US20110213115A1 - Process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone - Google Patents
Process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone Download PDFInfo
- Publication number
- US20110213115A1 US20110213115A1 US13/125,523 US200913125523A US2011213115A1 US 20110213115 A1 US20110213115 A1 US 20110213115A1 US 200913125523 A US200913125523 A US 200913125523A US 2011213115 A1 US2011213115 A1 US 2011213115A1
- Authority
- US
- United States
- Prior art keywords
- difluorobenzophenone
- ppm
- poly
- dfbp
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920006260 polyaryletherketone Polymers 0.000 title claims abstract description 73
- LSQARZALBDFYQZ-UHFFFAOYSA-N 4,4'-difluorobenzophenone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 LSQARZALBDFYQZ-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- LKFIWRPOVFNPKR-UHFFFAOYSA-N (2-fluorophenyl)-(4-fluorophenyl)methanone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=CC=C1F LKFIWRPOVFNPKR-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000012038 nucleophile Substances 0.000 claims abstract description 16
- 239000000460 chlorine Substances 0.000 claims abstract description 15
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 14
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 14
- OGTSHGYHILFRHD-UHFFFAOYSA-N (4-fluorophenyl)-phenylmethanone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=CC=C1 OGTSHGYHILFRHD-UHFFFAOYSA-N 0.000 claims abstract description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 108
- 229920000642 polymer Polymers 0.000 claims description 56
- 238000000034 method Methods 0.000 claims description 53
- 239000012535 impurity Substances 0.000 claims description 46
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 claims description 42
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 40
- 239000002245 particle Substances 0.000 claims description 31
- 230000008569 process Effects 0.000 claims description 30
- 238000009826 distribution Methods 0.000 claims description 18
- 230000004927 fusion Effects 0.000 claims description 18
- 238000004458 analytical method Methods 0.000 claims description 14
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 claims description 13
- 229920002530 polyetherether ketone Polymers 0.000 claims description 13
- 238000010534 nucleophilic substitution reaction Methods 0.000 claims description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 10
- 238000002485 combustion reaction Methods 0.000 claims description 10
- 238000004448 titration Methods 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000004811 liquid chromatography Methods 0.000 claims description 4
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 claims description 3
- HVYBCWHAJRYTCH-UHFFFAOYSA-N [3-(4-hydroxybenzoyl)phenyl]-(4-hydroxyphenyl)methanone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=CC(C(=O)C=2C=CC(O)=CC=2)=C1 HVYBCWHAJRYTCH-UHFFFAOYSA-N 0.000 claims description 3
- ADUODNZKKNUWBZ-UHFFFAOYSA-N [4-(4-hydroxybenzoyl)phenyl]-(4-hydroxyphenyl)methanone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(C(=O)C=2C=CC(O)=CC=2)C=C1 ADUODNZKKNUWBZ-UHFFFAOYSA-N 0.000 claims description 3
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical compound C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 claims description 3
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 claims 1
- NEZHKHMZNSFKGS-UHFFFAOYSA-N 1-(4-fluorophenyl)-2-(methylamino)butan-1-one Chemical compound CCC(NC)C(=O)C1=CC=C(F)C=C1 NEZHKHMZNSFKGS-UHFFFAOYSA-N 0.000 abstract description 11
- DIUCEDHZWIRJDI-UHFFFAOYSA-N (2-chloro-4-fluorophenyl)-phenylmethanone Chemical compound ClC1=CC(F)=CC=C1C(=O)C1=CC=CC=C1 DIUCEDHZWIRJDI-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 39
- 235000017550 sodium carbonate Nutrition 0.000 description 28
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 24
- 238000004817 gas chromatography Methods 0.000 description 21
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 16
- 239000011734 sodium Substances 0.000 description 15
- 235000011182 sodium carbonates Nutrition 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 238000000113 differential scanning calorimetry Methods 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- SBKWUEDQVKCSFK-UHFFFAOYSA-N (3-chloro-2-fluorophenyl)-phenylmethanone Chemical compound FC1=C(Cl)C=CC=C1C(=O)C1=CC=CC=C1 SBKWUEDQVKCSFK-UHFFFAOYSA-N 0.000 description 11
- 239000004696 Poly ether ether ketone Substances 0.000 description 11
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 11
- 238000007873 sieving Methods 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical compound C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229910000027 potassium carbonate Inorganic materials 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229920001643 poly(ether ketone) Polymers 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 6
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229910052708 sodium Inorganic materials 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 5
- 150000008041 alkali metal carbonates Chemical class 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 230000000717 retained effect Effects 0.000 description 5
- 241001550224 Apha Species 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000006184 cosolvent Substances 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 230000002939 deleterious effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 4
- DWFDQVMFSLLMPE-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanone Chemical compound FC1=CC=CC=C1C(=O)C1=CC=CC=C1 DWFDQVMFSLLMPE-UHFFFAOYSA-N 0.000 description 3
- MPDGHEJMBKOTSU-YKLVYJNSSA-N 18beta-glycyrrhetic acid Chemical compound C([C@H]1C2=CC(=O)[C@H]34)[C@@](C)(C(O)=O)CC[C@]1(C)CC[C@@]2(C)[C@]4(C)CC[C@@H]1[C@]3(C)CC[C@H](O)C1(C)C MPDGHEJMBKOTSU-YKLVYJNSSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001955 cumulated effect Effects 0.000 description 3
- 239000012039 electrophile Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000004736 wide-angle X-ray diffraction Methods 0.000 description 3
- DODIKYQYCCFWRZ-UHFFFAOYSA-N (2-chlorophenyl)-(4-fluorophenyl)methanone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=CC=C1Cl DODIKYQYCCFWRZ-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000012491 analyte Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920006038 crystalline resin Polymers 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 2
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- -1 silver ions Chemical class 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- BWQOPMJTQPWHOZ-UHFFFAOYSA-N (2,3-difluorophenyl)-phenylmethanone Chemical class FC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1F BWQOPMJTQPWHOZ-UHFFFAOYSA-N 0.000 description 1
- HKCNCNXZAZPKDZ-UHFFFAOYSA-N (4,4-difluorocyclohexa-1,5-dien-1-yl)-phenylmethanone Chemical compound C1=CC(F)(F)CC=C1C(=O)C1=CC=CC=C1 HKCNCNXZAZPKDZ-UHFFFAOYSA-N 0.000 description 1
- HFCFFLWPIFNGCX-UHFFFAOYSA-N 2-isocyanato-4-methylthiophene Chemical compound CC1=CSC(N=C=O)=C1 HFCFFLWPIFNGCX-UHFFFAOYSA-N 0.000 description 1
- RRAXYLDUVAFLDZ-UHFFFAOYSA-N C.C.C.C1=CC=C(CCCC2=CC=CC=C2)C=C1.C1=CC=C(CCCC2=CC=CC=C2)C=C1.CC1=CC=C(CC2=CC=C(OC3=CC=C(C(=O)C4=CC=C(O)C=C4)C=C3)C=C2)C=C1.CC1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C(=O)C5=CC=C(OC6=CC=C(C=O)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CCCC1=CC=C(C(=O)C2=CC=C(OC)C=C2)C=C1.COC.COC.COC1=CC=C(C)C=C1.COC1=CC=C(CC2=CC=C(C)C=C2)C=C1 Chemical compound C.C.C.C1=CC=C(CCCC2=CC=CC=C2)C=C1.C1=CC=C(CCCC2=CC=CC=C2)C=C1.CC1=CC=C(CC2=CC=C(OC3=CC=C(C(=O)C4=CC=C(O)C=C4)C=C3)C=C2)C=C1.CC1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C(=O)C5=CC=C(OC6=CC=C(C=O)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CCCC1=CC=C(C(=O)C2=CC=C(OC)C=C2)C=C1.COC.COC.COC1=CC=C(C)C=C1.COC1=CC=C(CC2=CC=C(C)C=C2)C=C1 RRAXYLDUVAFLDZ-UHFFFAOYSA-N 0.000 description 1
- HXYXHLQFVPBVAV-UHFFFAOYSA-N C.COC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C4=CC=C(C)C=C4)C=C3)C=C2)C=C1 Chemical compound C.COC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C4=CC=C(C)C=C4)C=C3)C=C2)C=C1 HXYXHLQFVPBVAV-UHFFFAOYSA-N 0.000 description 1
- RFIIXEHTNRGYBV-UHFFFAOYSA-N CC(=O)C1=CC=C(C(=O)C2=CC=C(C3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C(=O)C2=CC=C(OC3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C6=CC=C(C)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC(C(=O)C3=CC=C(OC4=CC=C(C)C=C4)C=C3)=CC=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C(=O)C4=CC=C(C(=O)C5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1 Chemical compound CC(=O)C1=CC=C(C(=O)C2=CC=C(C3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C(=O)C2=CC=C(OC3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C6=CC=C(C)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC(C(=O)C3=CC=C(OC4=CC=C(C)C=C4)C=C3)=CC=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C(=O)C4=CC=C(C(=O)C5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1 RFIIXEHTNRGYBV-UHFFFAOYSA-N 0.000 description 1
- JJXZIBMFWZNGHX-UHFFFAOYSA-N CC(=O)C1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C(=O)C4=CC=C(OC5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C5=CC=C(OC6=CC=C(C)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C6=CC=C(C)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(OC3=CC=C(C(=O)C4=CC=C(OC5=CC=C(C6=CC=C(OC7=CC=C(C)C=C7)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC(C(=O)C3=CC=C(OC4=CC=C(C(=O)C5=CC=C(C)C=C5)C=C4)C=C3)=CC=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C(=O)C5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C4=CC=C(C)C=C4)C=C3)C=C2)C=C1 Chemical compound CC(=O)C1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C(=O)C4=CC=C(OC5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C5=CC=C(OC6=CC=C(C)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(C(=O)C3=CC=C(OC4=CC=C(OC5=CC=C(C6=CC=C(C)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.CC(=O)C1=CC=C(OC2=CC=C(OC3=CC=C(C(=O)C4=CC=C(OC5=CC=C(C6=CC=C(OC7=CC=C(C)C=C7)C=C6)C=C5)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC(C(=O)C3=CC=C(OC4=CC=C(C(=O)C5=CC=C(C)C=C5)C=C4)C=C3)=CC=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C(=O)C3=CC=C(OC4=CC=C(C(=O)C5=CC=C(C)C=C5)C=C4)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C4=CC=C(C)C=C4)C=C3)C=C2)C=C1 JJXZIBMFWZNGHX-UHFFFAOYSA-N 0.000 description 1
- SDSQJZIBSSMJTQ-UHFFFAOYSA-N COC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1 Chemical compound COC1=CC=C(C(=O)C2=CC=C(C)C=C2)C=C1.COC1=CC=C(C(=O)C2=CC=C(OC3=CC=C(C)C=C3)C=C2)C=C1 SDSQJZIBSSMJTQ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 208000033962 Fontaine progeroid syndrome Diseases 0.000 description 1
- PISLKPDKKIDMQT-UHFFFAOYSA-N [3-(4-fluorobenzoyl)phenyl]-(4-fluorophenyl)methanone Chemical compound C1=CC(F)=CC=C1C(=O)C1=CC=CC(C(=O)C=2C=CC(F)=CC=2)=C1 PISLKPDKKIDMQT-UHFFFAOYSA-N 0.000 description 1
- SFUNACBLGBVAIQ-UHFFFAOYSA-N [4-[4-(4-fluorobenzoyl)phenyl]phenyl]-(4-fluorophenyl)methanone Chemical group C1=CC(F)=CC=C1C(=O)C1=CC=C(C=2C=CC(=CC=2)C(=O)C=2C=CC(F)=CC=2)C=C1 SFUNACBLGBVAIQ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- 239000012490 blank solution Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011208 chromatographic data Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- IKJFYINYNJYDTA-UHFFFAOYSA-N dibenzothiophene sulfone Chemical compound C1=CC=C2S(=O)(=O)C3=CC=CC=C3C2=C1 IKJFYINYNJYDTA-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000001595 flow curve Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- WPFGFHJALYCVMO-UHFFFAOYSA-L rubidium carbonate Chemical compound [Rb+].[Rb+].[O-]C([O-])=O WPFGFHJALYCVMO-UHFFFAOYSA-L 0.000 description 1
- 229910000026 rubidium carbonate Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006126 semicrystalline polymer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000005029 sieve analysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012421 spiking Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D7/00—Carbonates of sodium, potassium or alkali metals in general
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C315/00—Preparation of sulfones; Preparation of sulfoxides
- C07C315/06—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4087—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4093—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group characterised by the process or apparatus used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G8/00—Condensation polymers of aldehydes or ketones with phenols only
- C08G8/02—Condensation polymers of aldehydes or ketones with phenols only of ketones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/34—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
- C08G2261/344—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
- C08G2261/3444—Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/20—Polysulfones
- C08G75/23—Polyethersulfones
Definitions
- the present invention relates to highly pure 4,4′-difluorobenzophenone (4,4′-DFBP). Also described is the use of this highly pure 4,4′-DFBP in the preparation of poly(aryl ether ketone) polymers (PAEK), and the resulting PAEK polymers.
- 4,4′-DFBP poly(aryl ether ketone) polymers
- 4,4′-difluorobenzophenone (4,4′-DFBP) is a well known chemical intermediate having the following chemical formula:
- 4,4′-DFBP is known to be useful in the preparation of, e.g., PAEK polymers such as PEEK and PEK.
- PAEK polymers are a well known class of engineering polymers useful in various fields of endeavour. Processes for preparing PAEK polymers, including those using 4,4′-DFBP, can be found in, e.g., U.S. Pat. Nos. 3,953,400, 3,956,240, 3,928,295, and 4,176,222, all incorporated herein by reference.
- PAEK polymers are prepared by aromatic nucleophilic substitution. For example, p-hydroquinone, commonly referred to as “hydroquinone”, a bisphenol, etc.
- nucleophilic component which is deprotonated with a base such as NaOH, Na 2 CO 3 or K 2 CO 3 to form a nucleophile that then reacts with, e.g., a dihalobenzophenone such as 4,4′-DFBP to form a PAEK polymer via nucleophilic substitution, with the fluorine atoms of the 4,4′-DFBP acting as leaving groups.
- a base such as NaOH, Na 2 CO 3 or K 2 CO 3
- a base such as NaOH, Na 2 CO 3 or K 2 CO 3
- WO2007/144610 and WO2007/144615 describe the use of monomers having a purity of at least 99.7 area %, including 99.9 area % (as measured by gas chromatography), as providing improved melt flow index in the product polymer. It should be noted that a material that is 99.9% pure contains 1000 ppm of one or more impurities. However, these references remain silent on the nature and amount of specific impurities to be avoided. In addition, this measurement by area % leads only to a general purity level of the monomers and is nonspecific with regard to the type and amount of specific impurities to be avoided.
- Semi-crystalline poly(aryl ether ketone)s exhibit interesting properties as compared to their amorphous counterparts including, notably, excellent chemical resistance and good mechanical properties over a large temperature range. Ultimate mechanical properties of semi-crystalline resins are in particular linked to the crystallinity level. A high level of crystallinity is thus important to maintain these properties. Another important property of PAEK polymers is their melt stability.
- PAEK polymer having improved chemical resistance and mechanical properties over a large temperature range, and therefore PAEK polymer with improved crystallinity and/or melt stability are needed.
- Kanchanasopa “Encyclopaedia Of Polymer Science and Technology”, Online Ed, 2004), Wide Angle X-Ray diffraction (WAXD) or Differential Scanning calorimetry (DSC) are two common methods used to determine crystallinity.
- DSC the reference (Blundell et al., Polymer, 1983, V 24, P 953) is that a fully crystalline PEEK exhibits an enthalpy of fusion of 130 J/g.
- Semi-crystalline PAEK have crystallinity levels of above 5%, preferably above 10% as measured by WAXD or by DSC.
- the inventor of the present invention has found out that the gas chromatography method described in WO2007/144610 and WO2007/144615 is not suitable for the purity determination of DFBP, since it does not allow the differentiation of specific impurities.
- the inventor has found out that the liquid chromatography analysis of DFBP is much more appropriate and allows the detection of specific impurities which presence has an adverse effect on the PAEK properties.
- FIG. 1 represents a graph of the enthalpy of fusion of polymers according to the present invention versus the reduced viscosity (RV) of the polymers.
- PAEK are generally prepared by aromatic nucleophilic substitution, i.e. a fundamental class of substitution reaction in which an “electron rich” nucleophile selectively bonds with or attacks the positive or partially positive charge of an atom attached to a group or atom called the leaving group; the positive or partially positive atom is referred to as an electrophile.
- a nucleophile is thus intended to denote a reagent that forms a chemical bond to its reaction partner (the electrophile) by donating both bonding electrons.
- nucleophilic monomers used in the synthesis of PAEK are hydroxylated monomers such as p-hydroquinone (commonly known as “hydroquinone”), 4,4′-dihydroxybenzophenone, 4,4′-biphenol, 1,4-bis-(p-hydroxybenzoyl)benzene, 1,3-bis-(p-hydroxybenzoyl)benzene, etc.
- PAEK electrophilic monomers used in the synthesis of PAEK are 4,4′-difluorobenzophenone, 1,4-bis(p-fluorobenzoyl)benzene; 1,3-bis(p-fluorobenzoyl)benzene, 4,4′-bis(p-fluorobenzoyl)biphenyl, etc.
- 4,4′-DFBP is frequently used as an electrophile in the preparation of PAEK polymers such as PEEK and PEK.
- 2,4′-difluorobenzophenone (2,4′-DFBP), 4-monofluorobenzophenone (4-FBP), and monochloromonofluorobenzophenone (chlorofluorobenzophenone, C1FBP) to be commonly present in commercially available 4,4′-DFBP.
- 2,4′-DFBP and 4-FBP have a deleterious effect on PAEK crystallinity as measured by the heat of fusion on the 2 nd heat cycle in DSC and that chlorofluorobenzophenone has a deleterious effect on PAEK resin melt stability.
- a first aspect of the present invention is thus related to a process for preparing a PAEK by reacting a nucleophile with 4,4′-difluorobenzophenone (4,4′-DFBP), the improvement comprising using a 4,4′-DFBP that meets at least one, and preferably both, of the following impurity limitations:
- impurities levels are expressed on weight basis, i.e. weight of the impurity of concern/(weight of the 4,4′-DFBP+weight of all present impurities), expressed either in parts per million or in wt. %.
- chromatographic data is presented as a graph of detector response (y-axis) against retention time (x-axis). This provides a spectrum of peaks for a sample representing the analytes present in a sample eluting from the column at different times. Retention time can be used to identify analytes if the method conditions are constant. Also, the pattern of peaks will be constant for a sample under constant conditions and can identify complex mixtures of analytes. In most modern applications however the GC or LC apparatus is connected to a mass spectrometer or similar detector that is capable of identifying the analytes represented by the peaks. The area under a peak is proportional to the amount of analyte present. By calculating the area of the peak using the mathematical function of integration, the concentration of an analyte in the original sample can be determined. In most modern systems, computer software is used to draw and integrate peaks.
- the 4,4′-DFBP contains at most 750 ppm of 2,4′-difluorobenzophenone.
- the 4,4′-DFBP meets the following impurity limitations: [2,4′-difluorobenzophenone] ⁇ 750 ppm, more preferably 300 ppm, and [4-mono fluorobenzophenone] ⁇ 950 ppm, more preferably 500 ppm.
- the 4,4′-DFBP meets the following impurity limitations: [2,4′-difluorobenzophenone] ⁇ 750 ppm, and [4-mono fluorobenzophenone] ⁇ 500 ppm.
- the 4,4′-DFBP meets the following impurity limitations: [2,4′-difluorobenzophenone] ⁇ 300 ppm, and [4-mono fluorobenzophenone] ⁇ 950 ppm.
- [2,4′-DFBP] ⁇ 750 ppm including ⁇ 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 50 ppm etc., of course including 0 ppm, and all values and subranges between stated values as if explicitly written out
- [4-FBP] ⁇ 500 ppm including ⁇ 450, 400, 350, 300, 250, 200, 150, 100, 50 ppm etc., of course including 0 ppm, and all values and subranges between stated values as if written out.
- [2,4′-difluorobenzophenone]+[4-monofluorobenzophenone] ⁇ 1250 ppm including ⁇ 1200, 1100, 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50 ppm etc., of course including 0 ppm, and all values and subranges between stated values as if explicitly written out).
- the total chlorine content (representing the chlorinated organics) in the 4,4′-DFBP should be 0.075 wt. % or less, preferably 0.053 wt % or less (including 0.05, 0.045, 0.040, 0.035, 0.030, 0.025, 0.020 wt % or less etc., of course including 0 wt %, and all values and subranges between stated values as if written out) which, expressed as chlorofluorobenzophenone, is ⁇ 5000, ppm, 3500 ppm or less (including ⁇ 3400, 3300, 3200, 3100, 3000, 2750, 2500, 2250, 2000, 1750, 1500, 1250, 1000, 900, 850, 800, 750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 200, 150, 100, 50 ppm etc., of course including 0 ppm, and all values and subranges between stated values as if
- This total chlorine content (representing the chlorinated organics) in the 4,4′-DFBP is determined by Total Organic Halogen analysis (TOX), i.e. by combustion followed by microcoulometric titration analysis (TOX), as described in the following examples.
- TOX Total Organic Halogen analysis
- TOX microcoulometric titration analysis
- the 4,4′-difluorobenzophenone used in the process according to the present invention may have a GC purity of ⁇ 99.9 area %, and even ⁇ 99.9 area %, since some impurities have no adverse effect on the PAEK properties.
- Another aspect of the present invention is related to a 4,4′-DFBP that meets all the above described impurity limitations, and in particular: [2,4′-difluorobenzophenone] ⁇ 750 ppm and [2,4′-difluorobenzophenone]+[4-monofluorobenzophenone] ⁇ 1250 ppm.
- the 4,4′-DFBP according to the present invention meets the following impurity limitations: [2,4′-difluorobenzophenone] ⁇ 750 ppm, more preferably 300 ppm and [4-monofluorobenzophenone] ⁇ 950 ppm, more preferably 500 ppm.
- the 4,4′-DFBP according to the present invention meets at least two, preferably at least three and more preferably all the above mentioned impurity limitations.
- Still another aspect of the present invention is related to PAEK polymer obtainable by or prepared according to the process as above described.
- the acceptable enthalpy of fusion is ⁇ 68.0-26.6*RV, (more preferably ⁇ 69.0-26.6*RV) wherein RV is the reduced viscosity measured in H 2 SO 4 .
- RV is the reduced viscosity measured in H 2 SO 4 .
- PEK it is ⁇ 72.0-21.0*RV; more preferably ⁇ 74.0-21.0*RV.
- Another aspect of the present invention is thus related to a poly(aryl ether ketone), wherein the poly(aryl ether ketone) is PEEK having a heat of fusion in J/g ⁇ 68.0-26.6*RV (dl/g) where RV is the polymer reduced viscosity measured at 25° C. in concentrated H 2 SO 4 , or wherein the poly(aryl ether ketone) is PEK.
- Melt stability can be measured by the ratio of melt flow index measured at different holding times. Details of the methods are described further.
- Melt flow ratio (MFR) is preferably between 0.5 and 1.5, preferably between 0.5 and 1.2.
- Amounts of all these impurities (2,4′-DFBP, 4-FBP, total chlorine content, chlorofluorobenzophenone) can be measured in the 4,4′-DFBP using the test methods described in examples. Enthalpy of fusion can be determined by DSC as described in the examples. All of these measurement techniques are within the skill of the ordinary artisan.
- 4,4′-DFBP meeting one or more of the purity descriptions herein is particularly useful in the preparation of poly(aryl ether ketone) (PAEK) polymers.
- PAEK poly(aryl ether ketone)
- poly(aryl ether ketone) as used herein includes any polymer of which more than 50 wt. % of the recurring units are recurring units (R1) of one or more formulae containing at least one arylene group, at least one ether group (—O—) and at least one ketone group [—C( ⁇ O)—] and which was prepared using 4,4′-DFBP as a starting material.
- recurring units (R1) are chosen from:
- Ar is independently a divalent aromatic radical selected from phenylene, biphenylene or naphthylene
- X is independently O, C( ⁇ O) or a direct bond
- n is an integer of from 0 to 3
- b, c, d and e are 0 or 1
- a is an integer of 1 to 4, and preferably, d is 0 when b is 1.
- recurring units (R1) are chosen from:
- recurring (R1) are chosen from:
- recurring units (R1) are:
- a PEEK polymer is intended to denote any polymer of which more than 50 wt. % of the recurring units are recurring units (R1) of formula (VII).
- a PEK polymer is intended to denote any polymer of which more than 50 wt. % of the recurring units are recurring units (R1) of formula (VI).
- the poly(aryl ether ketone) may be notably a homopolymer, a random, alternate or block copolymer.
- the poly(aryl ether ketone) may notably contain (i) recurring units (R1) of at least two different formulae chosen from formulae (VI) to (XV), or (ii) recurring units (R1) of one or more formulae (XVI) to (XXV) and recurring units (R1*) different from recurring units (R1):
- the PAEK according to the present invention is a semi-crystalline PAEK, preferably a semi-crystalline PEEK.
- a semi-crystalline PAEK is intended to denote a PAEK featuring areas of crystalline molecular structure, but also having amorphous regions.
- semi-crystalline PAEKs have generally a melting point. Very often, the existence of a melting point is detected and the value of the melting point is measured by Differential Scanning calorimetry, for example as reported in the examples.
- the melting point is advantageously determined by a certain construction procedure on the heat flow curve: the intersection of the two lines that are tangent to the peak at the points of inflection on either side of the peak define the peak temperature, namely the melting point.
- the semi-crystalline PAEK has a melting point advantageously greater than 150° C., preferably greater than 250° C., more preferably greater than 300° C. and still more preferably greater than 325° C.
- a particularly preferred PAEK polymer prepared using the invention 4,4′-DFBP is a homopolymer of recurring units (R1) of formula (VII), i.e. a polymer of which all the recurring units of the poly(aryl ether ketone) are recurring units (R1) of formula (VII).
- This PEEK homopolymer preferably has a RV of between 0.50 and 1.40; more preferably between 0.60 and 1.30 and can be made using, e.g., the invention 4,4′-DFBP and p-hydroquinone.
- the target heat of fusion in J/g for this PEEK polymer is preferably ⁇ 68.0-26.6*RV (dl/g) where RV is the polymer reduced viscosity measured at 25° C. in concentrated H 2 SO 4 , as detailed in the examples.
- PAEK resins are generally prepared by aromatic nucleophilic substitution.
- a bisphenol can be deprotonated with a base such as NaOH, Na 2 CO 3 or K 2 CO 3 and the resultant bisphenolate may then react with, e.g., a dihalobenzophenone, especially 4,4′-DFBP, via nucleophilic substitution with the halogen atoms of the dihalobenzophenone, especially the fluorine atoms of the 4,4′-difluorobenzophenone (4,4′-DFBP), acting as leaving groups.
- a base such as NaOH, Na 2 CO 3 or K 2 CO 3
- a dihalobenzophenone especially 4,4′-DFBP
- PAEK reactions are typically carried out in a solvent, that often is, or that often contains, diphenylsulfone.
- solvents can be used: benzophenone, dibenzothiophene dioxide, etc.
- a semi-crystalline PAEK is prepared by reacting a nucleophile with a 4,4′-DFBP meeting the specific one or more impurity limitation(s) as previously detailed.
- nucleophiles may be used.
- the nucleophile used in the present invention is preferably selected from the group consisting of p-hydroquinone (commonly known as “hydroquinone”), 4,4′-dihydroxybenzophenone, 4,4′-biphenol, 1,4-bis-(p-hydroxybenzoyl)benzene, 1,3-bis-(p-hydroxybenzoyl)benzene and mixtures thereof. More preferably, it is p-hydroquinone.
- the reacting of the nucleophile with the 4,4′-difluorobenzophenone takes advantageously place via aromatic nucleophilic substitution in a solvent.
- the solvent includes preferably diphenylsulfone meeting one or more impurity limitations, as specified in embodiment (D) hereinafter.
- the process for preparing a semi-crystalline poly(aryl ether ketone) is a process by reacting a nucleophile with a 4,4′-difluorobenzophenone via aromatic nucleophilic substitution in a solvent comprising a diphenylsulfone, wherein said diphenylsulfone meets at least one of the following impurity limitations:
- Monomethyldiphenylsulfone content (sum of all Less than 0.2 area % isomers) Monochlorodiphenylsulfone content (sum of all Less than 0.08 area % isomers) Sodium content Less than 55 ppm Potassium content Less than 15 ppm Iron content Less than 5 ppm Residual acidity content Less than 2.0 ⁇ eq/g Diphenylsulfide content Less than 2.0 wt. % APHA of 20 wt. % solution in acetone at 25° C. Less than 50 Total chlorine content Less than 120 ppm where ppm and wt. % are based on the total weight of the diphenylsulfone and area % represents the ratio of the GC peak area of the impurity of concern over the total area of all GC peaks of the diphenylsulfone.
- the residual acidity content in diphenylsulfone can be determined as follows. Approximately 3 g of diphenylsulfone sample is weighed to the nearest 0.1 mg and added to an empty glass titration vessel. 55 ml of high-purity methylene chloride is added, followed by addition of a 5.00 ml aliquot of spiking solution, which contains six drops of 37% hydrochloric acid per liter, into the same titration vessel. The vessel is then attached to the titrator cell assembly containing the buret tip, pH electrode, and magnetic stirrer. The vessel is then purged with carbon dioxide free nitrogen for 5-7 minutes.
- Acidity (( VS 1 VB 1)* N *100000)/ W in microequivalents per gram of sample
- VS1 is the amount of titrant in ml required to reach the strong acid/base equivalence points when sample solution is titrated and VB1 is the amount of titrant in ml required to reach the strong acid/base equivalence point when only the blank solution is titrated
- W is the sample weight
- N is the normality of the tetrabutylammonium hydroxide titrant. If acidity is negative, the sample contains basic species.
- the sodium, potassium, and iron content in diphenylsulfone can be determined as follows. Concentrations of sodium, potassium, and iron are measured in diphenylsulfone by ashing of the sample followed by measurement of element concentration by inductively-coupled plasma atomic emission spectrometry. Approximately 3 g of diphenylsulfone sample is weighed into platinum crucibles using an analytical balance. Two drops of concentrated, trace metals grade sulfuric acid is added to each sample and the crucibles are placed into a muffle furnace set to 250° C. After the diphenylsulfone has vaporized, the furnace temperature is raised to 525° C. for 1 hour to remove any organic residues.
- Metallic residues are dissolved by adding 1 ml of concentrated hydrochloric acid to the crucible and warming at 50° C. to dissolve the ash. After addition of 5 ml of deionized water and additional warming, crucible contents are quantitatively transferred to a 25-ml volumetric flask, diluted to the mark with deionized water, and mixed well. The diluted solutions are then analyzed by ICP-AES against standards made from certified sodium, potassium, and iron standard solutions. Emission is monitored at the following wavelengths for the elements of interest: sodium: 589.592 nm, potassium: 766.490 nm and iron: 238.204 nm.
- Plasma conditions used for the analysis are: plasma input power: 1300 watts, plasma argon flow: 15 liters per minute, auxiliary argon flow: 0.5 liters per minute, nebulizer flow: 1.2 liters per minute, and sample flow rate: 1.5 milliliters per minute. Element concentrations in the samples are calculated by the ICP operating software from the element emission line intensities.
- the total chlorine content in diphenylsulfone can be determined as follows. Using forceps, a clean, dry combustion boat is placed onto a microbalance, and the balance is zeroed. 1 mg of diphenylsulfone sample is weighed into the boat and weight is recorded to 0.001 mg. The combustion boat and sample are placed in the introduction port of a Thermo Electron Corporation ECS 1200 Halogen Analyzer, and the port is capped. The sample weight is entered into the sample weight field on the instrument computer. The sample analysis cycle is then started. The sample is burned in a mixture of argon and oxygen and the combustion products are carried by the combustion gas stream into a titration cell. Hydrogen chloride produced from the combustion is absorbed into the cell solution from the gas stream, and is coulometrically titrated with silver ions. Total chlorine content is displayed at the end of the titration.
- the diphenylsulfide content in diphenylsulfone can be determined by liquid chromatography, as explained hereinafter.
- HPLC analysis is carried out on a Waters Alliance 2795 LC instrument using a Supelco Discovery HS F5 25 cm ⁇ 4.6 mm column. The analysis conditions are:
- the sample is prepared by dissolving 0.2 g of DPS in 10 g of acetonitrile.
- concentration of diphenylsulfide is determined using a low concentration diphenylsulfide as an external calibration standard (commercially available).
- the retention time for DPS is typically 6.2 minutes and the retention time for diphenylsulfide is typically 10.7 minutes.
- the diphenylsulfide concentration in the DPS sample is assessed by the area of the diphenylsulfide peak/total peak area of DPS plus impurities.
- the monochlorodiphenylsulfone and monomethyldiphenylsulfone content in diphenylsulfone can be determined by gas chromatography, as explained hereinafter.
- GC analysis is performed on an HP5890 series 11 gas chromatograph using a Restek RTx-5MS, 15 m ⁇ 0.25 mm internal diameter ⁇ 0.25 ⁇ m film thickness column. The following GC conditions are used:
- Injector temperature 250° C.
- FID temperature 250° C.
- Oven Temperature Program 100° C., hold 1 minute, 30° C./minute to 250° C., hold 1 minute
- the sample is prepared by dissolving 0.2 g of DPS in 5 ml of acetone.
- the GC retention times for monomethyldiphenylsulfone isomers are typically 8.0 and 8.1 minutes and for monochlorodiphenylsulfone 8.2 minutes.
- the identity of the impurities is determined by GCMS run on the sample solution.
- the impurity concentrations are quoted as area %, calculated from GC FID peak areas. When several isomers are present, the concentration includes the sum of these isomers.
- the color (APHA) of DPS in acetone can be determined as follows. 20 g of diphenylsulfone are dissolved in 80 g of acetone at 25° C. The acetone used contains less than 0.5 wt. % water. Color of the solution is measured as compared to Pt-Co standards in the APHA scale (ASTM D1209-00), using a Gretag Macbeth Color Eye Ci5 Spectrophotometer for the comparison. The blank used is distilled water.
- said diphenylsulfone meets preferably the impurity limitations for monomethyldiphenylsulfone, monochlorodiphenylsulfone, and residual acidity.
- said diphenylsulfone meets preferably the impurity limitations for sodium, iron, diphenylsulfide, and APHA of 20 wt. % solution in acetone at 25° C.
- the reacting of the nucleophile with the 4,4′-difluorobenzophenone takes advantageously place via aromatic nucleophilic substitution in the presence of alkali-metal carbonate, often under an inert atmosphere and often at temperatures approaching the melting point of the polymer.
- the alkali-metal carbonate includes preferably particulate sodium carbonate having a certain particle size distribution, as specified in embodiment (E) hereinafter.
- the process for preparing a semi-crystalline poly(aryl ether ketone) is a process by reacting a nucleophile with a 4,4′-difluorobenzophenone via aromatic nucleophilic substitution in the presence of particulate sodium carbonate, wherein the 4,4′-difluorobenzophenone meets the one or more impurity limitation(s) as above detailed, and said particulate sodium carbonate has a particle size distribution as follows:
- a sodium carbonate particle size distribution expressed as D xx ⁇ Y ⁇ m refers to the percentage (xx %) of sodium carbonate particles by weight in a sample that are less than or equal to Y ⁇ m in diameter.
- Na 2 CO 3 that is “too fine” is avoided as it can notably lead to a low bulk density product that is difficult to handle and synthesis reaction kinetics that are difficult to control.
- the Applicant found that Na 2 CO 3 with a D 90 ⁇ 45 ⁇ m was beneficial.
- Na 2 CO 3 that contains a certain amount of “big” particles, and especially of “very big” particles is also to be avoided as it can notably slow down the polymerization rate, or require the use of an undesirably high amount of K 2 CO 3 or other higher alkali metal carbonate (at fixed Na 2 CO 3 amount); Na 2 CO 3 that contains a certain amount of “big” particles, and especially of “very big” particles, can also result in polymerizations having poor kinetics consistency.
- particulate sodium carbonate in accordance with embodiment (E) provides several benefits, including the ability to synthesize easily PAEKs in the absence of a cosolvent forming an azeotrope with water such as p-xylene, and thereby prepare PAEKs with no trace of residual cosolvent (such cosolvents, like p-xylene, are generally toxic).
- Cosolvents forming an azeotrope with water used in the synthesis of PAEK resins are known to those of skill in the art, and in addition to p-xylene include chlorobenzene, toluene, etc.
- the use of particulate sodium carbonate in accordance with embodiment (E) makes it also possible to manufacture lower color, whiter PAEK resins.
- the use of particulate sodium carbonate in accordance with embodiment (E) results also beneficially in improved kinetics consistency.
- the D 99.5 of the sodium carbonate particles in accordance with embodiment (E) is of at most 630 ⁇ m; more preferably, it is of at most 500 ⁇ m; still more preferably, it is of at most 425 ⁇ m; most preferably, it is of at most 355 ⁇ m.
- the D 90 of the sodium carbonate particles in accordance with embodiment (E) is of at least 63 ⁇ m; more preferably, it is of at least 90 ⁇ m; still more preferably, it is of at least 112 ⁇ m.
- the D 90 of the sodium carbonate particles in accordance with embodiment (E) is of at most 212 ⁇ m; more preferably, it is of at most 180 ⁇ m; still more preferably, it is of at most 150 ⁇ m.
- the sodium carbonate has the following particle size distributions:
- the particle size distribution of the sodium carbonate in accordance with embodiment (E) can be determined by mechanical sieving. This method is appreciated because of its easiness, broad availability, and excellent repeatability. Mechanical sieving is generally based on the mechanical separation of the various fractions on a series of superimposed sieves. The analysis can be made partly or fully in accordance with ASTM E 359-00 (reapproved 2005) ⁇ 1 , the whole content of which being herein incorporated by reference. ASTM E 359-00 (reapproved 2005) ⁇ 1 concerns various measurements made specifically on sodium carbonate, notably sieve analysis.
- the particle size distribution is advantageously determined with an automatic mechanical sieving device, such Ro-Tap RX-29 sieve shaker (as commercialized by W. S. Tyler Company).
- the sieves mounted on the sieve shaker are advantageously in conformity with standard ISO 3310-1 or ASTM E-11, preferably with wire stainless steel circular sieves with square meshes, metal mounting with a diameter 200 mm.
- the device and its sieves are advantageously checked periodically using a reference powder; the control frequency should be desirably be as high as possible for early detection of any deviation, as possibly resulting for damaged meshes.
- the sieves are superimposed and assembled from top to bottom by descending order of opening mesh; a fixed weight amount of the powder to be investigated is weighed with an analytical balance and placed on top of the widest sieve; by vibrating the sieving machine, the powder material is conveyed through the various sieves; the sieving operation is run for a fixed amount of time; the residues on the sieves are weighed with an analytical balance and related mathematically to the initial weight of material.
- D 90 and D 99.5 values can be calculated from the residues weights. This calculation is generally made as follows:
- the results can be displayed on a graph were the Y-coordinate represents the cumulative weight percent particles retained on a particular sieve.
- the X-coordinate corresponds to sieve size.
- the Y-value for a particular sieve can be determined by adding the weight of the particles retained on that sieve plus the weights of the particles retained on all larger sieves above it and dividing the sum by the total weight of the sample.
- the sieves can be ISO 3310-1 or ASTM E-11 test sieves having a diameter of 200 mm, notably commercialized from LAVAL LAB Inc.
- a certain suitable set of sieves is composed of eight ISO 3310-1 or ASTM E-11 test sieves having a diameter of 200 mm, having the following aperture size or ASTM opening designation: 1000 ⁇ m (ASTM No. 18), 500 ⁇ m (ASTM No. 35), 250 ⁇ m (ASTM No. 60), 180 ⁇ m (ASTM No. 80), 125 ⁇ m (ASTM (No. 120), 90 ⁇ m (ASTM No. 170), 63 ⁇ m (ASTM No. 230) and 45 ⁇ m (ASTM No. 325).
- Sieves superimposed by descending order of opening mesh (size in ⁇ m): 1000 ⁇ m, 500 ⁇ m, 250 ⁇ m, 180 ⁇ m, 125 ⁇ m, 90 ⁇ m, 63 ⁇ m and 45 ⁇ m.
- the particle size distribution of the sodium carbonate used in accordance with embodiment (E) is advantageously determined on a sample which is representative of the whole sodium carbonate which is used in said process.
- the skilled person will advantageously rely upon all those sampling recommendations which do form part of the general knowledge and are broadly described in various encyclopaedias, including but not limited to “Sampling”, Reg. Davies, in “Kirk-Othmer Encyclopaedia of Chemical Technology”, online Ed. 2000, the whole content of which is herein is incorporated by reference. Since sodium carbonate can be viewed as a free-flowing powder, sampling procedures suitable for stored free-flowing powders will be used preferably.
- Sodium carbonate is broadly commercially available, either in the form of dense sodium carbonate or light sodium carbonate.
- Light sodium carbonate also called light soda ash
- Dense sodium carbonate commonly called dense soda ash
- has generally a free flowing density as measured in accordance with ISO 903 standard, of from 0.90 kg/dm 3 to 1.20 kg/dm 3 .
- neither the commercially available dense sodium carbonates nor the commercially available light sodium carbonates have a particle size distribution as required by embodiment (E). Yet, as will explained below, it is easy for the skilled person, searching for obtaining a sodium carbonate with the appropriate particle size requirements, to obtain it.
- Dense sodium carbonates having the particle size distribution as required by present embodiment (E) can be notably obtained by appropriate grinding and/or sieving dense sodium carbonates having a particle size distribution not in accordance with embodiment (E).
- methods including at least one grinding step followed by at least one sieving step are preferred.
- suitable grinders it can be notably cited jet mills such as helical jet mills, oval tube jet mills, counterjet mills, fluidized bed jet mills, and ball and plate jet mills, can notably be used.
- sieves it can be notably cited 710 ⁇ m, 630 ⁇ m, 500 ⁇ m, 400 ⁇ m, 300 ⁇ m, 250 ⁇ m, 200 ⁇ m, 150 ⁇ m and 125 ⁇ m sieves.
- Light sodium carbonates having the particle size distribution as required in present embodiment (E) can also be obtained by appropriate grinding and/or sieving light sodium carbonates having a particle size distribution not in accordance with embodiment (E).
- methods free of any grinding step are preferred; such methods may include a sieving step or not.
- a particularly preferred method for obtaining light sodium carbonates having the particle size distribution in accordance with embodiment (E) comprises selecting said light sodium carbonates among different lots of one or more grades of commercially available light sodium carbonates, as detailed below.
- the Applicant determined the particle size distribution of numerous lots of commercially available (unground) light sodium carbonates from different sources, and observed that, among all these lots, none had a D 90 below 45 ⁇ m; as a matter of fact, their D 90 often ranged usually from about 100 ⁇ m to about 250 ⁇ m, i.e. the lots often complied with both requirements set forth for the D 90 in accordance with embodiment (E) of the present invention.
- SODASOLVAY® L sodium carbonate As produced notably in Dombasle or Rosignano plants, is particularly attractive because a rather high fraction of this commercial grade is formed by lots in accordance with the invention; thus, the Applicant could very easily identify appropriate lots suitable for use in accordance with embodiment (E) of the present invention.
- An important and surprising benefit resulting from the use of sodium carbonate powder meeting the requirements of embodiment (E) is that it allows one to limit the amount of potassium carbonate, and more generally of any other higher alkali metal carbonate, to be used in the preparation of the PAEK.
- higher alkali metal carbonates other than potassium carbonate it can be particularly cited rubidium carbonate and caesium carbonate.
- the molar ratio of A/Na (wherein A designates either K, Cs or Rb or any combination thereof) can be of at most 0.050 mol A/mol Na, preferably at most 0.020 mol A/mol Na, and more preferably at most 0.010 mol A/mol Na.
- the molar ratio of A/Na is equal to 0 (i.e. the nucleophilic substitution takes place in the absence of K, Cs and Rb).
- the molar ratio of A/Na although being maintained at a low level (e.g.
- the particle size distribution of the potassium carbonate is not important, although a slight additional improvement in terms of polymerization kinetics might be observed when using a very finely ground potassium carbonate.
- DSC measurements were done according to ASTM D3418-03, E1356-03, E793-06, E794-06 on TA Instruments DSC 2920 with nitrogen as carrier gas (99.998% purity, 50 ml/min). Temperature and heat flow calibrations were done using indium. Sample size was 5 to 7 mg. The weight was recorded ⁇ 0.01 mg.
- the enthalpy of fusion was determined on the 2nd heat scan.
- the melting of PEEK was taken as the area over a linear baseline drawn from 220° C. to a temperature above the last endotherm (typically 370-380° C.).
- Melt flow index was measured according to ASTM D1238-04 at 400° C. with 2.16 kg load. The die had the following dimensions: 2.0955 mm diameter and 8.000 mm length. A charge of 3 g of dry polymer (dried at 170° C. for 4 hours) was used. MF 10 is the melt flow index measured after the polymer has been kept 10 minutes in the barrel. MF 30 is the melt flow index measured under the same conditions but after the polymer has been kept in the barrel at 400° C. for 30 minutes. MFR (melt flow ratio) is the ratio of MF 30 /MF 10 and reflects the melt stability of the polymer. MFR ⁇ 1 indicates an increase of viscosity overtime.
- Reduced Viscosity was measured according ASTM D2857-95 (2007) at 25° C. in concentrated sulfuric acid (1 wt. %/vol).
- the viscometer tube was number 50 Cannon Fenske.
- ground powder approximately mean particle size 200-600 ⁇ m was used. The sample was dissolved at room temperature (no heating).
- the solution was filtered on glass frit (medium porosity) before use.
- t soln and t solvent are the efflux times measured for the solution and the blank solvent, respectively. The average of at least 3 measurements was used for efflux times. Under these conditions, the efflux times should be longer than 200 s and, no correction for kinetic energy was applied.
- the efflux time of the solution has to be measured within the 3 hours after the preparation of the solution.
- the HPLC method is carried out on a Agilent 1100 LC instrument using a Supelco Discovery HS F5, 5 ⁇ m, 25 cm ⁇ 4.6 mm column.
- the analysis conditions were:
- the sample was prepared by dissolving about 0.01 g of 4,4′-DFBP in 100 ml of acetone.
- the amount of 2,4′-difluorobenzophenone and 4-monofluorobenzophenone in 4,4′-difluorobenzophenone was determined using a calibration with three external standards of these commercially available compounds, of different concentrations, to generate a calibration curve.
- the retention time of 2,4′-DFBP was about 7.4 minutes and 7.1 minutes for 4-mono fluorobenzophenone.
- the retention time for 4,4′-DFBP was about 7.7 minutes.
- Results are expressed as parts per million of the two impurities.
- Injector temperature 290° C.
- Detector temperature 300° C.
- Oven ramp 60° C., hold for 1 minute, then to 325° C. at 30 C/minute, 5 minute hold at 325° C.
- Split ratio 60:1
- Injection volume 0.2 ⁇ l
- Carrier gas flow helium
- the sample is prepared by dissolving 150 mg of 4,4′-difluorobenzophenone in 5 ml of acetone.
- the GC retention time for 4,4-difluorobenzophenone is around 5.7 minutes, and about 7.0 minutes for mono-Cl,F-benzophenone.
- the 4,4′-DFBP purity is quoted as an area %, calculated from the GC peak areas in the area % table.
- the chlorofluorobenzophenone impurity peaks were identified by GCMS analysis and their amounts were estimated from their GC peak areas using external standards of commercially available compounds and assuming that isomers had the same response factor.
- Termination was carried out by adding 1.42 g 4,4′-DFBP (of above-mentioned purity) and 2.21 g LiCl to the reaction mixture and keeping the mixture at 310° C. for an additional 30 minutes.
- the polymer was dried at 120° C. under vacuum. The polymer had a reduced viscosity measured at 25° C. in concentrated H 2 SO 4 of 1.17.
- Examples 2 to 8 were made using the same procedure as Example 1 but substituting the 4,4′-DFBP used with different 4,4′-DFBP having different levels of 2,4′-DFBP and 4-FBP (supplied by Jintan ChunFeng Chemical Co. or Navin Fluorine and used without further purification). The reaction was stopped at different reaction time to obtain polymer samples with different molecular weights.
- Examples 1 through 4 demonstrate that, using 4,4′-DFBP with less than 750 ppm 2,4′-DFBP, polymer with good crystallinity level can be made.
- Comparative examples 5 through 8 show that, using 4,4′-DFBP with more than 750 ppm 2,4′-DFBP, polymer with reduced crystallinity level is obtained.
- examples 1-4 while featuring a lower GC purity level, gave better results compared to example C6.
- impurities different from the 4FBP and 2,4′DFBP that were specifically detected in these examples
- FIG. 1 represents the graph of the enthalpy of fusion expressed in J/g versus the reduced viscosity (RV) expressed in dl/g, and where Examples 1-4 are Examples according to the invention, Examples 5-8 are Comparative Examples and the represented line corresponds to the target enthalpy of fusion.
- Examples 10 and 11 were made using the same procedure as in Example 1 but substituting the 4,4′-DFBP used with different 4,4′-DFBP (supplied by Jintan ChunFeng Chemical Co), containing added 2-chloro-4′-fluorobenzophenone (supplied by DSL Chemicals, Shangai) as indicated in Table 2.
- the melt stability was measured by the ratio of melt flow at 400° C. after 30 minutes over the melt flow measured after 10 minutes. As shown, when the monomer contains more than 5000 ppm of chlorofluorobenzophenone, the polymer exhibits unacceptable melt stability (MFR 0.05).
- Preferred MFR values include from 0.50 to 1.20.
- Example 11 shows that high levels of chlorofluorobenzophenone have a deleterious effect on melt stability (MFR too low).
- the present invention has many facets.
- an advancement is described in that processes for preparing a PAEK polymer by reacting a nucleophile with 4,4′-difluorobenzophenone (4,4′-DFBP) are improved through the use of 4,4′-DFBP that meets one or more of the above purity conditions.
- improved PAEK polymers are produced using the invention 4,4′-DFBP.
- phrases “selected from the group consisting of,” “chosen from,” and the like include mixtures of the specified materials.
- Terms such as “contain(s)” and the like as used herein are open terms meaning ‘including at least’ unless otherwise specifically noted. Phrases such as “mention may be made,” etc. preface examples of materials that can be used and do not limit the invention to the specific materials, etc., listed.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Polyethers (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/125,523 US20110213115A1 (en) | 2008-10-24 | 2009-10-23 | Process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10809708P | 2008-10-24 | 2008-10-24 | |
| US10809608P | 2008-10-24 | 2008-10-24 | |
| US14020508P | 2008-12-23 | 2008-12-23 | |
| US13/125,523 US20110213115A1 (en) | 2008-10-24 | 2009-10-23 | Process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone |
| PCT/EP2009/064008 WO2010046483A1 (en) | 2008-10-24 | 2009-10-23 | Improved process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2009/064008 A-371-Of-International WO2010046483A1 (en) | 2008-10-24 | 2009-10-23 | Improved process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/861,508 Continuation US9815937B2 (en) | 2008-10-24 | 2015-09-22 | Process for preparing a poly(aryl ether ketone) using a high purity 4,4′-difluorobenzophenone |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20110213115A1 true US20110213115A1 (en) | 2011-09-01 |
Family
ID=41445399
Family Applications (7)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/125,537 Active 2030-06-23 US9175136B2 (en) | 2008-10-24 | 2009-10-23 | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US13/125,508 Active 2030-07-31 US8710171B2 (en) | 2008-10-24 | 2009-10-23 | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US13/125,523 Abandoned US20110213115A1 (en) | 2008-10-24 | 2009-10-23 | Process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone |
| US14/246,901 Active US9133111B2 (en) | 2008-10-24 | 2014-04-07 | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US14/822,423 Active US9765185B2 (en) | 2008-10-24 | 2015-08-10 | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US14/861,508 Active 2029-11-11 US9815937B2 (en) | 2008-10-24 | 2015-09-22 | Process for preparing a poly(aryl ether ketone) using a high purity 4,4′-difluorobenzophenone |
| US14/860,990 Active US10023692B2 (en) | 2008-10-24 | 2015-09-22 | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
Family Applications Before (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/125,537 Active 2030-06-23 US9175136B2 (en) | 2008-10-24 | 2009-10-23 | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US13/125,508 Active 2030-07-31 US8710171B2 (en) | 2008-10-24 | 2009-10-23 | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
Family Applications After (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/246,901 Active US9133111B2 (en) | 2008-10-24 | 2014-04-07 | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US14/822,423 Active US9765185B2 (en) | 2008-10-24 | 2015-08-10 | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US14/861,508 Active 2029-11-11 US9815937B2 (en) | 2008-10-24 | 2015-09-22 | Process for preparing a poly(aryl ether ketone) using a high purity 4,4′-difluorobenzophenone |
| US14/860,990 Active US10023692B2 (en) | 2008-10-24 | 2015-09-22 | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
Country Status (8)
| Country | Link |
|---|---|
| US (7) | US9175136B2 (enExample) |
| EP (5) | EP2722353A1 (enExample) |
| JP (5) | JP5734858B2 (enExample) |
| CN (6) | CN102197064B (enExample) |
| AU (1) | AU2009306298A1 (enExample) |
| CA (3) | CA2740697C (enExample) |
| RU (1) | RU2011120794A (enExample) |
| WO (4) | WO2010046487A1 (enExample) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110213095A1 (en) * | 2008-10-24 | 2011-09-01 | Solvay Advanced Polymers, L.L.C. | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US20120095182A1 (en) * | 2009-06-26 | 2012-04-19 | Kingfa Science & Technology Co., Ltd. | Method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology |
| US9512312B2 (en) | 2014-08-21 | 2016-12-06 | Ticona Llc | Polyaryletherketone composition |
| WO2018086873A1 (en) | 2016-11-11 | 2018-05-17 | Solvay Specialty Polymers Usa, Llc | Polyarylether ketone copolymer |
| US10774215B2 (en) | 2014-08-21 | 2020-09-15 | Ticona Llc | Composition containing a polyaryletherketone and low naphthenic liquid crystalline polymer |
| US11708457B2 (en) | 2016-11-11 | 2023-07-25 | Solvay Specialty Polymers Usa, Llc | Polyarylether ketone copolymer |
| US12319785B2 (en) | 2020-09-02 | 2025-06-03 | Idemitsu Kosan Co., Ltd. | Method for producing aromatic polyether, and potassium carbonate used in same |
Families Citing this family (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120032014A (ko) | 2009-07-24 | 2012-04-04 | 인비스타 테크놀러지스 에스.에이.알.엘. | 이온성 액체를 사용하는 합성 방법 |
| JP5316727B1 (ja) * | 2011-09-21 | 2013-10-16 | 東レ株式会社 | 環式ポリフェニレンエーテルエーテルケトン組成物の回収方法およびそれを用いたポリフェニレンエーテルエーテルケトンの製造方法 |
| JP5633655B1 (ja) * | 2012-12-21 | 2014-12-03 | 東レ株式会社 | 環式ポリフェニレンエーテルエーテルケトン組成物および線状ポリフェニレンエーテルエーテルケトンの製造方法、ポリフェニレンエーテルエーテルケトンの製造方法 |
| JP6221311B2 (ja) * | 2013-04-05 | 2017-11-01 | 東レ株式会社 | ポリフェニレンエーテルエーテルケトンの製造方法 |
| US20160075833A1 (en) * | 2013-05-02 | 2016-03-17 | Basf Se | Polyarylethersulfone copolymers |
| CN105308095B (zh) | 2013-05-02 | 2018-01-19 | 巴斯夫欧洲公司 | 聚芳醚砜共聚物 |
| GB201311376D0 (en) * | 2013-06-26 | 2013-08-14 | Victrex Mfg Ltd | Polymetric Materials |
| GB2526243B (en) | 2014-02-24 | 2021-07-14 | Victrex Mfg Ltd | Polymeric materials |
| GB201409128D0 (en) * | 2014-05-22 | 2014-07-09 | Ketonex Ltd | Method |
| GB201415972D0 (en) | 2014-09-10 | 2014-10-22 | Ketonex Ltd | Process |
| CN107109222B (zh) * | 2014-12-19 | 2021-05-07 | 默克专利股份有限公司 | 双介晶化合物和介晶介质 |
| WO2016116618A1 (de) * | 2015-01-23 | 2016-07-28 | Basf Se | Entsalzung von polyarylethern mittels schmelzeextraktion |
| US20180009950A1 (en) * | 2015-01-23 | 2018-01-11 | Basf Se | Desalination of polyaryl ethers from a melt polymerization method |
| EP3222651A1 (de) | 2016-03-21 | 2017-09-27 | Basf Se | Entsalzung von polyarylethern mittels schmelzeextraktion |
| EP3515966A1 (en) * | 2016-09-26 | 2019-07-31 | Victrex Manufacturing Limited | Polymers and process for their manufacture |
| US11732090B2 (en) | 2016-12-21 | 2023-08-22 | Solvay Specialty Polymers Usa, Llc | Poly(ether ketone ketone) polymers, corresponding synthesis methods and polymer compositions and articles made therefrom |
| WO2018115033A1 (en) | 2016-12-21 | 2018-06-28 | Solvay Specialty Polymers Usa, Llc | Poly(ether ketone ketone) polymers, corresponding synthesis methods and polymer compositions and articles made therefrom |
| EP3559084B2 (en) | 2016-12-21 | 2024-10-16 | Solvay Specialty Polymers USA, LLC | POLY (ETHER-KETONE-KETONE) POLYMERS, CORRESPONDING SYNTHESIS PROCESSES AND POLYMER COMPOSITIONS AND ARTICLES MANUFACTURED THEREFOR |
| WO2018115035A1 (en) | 2016-12-21 | 2018-06-28 | Solvay Specialty Polymers Usa, Llc | Poly(ether ketone ketone) polymers, corresponding synthesis methods and polymer compositions and articles made therefrom |
| US11420920B2 (en) * | 2016-12-21 | 2022-08-23 | Solvay Specialty Polymers Usa, Llc | Method for decreasing the concentration of a metal in a monomer composition comprising bis(benzoyl)benzene |
| US11851526B2 (en) | 2017-06-30 | 2023-12-26 | Solvay Specialty Polymers Usa, Llc | Poly(ether ketone ketone) polymer powder having a low volatiles content |
| WO2019122143A1 (en) | 2017-12-20 | 2019-06-27 | Solvay Specialty Polymers Usa, Llc | A method of making a shaped article comprising printing layers of a polymer composition comprising at least one peek-pemek copolymer |
| CN113166396B (zh) * | 2018-06-21 | 2024-05-14 | 索尔维特殊聚合物美国有限责任公司 | 聚(醚酮酮)(pekk)聚合物及复合材料 |
| CN109061026B (zh) * | 2018-09-05 | 2020-12-25 | 九江天赐高新材料有限公司 | 一种对合成的peek样品进行分析检测的方法 |
| EP3650095B1 (en) | 2018-11-09 | 2025-09-03 | Arkema France | Method for the recovery of compounds deriving from the synthesis of aryl ether ketones by evaporation with a rotor |
| US10731001B2 (en) | 2018-11-09 | 2020-08-04 | Arkema France | Method for the recovery of compounds deriving from the synthesis of poly aryl ether ketone polymers |
| WO2020095115A2 (en) | 2018-11-09 | 2020-05-14 | Arkema France | Method for the recovery of compounds deriving from the synthesis of aryl ether ketones |
| CN109725087B (zh) * | 2019-03-16 | 2021-05-14 | 丁立平 | 一种测定纺织品中三种痕量多卤代苯酚的气相色谱-质谱联用法 |
| US11760899B2 (en) | 2019-06-20 | 2023-09-19 | Solvay Specialty Polymers Usa, Llc | Polymer-metal junction comprising PEEK-PEoEK copolymer compositions, in contact with a metal substrate |
| WO2020254097A1 (en) | 2019-06-20 | 2020-12-24 | Solvay Specialty Polymers Usa, Llc | A method of making a peek-peoek copolymer and copolymer obtained from the method |
| US20220267518A1 (en) | 2019-06-20 | 2022-08-25 | Solvay Specialty Polymers Usa, Llc | PEEK-PEoDEK COPOLYMER AND METHOD OF MAKING THE COPOLYMER |
| WO2021001132A1 (en) | 2019-07-01 | 2021-01-07 | Solvay Specialty Polymers Usa, Llc | PEEK-PEoEK COPOLYMER POWDER AND METHOD OF PREPARING THE POWDER |
| WO2021008983A1 (en) | 2019-07-12 | 2021-01-21 | Solvay Specialty Polymers Usa, Llc | Fiber reinforced thermoplastic matrix composite material |
| EP4132993A1 (en) | 2020-04-06 | 2023-02-15 | Solvay Specialty Polymers USA, LLC. | Polyarylether ketone polymers |
| WO2022050341A1 (ja) * | 2020-09-02 | 2022-03-10 | 出光興産株式会社 | ポリエーテルエーテルケトンの製造方法 |
| WO2022117604A1 (en) * | 2020-12-03 | 2022-06-09 | F. Hoffmann-La Roche Ag | Detection of an analyte of interest by cross spray esi mass spectrometry |
| CN113563578B (zh) * | 2021-08-16 | 2023-12-26 | 吉林省中研高分子材料股份有限公司 | 一种制备聚(芳基醚酮)的方法及聚(芳基醚酮) |
| CN113912799B (zh) * | 2021-09-16 | 2022-05-10 | 吉林省中研高分子材料股份有限公司 | 聚醚醚酮及其制备方法 |
| CN114230785B (zh) * | 2021-11-17 | 2023-03-03 | 吉林省中研高分子材料股份有限公司 | 一种耐辐射的聚醚醚酮聚合物及其制备方法 |
| EP4286026A1 (en) * | 2022-05-31 | 2023-12-06 | Basf Se | Method for separating an aprotic polar solvent from a mixture comprising water, the aprotic polar solvent and at least one inorganic salt |
| CN116087378A (zh) * | 2022-11-28 | 2023-05-09 | 湖北省宏源药业科技股份有限公司 | 一种气相色谱法测定4,4’-二氟二苯甲酮纯度的方法 |
| CN119264414A (zh) * | 2024-11-15 | 2025-01-07 | 季华实验室 | 一种磺化聚醚醚酮及其制备方法 |
Citations (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3928295A (en) * | 1973-05-25 | 1975-12-23 | Ici Ltd | Aromatic polymers containing ketone linking groups and process for their preparation |
| US3953400A (en) * | 1972-01-17 | 1976-04-27 | Raychem Corporation | Polyketones and methods therefor |
| US3956240A (en) * | 1973-07-12 | 1976-05-11 | Raychem Corporation | Novel polyketones |
| US4113699A (en) * | 1976-07-08 | 1978-09-12 | Imperial Chemical Industries Limited | Production of aromatic polymers |
| US4176222A (en) * | 1977-02-01 | 1979-11-27 | Imperial Chemical Industries Limited | Production of aromatic polyethers |
| US4331798A (en) * | 1979-01-18 | 1982-05-25 | Imperial Chemical Industries Limited | Production of aromatic polyethers with infusible particulate substance |
| US4636557A (en) * | 1983-11-24 | 1987-01-13 | Hoechst Aktiengesellschaft | Process for the preparation of aromatic polyethers with mixture of carbonate catalysts |
| US4837296A (en) * | 1987-01-14 | 1989-06-06 | Basf Aktiengesellschaft | Preparation of polyaryl ether ketones |
| US4954604A (en) * | 1987-09-12 | 1990-09-04 | Bayer Aktiengesellschaft | Process for the production of aromatic polyether ketones |
| US4954605A (en) * | 1985-05-10 | 1990-09-04 | Hoechst Celanese Corp. | Aromatic polyetherketone fiber product |
| US4970284A (en) * | 1987-12-24 | 1990-11-13 | Imperial Chemical Industries Plc | Polyaryletherketones |
| US5017685A (en) * | 1989-02-24 | 1991-05-21 | E. I. Du Pont De Nemours And Company | Process for extracting metal residue from poly(ether ketone ketones) |
| US5049640A (en) * | 1989-02-23 | 1991-09-17 | Shell Oil Company | Polyetherketones |
| US5049340A (en) * | 1989-12-18 | 1991-09-17 | E. I. Du Pont De Nemours And Company | Process for making continuous films of ordered poly(ether ketone ketones) |
| US5053477A (en) * | 1989-03-08 | 1991-10-01 | Bayer Aktiengesellschaft | Process for the production of aromatic polyether ketones |
| US5081214A (en) * | 1989-08-09 | 1992-01-14 | Hoechst Aktiengesellschaft | Process for the preparation of an aromatic polyether |
| US5122588A (en) * | 1989-03-04 | 1992-06-16 | Basf Aktiengesellschaft | Preparation of polyaryl ether ketones by electrophilic polycondensation |
| US5145938A (en) * | 1987-11-17 | 1992-09-08 | Raychem Limited | Preparation of poly(arylene ether ketones) |
| USRE34085E (en) * | 1977-09-07 | 1992-09-29 | Imperial Chemical Industries | Thermoplastic aromatic polyetherketones |
| US5169923A (en) * | 1991-05-23 | 1992-12-08 | Hay Allan S | Bisphenols and poly(imidoarylether ketone)s and poly(imidoarylether sulfone)s produced therefrom |
| US5194561A (en) * | 1989-08-09 | 1993-03-16 | Hoechst Aktiengesellschaft | Process for the preparation of an aromatic polyether in the presence of finely divided condensation auxiliaries |
| US5290906A (en) * | 1989-05-23 | 1994-03-01 | Teijin Limited | Poly(arylene ether ketone), process for producing same and its use |
| US5298592A (en) * | 1991-08-20 | 1994-03-29 | Basf Aktiengesellschaft | Preparation of polyaryl ethers with nitrogen compound catalysts |
| US5523384A (en) * | 1995-03-28 | 1996-06-04 | E. I. Du Pont De Nemours And Company | Process for preparing polyether ketones |
| US5580948A (en) * | 1993-08-10 | 1996-12-03 | Basf Aktiengesellschaft | Preparation of polyarylene ether ketones |
| US5777172A (en) * | 1994-05-16 | 1998-07-07 | Zeneca Limited | Process for the preparation of benzophenthiones and benzophenones |
| US5864050A (en) * | 1995-11-07 | 1999-01-26 | Alps Electric Co., Ltd. And Shiro Koayashi | Curable resin compound, method for producing the same, and cured-resin material |
| US6242654B1 (en) * | 1998-12-22 | 2001-06-05 | Mitsui Chemicals, Inc. | Preparation process of fluorine substituted aromatic compound |
| US20050010015A1 (en) * | 2003-07-08 | 2005-01-13 | Wanjin Zhang | Novel controlled crosslinked polyaryletherketone material with improved properties and a process for producing the same |
| US20050085597A1 (en) * | 2001-12-11 | 2005-04-21 | Masahiro Toriida | Polyether ketone and method for production thereof |
| US7160980B2 (en) * | 2001-05-30 | 2007-01-09 | Victrex Manufacturing Limited | Polyketones |
| US20070142613A1 (en) * | 2005-12-20 | 2007-06-21 | General Electric Company | Mixed-sulfonation block copolymers |
| US20070185488A1 (en) * | 2006-01-25 | 2007-08-09 | Inion Oy | Surgical implant and manufacturing method |
| US20070197739A1 (en) * | 2005-09-16 | 2007-08-23 | Ashish Aneja | Poly aryl ether ketone polymer blends |
| US20070265415A1 (en) * | 2006-05-13 | 2007-11-15 | Degussa Gmbh | Process for preparing polyarylene ether ketone |
| US20090240020A1 (en) * | 2008-03-24 | 2009-09-24 | Keki Hormusji Gharda | Polyether ketone, its monomer and its phenolate |
| US20110201775A1 (en) * | 2008-10-24 | 2011-08-18 | Solvay Advanced Polymers, L.L.C. | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US20110224399A1 (en) * | 2007-08-10 | 2011-09-15 | Solvay Advanced Polymers, L.L.C. | Improved poly(aryletherketone)s and process for making them |
Family Cites Families (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3655331A (en) * | 1969-06-06 | 1972-04-11 | Intermountain Res & Dev Corp | Production of sodium carbonate |
| US3904733A (en) * | 1973-06-20 | 1975-09-09 | Allied Chem | Prevention of calcium deposition from trona-derived sodium carbonate liquors |
| US4151261A (en) * | 1975-06-17 | 1979-04-24 | Allied Chemical Corporation | Method of preparing sodium liquors low in calcium |
| GB1563222A (en) * | 1976-02-10 | 1980-03-19 | Ici Ltd | Aromatic polymer production |
| EP0001879B2 (en) * | 1977-09-07 | 1989-11-23 | Imperial Chemical Industries Plc | Thermoplastic aromatic polyetherketones, a method for their preparation and their application as electrical insulants |
| ES8700647A1 (es) | 1984-10-11 | 1986-11-16 | Raychem Corp | Procedimiento para la preparacion de un compuesto carbonilo aromatico |
| GB8505682D0 (en) | 1985-03-05 | 1985-05-09 | Ici Plc | Polyarylether |
| US4638044A (en) * | 1985-03-20 | 1987-01-20 | Amoco Corporation | Process for preparing poly(aryl ether ketone)s |
| US4731429A (en) * | 1985-06-17 | 1988-03-15 | Amoco Corporation | Novel poly(aryl ether ketones) |
| US4908425A (en) * | 1985-06-21 | 1990-03-13 | Amoco Corporation | Chain-extended poly(aryl ether ketones) |
| US5120818A (en) * | 1985-06-21 | 1992-06-09 | Amoco Corporation | Chain-extended poly(aryl ether ketones) |
| EP0211693A1 (en) * | 1985-08-21 | 1987-02-25 | Amoco Corporation | Preparation of poly(aryl ether ketones) |
| US4774311A (en) * | 1985-08-21 | 1988-09-27 | Amoco Corporation | Preparation of poly(aryl ether ketones) in the presence of an alkali, alkaline earth of lanthanide metal salt |
| GB8601994D0 (en) * | 1986-01-28 | 1986-03-05 | Ici Plc | Aromatic polymer |
| US4767837A (en) * | 1986-01-29 | 1988-08-30 | Raychem Corporation | Method for preparing poly(aryl ether ketones) |
| US4766197A (en) * | 1986-10-28 | 1988-08-23 | Amoco Corporation | Modified poly(aryl ether ketones) derived from biphenol |
| US4906784A (en) * | 1986-11-10 | 1990-03-06 | Amoco Corporation | Thermoplastic polyetherketones |
| DE3700810A1 (de) * | 1987-01-14 | 1988-07-28 | Basf Ag | Hochtemperaturbestaendige polyaryletherketone |
| GB8702993D0 (en) * | 1987-02-10 | 1987-03-18 | Ici Plc | Aromatic polymer |
| EP0292211A3 (en) * | 1987-05-18 | 1989-06-14 | Imperial Chemical Industries Plc | Production and/or handling of polymers |
| GB8719125D0 (en) | 1987-08-12 | 1987-09-16 | Ici Plc | Aromatic polymer |
| JPS6465129A (en) * | 1987-09-04 | 1989-03-10 | Mitsubishi Gas Chemical Co | Production of aromatic polyether |
| US4855388A (en) * | 1987-12-29 | 1989-08-08 | Amoco Corporation | Co-reagent stabilization of poly(aryl ether sulfones) using sodium, lithium, alkaline earth or lanthanide metal salts |
| GB8809082D0 (en) | 1988-04-18 | 1988-05-18 | Ici Plc | Aryl ketone monomers |
| DE3840617A1 (de) * | 1988-07-23 | 1990-02-01 | Bayer Ag | Verfahren zur herstellung von aromatischen polyetherketonen |
| DE3829283A1 (de) * | 1988-08-30 | 1990-03-01 | Basf Ag | Polyaryletherketone |
| DE59010515D1 (de) * | 1989-03-17 | 1996-10-31 | Sumitomo Chemical Co | Neue Polyarylenether |
| DE4121139B4 (de) | 1991-06-26 | 2004-12-09 | Ticona Gmbh | Verfahren zur Herstellung von Polyarylenethern und ihre Verwendung |
| DE4205811A1 (de) * | 1992-02-26 | 1993-11-18 | Hoechst Ag | Polyetherketone und Polyethersulfone auf Basis Phenylindan und ihre Verwendung für optische Systeme |
| TW256843B (enExample) * | 1992-06-11 | 1995-09-11 | Hoechst Ag | |
| US5268444A (en) * | 1993-04-02 | 1993-12-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Phenylethynyl-terminated poly(arylene ethers) |
| GB9409885D0 (en) | 1994-05-18 | 1994-07-06 | Vitrex Manufacturing Limited | Process for making an aromatic polymer |
| JP5075304B2 (ja) | 1998-09-11 | 2012-11-21 | ビクトレックス マニュファクチャリング リミテッド | イオン交換ポリマー |
| WO2001019896A1 (en) * | 1999-09-10 | 2001-03-22 | Victrex Manufacturing Limited | Composite ion-exchange membranes |
| US6593445B2 (en) * | 2000-03-03 | 2003-07-15 | Solvay Advanced Polymers, Llc | Low color poly(biphenyl ether sulfone) and improved process for the preparation thereof |
| CA2440964C (en) | 2001-03-21 | 2011-02-15 | Victrex Manufacturing Limited | Fuel cell powered by direct fuel |
| US6939922B2 (en) * | 2001-03-30 | 2005-09-06 | Rohm And Haas Company | Coating and coating composition |
| JP2004315764A (ja) | 2003-04-21 | 2004-11-11 | Sumitomo Chem Co Ltd | 芳香族ポリエーテルの製造法 |
| GB0322598D0 (en) | 2003-09-26 | 2003-10-29 | Victrex Mfg Ltd | Polymeric material |
| DE102005037337A1 (de) | 2005-08-04 | 2007-02-15 | Inspec Fibres Gmbh | Neues Verfahren zur Herstellung von 4,4'-Difluorbenzophenon |
| JP2007238890A (ja) * | 2006-03-13 | 2007-09-20 | Sumitomo Chemical Co Ltd | 芳香族ポリエーテルを製造する際に使用した反応溶媒の回収方法。 |
| GB0611760D0 (en) * | 2006-06-14 | 2006-07-26 | Victrex Mfg Ltd | Polymeric materials |
| GB0611759D0 (en) | 2006-06-14 | 2006-07-26 | Victrex Mfg Ltd | Polymeric material |
| JP2008248013A (ja) * | 2007-03-29 | 2008-10-16 | Sumitomo Chemical Co Ltd | 溶媒の回収方法および芳香族ポリエーテルの製造方法 |
| CN100582133C (zh) * | 2008-01-11 | 2010-01-20 | 吉林金正高分子材料研发有限公司 | 一种聚醚醚酮的制备方法 |
-
2009
- 2009-10-23 JP JP2011532648A patent/JP5734858B2/ja active Active
- 2009-10-23 CN CN200980142463.9A patent/CN102197064B/zh active Active
- 2009-10-23 WO PCT/EP2009/064016 patent/WO2010046487A1/en not_active Ceased
- 2009-10-23 WO PCT/EP2009/064007 patent/WO2010046482A1/en not_active Ceased
- 2009-10-23 WO PCT/EP2009/064011 patent/WO2010046484A1/en not_active Ceased
- 2009-10-23 RU RU2011120794/04A patent/RU2011120794A/ru not_active Application Discontinuation
- 2009-10-23 US US13/125,537 patent/US9175136B2/en active Active
- 2009-10-23 CN CN200980142309.1A patent/CN102203165B/zh active Active
- 2009-10-23 EP EP20140151155 patent/EP2722353A1/en not_active Withdrawn
- 2009-10-23 US US13/125,508 patent/US8710171B2/en active Active
- 2009-10-23 EP EP20090744124 patent/EP2342261A1/en not_active Withdrawn
- 2009-10-23 CA CA2740697A patent/CA2740697C/en not_active Expired - Fee Related
- 2009-10-23 US US13/125,523 patent/US20110213115A1/en not_active Abandoned
- 2009-10-23 JP JP2011532649A patent/JP5734859B2/ja active Active
- 2009-10-23 CA CA2741016A patent/CA2741016C/en not_active Expired - Fee Related
- 2009-10-23 CN CN201610339978.XA patent/CN106167545B/zh active Active
- 2009-10-23 WO PCT/EP2009/064008 patent/WO2010046483A1/en not_active Ceased
- 2009-10-23 EP EP20090740326 patent/EP2342260B1/en not_active Revoked
- 2009-10-23 EP EP20090737003 patent/EP2344565B1/en active Active
- 2009-10-23 CA CA2740252A patent/CA2740252C/en not_active Expired - Fee Related
- 2009-10-23 CN CN201910088673.XA patent/CN109912794A/zh active Pending
- 2009-10-23 CN CN200980151210.8A patent/CN102257034B/zh active Active
- 2009-10-23 AU AU2009306298A patent/AU2009306298A1/en not_active Abandoned
- 2009-10-23 CN CN200980151189.1A patent/CN102257033B/zh not_active Expired - Fee Related
- 2009-10-23 EP EP20090740140 patent/EP2342259B1/en not_active Revoked
- 2009-10-23 JP JP2011532650A patent/JP5606443B2/ja active Active
-
2014
- 2014-04-07 US US14/246,901 patent/US9133111B2/en active Active
- 2014-12-12 JP JP2014252460A patent/JP5933676B2/ja active Active
- 2014-12-12 JP JP2014252502A patent/JP5985598B2/ja active Active
-
2015
- 2015-08-10 US US14/822,423 patent/US9765185B2/en active Active
- 2015-09-22 US US14/861,508 patent/US9815937B2/en active Active
- 2015-09-22 US US14/860,990 patent/US10023692B2/en active Active
Patent Citations (42)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3953400A (en) * | 1972-01-17 | 1976-04-27 | Raychem Corporation | Polyketones and methods therefor |
| US3928295A (en) * | 1973-05-25 | 1975-12-23 | Ici Ltd | Aromatic polymers containing ketone linking groups and process for their preparation |
| US3956240A (en) * | 1973-07-12 | 1976-05-11 | Raychem Corporation | Novel polyketones |
| US3956240B1 (enExample) * | 1973-07-12 | 1988-12-27 | ||
| US4113699A (en) * | 1976-07-08 | 1978-09-12 | Imperial Chemical Industries Limited | Production of aromatic polymers |
| US4176222A (en) * | 1977-02-01 | 1979-11-27 | Imperial Chemical Industries Limited | Production of aromatic polyethers |
| USRE34085E (en) * | 1977-09-07 | 1992-09-29 | Imperial Chemical Industries | Thermoplastic aromatic polyetherketones |
| US4331798A (en) * | 1979-01-18 | 1982-05-25 | Imperial Chemical Industries Limited | Production of aromatic polyethers with infusible particulate substance |
| US4636557A (en) * | 1983-11-24 | 1987-01-13 | Hoechst Aktiengesellschaft | Process for the preparation of aromatic polyethers with mixture of carbonate catalysts |
| US4954605A (en) * | 1985-05-10 | 1990-09-04 | Hoechst Celanese Corp. | Aromatic polyetherketone fiber product |
| US4837296A (en) * | 1987-01-14 | 1989-06-06 | Basf Aktiengesellschaft | Preparation of polyaryl ether ketones |
| US4954604A (en) * | 1987-09-12 | 1990-09-04 | Bayer Aktiengesellschaft | Process for the production of aromatic polyether ketones |
| US5145938A (en) * | 1987-11-17 | 1992-09-08 | Raychem Limited | Preparation of poly(arylene ether ketones) |
| US4970284A (en) * | 1987-12-24 | 1990-11-13 | Imperial Chemical Industries Plc | Polyaryletherketones |
| US5049640A (en) * | 1989-02-23 | 1991-09-17 | Shell Oil Company | Polyetherketones |
| US5017685A (en) * | 1989-02-24 | 1991-05-21 | E. I. Du Pont De Nemours And Company | Process for extracting metal residue from poly(ether ketone ketones) |
| US5122588A (en) * | 1989-03-04 | 1992-06-16 | Basf Aktiengesellschaft | Preparation of polyaryl ether ketones by electrophilic polycondensation |
| US5053477A (en) * | 1989-03-08 | 1991-10-01 | Bayer Aktiengesellschaft | Process for the production of aromatic polyether ketones |
| US5290906A (en) * | 1989-05-23 | 1994-03-01 | Teijin Limited | Poly(arylene ether ketone), process for producing same and its use |
| US5081214A (en) * | 1989-08-09 | 1992-01-14 | Hoechst Aktiengesellschaft | Process for the preparation of an aromatic polyether |
| US5194561A (en) * | 1989-08-09 | 1993-03-16 | Hoechst Aktiengesellschaft | Process for the preparation of an aromatic polyether in the presence of finely divided condensation auxiliaries |
| US5049340A (en) * | 1989-12-18 | 1991-09-17 | E. I. Du Pont De Nemours And Company | Process for making continuous films of ordered poly(ether ketone ketones) |
| US5169923A (en) * | 1991-05-23 | 1992-12-08 | Hay Allan S | Bisphenols and poly(imidoarylether ketone)s and poly(imidoarylether sulfone)s produced therefrom |
| US5298592A (en) * | 1991-08-20 | 1994-03-29 | Basf Aktiengesellschaft | Preparation of polyaryl ethers with nitrogen compound catalysts |
| US5580948A (en) * | 1993-08-10 | 1996-12-03 | Basf Aktiengesellschaft | Preparation of polyarylene ether ketones |
| US5777172A (en) * | 1994-05-16 | 1998-07-07 | Zeneca Limited | Process for the preparation of benzophenthiones and benzophenones |
| US5523384A (en) * | 1995-03-28 | 1996-06-04 | E. I. Du Pont De Nemours And Company | Process for preparing polyether ketones |
| US5864050A (en) * | 1995-11-07 | 1999-01-26 | Alps Electric Co., Ltd. And Shiro Koayashi | Curable resin compound, method for producing the same, and cured-resin material |
| US6242654B1 (en) * | 1998-12-22 | 2001-06-05 | Mitsui Chemicals, Inc. | Preparation process of fluorine substituted aromatic compound |
| US7160980B2 (en) * | 2001-05-30 | 2007-01-09 | Victrex Manufacturing Limited | Polyketones |
| US20050085597A1 (en) * | 2001-12-11 | 2005-04-21 | Masahiro Toriida | Polyether ketone and method for production thereof |
| US7217780B2 (en) * | 2001-12-11 | 2007-05-15 | Mitsui Chemicals, Inc. | Polyether ketone and method of producing the same |
| US20050010015A1 (en) * | 2003-07-08 | 2005-01-13 | Wanjin Zhang | Novel controlled crosslinked polyaryletherketone material with improved properties and a process for producing the same |
| US20070197739A1 (en) * | 2005-09-16 | 2007-08-23 | Ashish Aneja | Poly aryl ether ketone polymer blends |
| US20070142613A1 (en) * | 2005-12-20 | 2007-06-21 | General Electric Company | Mixed-sulfonation block copolymers |
| US20070185488A1 (en) * | 2006-01-25 | 2007-08-09 | Inion Oy | Surgical implant and manufacturing method |
| US20070265415A1 (en) * | 2006-05-13 | 2007-11-15 | Degussa Gmbh | Process for preparing polyarylene ether ketone |
| US7786245B2 (en) * | 2006-05-13 | 2010-08-31 | Evonik Degussa Gmbh | Process for preparing polyarylene ether ketone |
| US20110224399A1 (en) * | 2007-08-10 | 2011-09-15 | Solvay Advanced Polymers, L.L.C. | Improved poly(aryletherketone)s and process for making them |
| US20090240020A1 (en) * | 2008-03-24 | 2009-09-24 | Keki Hormusji Gharda | Polyether ketone, its monomer and its phenolate |
| US20110201775A1 (en) * | 2008-10-24 | 2011-08-18 | Solvay Advanced Polymers, L.L.C. | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
| US20110213095A1 (en) * | 2008-10-24 | 2011-09-01 | Solvay Advanced Polymers, L.L.C. | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
Non-Patent Citations (1)
| Title |
|---|
| May Polyetheretherketones, Encyclopedia of Polymer Science and Technology, 2008, pg. 1-9 * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110213095A1 (en) * | 2008-10-24 | 2011-09-01 | Solvay Advanced Polymers, L.L.C. | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US9175136B2 (en) * | 2008-10-24 | 2015-11-03 | Solvay Advanced Polymers, L.L.C. | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US20160145385A1 (en) * | 2008-10-24 | 2016-05-26 | Solvay Advanced Polymers, L.L.C. | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US10023692B2 (en) * | 2008-10-24 | 2018-07-17 | Solvay Advanced Polymers, L.L.C. | Method for the manufacture of poly(aryl ether ketone)s in the presence of sodium carbonate |
| US20120095182A1 (en) * | 2009-06-26 | 2012-04-19 | Kingfa Science & Technology Co., Ltd. | Method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology |
| US8981034B2 (en) * | 2009-06-26 | 2015-03-17 | Kingfa Science & Technology Co., Ltd. | Method for preparing polyaryletherketone-based copolymer by using quaternary copolymerization technology |
| US9512312B2 (en) | 2014-08-21 | 2016-12-06 | Ticona Llc | Polyaryletherketone composition |
| US10774215B2 (en) | 2014-08-21 | 2020-09-15 | Ticona Llc | Composition containing a polyaryletherketone and low naphthenic liquid crystalline polymer |
| WO2018086873A1 (en) | 2016-11-11 | 2018-05-17 | Solvay Specialty Polymers Usa, Llc | Polyarylether ketone copolymer |
| US11708457B2 (en) | 2016-11-11 | 2023-07-25 | Solvay Specialty Polymers Usa, Llc | Polyarylether ketone copolymer |
| US12319785B2 (en) | 2020-09-02 | 2025-06-03 | Idemitsu Kosan Co., Ltd. | Method for producing aromatic polyether, and potassium carbonate used in same |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9815937B2 (en) | Process for preparing a poly(aryl ether ketone) using a high purity 4,4′-difluorobenzophenone | |
| HK1160661B (en) | Improved process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone | |
| HK1159143A (en) | High purity diphenyl sulfone, preparation and use thereof for the preparation of a poly(aryletherketone) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SOLVAY ADVANCED POLYMERS, L.L.C., GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LOUIS, CHANTAL;REEL/FRAME:026165/0756 Effective date: 20110408 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |