comprising lithium cations, sodium cations, and potassium cations is also provided.
  • the glass has a compressive stress layer extending from a surface of the glass to a depth of layer.
  • the compressive layer of the glass is enriched in potassium cations to a second depth that is less than the depth of layer.
  • the surface also has a crack initiation threshold of at least 3000 gf when indented with a Vickers indenter.
  • strengthened glass sheet 100 has a thickness t, a first surface 110 and second surface 120 that are substantially parallel to each other, central portion 115 .
  • Compressive layers 112 , 122 extend from first surface 110 and second surface 120 , respectively, to depths of layer d 1 , d 2 , below each surface.
  • Compressive layers 112 , 122 are under a compressive stress, while central portion 115 is under a tensile stress, or in tension.
  • the tensile stress in central portion 115 balances the compressive stresses in compressive layers 112 , 122 , thus maintaining equilibrium within strengthened glass sheet 100 .
  • Each of compressive layers 112 , 122 of the glass is enriched in potassium cations to second depths d 1 ′, d 2 ′, respectively, wherein second depths d 1 ′, d 2 ′ are less than depths of layer d 1 , d 2 .
  • a glass sheet having compressive layers 112 , 122 extending from opposite surfaces 120 , 120 is shown in FIG. 1
  • the glass described herein can have a strengthened single surface, rather than multiple strengthened surfaces. This can be achieved, for example, by masking one of surfaces 110 , 120 during the two-step ion exchange process, which is described herein and is used to strengthen glass sheet 100 .
  • the first depth of layer extends from the surface of the glass to a depth in a range from about 70 ⁇ m up to about 290 ⁇ m.
  • the second depths d 1 ′, d 2 ′ extend from surfaces 112 , 122 to a depth in a range from about 5 ⁇ m up to about 20 ⁇ m.
  • the compressive layer is, in some embodiments, formed by the methods described hereinabove, such as, for example, the two-step ion exchange process described above.
  • the method comprises the steps of: providing the alkali aluminoborosilicate glass; forming a compressive layer extending from a surface of the glass to a depth of layer (d 1 , d 2 in FIG. 1 ); wherein the compressive layer is under a compressive stress; and replacing alkali metal cations in the compressive layer with a larger alkali metal cation to a second depth (d 1 ′, d 2 ′ in FIG. 1 ) that is less the depth of layer.
  • the replacement of the alkali metal cations with a larger alkali metal cationic specie increases the compressive stress in the compressive layer.
  • the glass is in the form of a sheet having a thickness of about 2 mm or less. Such sheets can be formed by down-draw methods known in the art such as slot-draw or fusion-draw processes, or by other methods known in the art.
  • the alkali aluminoborosilicate glass comprises, consists essentially of, or consists of: 50-70 mol % SiO 2 ; 5-15 mol % Al 2 O 3 ; 5-20 mol % B 2 O 3 ; 2-15 mol % Li 2 O; 0-20 mol % Na 2 O; and 0-10 mol % K 2 O.
  • the glass can further comprise at least one of: 0-10 mol % P 2 O 5 ; 0-5 mol % MgO; 0-1 mol % CeO 2 ; and 0-1 mol % SnO 2 .
  • Compositions and physical properties, and damage resistance of representative glasses are listed in Table 1.
  • the glasses described herein intrinsically (i.e., prior to thermal or chemical strengthening (e.g., ion exchange)) possess high levels of damage resistance. Such damage resistance is measured or characterized by the resistance of the glass to crack formation and/or crack propagation upon indentation with a Vickers indenter.
  • the glass has a crack initiation threshold (i.e., the Vickers indenter load at which cracks are first observed) of at least about 1000 gf before strengthening and, in particular embodiments, in a range from about 1000 gf up to about 2000 gf, prior to strengthening. Examples of glass compositions that intrinsically have crack initiation thresholds in this range are listed in Table 2.
  • soda-lime glasses have low damage tolerance, and form cracks when indented at loads as low as 100 gf. Even when ion-exchanged, soda-lime glass typically has a damage tolerance of less than 1000 gf.
  • the tolerance to damage and strength of the alkali aluminoborosilicate glasses having intrinsic damage resistance can be greatly enhanced by the use of a 2 step ion-exchange process.
  • the two-step strengthening/ion exchange processes described hereinabove provide new opportunities for the use of such glasses in those consumer electronics applications where high strength and scratch resistance are desirable.
  • Such applications include, but are not limited to, cover plates, display windows, display screens, touch screens, and the like for portable or hand-held electronic communication and entertainment devices.
  • Glass samples having selected compositions were subjected to single-step ion exchange by immersion in a single molten salt bath.
  • Different glass samples having these same compositions were subjected to two-step ion exchange in multiple salt baths, in accordance with the methods described hereinabove.
  • the single-step ion exchange baths used were: a) a 390° C. molten NaNO 3 salt bath; and b) a 390° C. molten salt bath containing 60% KNO 3 and 40% NaNO 3 by weight.
  • the glass samples that were ion exchanged in the pure NaNO 3 bath were immersed in the bath for 5 hours. Glass samples that were ion exchanged in the KNO 3 /NaNO 3 bath were immersed in the bath for 10 hours.
  • the first set of multiple baths consisted of a first bath of molten NaNO 3 salt at 390° C., followed by a second bath of molten KNO 3 salt at 390° C. Glass samples were immersed in the first (NaNO 3 ) bath for 10 hours, and then immersed in the second (KNO 3 ) bath for 30 minutes.
  • the second set of multiple baths consisted of a first bath of molten NaNO 3 salt at 410° C., followed by a second bath of molten KNO 3 salt at 410° C. Glass samples were immersed in the first (NaNO 3 ) bath for 10 hours, and then immersed in the second (KNO 3 ) bath for 10 minutes.
  • crack initiation thresholds for soda lime glass were measured before ion exchange and after ion exchange in a 410° C. KNO 3 bath for 8 hours.
  • Table 3 lists depths of layer (DOL) and compressive stresses (CS) measured for 1 mm alkali aluminoborosilicate glass samples following different ion exchange (IX) procedures.
  • the compositions of the samples listed in Table 3 are: i) 65.7 mol % SiO 2 ; 12.3 mol % Al 2 O 3 ; 9.1 mol % B 2 O 3 ; 5 mol % Li 2 O; 6 . 6 mol % Na 2 O; 1 . 3 mol % K 2 O; 0 .
  • One set of samples of each composition was ion exchanged in a single-step process by immersion in a 390° C. molten salt bath containing 80 wt % KNO 3 and 20 wt % NaNO 3 for 5 hours.
  • Two-step ion exchange consisted of immersion a 390° C. molten salt bath containing 80 wt % KNO 3 and 20 wt % NaNO 3 for 5 hours followed by immersion in a 410° C. KNO 3 molten salt bath for 1 hour.
  • Immersion in the second ion exchange bath in accordance with the methods described hereinabove increased the compressive stress of all samples.
  • a second set of samples of each composition was ion exchanged in a single-step process by immersion in a 390° C. molten salt bath containing 60 wt % KNO 3 and 40 wt % NaNO 3 for 5 hours.
  • Two-step ion exchange consisted of immersion a 390° C. molten salt bath containing 60 wt % KNO 3 and 40 wt % NaNO 3 for 5 hours followed by immersion in a 410° C. KNO 3 molten salt bath for 1 hour.
  • Immersion in the second ion exchange bath in accordance with the methods described hereinabove increased the compressive stress of all samples.
  • Two-step 791 711 726 1) 80 wt % KNO 3 /20 wt % NaNO 3 ; 5 hrs at 390° C.; 2) KNO 3 ; 1 hr at 410° C.
  • the strengths of alkali aluminoborosilicate glass samples before ion exchange and after single-step and two-step ion exchange processes were also measured using ring-on-ring measurements performed on polished surfaces of 1 mm thick glass samples. All samples comprised 65.7 mol % SiO 2 ; 10.3 mol % Al 2 O 3 ; 12.1 mol % B 2 O 3 ; 4.6 mol % Li 2 O; 6.2 mol % Na 2 O; and 1.1 mol % K 2 O. The measured ring-on-ring strength of the sample before ion exchange was 131 ⁇ 45 MPa. Single-step ion exchange in a 390° C.
  • molten salt bath containing 60 wt % KNO 3 and 40 wt % NaNO 3 for 6 hours yielded a ring-on-ring strength of 491 ⁇ 108 MPa.
  • Two-step ion exchange consisted of immersion in a 390° C. molten salt bath containing 60 wt % KNO 3 and 40 wt % NaNO 3 for 6 hours followed by immersion in a 410° C. KNO 3 molten salt bath for 1 hour yielded a ring-on-ring strength of 647 ⁇ 215 MPa.
  • the two-step ion exchange process in accordance with the methods described hereinabove, thus resulted in an increase in ring-on-ring strength of about 30% over the single-step process.
  • FIG. 3 a is a plot of the Na 2 O concentration profile determined by electron microprobe analysis following the first ion exchange step (immersion in a 390° C. molten NaNO 3 salt bath for 5 hours).
  • FIG. 3 b is a plot of the K 2 O concentration profile determined by electron microprobe analysis following the second ion exchange step (immersion in a 410° C.
  • molten KNO 3 salt bath for: a) 0 minutes (i.e., corresponding to single-step ion exchange); b) 10 minutes; c) 20 minutes; and d) 60 minutes.
  • the concentrations of Na + and K + ions correspond to the Na 2 O and K 2 O concentrations, respectively, shown in FIGS. 3 a and 3 b .
  • the K + and Na + concentrations on the glass surface relate to compressive stress, while the distance these ions diffuse into the glass relates to the depth of layer of the compressive layer.
  • the first step of the two-step process develops the deep depth of layer, while the second step ( FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
US13/211,661 2010-08-26 2011-08-17 Two-step method for strengthening glass Abandoned US20120052271A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/211,661 US20120052271A1 (en) 2010-08-26 2011-08-17 Two-step method for strengthening glass
US14/504,755 US10227253B2 (en) 2010-08-26 2014-10-02 Two-step method for strengthening glass
US16/295,685 US11078106B2 (en) 2010-08-26 2019-03-07 Two-step method for strengthening glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37713610P 2010-08-26 2010-08-26
US13/211,661 US20120052271A1 (en) 2010-08-26 2011-08-17 Two-step method for strengthening glass

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/504,755 Division US10227253B2 (en) 2010-08-26 2014-10-02 Two-step method for strengthening glass

Publications (1)

Publication Number Publication Date
US20120052271A1 true US20120052271A1 (en) 2012-03-01

Family

ID=44645795

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/211,661 Abandoned US20120052271A1 (en) 2010-08-26 2011-08-17 Two-step method for strengthening glass
US14/504,755 Active 2031-12-24 US10227253B2 (en) 2010-08-26 2014-10-02 Two-step method for strengthening glass
US16/295,685 Active US11078106B2 (en) 2010-08-26 2019-03-07 Two-step method for strengthening glass

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14/504,755 Active 2031-12-24 US10227253B2 (en) 2010-08-26 2014-10-02 Two-step method for strengthening glass
US16/295,685 Active US11078106B2 (en) 2010-08-26 2019-03-07 Two-step method for strengthening glass

Country Status (7)

Country Link
US (3) US20120052271A1 (fr)
EP (2) EP3517511A1 (fr)
JP (4) JP5890835B2 (fr)
KR (3) KR20190077605A (fr)
CN (2) CN111908806A (fr)
TW (1) TWI558675B (fr)
WO (1) WO2012027660A1 (fr)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090142568A1 (en) * 2007-11-29 2009-06-04 Matthew John Dejneka Glasses having improved toughness and scratch resistance
WO2012166421A3 (fr) * 2011-05-31 2013-04-25 Corning Incorporated Articles de verre d'aluminosilicate alcalin à ions échangeables
WO2013130653A2 (fr) 2012-02-29 2013-09-06 Corning Incorporated Verres à ions échangés par l'intermédiaire de profils de contrainte de compression non à fonction d'erreur
US20140234607A1 (en) * 2011-09-29 2014-08-21 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same
US20140248495A1 (en) * 2011-09-29 2014-09-04 Central Glass Company, Limited Chemically strengthened glass and method for producing same
US20150030834A1 (en) * 2013-07-26 2015-01-29 Corning Incorporated Strengthened glass articles having improved survivability
US20150030859A1 (en) * 2013-07-25 2015-01-29 Apple Inc. Chemical strengthening of anti-reflective coatings (arc)
US20150064472A1 (en) * 2013-08-27 2015-03-05 Corning Incorporated Damage resistant glass with high coefficient of thermal expansion
US20150079400A1 (en) * 2013-09-13 2015-03-19 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
EP2874959A1 (fr) * 2012-07-17 2015-05-27 Corning Incorporated Compositions de verre contenant li pouvant être soumises à échange d'ions pour formage 3-d
WO2015130516A1 (fr) * 2014-02-26 2015-09-03 Corning Incorporated Verre antimicrobien hautement résistant
WO2016014937A1 (fr) * 2014-07-25 2016-01-28 Corning Incorporated Verre renforcé présentant une grande profondeur de compression
WO2015195419A3 (fr) * 2014-06-19 2016-02-11 Corning Incorporated Verre trempé présentant une grande profondeur de compression
US20160102014A1 (en) * 2014-10-08 2016-04-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
WO2016070048A1 (fr) * 2014-10-31 2016-05-06 Corning Incorporated Verre renforcé présentant une très grande profondeur de compression
WO2016073539A1 (fr) * 2014-11-04 2016-05-12 Corning Incorporated Profils de contraintes profondes non-fragiles et procédés de fabrication
US9346703B2 (en) 2010-11-30 2016-05-24 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold
US9487434B2 (en) 2014-02-24 2016-11-08 Corning Incorporated Strengthened glass with deep depth of compression
US9512035B2 (en) 2013-06-17 2016-12-06 Corning Incorporated Antimicrobial glass articles with improved strength and methods of making and using same
US20170022092A1 (en) * 2015-07-21 2017-01-26 Corning Incorporated Glass articles exhibiting improved fracture performance
US20170197870A1 (en) * 2016-01-12 2017-07-13 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US9718728B1 (en) * 2016-01-20 2017-08-01 International Business Machines Corporation Chemically strengthened glass and methods of making same
US9751798B2 (en) 2014-06-30 2017-09-05 Corning Incorporated White, opaque,β-spodumene glass-ceramic articles with inherent damage resistance and methods for making the same
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US20170341973A1 (en) * 2016-05-27 2017-11-30 Corning Incorporated Fracture and scratch resistant glass articles
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
WO2018031706A1 (fr) * 2016-08-10 2018-02-15 Corning Incorporated Procédés de réduction de défauts de surface
US9908811B2 (en) 2015-12-11 2018-03-06 Corning Incorporated Fusion formable glass-based articles including a metal oxide concentration gradient
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
CN107873021A (zh) * 2015-02-27 2018-04-03 康宁股份有限公司 用于玻璃的低温化学强化工艺
US20180127304A1 (en) * 2016-11-07 2018-05-10 Corning Incorporated Lithium containing glasses
US20180127302A1 (en) * 2016-11-07 2018-05-10 Corning Incorporated Low viscosity glasses and methods and systems for manufacture
CN108069624A (zh) * 2016-11-11 2018-05-25 蓝思科技股份有限公司 一种玻璃的强化加工方法
US20180148369A1 (en) * 2016-11-30 2018-05-31 Corning Incorporated Fusion-formable automotive glass compositions, articles, and laminates
US10017417B2 (en) 2016-04-08 2018-07-10 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US10131567B2 (en) 2016-01-08 2018-11-20 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US10144198B2 (en) 2014-05-02 2018-12-04 Corning Incorporated Strengthened glass and compositions therefor
US20180362399A1 (en) * 2015-11-20 2018-12-20 Corning Incorporated Methods for regenerating lithium-enriched salt baths
TWI644879B (zh) * 2016-01-21 2018-12-21 日商Agc股份有限公司 化學強化玻璃及化學強化用玻璃
WO2019004124A1 (fr) 2017-06-28 2019-01-03 Agc株式会社 Verre chimiquement renforcé, son procédé de fabrication, et verre de renforcement chimique
US20190016627A1 (en) * 2017-07-13 2019-01-17 Corning Incorporated Glass-based articles with improved stress profiles
US10206298B2 (en) * 2016-04-21 2019-02-12 Apple Inc. Witness layers for glass articles
US20190161390A1 (en) * 2017-11-29 2019-05-30 Corning Incorporated Glasses with low excess modifier content
US10351471B2 (en) * 2010-02-26 2019-07-16 Schott Ag Chemically tempered glass
US10399304B2 (en) 2014-05-07 2019-09-03 Corning Incorporated Laminated glass article and method for forming the same
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10501365B2 (en) * 2014-09-25 2019-12-10 Corning Incorporated UV blocking for improved transmission glasses
CN110582470A (zh) * 2017-03-09 2019-12-17 康宁股份有限公司 通过表面化学处理降低玻璃的静电荷的方法
US10550029B2 (en) 2015-12-17 2020-02-04 Corning Incorporated Ion exchangeable glass with fast diffusion
US10611666B2 (en) 2017-12-01 2020-04-07 Apple Inc. Controlled crystallization of glass ceramics for electronic devices
EP3636609A1 (fr) 2018-10-08 2020-04-15 Schott Ag Verre, de préférence à contrainte de traction élevée pouvant être mémorisée, article en verre chimiquement précontraint, de préférence à contrainte de traction élevée pouvant être mémorisée, son procédé de fabrication ainsi que son utilisation
US10800141B2 (en) 2016-09-23 2020-10-13 Apple Inc. Electronic device having a glass component with crack hindering internal stress regions
US10906834B2 (en) 2017-11-29 2021-02-02 Corning Incorporated Ion-exchangeable mixed alkali aluminosilicate glasses
EP3772493A1 (fr) 2019-08-05 2021-02-10 Schott Ag Article en verre chimiquement précontraint en forme de vitre et son procédé de fabrication
US20210061705A1 (en) * 2019-08-30 2021-03-04 Corning Incorporated Scratch resistant glass and method of making
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11028014B2 (en) * 2017-01-31 2021-06-08 Corning Incorporated Coated glass-based articles with engineered stress profiles
US11053162B2 (en) * 2017-02-02 2021-07-06 Corning Incorporated Lithium containing glass or glass ceramic article with modified K2O profile near the glass surface
US11066322B2 (en) 2017-12-01 2021-07-20 Apple Inc. Selectively heat-treated glass-ceramic for an electronic device
US20210221731A1 (en) * 2018-05-22 2021-07-22 Corning Incorporated Low temperature moldable sheet forming glass compositions
DE202021103861U1 (de) 2021-07-20 2021-10-04 Schott Ag Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer Glasartikel
US11161782B2 (en) * 2017-11-30 2021-11-02 Corning Incorporated Method of increasing IOX processability on glass articles with multiple thicknesses
US20220009830A1 (en) * 2018-01-19 2022-01-13 AGC Inc. Production method of chemically strengthened glass, and chemically strengthened glass
US11236016B2 (en) * 2017-04-26 2022-02-01 AGC Inc. Chemically strengthened glass
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US11292741B2 (en) 2018-12-12 2022-04-05 Corning Incorporated Ion-exchangeable lithium-containing aluminosilicate glasses
US20220135473A1 (en) * 2020-10-29 2022-05-05 Uti Inc. Flexible cover window and method of manufacturing same
WO2022096724A2 (fr) 2020-11-08 2022-05-12 Schott Ag Ensemble à liaison hermétique, enceinte et procédé de fabrication associé
US11365149B2 (en) 2016-01-21 2022-06-21 AGC Inc. Chemically strengthened glass and method for manufacturing chemically strengthened glass
CN114845965A (zh) * 2020-02-25 2022-08-02 日本电气硝子株式会社 强化玻璃板及强化用玻璃板
US11419231B1 (en) 2016-09-22 2022-08-16 Apple Inc. Forming glass covers for electronic devices
US11413848B2 (en) 2014-03-27 2022-08-16 Corning Incorporated Glass article
US11420900B2 (en) 2018-09-26 2022-08-23 Apple Inc. Localized control of bulk material properties
US11460892B2 (en) 2020-03-28 2022-10-04 Apple Inc. Glass cover member for an electronic device enclosure
US20220402815A1 (en) * 2020-05-15 2022-12-22 Corning Incorporated Strengthened glass articles and methods of forming the same
US11535551B2 (en) 2016-09-23 2022-12-27 Apple Inc. Thermoformed cover glass for an electronic device
US11535548B2 (en) 2016-10-18 2022-12-27 AGC Inc. Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
US11565506B2 (en) 2016-09-23 2023-01-31 Apple Inc. Thermoformed cover glass for an electronic device
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US20230099956A1 (en) * 2017-10-03 2023-03-30 Corning Incorporated Glass-based articles having crack resistant stress profiles
EP4159697A1 (fr) 2019-08-05 2023-04-05 Schott Ag Article en verre en forme de disque, trempé chimiquement ou pouvant être précontraint chimiquement et son procédé de fabrication
US11666273B2 (en) 2020-05-20 2023-06-06 Apple Inc. Electronic device enclosure including a glass ceramic region
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US11680010B2 (en) 2019-07-09 2023-06-20 Apple Inc. Evaluation of transparent components for electronic devices
US20230202915A1 (en) * 2018-06-08 2023-06-29 Corning Incorporated Fracture resistant stress profiles in glasses
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11711937B2 (en) 2020-07-01 2023-07-25 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
US11878939B2 (en) 2019-08-05 2024-01-23 Schott Ag Hot-formed, chemically prestressable glass articles with a low proportion of crystals and methods and devices for producing
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11927988B2 (en) 2020-03-28 2024-03-12 Apple Inc. Glass cover member for an electronic device enclosure
US11945048B2 (en) 2020-12-23 2024-04-02 Apple Inc. Laser-based cutting of transparent components for an electronic device
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074983A1 (fr) * 2010-11-30 2012-06-07 Corning Incorporated Verre avec surface et régions centrales sous compression
WO2014113617A1 (fr) 2013-01-21 2014-07-24 Innovative Finishes LLC Composant restauré, dispositif électronique le contenant et procédé de restauration d'un composant d'un dispositif électronique
US9359261B2 (en) * 2013-05-07 2016-06-07 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US10442730B2 (en) * 2013-11-25 2019-10-15 Corning Incorporated Method for achieving a stress profile in a glass
CN105939975A (zh) * 2013-11-26 2016-09-14 康宁股份有限公司 具有高压痕阈值的可快速离子交换玻璃
CN104402238A (zh) * 2014-10-27 2015-03-11 苏州安洁科技股份有限公司 一种超薄玻璃保护膜的加工方法
KR102583884B1 (ko) * 2015-04-21 2023-09-27 코닝 인코포레이티드 에지 및 모서리 강화 제품 및 이의 제조 방법
KR102360009B1 (ko) * 2015-05-04 2022-02-10 삼성디스플레이 주식회사 유리 기판, 유리 기판의 제조 방법, 및 유리 기판을 포함하는 표시 장치
CN111875265B (zh) * 2015-05-15 2023-09-12 Agc株式会社 化学增强玻璃
EP3157880B1 (fr) * 2015-05-28 2020-11-18 Corning Incorporated Verre renforcé avec une profondeur de compression importante
TWI758263B (zh) 2015-11-19 2022-03-21 美商康寧公司 顯示螢幕保護器
JP6670462B2 (ja) * 2015-12-04 2020-03-25 日本電気硝子株式会社 強化ガラス
EP3402763A1 (fr) * 2016-01-13 2018-11-21 Corning Incorporated Verre ultrafin, non frangible et procédés de fabrication
WO2017147853A1 (fr) * 2016-03-03 2017-09-08 深圳市力沣实业有限公司 Verre renforcé chimiquement hautement résistant et procédé de renforcement de verre
KR102486323B1 (ko) * 2016-03-30 2023-01-10 삼성디스플레이 주식회사 유리 기판의 처리 방법
CN106630680B (zh) * 2016-12-29 2019-11-19 四川旭虹光电科技有限公司 高铝硅盖板玻璃及其制备方法
CN115716715A (zh) * 2017-02-07 2023-02-28 Agc株式会社 化学强化玻璃
JP6794866B2 (ja) * 2017-02-15 2020-12-02 Agc株式会社 化学強化ガラスおよびその製造方法
JP7378297B2 (ja) * 2017-03-02 2023-11-13 コーニング インコーポレイテッド 低たわみおよび高損傷抵抗性ガラス物品のための非対称応力プロファイル
KR20230095128A (ko) 2017-04-06 2023-06-28 에이지씨 가부시키가이샤 화학 강화 유리
JP6897270B2 (ja) 2017-04-20 2021-06-30 Agc株式会社 化学強化ガラス
CN110869328A (zh) * 2017-06-02 2020-03-06 肖特玻璃科技(苏州)有限公司 高抗接触性的柔性超薄玻璃
CN108585480B (zh) * 2018-07-10 2021-05-04 科立视材料科技有限公司 一种二步法化学强化碱铝硅酸玻璃组合物及其制备方法
CN108585481A (zh) * 2018-07-13 2018-09-28 科立视材料科技有限公司 一种可快速进行离子交换的含锂铝硅酸盐玻璃
CN113039164B (zh) * 2018-11-14 2023-06-06 康宁股份有限公司 具有改进的组成的玻璃基材
CN109279787A (zh) * 2018-11-22 2019-01-29 科立视材料科技有限公司 一种可快速离子交换的高铝玻璃
KR20210113221A (ko) 2019-01-18 2021-09-15 에이지씨 가부시키가이샤 화학 강화 유리 및 그 제조 방법
KR20220038335A (ko) * 2019-07-17 2022-03-28 에이지씨 가부시키가이샤 유리, 화학 강화 유리 및 커버 유리
DE102019121144A1 (de) * 2019-08-05 2021-02-11 Schott Ag Scheibenförmiger Glasartikel, dessen Herstellung und Verwendung
CN110937824B (zh) * 2019-12-05 2022-04-19 四川虹科创新科技有限公司 化学强化玻璃及其制备方法和应用
TW202142515A (zh) * 2020-03-25 2021-11-16 日商安瀚視特控股股份有限公司 使用雙離子交換之覆蓋玻璃強化
JPWO2021221067A1 (fr) 2020-04-30 2021-11-04
CN114057409A (zh) * 2020-07-31 2022-02-18 Agc株式会社 化学强化玻璃及其制造方法
KR20230128293A (ko) * 2020-12-29 2023-09-04 니폰 덴키 가라스 가부시키가이샤 강화 유리판 및 그 제조 방법
CN113683304B (zh) * 2021-08-31 2023-08-29 河南旭阳光电科技有限公司 一种耐刮擦玻璃及其测试装置
CN114133147A (zh) * 2022-01-06 2022-03-04 深圳市悦目光学器件有限公司 一种通过两次盐浴离子置换强化玻璃的方法及强化玻璃
CN115572061B (zh) * 2022-09-28 2024-04-12 湖南旗滨电子玻璃股份有限公司 素玻璃、化学强化玻璃及其制备方法、盖板玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010039810A1 (en) * 1996-12-30 2001-11-15 Hoya Corporation Process for producing glass substrate for information recording medium and process for producing recording medium using said glass substrate
US20090142568A1 (en) * 2007-11-29 2009-06-04 Matthew John Dejneka Glasses having improved toughness and scratch resistance
US20090202808A1 (en) * 2008-02-08 2009-08-13 Gregory Scott Glaesemann Damage resistant chemically-toughened protective cover glass
US20100291353A1 (en) * 2009-02-19 2010-11-18 Matthew John Dejneka Method of separating strengthened glass

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL135450C (fr) * 1964-01-31 1900-01-01
US3433611A (en) * 1965-09-09 1969-03-18 Ppg Industries Inc Strengthening glass by multiple alkali ion exchange
JPS467591Y1 (fr) 1968-04-10 1971-03-17
US3751238A (en) * 1970-02-25 1973-08-07 Corning Glass Works Method of chemically strengthening a silicate article containing soda
BE786855A (fr) * 1971-07-28 1973-01-29 Saint Gobain Procede de renforcement du verre par echange d'ions
JPH01239036A (ja) * 1988-03-16 1989-09-25 F G K:Kk 高強度ガラス
US5674790A (en) * 1995-12-15 1997-10-07 Corning Incorporated Strengthening glass by ion exchange
JPH10194785A (ja) 1996-12-30 1998-07-28 Hoya Corp 情報記録媒体用ガラス基板の製造方法、及び情報記録媒体の製造方法
JPH11328601A (ja) * 1998-05-12 1999-11-30 Asahi Techno Glass Corp 記録媒体用ガラス基板、ガラス基板を用いた記録媒体および記録媒体用ガラス基板の製造方法
JP3995902B2 (ja) 2001-05-31 2007-10-24 Hoya株式会社 情報記録媒体用ガラス基板及びそれを用いた磁気情報記録媒体
JP3861063B2 (ja) * 2003-02-20 2006-12-20 Hoya株式会社 磁気ディスク用ガラス基板の処理方法および製造方法、並びに磁気ディスク
JP2006083045A (ja) 2004-09-17 2006-03-30 Hitachi Ltd ガラス部材
CN101522584B (zh) * 2006-10-10 2012-12-05 日本电气硝子株式会社 钢化玻璃基板
JP2008195602A (ja) * 2007-01-16 2008-08-28 Nippon Electric Glass Co Ltd 強化ガラス基板の製造方法及び強化ガラス基板
US7666511B2 (en) * 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
JP5777109B2 (ja) * 2008-07-29 2015-09-09 コーニング インコーポレイテッド ガラスの化学強化のための二段階イオン交換
KR20180015272A (ko) 2008-08-08 2018-02-12 코닝 인코포레이티드 강화 유리 제품 및 제조방법
EP2334613A1 (fr) * 2008-08-21 2011-06-22 Corning Inc. Boîtiers/enceintes durables en verre destinés à des dispositifs électroniques
JP5294150B2 (ja) * 2009-01-23 2013-09-18 日本電気硝子株式会社 強化ガラスの製造方法
DE102010009584B4 (de) * 2010-02-26 2015-01-08 Schott Ag Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben
US8778820B2 (en) 2010-05-27 2014-07-15 Corning Incorporated Glasses having low softening temperatures and high toughness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010039810A1 (en) * 1996-12-30 2001-11-15 Hoya Corporation Process for producing glass substrate for information recording medium and process for producing recording medium using said glass substrate
US20090142568A1 (en) * 2007-11-29 2009-06-04 Matthew John Dejneka Glasses having improved toughness and scratch resistance
US20090202808A1 (en) * 2008-02-08 2009-08-13 Gregory Scott Glaesemann Damage resistant chemically-toughened protective cover glass
US20100291353A1 (en) * 2009-02-19 2010-11-18 Matthew John Dejneka Method of separating strengthened glass

Cited By (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464839B2 (en) 2007-11-29 2019-11-05 Corning Incorporated Glasses having improved toughness and scratch resistance
US9809487B2 (en) 2007-11-29 2017-11-07 Corning Incorporated Glasses having improved toughness and scratch resistance
US11370695B2 (en) 2007-11-29 2022-06-28 Corning Incorporated Glasses having improved toughness and scratch resistance
US10364178B2 (en) 2007-11-29 2019-07-30 Corning Incorporated Glasses having improved toughness and scratch resistance
US8969226B2 (en) * 2007-11-29 2015-03-03 Corning Incorporated Glasses having improved toughness and scratch resistance
US20090142568A1 (en) * 2007-11-29 2009-06-04 Matthew John Dejneka Glasses having improved toughness and scratch resistance
US10351471B2 (en) * 2010-02-26 2019-07-16 Schott Ag Chemically tempered glass
US10017412B2 (en) 2010-11-30 2018-07-10 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold
US11124443B2 (en) 2010-11-30 2021-09-21 Corning Incorporated Ion exchangeable glass with deep compressive layer and high damage threshold
US11945748B2 (en) 2010-11-30 2024-04-02 Corning Incorporated Ion exchangeable glass with deep compressive layer and high damage threshold
US9346703B2 (en) 2010-11-30 2016-05-24 Corning Incorporated Ion exchangable glass with deep compressive layer and high damage threshold
WO2012166421A3 (fr) * 2011-05-31 2013-04-25 Corning Incorporated Articles de verre d'aluminosilicate alcalin à ions échangeables
US8889575B2 (en) 2011-05-31 2014-11-18 Corning Incorporated Ion exchangeable alkali aluminosilicate glass articles
US20140248495A1 (en) * 2011-09-29 2014-09-04 Central Glass Company, Limited Chemically strengthened glass and method for producing same
US20140234607A1 (en) * 2011-09-29 2014-08-21 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same
US9206079B2 (en) * 2011-09-29 2015-12-08 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same
US11492291B2 (en) 2012-02-29 2022-11-08 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
WO2013130653A2 (fr) 2012-02-29 2013-09-06 Corning Incorporated Verres à ions échangés par l'intermédiaire de profils de contrainte de compression non à fonction d'erreur
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
US9718727B2 (en) 2012-02-29 2017-08-01 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
EP2874959A1 (fr) * 2012-07-17 2015-05-27 Corning Incorporated Compositions de verre contenant li pouvant être soumises à échange d'ions pour formage 3-d
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
EP2874959B1 (fr) * 2012-07-17 2022-08-17 Corning Incorporated Compositions de verre contenant li pouvant être soumises à échange d'ions pour formage 3-d
US11124444B2 (en) 2012-07-17 2021-09-21 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US11814316B2 (en) 2012-07-17 2023-11-14 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10183887B2 (en) 2012-07-17 2019-01-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10444408B2 (en) 2013-05-07 2019-10-15 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US9731998B2 (en) 2013-06-17 2017-08-15 Corning Incorporated Antimicrobial glass articles with improved strength and methods of making and using same
US9512035B2 (en) 2013-06-17 2016-12-06 Corning Incorporated Antimicrobial glass articles with improved strength and methods of making and using same
US9221715B2 (en) * 2013-07-25 2015-12-29 Apple Inc. Chemical strengthening of anti-reflective coatings (ARC)
US20150030859A1 (en) * 2013-07-25 2015-01-29 Apple Inc. Chemical strengthening of anti-reflective coatings (arc)
US20150030834A1 (en) * 2013-07-26 2015-01-29 Corning Incorporated Strengthened glass articles having improved survivability
US11079309B2 (en) * 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US9969644B2 (en) * 2013-08-27 2018-05-15 Corning Incorporated Damage resistant glass with high coefficient of thermal expansion
US20150064472A1 (en) * 2013-08-27 2015-03-05 Corning Incorporated Damage resistant glass with high coefficient of thermal expansion
US10919797B2 (en) 2013-08-27 2021-02-16 Corning Incorporated Damage resistant glass with high coefficient of thermal expansion
US9714188B2 (en) * 2013-09-13 2017-07-25 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
CN105579411A (zh) * 2013-09-13 2016-05-11 康宁公司 具有高裂缝引发阈值的离子可交换玻璃
US11306019B2 (en) 2013-09-13 2022-04-19 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
WO2015038841A3 (fr) * 2013-09-13 2015-05-14 Corning Incorporated Verres pouvant échanger des ions et présentant un seuil élevé d'amorçage des fissures
US20150079400A1 (en) * 2013-09-13 2015-03-19 Corning Incorporated Ion exchangeable glasses with high crack initiation threshold
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US10710928B2 (en) 2014-02-13 2020-07-14 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
WO2015127483A3 (fr) * 2014-02-24 2015-12-03 Corning Incorporated Articles en verre renforcé présentant une capacité de survie améliorée
US11634359B2 (en) 2014-02-24 2023-04-25 Corning Incorporated Strengthened glass with deep depth of compression
US9908810B2 (en) 2014-02-24 2018-03-06 Corning Incorporated Strengthened glass with deep depth of compression
US9902648B2 (en) 2014-02-24 2018-02-27 Corning Incorporated Strengthened glass with deep depth of compression
US10118858B2 (en) 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression
US9517968B2 (en) 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
US10556825B2 (en) 2014-02-24 2020-02-11 Corning Incorporated Strengthened glass with deep depth of compression
US9487434B2 (en) 2014-02-24 2016-11-08 Corning Incorporated Strengthened glass with deep depth of compression
US9676663B2 (en) 2014-02-24 2017-06-13 Corning Incorporated Strengthened glass with deep depth of compression
US9567254B2 (en) 2014-02-24 2017-02-14 Corning Incorporated Strengthened glass with deep depth of compression
EP3722266A1 (fr) * 2014-02-26 2020-10-14 Corning Incorporated Verre antimicrobien à haute résistance
WO2015130516A1 (fr) * 2014-02-26 2015-09-03 Corning Incorporated Verre antimicrobien hautement résistant
US9840437B2 (en) 2014-02-26 2017-12-12 Corning Incorporated High strength antimicrobial glass
US10696586B2 (en) 2014-02-26 2020-06-30 Corning Incorporated High strength antimicrobial glass
US11413848B2 (en) 2014-03-27 2022-08-16 Corning Incorporated Glass article
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
US10144198B2 (en) 2014-05-02 2018-12-04 Corning Incorporated Strengthened glass and compositions therefor
US10399304B2 (en) 2014-05-07 2019-09-03 Corning Incorporated Laminated glass article and method for forming the same
US10759147B2 (en) 2014-05-07 2020-09-01 Corning Incorporated Laminated glass article and method for forming the same
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US10436945B2 (en) 2014-05-12 2019-10-08 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US11878941B2 (en) 2014-06-19 2024-01-23 Corning Incorporated Glasses having non-frangible stress profiles
WO2015195419A3 (fr) * 2014-06-19 2016-02-11 Corning Incorporated Verre trempé présentant une grande profondeur de compression
US9751798B2 (en) 2014-06-30 2017-09-05 Corning Incorporated White, opaque,β-spodumene glass-ceramic articles with inherent damage resistance and methods for making the same
US10781131B2 (en) 2014-06-30 2020-09-22 Corning Incorporated White, opaque, β-spodumene glass-ceramic articles with inherent damage resistance and methods for making the same
US10189735B2 (en) 2014-06-30 2019-01-29 Corning Incorporated White, opaque, β spodumene glass-ceramic articles with inherent damage resistance and methods for making the same
WO2016014937A1 (fr) * 2014-07-25 2016-01-28 Corning Incorporated Verre renforcé présentant une grande profondeur de compression
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10837103B2 (en) 2014-08-01 2020-11-17 Corning Incorporated Scratch-resistant materials and articles including the same
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
US11498865B2 (en) 2014-09-25 2022-11-15 Corning Incorporated UV blocking for improved transmission glasses
US10501365B2 (en) * 2014-09-25 2019-12-10 Corning Incorporated UV blocking for improved transmission glasses
EP3854759A1 (fr) 2014-10-08 2021-07-28 Corning Incorporated Verres et vitrocéramiques comprenant un gradient de concentration d'oxyde métallique
US10294151B2 (en) 2014-10-08 2019-05-21 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10266447B2 (en) 2014-10-08 2019-04-23 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11220456B2 (en) * 2014-10-08 2022-01-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10259746B2 (en) 2014-10-08 2019-04-16 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US20160102014A1 (en) * 2014-10-08 2016-04-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11459270B2 (en) 2014-10-08 2022-10-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10364182B2 (en) 2014-10-08 2019-07-30 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US10532947B2 (en) 2014-10-08 2020-01-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US9593042B2 (en) 2014-10-08 2017-03-14 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
EP3854759B1 (fr) * 2014-10-08 2024-05-01 Corning Incorporated Verres et vitrocéramiques comprenant un gradient de concentration d'oxyde métallique
US10730791B2 (en) * 2014-10-08 2020-08-04 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
US11465937B2 (en) 2014-10-08 2022-10-11 Corning Incorporated Glasses and glass ceramics including a metal oxide concentration gradient
EP3733620A1 (fr) * 2014-10-31 2020-11-04 Corning Incorporated Verre renforcé doté d'une profondeur de compression ultra-profonde
WO2016070048A1 (fr) * 2014-10-31 2016-05-06 Corning Incorporated Verre renforcé présentant une très grande profondeur de compression
US10640420B2 (en) 2014-10-31 2020-05-05 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11084756B2 (en) 2014-10-31 2021-08-10 Corning Incorporated Strengthened glass with ultra deep depth of compression
US11746046B2 (en) 2014-10-31 2023-09-05 Corning Incorporated Strengthened glass with ultra deep depth of compression
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
US20190202735A1 (en) * 2014-11-04 2019-07-04 Corning Incorporated Deep non-frangible stress profiles and methods of making
WO2016073539A1 (fr) * 2014-11-04 2016-05-12 Corning Incorporated Profils de contraintes profondes non-fragiles et procédés de fabrication
US10239784B2 (en) 2014-11-04 2019-03-26 Corning Incorporated Deep non-frangible stress profiles and methods of making
EP4011843A3 (fr) * 2014-11-04 2022-06-29 Corning Incorporated Profils de contraintes profondes non-fragiles et procédés de fabrication
US11377388B2 (en) * 2014-11-04 2022-07-05 Corning Incorporated Deep non-frangible stress profiles and methods of making
US11021393B2 (en) * 2014-11-04 2021-06-01 Corning Incorporated Deep non-frangible stress profiles and methods of making
CN107873021A (zh) * 2015-02-27 2018-04-03 康宁股份有限公司 用于玻璃的低温化学强化工艺
US20170022092A1 (en) * 2015-07-21 2017-01-26 Corning Incorporated Glass articles exhibiting improved fracture performance
EP3805168A1 (fr) 2015-07-21 2021-04-14 Corning Incorporated Articles de verre présentant une meilleure performance de fracture
US10579106B2 (en) * 2015-07-21 2020-03-03 Corning Incorporated Glass articles exhibiting improved fracture performance
US11613103B2 (en) 2015-07-21 2023-03-28 Corning Incorporated Glass articles exhibiting improved fracture performance
US9977470B2 (en) * 2015-07-21 2018-05-22 Corning Incorporated Glass articles exhibiting improved fracture performance
AU2018217332B2 (en) * 2015-07-21 2019-08-22 Corning Incorporated Glass articles exhibiting improved fracture performance
US11267228B2 (en) * 2015-07-21 2022-03-08 Corning Incorporated Glass articles exhibiting improved fracture performance
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
US10416352B2 (en) 2015-09-14 2019-09-17 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US10451773B2 (en) 2015-09-14 2019-10-22 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US20180362399A1 (en) * 2015-11-20 2018-12-20 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US11161781B2 (en) * 2015-11-20 2021-11-02 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US10843963B2 (en) 2015-11-20 2020-11-24 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US10556826B2 (en) * 2015-11-20 2020-02-11 Corning Incorporated Methods for regenerating lithium-enriched salt baths
US11878936B2 (en) 2015-12-11 2024-01-23 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US10787387B2 (en) 2015-12-11 2020-09-29 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
EP3386930B1 (fr) 2015-12-11 2021-06-16 Corning Incorporated Articles à base de verre formables par fusion comprenant un gradient de concentration d'oxyde métallique
US11472734B2 (en) 2015-12-11 2022-10-18 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
US9908811B2 (en) 2015-12-11 2018-03-06 Corning Incorporated Fusion formable glass-based articles including a metal oxide concentration gradient
US11932577B2 (en) 2015-12-17 2024-03-19 Corning Incorporated Ion exchangeable glass with fast diffusion
US10550029B2 (en) 2015-12-17 2020-02-04 Corning Incorporated Ion exchangeable glass with fast diffusion
US11993539B2 (en) 2016-01-08 2024-05-28 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US10131567B2 (en) 2016-01-08 2018-11-20 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11718554B2 (en) 2016-01-08 2023-08-08 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11220452B2 (en) 2016-01-08 2022-01-11 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US20170197870A1 (en) * 2016-01-12 2017-07-13 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US10457587B2 (en) * 2016-01-12 2019-10-29 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US9957190B2 (en) * 2016-01-12 2018-05-01 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US10112867B2 (en) 2016-01-20 2018-10-30 International Business Machines Corporation Chemically strengthened glass and methods of making same
US9890075B2 (en) 2016-01-20 2018-02-13 International Business Machines Corporation Chemically strengthened glass and methods of making same
US10633280B2 (en) 2016-01-20 2020-04-28 International Business Machines Corporation Chemically strengthened glass and methods of making same
US9718728B1 (en) * 2016-01-20 2017-08-01 International Business Machines Corporation Chemically strengthened glass and methods of making same
US11767252B2 (en) 2016-01-21 2023-09-26 AGC Inc. Chemically strengthened glass, and glass for chemical strengthening
US11365149B2 (en) 2016-01-21 2022-06-21 AGC Inc. Chemically strengthened glass and method for manufacturing chemically strengthened glass
US10370287B2 (en) 2016-01-21 2019-08-06 AGC Inc. Chemically strengthened glass, and glass for chemical strengthening
KR102569434B1 (ko) * 2016-01-21 2023-08-23 에이지씨 가부시키가이샤 화학 강화 유리 및 화학 강화용 유리
TWI644879B (zh) * 2016-01-21 2018-12-21 日商Agc股份有限公司 化學強化玻璃及化學強化用玻璃
US10472272B2 (en) 2016-01-21 2019-11-12 AGC Inc. Chemically strengthened glass, and glass for chemical strengthening
US10384974B2 (en) 2016-01-21 2019-08-20 AGC Inc. Chemically strengthened glass, and glass for chemical strengthening
KR20210106006A (ko) * 2016-01-21 2021-08-27 에이지씨 가부시키가이샤 화학 강화 유리 및 화학 강화용 유리
US11390560B2 (en) * 2016-01-21 2022-07-19 AGC Inc. Chemically strengthened glass and method for manufacturing chemically strengthened glass
US10570059B2 (en) 2016-04-08 2020-02-25 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11963320B2 (en) 2016-04-08 2024-04-16 Corning Incorporated Glass-based articles including a stress profile comprising two regions
US11174197B2 (en) 2016-04-08 2021-11-16 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US10017417B2 (en) 2016-04-08 2018-07-10 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11279652B2 (en) 2016-04-08 2022-03-22 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US11691913B2 (en) 2016-04-08 2023-07-04 Corning Incorporated Glass-based articles including a metal oxide concentration gradient
US10206298B2 (en) * 2016-04-21 2019-02-12 Apple Inc. Witness layers for glass articles
US20170341973A1 (en) * 2016-05-27 2017-11-30 Corning Incorporated Fracture and scratch resistant glass articles
WO2017205605A1 (fr) * 2016-05-27 2017-11-30 Corning Incorporated Articles en verre résistant aux fractures et aux éraflures
CN115028360A (zh) * 2016-05-27 2022-09-09 康宁股份有限公司 耐破裂和耐划痕玻璃制品
US11279649B2 (en) * 2016-05-27 2022-03-22 Corning Incorporated Fracture and scratch resistant glass articles
CN108698909A (zh) * 2016-05-27 2018-10-23 康宁股份有限公司 耐破裂和耐划痕玻璃制品
CN108698923A (zh) * 2016-08-10 2018-10-23 康宁股份有限公司 减少表面缺陷的方法
KR102252254B1 (ko) * 2016-08-10 2021-05-17 코닝 인코포레이티드 표면 결함을 감소시키기 위한 방법
KR20180115716A (ko) * 2016-08-10 2018-10-23 코닝 인코포레이티드 표면 결함을 감소시키기 위한 방법
US10351472B2 (en) 2016-08-10 2019-07-16 Corning Incorporated Methods for reducing surface defects
US11261129B2 (en) 2016-08-10 2022-03-01 Corning Incorporated Methods for reducing surface defects
WO2018031706A1 (fr) * 2016-08-10 2018-02-15 Corning Incorporated Procédés de réduction de défauts de surface
KR102420557B1 (ko) * 2016-08-10 2022-07-13 코닝 인코포레이티드 표면 결함을 감소시키기 위한 방법
CN113045198A (zh) * 2016-08-10 2021-06-29 康宁股份有限公司 减少表面缺陷的方法
KR20210056450A (ko) * 2016-08-10 2021-05-18 코닝 인코포레이티드 표면 결함을 감소시키기 위한 방법
US11419231B1 (en) 2016-09-22 2022-08-16 Apple Inc. Forming glass covers for electronic devices
US10800141B2 (en) 2016-09-23 2020-10-13 Apple Inc. Electronic device having a glass component with crack hindering internal stress regions
US11535551B2 (en) 2016-09-23 2022-12-27 Apple Inc. Thermoformed cover glass for an electronic device
US11850822B2 (en) 2016-09-23 2023-12-26 Apple Inc. Electronic device having a component with crack hindering internal stress regions
US11565506B2 (en) 2016-09-23 2023-01-31 Apple Inc. Thermoformed cover glass for an electronic device
US11535548B2 (en) 2016-10-18 2022-12-27 AGC Inc. Glass for chemical strengthening, chemically strengthened glass and method for manufacturing chemically strengthened glass
US11111173B2 (en) 2016-11-07 2021-09-07 Corning Incorporated Lithium containing glasses
US20180127302A1 (en) * 2016-11-07 2018-05-10 Corning Incorporated Low viscosity glasses and methods and systems for manufacture
US11932574B2 (en) 2016-11-07 2024-03-19 Corning Incorporated Lithium containing glasses
US20180127304A1 (en) * 2016-11-07 2018-05-10 Corning Incorporated Lithium containing glasses
US10065880B2 (en) * 2016-11-07 2018-09-04 Corning Incorporated Lithium containing glasses
US11945747B2 (en) 2016-11-07 2024-04-02 Corning Incorporated Low viscosity glasses and methods and systems for manufacture
US10968134B2 (en) 2016-11-07 2021-04-06 Corning Incorporated Low viscosity glasses and methods and systems for manufacture
CN108069624A (zh) * 2016-11-11 2018-05-25 蓝思科技股份有限公司 一种玻璃的强化加工方法
US11028008B2 (en) * 2016-11-30 2021-06-08 Corning Incorporated Fusion-formable automotive glass compositions, articles, and laminates
US20180148369A1 (en) * 2016-11-30 2018-05-31 Corning Incorporated Fusion-formable automotive glass compositions, articles, and laminates
US11028014B2 (en) * 2017-01-31 2021-06-08 Corning Incorporated Coated glass-based articles with engineered stress profiles
US11795101B2 (en) * 2017-02-02 2023-10-24 Corning Incorporated Lithium containing glass or glass ceramic article with modified K2O profile near the glass surface
US11453610B2 (en) 2017-02-02 2022-09-27 Corning Incorporated Lithium containing glass or glass ceramic article with modified K2O profile near the glass surface
US11053162B2 (en) * 2017-02-02 2021-07-06 Corning Incorporated Lithium containing glass or glass ceramic article with modified K2O profile near the glass surface
US20220388894A1 (en) * 2017-02-02 2022-12-08 Corning Incorporated Lithium containing glass or glass ceramic article with modified k2o profile near the glass surface
CN110582470A (zh) * 2017-03-09 2019-12-17 康宁股份有限公司 通过表面化学处理降低玻璃的静电荷的方法
US11623889B2 (en) 2017-04-26 2023-04-11 AGC Inc. Chemically strengthened glass
US11236016B2 (en) * 2017-04-26 2022-02-01 AGC Inc. Chemically strengthened glass
WO2019004124A1 (fr) 2017-06-28 2019-01-03 Agc株式会社 Verre chimiquement renforcé, son procédé de fabrication, et verre de renforcement chimique
US11639308B2 (en) 2017-06-28 2023-05-02 AGC Inc. Chemically strengthened glass, method for producing same, and glass for chemical strengthening
EP3647289A4 (fr) * 2017-06-28 2021-03-17 AGC Inc. Verre chimiquement renforcé, son procédé de fabrication, et verre de renforcement chimique
US10899654B2 (en) * 2017-07-13 2021-01-26 Corning Incorporated Glass-based articles with improved stress profiles
US20190016627A1 (en) * 2017-07-13 2019-01-17 Corning Incorporated Glass-based articles with improved stress profiles
US20230099956A1 (en) * 2017-10-03 2023-03-30 Corning Incorporated Glass-based articles having crack resistant stress profiles
US11968794B2 (en) * 2017-10-03 2024-04-23 Corning Incorporated Glass-based articles having crack resistant stress profiles
US10633279B2 (en) * 2017-11-29 2020-04-28 Corning Incorporated Glasses with low excess modifier content
US11577987B2 (en) 2017-11-29 2023-02-14 Corning Incorporated Ion-exchangeable mixed alkali aluminosilicate glasses
US10906834B2 (en) 2017-11-29 2021-02-02 Corning Incorporated Ion-exchangeable mixed alkali aluminosilicate glasses
US20190161390A1 (en) * 2017-11-29 2019-05-30 Corning Incorporated Glasses with low excess modifier content
US11767254B2 (en) 2017-11-29 2023-09-26 Corning Incorporated Glasses with low excess modifier content
US11161782B2 (en) * 2017-11-30 2021-11-02 Corning Incorporated Method of increasing IOX processability on glass articles with multiple thicknesses
US11066322B2 (en) 2017-12-01 2021-07-20 Apple Inc. Selectively heat-treated glass-ceramic for an electronic device
US10611666B2 (en) 2017-12-01 2020-04-07 Apple Inc. Controlled crystallization of glass ceramics for electronic devices
US20220009830A1 (en) * 2018-01-19 2022-01-13 AGC Inc. Production method of chemically strengthened glass, and chemically strengthened glass
US11834368B2 (en) 2018-05-22 2023-12-05 Corning Incorporated Low temperature moldable sheet forming glass compositions
US11591255B2 (en) * 2018-05-22 2023-02-28 Corning Incorporated Low temperature moldable sheet forming glass compositions
US20210221731A1 (en) * 2018-05-22 2021-07-22 Corning Incorporated Low temperature moldable sheet forming glass compositions
US11912615B2 (en) * 2018-06-08 2024-02-27 Corning Incorporated Fracture resistant stress profiles in glasses
US20230202915A1 (en) * 2018-06-08 2023-06-29 Corning Incorporated Fracture resistant stress profiles in glasses
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11420900B2 (en) 2018-09-26 2022-08-23 Apple Inc. Localized control of bulk material properties
EP3636609A1 (fr) 2018-10-08 2020-04-15 Schott Ag Verre, de préférence à contrainte de traction élevée pouvant être mémorisée, article en verre chimiquement précontraint, de préférence à contrainte de traction élevée pouvant être mémorisée, son procédé de fabrication ainsi que son utilisation
US11339082B2 (en) 2018-10-08 2022-05-24 Schott Ag Glass with preferably increased storable tensile stress, chemically toughened glass article with preferably increased storable tensile stress, method for producing such glass, and use thereof
US11292741B2 (en) 2018-12-12 2022-04-05 Corning Incorporated Ion-exchangeable lithium-containing aluminosilicate glasses
US11680010B2 (en) 2019-07-09 2023-06-20 Apple Inc. Evaluation of transparent components for electronic devices
EP4159697A1 (fr) 2019-08-05 2023-04-05 Schott Ag Article en verre en forme de disque, trempé chimiquement ou pouvant être précontraint chimiquement et son procédé de fabrication
US11878939B2 (en) 2019-08-05 2024-01-23 Schott Ag Hot-formed, chemically prestressable glass articles with a low proportion of crystals and methods and devices for producing
US11987523B2 (en) 2019-08-05 2024-05-21 Schott Ag Hot-formed, chemically prestressable glass articles with a low proportion of crystals and methods and devices for producing
EP3772493A1 (fr) 2019-08-05 2021-02-10 Schott Ag Article en verre chimiquement précontraint en forme de vitre et son procédé de fabrication
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US20210061705A1 (en) * 2019-08-30 2021-03-04 Corning Incorporated Scratch resistant glass and method of making
US11787728B2 (en) * 2019-08-30 2023-10-17 Corning Incorporated Scratch resistant glass and method of making
CN114845965A (zh) * 2020-02-25 2022-08-02 日本电气硝子株式会社 强化玻璃板及强化用玻璃板
US11927988B2 (en) 2020-03-28 2024-03-12 Apple Inc. Glass cover member for an electronic device enclosure
US11460892B2 (en) 2020-03-28 2022-10-04 Apple Inc. Glass cover member for an electronic device enclosure
US11807573B2 (en) * 2020-05-15 2023-11-07 Corning Incorporated Strengthened glass articles and methods of forming the same
US20220402815A1 (en) * 2020-05-15 2022-12-22 Corning Incorporated Strengthened glass articles and methods of forming the same
US11666273B2 (en) 2020-05-20 2023-06-06 Apple Inc. Electronic device enclosure including a glass ceramic region
US11711937B2 (en) 2020-07-01 2023-07-25 Samsung Display Co., Ltd. Display apparatus and method of manufacturing the same
US20220135473A1 (en) * 2020-10-29 2022-05-05 Uti Inc. Flexible cover window and method of manufacturing same
WO2022096724A2 (fr) 2020-11-08 2022-05-12 Schott Ag Ensemble à liaison hermétique, enceinte et procédé de fabrication associé
US11945048B2 (en) 2020-12-23 2024-04-02 Apple Inc. Laser-based cutting of transparent components for an electronic device
DE202021103861U1 (de) 2021-07-20 2021-10-04 Schott Ag Scheibenförmiger, chemisch vorgespannter oder chemisch vorspannbarer Glasartikel

Also Published As

Publication number Publication date
TWI558675B (zh) 2016-11-21
US11078106B2 (en) 2021-08-03
JP2018104284A (ja) 2018-07-05
JP2020100558A (ja) 2020-07-02
EP2609047A1 (fr) 2013-07-03
CN111908806A (zh) 2020-11-10
WO2012027660A1 (fr) 2012-03-01
KR20130135841A (ko) 2013-12-11
CN103068759A (zh) 2013-04-24
US20150030840A1 (en) 2015-01-29
KR20190077605A (ko) 2019-07-03
JP6301984B2 (ja) 2018-03-28
US10227253B2 (en) 2019-03-12
EP3517511A1 (fr) 2019-07-31
KR102408475B1 (ko) 2022-06-14
KR20210021405A (ko) 2021-02-25
US20190202730A1 (en) 2019-07-04
TW201217283A (en) 2012-05-01
JP2013536155A (ja) 2013-09-19
EP2609047B1 (fr) 2019-03-20
JP6883131B2 (ja) 2021-06-09
JP6732823B2 (ja) 2020-07-29
JP5890835B2 (ja) 2016-03-22
JP2016084282A (ja) 2016-05-19
KR101995081B1 (ko) 2019-07-01

Similar Documents

Publication Publication Date Title
US11078106B2 (en) Two-step method for strengthening glass
US10737971B2 (en) Ion exchangeable glass article for three-dimensional forming
US9718727B2 (en) Ion exchanged glasses via non-error function compressive stress profiles
KR102322091B1 (ko) 내-스크래치성 보로알루미노실리케이트 유리
EP3038982B1 (fr) Verre à ions échangeables contenant du bore et du phosphore
US20170320769A1 (en) Glass compositions that retain high compressive stress after post-ion exchange heat treatment
KR102391152B1 (ko) 높은 압입 임계값을 갖는 빠른 이온 교환 가능한 유리
EP3110768B1 (fr) Verre antimicrobien hautement résistant
US8561429B2 (en) Glass with compressive surface for consumer applications
KR20160085839A (ko) 이온 교환 가능한 높은 내손상성 유리

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING INCORPORATED, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOMEZ, SINUE;LAMBERSON, LISA ANN;MORENA, ROBERT MICHAEL;SIGNING DATES FROM 20110812 TO 20110816;REEL/FRAME:026765/0110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION