US20110132540A1 - Plasma processing apparatus - Google Patents
Plasma processing apparatus Download PDFInfo
- Publication number
- US20110132540A1 US20110132540A1 US12/712,795 US71279510A US2011132540A1 US 20110132540 A1 US20110132540 A1 US 20110132540A1 US 71279510 A US71279510 A US 71279510A US 2011132540 A1 US2011132540 A1 US 2011132540A1
- Authority
- US
- United States
- Prior art keywords
- faraday shield
- slits
- bell jar
- processing apparatus
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/321—Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
Definitions
- This invention relates to a plasma processing apparatus, or in particular, to a plasma processing apparatus for etching or otherwise processing a sample using a plasma formed in a processing chamber by supplying a high frequency to a coil-shaped antenna wound on the outer periphery of a processing chamber.
- a reaction product formed from a certain type of the processing gas and the material of the film arranged on the surface of a substrate-like sample such as a semiconductor wafer to be etched is attached to the inner wall surface of the processing chamber in the processing chamber. It is known that such a product deposited on the inner wall surface, if increased in amount, is peeled off or separated from the wall surface and, by attaching again to the sample surface, produces the contaminating matter which pollutes the sample surface.
- the deposition of such a product is known to deteriorate the stability of the process of etching, for example, Al 2 O 3 with Cl 2 or SiO 2 with CF as a processing gas.
- the conventional techniques are known to reduce the product attached to the inner wall surface of the processing chamber.
- a Faraday shield is arranged between a plasma and a coil-shaped antenna wound on the outer periphery of a vacuum vessel and supplied with high-frequency power to suppress or remove the deposition on inner wall of the vacuum vessel.
- a plasma is formed in a processing chamber of an insulating material due to an induction field or a magnetic field formed by the high-frequency power supplied to a coil-shaped antenna.
- the charged particles forming the plasma are attracted and impinged on the product on the inner wall surface of the processing chamber by the potential difference with the potential of a predetermined magnitude maintained on the inner wall of the processing chamber thereby to remove the product.
- JP-A-2004-235545 discloses a technique of forming by spraying a tungsten film on the outer wall surface of a processing chamber of an insulating material.
- the deposition can be suppressed or removed with a higher effect on the one hand, while the fact that, as in the prior art configured of a tabular member, the Faraday shield has a planar shape with a slit portion extending in longitudinal (vertical) direction leads to the disadvantage that the electrostatic field formed by the power supplied to the Faraday shield fails to work on the portion of the processing chamber immediately under the slit portion (the inner wall surface of the processing chamber corresponding to the internal space of the slit portion).
- the charged particles are not attracted to the inner wall surface of the vacuum vessel or so attracted considerably less than in the left and right non-slit portions (the inner wall surface having the outer periphery covered with a tabular or filmy member), thereby reducing the sputtering effect.
- a large difference develops in the amount of the attached product or deposition between the respective inner wall surface portions of the vacuum vessel corresponding to the slit and non-slit portions, and therefore, it is difficult to remove the attached product uniformly.
- An object of this invention is to provide a plasma processing apparatus capable of realizing a more uniform process. Another object of the invention is to provide a plasma processing apparatus which suppresses the generation of the contaminating matter for an improved yield.
- a plasma processing apparatus in which a wafer placed on a sample stage arranged in a processing chamber inside a vacuum vessel is processed using the plasma formed in the particular processing chamber, comprising a dielectric bell jar making up the upper part of the vacuum vessel and surrounding the processing chamber, a coil-shaped antenna wound on the outer periphery of the bell jar and supplied with the high-frequency power to form the plasma, and a Faraday shield of a dielectric material formed in double layers including inner and outer layers in spaced relation to each other between the antenna and the bell jar, wherein the slits of one of the inner and outer layers of the Faraday shield are arranged to cover the film portions between the slits of the other of the inner and outer layers in staggered fashion.
- the Faraday shield is formed of a plurality of film layers arranged on the outer peripheral wall surface of the bell jar.
- a plasma processing apparatus wherein the high-frequency power is supplied to the Faraday shield.
- each member between the adjacent slits of the outer Faraday shield portion is arranged to cover the whole gaps of the slits of the inner Faraday shield portion in the peripheral direction of the wafer.
- a plasma processing apparatus wherein an insulating film is arranged between the inner and outer Faraday shield portions.
- a plasma processing apparatus wherein the inner or outer Faraday shield portion is formed by spraying.
- FIG. 1 is a diagram for explaining a general configuration of a plasma processing apparatus according to an embodiment of the invention.
- FIG. 2 is a perspective view schematically showing the configuration of a typical Faraday shield according to the prior art.
- FIG. 3 is an enlarged general view of the configuration of the upper part of the apparatus according to the embodiment shown in FIG. 1 .
- FIG. 4 is an enlarged view schematically showing the cross section of the Faraday shield and the bell jar 12 shown in FIG. 3 .
- FIG. 5 is a diagram schematically showing the processing vessel and the distribution of the electrostatic or magnetic field therein of the plasma processing apparatus using the conventional Faraday shield.
- FIG. 6 is a diagram schematically showing the processing vessel and the distribution of the electrostatic or magnetic field therein according to the embodiment shown in FIG. 1 .
- FIG. 1 is a diagram for explaining a general configuration of a plasma processing apparatus according to an embodiment of the invention.
- a plasma processing apparatus 100 includes a vessel having a vacuum vessel 2 configured to surround a vacuum processing chamber, a radio wave source or a magnetic field source arranged on the exterior of the vacuum vessel 2 to supply the electric field or the magnetic field, respectively, into the vacuum processing chamber, and an exhaust means for decompressing by exhausting the interior of the vessel.
- the vacuum processing chamber providing the internal space of the vessel has therein a sample stage 5 on which a substrate-like sample 13 is mounted in parallel to the inner wall surface of the top flat portion of the bell jar 12 .
- the internal space of the vacuum processing chamber above the sample stage 5 forms an area where, as described later, the pressure is reduced to a predetermined vacuum degree to generate a plasma 6 and the sample 13 is processed using the plasma 6 .
- the sample stage 5 makes up the upper part of a cylindrical sample holder 9 including the sample stage 5 .
- the space between the outer periphery of the sample holder 9 and the cylindrical inner wall of the vacuum vessel 2 makes up the vacuum processing chamber as a passage through which a gas, containing the particles of the products generated by processing the plasma 6 formed above the sample 13 , the processing gas supplied and the sample 13 , is discharged by flowing down.
- the coil-shaped antenna 1 is wound in a plurality of layers on the outer periphery of the outer inclined wall surface of the bell jar 12 .
- the antenna 1 according to this embodiment, divided into a plurality of positions of different heights, has an upper antenna portion 1 a and a lower antenna portion 1 b .
- a filmy Faraday shield 8 is arranged along the exterior of the inclined outer wall surface of the bell jar 12 in such a manner as to cover the particular inclined surface.
- the bell jar 12 is mounted on and coupled hermetically to the upper part of the vacuum vessel 2 , and arranged with the circular lower end thereof located above the upper sample mounting surface of the sample stage 5 to surround the sample 13 circumferentially above it.
- the Faraday shield 8 arranged to cover the outer periphery of the bell jar 12 and the coil-shaped antenna 1 wound on the outside of the Faraday shield 8 are arranged to surround the outer periphery of the vacuum processing chamber to form the plasma 6 above the sample stage 5 or the sample 13 mounted thereon.
- the potential of the Faraday shield 8 is adjusted to a predetermined level by the matching box 3 including the series resonant circuit.
- the potential of the Faraday shield 8 according to this embodiment is adjustable to an arbitrary positive or negative value as well as the earth potential. This value can be set, for example, to attract the charged particles in the plasma in the vacuum processing chamber toward the Faraday shield 8 and impinge them on the surface of the bell jar 12 . By the impingement of the charged particles, the product deposited is released again physically or chemically into the internal space of the vacuum processing chamber thereby to reduce the deposition.
- a gas feed pipe 4 a connecting the vacuum vessel 2 and a gas source 4 of the processing gas supplied into the vacuum processing chamber is coupled to the upper end portion of the vacuum vessel 2 .
- the processing gas flowing in the gas feed pipe 4 a from the gas source 4 is supplied into the vacuum processing chamber from an opening facing it.
- an exhaust unit 7 arranged under and coupled to the vacuum vessel 2 the gas in the vacuum processing chamber is discharged from an opening at the lower part of the vacuum processing chamber communicating with the exhaust unit 7 , so that the internal pressure of the vacuum processing chamber is reduced to a predetermined level.
- the exhaust unit 7 includes an exhaust pump such as a turbo molecular pump generally used in the technical field of the invention, and an opening communicating between the exhaust pump and the interior of the vacuum processing chamber is formed at a designed horizontal distance from the center axis of the sample stage 5 under the vacuum vessel 2 .
- an exhaust pump such as a turbo molecular pump generally used in the technical field of the invention
- an opening communicating between the exhaust pump and the interior of the vacuum processing chamber is formed at a designed horizontal distance from the center axis of the sample stage 5 under the vacuum vessel 2 .
- On the path communicating between this opening and the inlet of the exhaust pump there are horizontally arranged a plurality of exhaust valves adapted to increase or decrease the open area of the particular path by rotating around the axis thereof. The pressure is regulated by rotating these exhaust valves to adjust the flow area of the path and the exhaustion rate.
- the processing gas supplied into the vacuum processing chamber through the gas feed pipe 4 a is converted into a plasma by the operation of the electric field or the magnetic field generated by the power supplied to the upper antenna portion 1 a and the lower antenna portion 1 b .
- the electrode arranged in the sample stage 5 is connected with a substrate bias power supply (second high-frequency power supply) 11 , from which power is supplied to the electrode thereby to form the bias potential above the sample stage 5 and the sample 13 placed thereon.
- the charged particles such as ions existing in the plasma 6 can be attracted onto the sample 13 so that the sample 13 can be processed at a high processing rate as desired.
- the power supplied from the high-frequency power supply 10 is the high-frequency power of, for example, 13.56 MH or a higher frequency in VHF band.
- the antenna 1 or the Faraday shield 8 By supplying this high frequency power to the antenna 1 or the Faraday shield 8 , an induction field or a magnetic field is formed to generate the plasma 6 in the vacuum processing chamber.
- the impedance of the antenna 1 is rendered to coincide with the output impedance of the high-frequency power supply 10 using the matching box 3 , thereby making it possible to suppress the power reflection.
- variable capacitors VC 1 , VC 2 connected in the form of an inverted L as shown, for example, are used as the matching box 3 .
- the sample 13 such as a semiconductor wafer is transported through a carrier chamber (held by a vacuum robot arm not shown) coupled to the outer side wall of the internally decompressed vacuum vessel 2 , and after being delivered onto a plurality of pins on the sample stage 5 in the vacuum processing chamber, placed on the circular upper surface of the sample stage 5 and held there by adsorption.
- a heat transmission gas supplied between the back of the sample 13 and the sample stage 5 the particles of the processing gas supplied into the vacuum processing chamber above the sample 13 are dissociated by the induction or magnetic field supplied from the antenna 1 .
- a plasma due to the inductive coupling i.e. the plasma 6 of what is called the induction type is formed.
- the substrate bias is formed above the sample 13 and the sample is processed by the power supplied to the electrode in the sample stage 5 .
- a predetermined process of the sample 13 is started and, after detection of the end of the process, the adsorption is ceased and the sample 13 is retrieved in the reverse order of the delivery steps.
- the Faraday shield 8 exhibits a crucial effect in generating the plasma 6 .
- each part of the coil of the antenna 1 impressed with a voltage by the high-frequency power supplied to the antenna 1 would have an arbitrary potential.
- the electrostatic coupling would occur between the coil of the antenna 1 and the plasma 6 having a potential in the vacuum processing chamber. Therefore, the inner wall surface of the bell jar 12 in the neighborhood of the antenna 1 wound on the outer periphery of the inclined surface portion would be locally scraped off by the impingement of the charged particles from the plasma 6 , and the inner wall surface of the vacuum processing chamber would be consumed unevenly.
- this change in the wall surface state changes the coupling between the antenna 1 and the plasma 6 in the bell jar 12 , resulting in the adverse effect of changing the etching characteristic such as the etching rate, uniformity or the processing verticality on the surface of the sample 13 .
- the plasma 6 and the Faraday shield 8 are arranged and a predetermined potential is applied to the Faraday shield 8 to reduce the potential difference between the inner wall surface of the bell jar 12 and the plasma 6 .
- the potential supplied to and formed in the Faraday shield 8 is adjusted in such a manner as to remove the deposits attached on the inner wall surface of the bell jar 12 by the impingement of the charged particles from the plasma 6 . In this way, the consumption of the inner wall surface of the bell jar 12 can be suppressed while at the same time preventing the change in uniformity and the secular variation of the process for an improved yield.
- FIG. 2 is a perspective view schematically showing the configuration of the conventional Faraday shield.
- the upper part represents the bell jar 12 .
- the Faraday shield made of a metal or the like conductor is covered on the upper surface and the inclined surface of the bell jar 12 through a predetermined gap.
- the portion of the Faraday shield 8 covering the inclined surface has a plurality of slits formed radially of the center axis of the circular upper surface and extending vertically to cross the direction in which the coil of the antenna 1 is wound insulatively on the outer periphery of the Faraday shield 8 . These slits are arranged in order not to shield the entire electric or magnetic field formed by the antenna 1 but to introduce a part of the electric or magnetic field into the vacuum processing chamber in preparation for ignition of the plasma 6 .
- FIG. 3 is a longitudinal sectional view showing, in enlarged form, the essential parts of the embodiment shown in FIG. 1 .
- the bell jar 12 is formed of an insulating material (for example, quartz, ceramics such as aluminum oxide or the like non-conductive material) having a trapezoidal longitudinal section.
- the antenna 1 (including the upper antenna portion 1 a and the lower antenna portion 1 b ) is wound on the outer periphery of the inclined portion of the bell jar 12 .
- the Faraday shield 8 is located between the upper and lower antenna portions 1 a , 1 b and the outer peripheral wall surface of the bell jar 12 .
- a gas ring 14 is an annular member arranged under the circular lower end of the bell jar 12 around the outer periphery of the vacuum processing chamber.
- This gas ring 14 is a member arranged at a point where at least one opening through which the processing gas supplied as described above is introduced into the vacuum processing chamber faces the vacuum processing chamber.
- the gas ring 14 has formed therein a gas passage, not shown, through which the processing gas (for example, Cl 2 , BCl 3 , CO or carbon fluoride such as C 4 F 8 , C 5 F 8 or CF 4 ) supplied from the gas feed pipe 4 a flows.
- the processing gas after passing through the gas passage, flows out into the vacuum processing chamber from a gas outlet 16 formed on the surface of the gas ring 14 facing the interior of the vacuum processing chamber.
- the Faraday shield 8 is configured of a conductive thin film 17 covering the outer peripheral wall surface of the bell jar 12 .
- the conductive thin film 17 is formed of a plurality of film layers.
- a plurality of insulating layers 18 of Al 2 O 3 for example, insulate conductive films 17 a forming lower layers and conductive films 17 b (tungsten (W), for example) forming upper layers from each other, and the bell jar 12 .
- the plurality of the insulating layers 18 configured to insulate the plurality of the conductive films 17 a , 17 b include a lower insulating layer 18 a and an upper insulating layer 18 b stacked alternately with the conductive films 17 a , 17 b.
- these layers are formed by a specified method on the outer surface of the bell jar 12 .
- the layers are formed by spraying.
- the accurate thickness of the films can be secured in both peripheral and vertical directions.
- the distance between the Faraday shield 8 and the plasma 6 can be accurately controlled on the one hand, and the uniformity of the amount of the substances deposited on the inner wall surface of the bell jar 12 is improved so that the deposits on the inner wall surface of the bell jar can be removed uniformly on the other hand.
- the configuration in which the Faraday shield 8 is formed of a plurality of layers arranged at a predetermined distance from each other makes it possible to remove the deposits with a lower voltage (Faraday shield voltage; FSV) applied to the Faraday shield 8 .
- FSV Frearaday shield voltage
- the consumption of the inner wall surface of the bell jar 12 by the Faraday shield 8 having the slits is alleviated.
- the principle of cleaning the inner wall surface of the bell jar 12 by the Faraday shield 8 and the method of optimizing the FSV are described in detail in JP-A-2004-235545.
- FIG. 4 is a sectional view schematically showing a general configuration of the Faraday shield and the vacuum vessel according to the embodiment shown in FIG. 1 .
- a plurality of the conductive films 17 a , 17 b making up the Faraday shield 8 are arranged in staggered fashion with the insulating layers 18 a , 18 b inserted therebetween to form the slit portion of the Faraday shield 8 three-dimensionally.
- the conductive films 17 a of tungsten, the insulating layer 18 a as a thin film of alumina, the conductive films 17 b of tungsten and the insulating layer 18 b of alumina are arranged in that order upward (outward) from the outer peripheral surface of the bell jar 12 .
- the conductive films 17 b on the upper side and the conductive films 17 a on the lower side are arranged to cover the whole of the inclined surface and the top of the bell jar 12 , respectively, and have a plurality of slits extending vertically, i.e. in the direction crossing the direction (horizontal direction in this embodiment) in which the antenna 1 is wound.
- These slits are arranged to prevent the situation in which the reverse electromotive current generated in the Faraday shield 8 by the induction or magnetic field of the plasma 6 or the antenna 1 flows in the direction hampering the formation of the electric or magnetic field, as the case may be.
- the slits are arranged at many points over as wide a range as possible covered by the electric or magnetic field. In short, the configuration shown in FIG. 2 is held.
- the film portions of the upper conductive films 17 b between the slits are arranged to cover the outside (upper portion) of the slits of the lower conductive films 17 a .
- the slits of one of the conductive films 17 a , 17 b are covered by the material between the slits of the other of the conductive films 17 a , 17 b .
- the conductive films 17 a , 17 b of the Faraday shield 8 arranged in multiple layers are formed with the plurality of the slits and the material therebetween in staggered fashion.
- the relative positions of the horizontal ends of the film portions between the slits of the conductive films 17 a , 17 b , as shown in FIG. 4 may be such that a gap is formed as viewed from the outer direction (radial direction) or the film portions may be retreated from the end portion into the interior and overlapped.
- the end points of the film portions between the slits are overlapped on a straight line or to a degree not having an extremely adverse effect on the operation and effects.
- the induction or magnetic field generated by the conductive antenna 1 is offset by the circumferential current and it may become difficult to secure the density or distribution of the plasma 6 as desired. In order to satisfy the specification, therefore, it is desirable to overlap the film portions in an appropriate amount.
- each film is formed as described below.
- the conductive films 17 a , 17 b each have the thickness of 100 ⁇ m and the insulating layers 18 a , 18 b each have the thickness of 150 ⁇ m.
- This invention is not limited to these thickness values, but the thickness of each film is set appropriately in such a way as not to generate the circumferential current in the conductive films 17 a , 17 b as a whole.
- the widths of each slit and each film portion between the slits are appropriately selected in accordance with the specification including the magnitude of the supplied power, the frequency, the material of the bell jar 12 and the thickness.
- the lower layers and the insulating layer 18 b are both arranged to cover the whole of the top portion and the inclined surface portion of the bell jar 12 , so that the conductive films 17 a , 17 b are not exposed to the atmosphere.
- the conductive films 17 a , 17 b are corroded less in contact with the atmosphere or the cleaning material, thereby facilitating the handling for an improved cleaning efficiency.
- FIG. 5 is a diagram schematically showing the processing vessel and the electrostatic or magnetic field therein of the conventional plasma processing apparatus using the Faraday shield
- FIG. 6 is a diagram schematically showing the processing vessel according to the embodiment shown in FIG. 1 and the distribution of the electrostatic or magnetic field in the processing vessel.
- the thick contour lines connect the points of equal strength of the electrostatic or magnetic field supplied from the Faraday shield 8 or the conductive films 17 a , 17 b .
- the greater the flatness of the contour lines the greater the flatness of the magnitude of the operation to attract the charged particles in the plasma 6 . In other words, the uniformity with which the charged particles impinge on the inner wall surface of the bell jar 12 is increased.
- the electrostatic field 20 generated by the supplied power develops a point in the slit portion where the strength of the electrostatic field 20 is reduced and the contour lines lack uniformity. Therefore, the electrostatic field 20 reaches the plasma 6 in the state lacking uniformity on the inner wall surface of the bell jar 12 .
- the density, the amount and the deposition of ions reaching the inner wall surface of the bell jar 12 become extremely uneven along the peripheral direction on the inner wall surface of the bell jar 12 .
- the slits of the multiple conductive films 17 a , 17 b making up the Faraday shield 8 are arranged in staggered fashion with the insulating later 18 a therebetween.
- the slit portion of the conductive film 17 a making up the lower film of the insulating layer 18 a and the upper part thereof are supplied with the electrostatic or magnetic field from the film portion between the slits of the upper conductive film 17 b .
- This electric or magnetic field increases the strength of the electrostatic or magnetic field of the conductive film 17 a in the slit portion (between the film end portions of the lower conductive film 17 a ).
- the reduction in the electrostatic or magnetic field 21 in the slit portion of the lower conductive film 17 a is suppressed.
- the electrostatic or magnetic field 21 that has reached the inner wall surface of the bell jar 12 can face the plasma 6 with a greater flatness. For this reason, the deposits can be removed more uniformly than in the conventional technique.
- the induction field or the magnetic field from the antenna 1 passes through the vertically stacked insulating layers 18 a , 18 b between the conductive films 17 a , 17 b , and an electric or magnetic field can be formed in the vacuum processing chamber through the bell jar 12 from the slit portion of the conductive film 17 a .
- the electric or magnetic field required to maintain the ignition of the plasma 6 is prevented from extremely deteriorating the Faraday shield 8 having the configuration according to this embodiment as compared with the conventional technique.
- the amount of consumption of or deposition on the inner wall surface of the vacuum processing chamber with the outer peripheral wall surface thereof covered by the Faraday shield 8 is uniformized along the peripheral direction of the sample 13 or the vacuum processing chamber, thereby realizing a plasma processing apparatus improved in reliability and service life. Also, the sample is processed uniformly along the peripheral direction on the one hand, and the generation of contaminating matter is suppressed while at the same time assuring the uniform distribution of the contaminating matter on the other hand, resulting in an improved processing efficiency and yield.
- the configuration of the invention described above is not limited to this embodiment, but can be appropriately selected in accordance with the required specification without adversely affecting the operation and effects with the improved reliability and efficiency.
- the high-frequency power is supplied to the Faraday shield 8 , and by forming a bias potential on the inner wall surface of the bell jar 12 , the charged particles are attracted.
- the grounding potential may alternatively be employed and the supplied power may be adjusted to attach the deposits appropriately and maintain a uniform amount of the deposits.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009279035A JP2011124293A (ja) | 2009-12-09 | 2009-12-09 | プラズマ処理装置 |
JP2009-279035 | 2009-12-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110132540A1 true US20110132540A1 (en) | 2011-06-09 |
Family
ID=44080850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/712,795 Abandoned US20110132540A1 (en) | 2009-12-09 | 2010-02-25 | Plasma processing apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US20110132540A1 (enrdf_load_stackoverflow) |
JP (1) | JP2011124293A (enrdf_load_stackoverflow) |
KR (1) | KR101142411B1 (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120145322A1 (en) * | 2010-12-13 | 2012-06-14 | Hitachi High-Technologies Corporation | Plasma processing apparatus |
US20140353142A1 (en) * | 2011-12-27 | 2014-12-04 | Canon Anelva Corporation | Substrate processing apparatus, etching method of metal film, and manufacturing method of magnetoresistive effect element |
TWI642084B (zh) * | 2016-09-05 | 2018-11-21 | 日立全球先端科技股份有限公司 | Plasma processing device |
US20210296083A1 (en) * | 2018-07-26 | 2021-09-23 | Y.A.C. Technologies Co., Ltd. | Plasma processing device |
US20220230839A1 (en) * | 2021-01-19 | 2022-07-21 | Psk Inc. | Faraday shield and apparatus for treating substrate |
CN114864367A (zh) * | 2022-03-25 | 2022-08-05 | 上海谙邦半导体设备有限公司 | 一种具有屏蔽效果的介质管及等离子体反应腔 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5856791B2 (ja) * | 2011-10-05 | 2016-02-10 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
DE102012103425A1 (de) * | 2012-04-19 | 2013-10-24 | Roth & Rau Ag | Mikrowellenplasmaerzeugungsvorrichtung und Verfahren zu deren Betrieb |
JP7042142B2 (ja) * | 2018-03-30 | 2022-03-25 | 株式会社ダイヘン | プラズマ発生装置 |
JP7042143B2 (ja) * | 2018-03-30 | 2022-03-25 | 株式会社ダイヘン | プラズマ発生装置 |
US20200286712A1 (en) * | 2019-03-05 | 2020-09-10 | Advanced Energy Industries, Inc. | Single-turn and laminated-wall inductively coupled plasma sources |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5540800A (en) * | 1994-06-23 | 1996-07-30 | Applied Materials, Inc. | Inductively coupled high density plasma reactor for plasma assisted materials processing |
US5650032A (en) * | 1995-06-06 | 1997-07-22 | International Business Machines Corporation | Apparatus for producing an inductive plasma for plasma processes |
US6024826A (en) * | 1996-05-13 | 2000-02-15 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6063233A (en) * | 1991-06-27 | 2000-05-16 | Applied Materials, Inc. | Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US6132551A (en) * | 1997-09-20 | 2000-10-17 | Applied Materials, Inc. | Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil |
US6149760A (en) * | 1997-10-20 | 2000-11-21 | Tokyo Electron Yamanashi Limited | Plasma processing apparatus |
US6280563B1 (en) * | 1997-12-31 | 2001-08-28 | Lam Research Corporation | Plasma device including a powered non-magnetic metal member between a plasma AC excitation source and the plasma |
US6388382B1 (en) * | 1999-03-09 | 2002-05-14 | Hitachi, Ltd. | Plasma processing apparatus and method |
US6447636B1 (en) * | 2000-02-16 | 2002-09-10 | Applied Materials, Inc. | Plasma reactor with dynamic RF inductive and capacitive coupling control |
US6685799B2 (en) * | 2001-03-14 | 2004-02-03 | Applied Materials Inc. | Variable efficiency faraday shield |
US20070170867A1 (en) * | 2006-01-24 | 2007-07-26 | Varian Semiconductor Equipment Associates, Inc. | Plasma Immersion Ion Source With Low Effective Antenna Voltage |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4384301B2 (ja) * | 1999-09-13 | 2009-12-16 | 株式会社日立製作所 | プラズマ処理装置 |
KR100452920B1 (ko) | 2002-07-19 | 2004-10-14 | 한국디엔에스 주식회사 | 유도결합형 플라즈마 에칭 장치 |
CN100353484C (zh) | 2002-07-31 | 2007-12-05 | 兰姆研究有限公司 | 用于调整带电的法拉第屏蔽上的电压的方法 |
KR20040077019A (ko) * | 2003-02-27 | 2004-09-04 | 가부시키가이샤 히다치 하이테크놀로지즈 | 플라즈마처리장치 및 처리방법 |
KR100783071B1 (ko) | 2006-12-22 | 2007-12-07 | 세메스 주식회사 | 패러데이 실드 유닛 및 이를 갖는 기판 처리 장치 |
JP4659771B2 (ja) * | 2007-02-13 | 2011-03-30 | 株式会社日立ハイテクノロジーズ | プラズマ処理装置 |
-
2009
- 2009-12-09 JP JP2009279035A patent/JP2011124293A/ja active Pending
-
2010
- 2010-02-12 KR KR1020100013164A patent/KR101142411B1/ko not_active Expired - Fee Related
- 2010-02-25 US US12/712,795 patent/US20110132540A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6063233A (en) * | 1991-06-27 | 2000-05-16 | Applied Materials, Inc. | Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna |
US5540800A (en) * | 1994-06-23 | 1996-07-30 | Applied Materials, Inc. | Inductively coupled high density plasma reactor for plasma assisted materials processing |
US5650032A (en) * | 1995-06-06 | 1997-07-22 | International Business Machines Corporation | Apparatus for producing an inductive plasma for plasma processes |
US6024826A (en) * | 1996-05-13 | 2000-02-15 | Applied Materials, Inc. | Plasma reactor with heated source of a polymer-hardening precursor material |
US6132551A (en) * | 1997-09-20 | 2000-10-17 | Applied Materials, Inc. | Inductive RF plasma reactor with overhead coil and conductive laminated RF window beneath the overhead coil |
US6149760A (en) * | 1997-10-20 | 2000-11-21 | Tokyo Electron Yamanashi Limited | Plasma processing apparatus |
US6280563B1 (en) * | 1997-12-31 | 2001-08-28 | Lam Research Corporation | Plasma device including a powered non-magnetic metal member between a plasma AC excitation source and the plasma |
US6388382B1 (en) * | 1999-03-09 | 2002-05-14 | Hitachi, Ltd. | Plasma processing apparatus and method |
US6447636B1 (en) * | 2000-02-16 | 2002-09-10 | Applied Materials, Inc. | Plasma reactor with dynamic RF inductive and capacitive coupling control |
US6685799B2 (en) * | 2001-03-14 | 2004-02-03 | Applied Materials Inc. | Variable efficiency faraday shield |
US20070170867A1 (en) * | 2006-01-24 | 2007-07-26 | Varian Semiconductor Equipment Associates, Inc. | Plasma Immersion Ion Source With Low Effective Antenna Voltage |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120145322A1 (en) * | 2010-12-13 | 2012-06-14 | Hitachi High-Technologies Corporation | Plasma processing apparatus |
US9805915B2 (en) * | 2010-12-13 | 2017-10-31 | Hitachi High-Technologies Corporation | Plasma processing apparatus |
US20140353142A1 (en) * | 2011-12-27 | 2014-12-04 | Canon Anelva Corporation | Substrate processing apparatus, etching method of metal film, and manufacturing method of magnetoresistive effect element |
US9685299B2 (en) * | 2011-12-27 | 2017-06-20 | Canon Anelva Corporation | Substrate processing apparatus, etching method of metal film, and manufacturing method of magnetoresistive effect element |
TWI642084B (zh) * | 2016-09-05 | 2018-11-21 | 日立全球先端科技股份有限公司 | Plasma processing device |
US11094509B2 (en) | 2016-09-05 | 2021-08-17 | Hitachi High-Tech Corporation | Plasma processing apparatus |
US20210296083A1 (en) * | 2018-07-26 | 2021-09-23 | Y.A.C. Technologies Co., Ltd. | Plasma processing device |
US11515119B2 (en) * | 2018-07-26 | 2022-11-29 | Y.A.C. Technologies Co., Ltd. | Plasma processing device |
US20220230839A1 (en) * | 2021-01-19 | 2022-07-21 | Psk Inc. | Faraday shield and apparatus for treating substrate |
US11817291B2 (en) * | 2021-01-19 | 2023-11-14 | Psk Inc. | Faraday shield and apparatus for treating substrate |
CN114864367A (zh) * | 2022-03-25 | 2022-08-05 | 上海谙邦半导体设备有限公司 | 一种具有屏蔽效果的介质管及等离子体反应腔 |
Also Published As
Publication number | Publication date |
---|---|
KR101142411B1 (ko) | 2012-05-07 |
JP2011124293A (ja) | 2011-06-23 |
KR20110065252A (ko) | 2011-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110132540A1 (en) | Plasma processing apparatus | |
JP5564549B2 (ja) | 可変静電容量を有するプラズマ処理システムのための方法および装置 | |
JP5086419B2 (ja) | 遠隔の場所から処理チャンバへプラズマを供給する装置 | |
US10984993B2 (en) | Plasma processing apparatus | |
JP4217299B2 (ja) | 処理装置 | |
US7837828B2 (en) | Substrate supporting structure for semiconductor processing, and plasma processing device | |
KR100535171B1 (ko) | 플라즈마 처리방법 및 장치 | |
US6518705B2 (en) | Method and apparatus for producing uniform process rates | |
KR102218686B1 (ko) | 플라스마 처리 장치 | |
KR101480738B1 (ko) | 환형 배플 | |
US20160118284A1 (en) | Plasma processing apparatus | |
KR20190085825A (ko) | 플라스마 처리 장치 | |
TWI723406B (zh) | 電漿處理裝置 | |
JP2016143616A (ja) | プラズマ処理装置 | |
EP4165676A1 (en) | Plasma source configuration | |
US20180019099A1 (en) | Plasma processing apparatus | |
CN118213253A (zh) | 一种下电极组件及其等离子体处理装置 | |
US20040163595A1 (en) | Plasma processing apparatus | |
US11875969B2 (en) | Process chamber with reduced plasma arc | |
WO2025164456A1 (ja) | プラズマ処理装置 | |
IL159935A (en) | Method and apparatus for producing uniform process rates | |
JP2000008169A (ja) | 放電発生用アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HITACHI HIGH-TECHNOLOGIES CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAKKA, YUSAKU;YOSHIOKA, KEN;NISHIO, RYOJI;SIGNING DATES FROM 20100507 TO 20100511;REEL/FRAME:024365/0677 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |