US20100287982A1 - Liquefied Natural Gas and Hydrocarbon Gas Processing - Google Patents

Liquefied Natural Gas and Hydrocarbon Gas Processing Download PDF

Info

Publication number
US20100287982A1
US20100287982A1 US12/466,661 US46666109A US2010287982A1 US 20100287982 A1 US20100287982 A1 US 20100287982A1 US 46666109 A US46666109 A US 46666109A US 2010287982 A1 US2010287982 A1 US 2010287982A1
Authority
US
United States
Prior art keywords
stream
column
gas
distillation
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/466,661
Other languages
English (en)
Inventor
Tony L. Martinez
John D. Wilkinson
Hank M. Hudson
Kyle T. Cuellar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ortloff Engineers Ltd
Original Assignee
Ortloff Engineers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ortloff Engineers Ltd filed Critical Ortloff Engineers Ltd
Priority to US12/466,661 priority Critical patent/US20100287982A1/en
Assigned to ORTLOFF ENGINEERS, LTD reassignment ORTLOFF ENGINEERS, LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUELLAR, KYLE T., MARTINEZ, TONY L., HUDSON, HANK M., WILKINSON, JOHN D.
Priority to BRPI1011152A priority patent/BRPI1011152A2/pt
Priority to MX2011012185A priority patent/MX2011012185A/es
Priority to CA2760963A priority patent/CA2760963A1/en
Priority to MYPI2011005446A priority patent/MY161650A/en
Priority to PCT/US2010/034732 priority patent/WO2010132678A1/en
Priority to GB1121593.6A priority patent/GB2487110A/en
Priority to CN201080021147.9A priority patent/CN102428334B/zh
Publication of US20100287982A1 publication Critical patent/US20100287982A1/en
Priority to CO11160751A priority patent/CO6470814A2/es
Priority to US13/790,873 priority patent/US8794030B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/061Natural gas or substitute natural gas
    • F25J3/0615Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • F25J3/0214Liquefied natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/30Processes or apparatus using separation by rectification using a side column in a single pressure column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/38Processes or apparatus using separation by rectification using pre-separation or distributed distillation before a main column system, e.g. in a at least a double column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/02Multiple feed streams, e.g. originating from different sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/50Arrangement of multiple equipments fulfilling the same process step in parallel

Definitions

  • This invention relates to a process for the separation of ethane and heavier hydrocarbons or propane and heavier hydrocarbons from liquefied natural gas (hereinafter referred to as LNG) combined with the separation of a gas containing hydrocarbons to provide a volatile methane-rich gas stream and a less volatile natural gas liquids (NGL) or liquefied petroleum gas (LPG) stream.
  • LNG liquefied natural gas
  • FIG. 1 is a flow diagram of a base case natural gas processing plant using LNG to provide its refrigeration
  • FIGS. 4 through 8 are flow diagrams illustrating alternative means of application of the present invention to LNG and natural gas streams.
  • FIGS. 1 and 2 are provided to quantify the advantages of the present invention.
  • FIG. 1 is a flow diagram showing the design of a processing plant to recover C 2 + components from natural gas using an LNG stream to provide refrigeration.
  • inlet gas enters the plant at 126° F. [52° C.] and 600 psia [4,137 kPa(a)] as stream 31 .
  • the sulfur compounds are removed by appropriate pretreatment of the feed gas (not illustrated).
  • the feed stream is usually dehydrated to prevent hydrate (ice) formation under cryogenic conditions. Solid desiccant has typically been used for this purpose.
  • Liquid stream 35 is flash expanded through an appropriate expansion device, such as expansion valve 17 , to the operating pressure (approximately 430 psia [2,965 kPa(a)]) of fractionation tower 20 .
  • the expanded stream 35 a leaving expansion valve 17 reaches a temperature of ⁇ 93° F. [ ⁇ 70° C.] and is supplied to fractionation tower 20 at a first mid-column feed point.
  • Overhead distillation stream 43 is withdrawn from the upper section of fractionation tower 20 at ⁇ 143° F. [ ⁇ 97° C.] and is divided into two portions, streams 44 and 47 .
  • the first portion, stream 44 flows to reflux condenser 23 where it is cooled to ⁇ 237° F. [ ⁇ 149° C.] and totally condensed by heat exchange with a portion (stream 72 ) of the cold LNG (stream 71 a ).
  • Condensed stream 44 a enters reflux separator 24 wherein the condensed liquid (stream 46 ) is separated from any uncondensed vapor (stream 45 ).
  • the liquid stream 46 from reflux separator 24 is pumped by reflux pump 25 to a pressure slightly above the operating pressure of demethanizer 20 and stream 46 a is then supplied as cold top column feed (reflux) to demethanizer 20 .
  • This cold liquid reflux absorbs and condenses the C 2 components and heavier hydrocarbon components from the vapors rising in the upper section of demethanizer 20 .
  • the second stage is compressor 21 driven by a supplemental power source which compresses stream 38 c to sales line pressure (stream 38 d ).
  • stream 38 e After cooling to 126° F. [52° C.] in discharge cooler 22 , stream 38 e combines with warm LNG stream 71 b to form the residue gas product (stream 42 ).
  • Residue gas stream 42 flows to the sales gas pipeline at 1262 psia [8,701 kPa(a)], sufficient to meet line requirements.
  • the recoveries reported in Table I are computed relative to the total quantities of ethane, propane, and butanes+ contained in the gas stream being processed in the plant and in the LNG stream. Although the recoveries are quite high relative to the heavier hydrocarbons contained in the gas being processed (99.58%, 100.00%, and 100.00%, respectively, for ethane, propane, and butanes+), none of the heavier hydrocarbons contained in the LNG stream are captured in the FIG. 1 process. In fact, depending on the composition of LNG stream 71 , the residue gas stream 42 produced by the FIG. 1 process may not meet all pipeline specifications.
  • the specific power reported in Table I is the power consumed per unit of liquid product recovered, and is an indicator of the overall process efficiency.
  • FIG. 2 is a flow diagram showing processes to recover C 2 + components from LNG and natural gas in accordance with U.S. Pat. No. 7,216,507 and co-pending application Ser. No. 11/430,412, respectively, with the processed LNG stream used to provide refrigeration for the natural gas plant.
  • the processes of FIG. 2 have been applied to the same LNG stream and inlet gas stream compositions and conditions as described previously for FIG. 1 .
  • the remaining portion of condensed liquid stream 79 b, reflux stream 82 flows to heat exchanger 52 where it is subcooled to ⁇ 237° F. [ ⁇ 149° C.] by heat exchange with a portion of the cold LNG (stream 76 ) as described previously.
  • the subcooled stream 82 a is then expanded to the operating pressure of demethanizer 62 by expansion valve 57 .
  • the expanded stream 82 b at ⁇ 236° F. [ ⁇ 149° C.] is then supplied as cold top column feed (reflux) to demethanizer 62 .
  • This cold liquid reflux absorbs and condenses the C 2 components and heavier hydrocarbon components from the vapors rising in the upper rectification section of demethanizer 62 .
  • the demethanizer in fractionation column 20 is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing consisting of two sections.
  • the upper absorbing (rectification) section contains the trays and/or packing to provide the necessary contact between the vapors rising upward and cold liquid falling downward to condense and absorb the ethane and heavier components;
  • the lower stripping (demethanizing) section contains the trays and/or packing to provide the necessary contact between the liquids falling downward and the vapors rising upward.
  • the demethanizing section also includes one or more reboilers (such as the side reboiler in heat exchanger 12 described previously, and reboiler 19 using high level utility heat) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column.
  • the column liquid stream 40 exits the bottom of the tower at 89° F. [31° C.], based on a typical specification of a methane to ethane ratio of 0.020:1 on a molar basis in the bottom product, and combines with stream 80 to form the liquid product (stream 41 ).
  • a portion of the distillation vapor (stream 44 ) is withdrawn from the upper region of the stripping section of fractionation column 20 at ⁇ 125° F. [ ⁇ 87° C.] and compressed to 545 psia [3,756 kPa(a)] by compressor 26 .
  • the compressed stream 44 a is then cooled from ⁇ 87° F. [ ⁇ 66° C.] to ⁇ 143° F. [ ⁇ 97° C.] and condensed (stream 44 b ) in heat exchanger 14 by heat exchange with cold overhead distillation stream 38 exiting the top of demethanizer 20 and cold lean LING (stream 83 a ) at ⁇ 116° F. [ ⁇ 82° C.].
  • Condensed liquid stream 44 b is expanded by expansion valve 16 to a pressure slightly above the operating pressure of demethanizer 20 , and the resulting stream 44 c at ⁇ 146° F. [ ⁇ 99° C.] is then supplied as cold liquid reflux to an intermediate region in the absorbing section of demethanizer 20 .
  • This supplemental reflux absorbs and condenses most of the C 3 components and heavier components (as well as some of the C 2 components) from the vapors rising in the lower rectification region of the absorbing section so that only a small amount of recycle (stream 36 ) must be cooled, condensed, subcooled, and flash expanded to produce the top reflux stream 36 c that provides the final rectification in the upper region of the absorbing section of demethanizer 20 .
  • Overhead distillation stream 38 is withdrawn from the upper section of fractionation tower 20 at ⁇ 148° F. [ ⁇ 100° C.]. It passes countercurrently to compressed distillation vapor stream 44 a and recycle stream 36 a in heat exchanger 14 where it is heated to ⁇ 114° F. [ ⁇ 81 ° C.] (stream 38 a ), and countercurrently to inlet gas stream 31 and recycle stream 36 in heat exchanger 12 where it is heated to 20° F. [ ⁇ 7° C.] (stream 38 b ). The distillation stream is then re-compressed in two stages. The first stage is compressor 11 driven by expansion machine 10 . The second stage is compressor 21 driven by a supplemental power source which compresses stream 38 c to sales line pressure (stream 38 d ).
  • stream 38 e After cooling to 126° F. [52° C.] in discharge cooler 22 , stream 38 e is divided into two portions, stream 37 and recycle stream 36 .
  • Stream 37 combines with warm lean LNG stream 83 c to form the residue gas product (stream 42 ).
  • Residue gas stream 42 flows to the sales gas pipeline at 1262 psia [8,701 kPa(a)], sufficient to meet line requirements.
  • the heated stream 71 c enters separator 54 at 11° F. [ ⁇ 12° C.] and 1334 psia [9,198 kPa(a)] where the vapor (stream 77 ) is separated from any remaining liquid (stream 78 ).
  • Vapor stream 77 enters a work expansion machine 55 in which mechanical energy is extracted from the high pressure feed.
  • the machine 55 expands the vapor substantially isentropically to the tower operating pressure (approximately 412 psia [2,839 kPa(a)]), with the work expansion cooling the expanded stream 77 a to a temperature of approximately ⁇ 100° F. [ ⁇ 73° C.].
  • the work recovered is often used to drive a centrifugal compressor (such as item 56 ) that can be used to re-compress a portion (stream 81 ) of the column overhead vapor (stream 79 ), for example.
  • the partially condensed expanded stream 77 a is thereafter supplied as feed to fractionation column 20 at a first mid-column feed point.
  • the separator liquid (stream 78 ), if any, is expanded to the operating pressure of fractionation column 20 by expansion valve 59 before expanded stream 78 a is supplied to fractionation tower 20 at a first lower mid-column feed point.
  • exchanger 12 is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any combination thereof. (The decision as to whether to use more than one heat exchanger for the indicated heating services will depend on a number of factors including, but not limited to, inlet gas flow rate, heat exchanger size, stream temperatures, etc.)
  • the vapor (stream 34 ) from separator 13 enters a work expansion machine 10 in which mechanical energy is extracted from this portion of the high pressure feed.
  • the machine 10 expands the vapor substantially isentropically to the operating pressure of fractionation tower 20 , with the work expansion cooling the expanded stream 34 a to a temperature of approximately ⁇ 108° F. [ ⁇ 78° C.].
  • the work recovered is often used to drive a centrifugal compressor (such as item 11 ) that can be used to re-compress the heated distillation stream (stream 38 a ), for example.
  • the expanded partially condensed stream 34 a is supplied to fractionation tower 20 at a second mid-column feed point.
  • Demethanizing section 20 b also includes one or more reboilers (such as the side reboiler in heat exchanger 12 described previously, side reboiler 18 using low level utility heat, and reboiler 19 using high level utility heat) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column.
  • the column liquid stream 41 exits the bottom of the tower at 83° F. [28° C.], based on a typical specification of a methane to ethane ratio of 0.020:1 on a molar basis in the bottom product.
  • a portion of the distillation vapor (stream 44 ) is withdrawn from the upper region of stripping section 20 b of fractionation column 20 at ⁇ 120° F. [ ⁇ 84° C.] and is cooled to ⁇ 143° F. [ ⁇ 97° C.] and condensed (stream 44 a ) in heat exchanger 52 by heat exchange with the cold LNG (stream 71 a ).
  • Condensed liquid stream 44 a is pumped to slightly above the operating pressure of fractionation column 20 by pump 27 , whereupon stream 44 b at ⁇ 143° F. [ ⁇ 97° C.] is then supplied as cold liquid reflux to an intermediate region in absorbing section 20 a of fractionation column 20 .
  • This supplemental reflux absorbs and condenses most of the C 3 components and heavier components (as well as some of the C 2 components) from the vapors rising in the lower rectification region of absorbing section 20 a so that only a small amount of the lean LNG (stream 82 ) must be subcooled to produce the top reflux stream 82 b that provides the final rectification in the upper region of absorbing section 20 a of fractionation column 20 .
  • Overhead distillation stream 79 is withdrawn from the upper section of fractionation tower 20 at ⁇ 145° F. [ ⁇ 98° C.] and is divided into two portions, stream 81 and stream 38 .
  • the first portion (stream 81 ) flows to compressor 56 driven by expansion machine 55 , where it is compressed to 1092 psia [7,529 kPa(a)] (stream 81 a ).
  • the stream is totally condensed as it is cooled to ⁇ 106° F. [ ⁇ 77° C.] in heat exchanger 52 as described previously.
  • the condensed liquid (stream 81 b ) is then divided into two portions, streams 83 and 82 .
  • the first portion (stream 83 ) is the methane-rich lean LNG stream, which is pumped by pump 63 to 1273 psia [8,777 kPa(a)] for subsequent vaporization in heat exchanger 12 , heating stream 83 a to 65° F. [18° C.] as described previously to produce warm lean LNG stream 83 b.
  • the lower top reflux flow plus the greater degree of heating using low level utility heat in heat exchanger 53 , results in less total liquid feeding fractionation column 20 , reducing the duty required in reboiler 19 and minimizing the amount of high level utility heat needed to meet the specification for the bottom liquid product from demethanizer 20 .
  • the rectification of the column vapors provided by absorbing section 20 a allows all of the LNG feed to be vaporized before entering work expansion machine 55 as stream 77 , resulting in significant power recovery.
  • This power can then be used to compress the first portion (stream 81 ) of distillation overhead stream 79 to a pressure sufficiently high so that it can be condensed in heat exchanger 52 and so that the resulting lean LNG (stream 83 ) can then be pumped to the pipeline delivery pressure. (Pumping uses significantly less power than compressing.)
  • this “free” refrigeration of inlet gas stream 31 means less of the cooling duty in heat exchanger 12 must be supplied by distillation vapor stream 38 , so that stream 38 a is cooler and less compression power is needed to raise its pressure to the pipeline delivery condition.
  • a portion of the distillation vapor (stream 44 ) is withdrawn from the upper region of the stripping section of fractionation column 20 at ⁇ 119° F. [ ⁇ 84° C.] and is cooled to ⁇ 145° F. [ ⁇ 98° C.] and condensed (stream 44 a ) in heat exchanger 52 by heat exchange with the cold LNG (stream 71 a ).
  • Condensed liquid stream 44 a is pumped to slightly above the operating pressure of fractionation column 20 by pump 27 , whereupon stream 44 b at ⁇ 144° F. [ ⁇ 98° C.] is then supplied as cold liquid reflux to an intermediate region in the absorbing section of fractionation column 20 .
  • This supplemental reflux absorbs and condenses most of the C 3 components and heavier components (as well as some of the C 2 components) from the vapors rising in the lower rectification region of the absorbing section of fractionation column 20 .
  • the column liquid stream 41 exits the bottom of the tower at 85° F. [29° C.], based on a typical specification of a methane to ethane ratio of 0.020:1 on a molar basis in the bottom product.
  • Overhead distillation stream 79 is withdrawn from the upper section of fractionation tower 20 at ⁇ 144° F. [ ⁇ 98° C.] and is divided into two portions, stream 81 and stream 38 .
  • the first portion (stream 81 ) flows to compressor 56 driven by expansion machine 55 , where it is compressed to 929 psia [6,405 kPa(a)] (stream 81 a ). At this pressure, the stream is totally condensed as it is cooled to ⁇ 108° F.
  • the condensed liquid (stream 81 b ) is then divided into two portions, streams 83 and 82 .
  • the first portion (stream 83 ) is the methane-rich lean LNG stream, which is pumped by pump 63 to 1273 psia [8,777 kPa(a)] for subsequent vaporization in heat exchanger 12 , heating stream 83 a to 65° F. [18° C.] as described previously to produce warm lean LNG stream 83 b.
  • FIG. 5 Another alternative method of processing LNG and natural gas is shown in the embodiment of the present invention as illustrated in FIG. 5 .
  • the LNG stream and inlet gas stream compositions and conditions considered in the process presented in FIG. 5 are the same as those in FIGS. 1 through 4 . Accordingly, the FIG. 5 process can be compared with the FIGS. 1 and 2 processes to illustrate the advantages of the present invention, and can likewise be compared to the embodiments displayed in FIGS. 3 and 4 .
  • the heated stream 71 c enters separator 54 at 1° F. [ ⁇ 17° C.] and 1334 psia [9,198 kPa(a)] where the vapor (stream 77 ) is separated from any remaining liquid (stream 78 ).
  • Vapor stream 77 enters a work expansion machine 55 in which mechanical energy is extracted from the high pressure feed.
  • the machine 55 expands the vapor substantially isentropically to the tower operating pressure (approximately 395 psia [2,721 kPa(a)]), with the work expansion cooling the expanded stream 77 a to a temperature of approximately ⁇ 107° F. [ ⁇ 77° C.].
  • the partially condensed expanded stream 77 a is thereafter supplied as feed to fractionation column 20 at a first mid-column feed point.
  • the separator liquid (stream 78 ), if any, is expanded to the operating pressure of fractionation column 20 by expansion valve 59 before expanded stream 78 a is supplied to fractionation tower 20 at a first lower mid-column feed point.
  • the cooled stream 31 b enters separator 13 at ⁇ 81° F. [ ⁇ 63° C.] and 403 psia [2,777 kPa(a)] where the vapor (stream 34 ) is separated from the condensed liquid (stream 35 ).
  • Vapor stream 34 is cooled to ⁇ 117° F. [ ⁇ 83° C.] in heat exchanger 52 by heat exchange with cold LNG stream 71 a and compressed distillation stream 38 a, and the partially condensed stream 34 a is then supplied to fractionation tower 20 at a second mid-column feed point.
  • Liquid stream 35 is directed through valve 17 and is supplied to fractionation tower 20 at a second lower mid-column feed point.
  • the column liquid stream 41 exits the bottom of the tower at 79° F. [26° C.], based on a typical specification of a methane to ethane ratio of 0.020:1 on a molar basis in the bottom product.
  • Overhead distillation stream 79 is withdrawn from the upper section of fractionation tower 20 at ⁇ 147° F. [ ⁇ 99° C.] and is divided into two portions, stream 81 and stream 38 .
  • the first portion (stream 81 ) flows to compressor 56 driven by expansion machine 55 , where it is compressed to 1124 psia [7,750 kPa(a)] (stream 81 a ). At this pressure, the stream is totally condensed as it is cooled to ⁇ 103° F.
  • the condensed liquid (stream 81 b ) is then divided into two portions, streams 83 and 82 .
  • the first portion (stream 83 ) is the methane-rich lean LNG stream, which is pumped by pump 63 to 1273 psia [8,777 kPa(a)] for subsequent vaporization in heat exchanger 12 , heating stream 83 a to 65° F. [18° C.] as described previously to produce warm lean LNG stream 83 b.
  • stream 81 b flows to heat exchanger 52 where it is subcooled to ⁇ 236° F. [ ⁇ 149° C.] by heat exchange with the cold LNG (stream 71 a ) as described previously.
  • the subcooled stream 82 a is expanded to the operating pressure of fractionation column 20 by expansion valve 57 .
  • the expanded stream 82 b at ⁇ 233° F. [ ⁇ 147° C.] is then supplied as cold top column feed (reflux) to demethanizer 20 .
  • This cold liquid reflux absorbs and condenses the C 2 components and heavier hydrocarbon components from the vapors rising in the upper rectification region of the absorbing section of demethanizer 20 .
  • the distillation stream is then further compressed to sales gas line pressure (stream 38 d ) in compressor 21 driven by a supplemental power source, and stream 38 d / 38 e then combines with warm lean LNG stream 83 b to form the residue gas product (stream 42 ).
  • Residue gas stream 42 at 107° F. [42° C.] flows to the sales gas pipeline at 1262 psia [8,701 kPa(a)], sufficient to meet line requirements.
  • Pump 67 is used to route the liquids (stream 46 ) from the bottom of absorber column 66 to the top of stripper column 20 so that the two towers effectively function as one distillation system.
  • the decision whether to construct the fractionation tower as a single vessel (such as demethanizer 20 in FIGS. 3 through 5 ) or multiple vessels will depend on a number of factors such as plant size, the distance to fabrication facilities, etc.
  • total condensation of streams 44 a and 81 b is illustrated in FIGS. 3 through 8 .
  • Some circumstances may favor subcooling these streams, while other circumstances may favor only partial condensation. Should partial condensation of either or both of these streams be achieved, processing of the uncondensed vapor may be necessary, using a compressor or other means to elevate the pressure of the vapor so that it can join the pumped condensed liquid. Alternatively, the uncondensed vapor could be routed to the plant fuel system or other such use.
  • the heated LNG stream leaving heat exchanger 53 may not contain any liquid (because it is above its dewpoint, or because it is above its cricondenbar). In such cases, separator 54 and expansion valve 59 may be eliminated as shown by the dashed lines.
  • the use and distribution of the methane-rich lean LNG and distillation vapor streams for process heat exchange, and the particular arrangement of heat exchangers for heating the LNG streams and cooling the feed gas stream, must be evaluated for each particular application, as well as the choice of process streams for specific heat exchange services.
  • lean LNG stream 83 a is used directly to provide cooling in heat exchanger 12 .
  • some circumstances may favor using the lean LNG to cool an intermediate heat transfer fluid, such as propane or other suitable fluid, whereupon the cooled heat transfer fluid is then used to provide cooling in heat exchanger 12 .
  • This alternative means of indirectly using the refrigeration available in lean LNG stream 83 a accomplishes the same process objectives as the direct use of stream 83 a for cooling in the FIGS. 3 through 8 embodiments of the present invention.
  • the choice of how best to use the lean LNG stream for refrigeration will depend mainly on the composition of the inlet gas, but other factors may affect the choice as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
US12/466,661 2009-05-15 2009-05-15 Liquefied Natural Gas and Hydrocarbon Gas Processing Abandoned US20100287982A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US12/466,661 US20100287982A1 (en) 2009-05-15 2009-05-15 Liquefied Natural Gas and Hydrocarbon Gas Processing
CN201080021147.9A CN102428334B (zh) 2009-05-15 2010-05-13 液化天然气与烃气体处理
MYPI2011005446A MY161650A (en) 2009-05-15 2010-05-13 Liquefied natural gas and hydrocarbon gas processing
MX2011012185A MX2011012185A (es) 2009-05-15 2010-05-13 Procesamiento de gas natural licuado y gas hidrocarburo.
CA2760963A CA2760963A1 (en) 2009-05-15 2010-05-13 Liquefied natural gas and hydrocarbon gas processing
BRPI1011152A BRPI1011152A2 (pt) 2009-05-15 2010-05-13 processamento de gás de hidrocarboneto e gás natural liquefeito
PCT/US2010/034732 WO2010132678A1 (en) 2009-05-15 2010-05-13 Liquefied natural gas and hydrocarbon gas processing
GB1121593.6A GB2487110A (en) 2009-05-15 2010-05-13 Liquefied natural gas and hydrocarbon gas processing
CO11160751A CO6470814A2 (es) 2009-05-15 2011-11-23 Procesamiento de gas natural licuado y gas hidrocarburo
US13/790,873 US8794030B2 (en) 2009-05-15 2013-03-08 Liquefied natural gas and hydrocarbon gas processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/466,661 US20100287982A1 (en) 2009-05-15 2009-05-15 Liquefied Natural Gas and Hydrocarbon Gas Processing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/790,873 Continuation US8794030B2 (en) 2009-05-15 2013-03-08 Liquefied natural gas and hydrocarbon gas processing

Publications (1)

Publication Number Publication Date
US20100287982A1 true US20100287982A1 (en) 2010-11-18

Family

ID=43067387

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/466,661 Abandoned US20100287982A1 (en) 2009-05-15 2009-05-15 Liquefied Natural Gas and Hydrocarbon Gas Processing
US13/790,873 Expired - Fee Related US8794030B2 (en) 2009-05-15 2013-03-08 Liquefied natural gas and hydrocarbon gas processing

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/790,873 Expired - Fee Related US8794030B2 (en) 2009-05-15 2013-03-08 Liquefied natural gas and hydrocarbon gas processing

Country Status (9)

Country Link
US (2) US20100287982A1 (es)
CN (1) CN102428334B (es)
BR (1) BRPI1011152A2 (es)
CA (1) CA2760963A1 (es)
CO (1) CO6470814A2 (es)
GB (1) GB2487110A (es)
MX (1) MX2011012185A (es)
MY (1) MY161650A (es)
WO (1) WO2010132678A1 (es)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258401A1 (en) * 2007-01-10 2010-10-14 Pilot Energy Solutions, Llc Carbon Dioxide Fractionalization Process
US20110067442A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20110167868A1 (en) * 2010-01-14 2011-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US8667812B2 (en) 2010-06-03 2014-03-11 Ordoff Engineers, Ltd. Hydrocabon gas processing
US20150007606A1 (en) * 2012-02-10 2015-01-08 Salavat Zainetdinovich Imaev Gas mixture separation method
WO2016135042A1 (en) * 2015-02-25 2016-09-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus and method for supplying liquid fuel gas
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
CN114127500A (zh) * 2019-04-23 2022-03-01 查特能源化工股份有限公司 具有侧吸式热泵回流系统的单塔脱氮装置和方法
CN114739118A (zh) * 2022-05-19 2022-07-12 杭州中泰深冷技术股份有限公司 一种lng冷能利用的合成气深冷分离系统及方法
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US12000653B2 (en) 2015-04-10 2024-06-04 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090282865A1 (en) 2008-05-16 2009-11-19 Ortloff Engineers, Ltd. Liquefied Natural Gas and Hydrocarbon Gas Processing
JP6517251B2 (ja) * 2013-12-26 2019-05-22 千代田化工建設株式会社 天然ガスの液化システム及び液化方法
JP6225049B2 (ja) * 2013-12-26 2017-11-01 千代田化工建設株式会社 天然ガスの液化システム及び液化方法
TWI707115B (zh) 2015-04-10 2020-10-11 美商圖表能源與化學有限公司 混合製冷劑液化系統和方法
CA2949012C (en) 2016-01-22 2018-02-20 Encana Corporation Process and apparatus for processing a hydrocarbon gas stream
JP7043126B6 (ja) * 2017-11-06 2022-04-18 東洋エンジニアリング株式会社 Lngから複数種の炭化水素を分離回収するための装置
JP7330446B2 (ja) 2019-05-24 2023-08-22 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 液化天然ガス(lng)から天然ガス液(ngl)を抽出する抽出システム
US11604025B2 (en) 2019-10-17 2023-03-14 Conocophillips Company Standalone high-pressure heavies removal unit for LNG processing

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33408A (en) * 1861-10-01 Improvement in machinery for washing wool
US2952984A (en) * 1958-06-23 1960-09-20 Conch Int Methane Ltd Processing liquefied natural gas
US3724226A (en) * 1971-04-20 1973-04-03 Gulf Research Development Co Lng expander cycle process employing integrated cryogenic purification
US3837172A (en) * 1972-06-19 1974-09-24 Synergistic Services Inc Processing liquefied natural gas to deliver methane-enriched gas at high pressure
US4033735A (en) * 1971-01-14 1977-07-05 J. F. Pritchard And Company Single mixed refrigerant, closed loop process for liquefying natural gas
US4140504A (en) * 1976-08-09 1979-02-20 The Ortloff Corporation Hydrocarbon gas processing
US4157904A (en) * 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
US4185978A (en) * 1977-03-01 1980-01-29 Standard Oil Company (Indiana) Method for cryogenic separation of carbon dioxide from hydrocarbons
US4251249A (en) * 1977-01-19 1981-02-17 The Randall Corporation Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream
US4278457A (en) * 1977-07-14 1981-07-14 Ortloff Corporation Hydrocarbon gas processing
US4368061A (en) * 1979-06-06 1983-01-11 Compagnie Francaise D'etudes Et De Construction "Technip" Method of and apparatus for manufacturing ethylene
US4404008A (en) * 1982-02-18 1983-09-13 Air Products And Chemicals, Inc. Combined cascade and multicomponent refrigeration method with refrigerant intercooling
US4430103A (en) * 1982-02-24 1984-02-07 Phillips Petroleum Company Cryogenic recovery of LPG from natural gas
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
US4445917A (en) * 1982-05-10 1984-05-01 Air Products And Chemicals, Inc. Process for liquefied natural gas
US4519824A (en) * 1983-11-07 1985-05-28 The Randall Corporation Hydrocarbon gas separation
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
US4592766A (en) * 1983-09-13 1986-06-03 Linde Aktiengesellschaft Parallel stream heat exchange for separation of ethane and higher hydrocarbons from a natural or refinery gas
US4596588A (en) * 1985-04-12 1986-06-24 Gulsby Engineering Inc. Selected methods of reflux-hydrocarbon gas separation process
US4600421A (en) * 1984-04-18 1986-07-15 Linde Aktiengesellschaft Two-stage rectification for the separation of hydrocarbons
US4657571A (en) * 1984-06-29 1987-04-14 Snamprogetti S.P.A. Process for the recovery of heavy constituents from hydrocarbon gaseous mixtures
US4676812A (en) * 1984-11-12 1987-06-30 Linde Aktiengesellschaft Process for the separation of a C2+ hydrocarbon fraction from natural gas
US4687499A (en) * 1986-04-01 1987-08-18 Mcdermott International Inc. Process for separating hydrocarbon gas constituents
US4689063A (en) * 1985-03-05 1987-08-25 Compagnie Francaise D'etudes Et De Construction "Technip" Process of fractionating gas feeds and apparatus for carrying out the said process
US4690702A (en) * 1984-09-28 1987-09-01 Compagnie Francaise D'etudes Et De Construction "Technip" Method and apparatus for cryogenic fractionation of a gaseous feed
US4718927A (en) * 1985-09-02 1988-01-12 Linde Aktiengesellschaft Process for the separation of C2+ hydrocarbons from natural gas
US4720294A (en) * 1986-08-05 1988-01-19 Air Products And Chemicals, Inc. Dephlegmator process for carbon dioxide-hydrocarbon distillation
US4738699A (en) * 1982-03-10 1988-04-19 Flexivol, Inc. Process for recovering ethane, propane and heavier hydrocarbons from a natural gas stream
US4752312A (en) * 1987-01-30 1988-06-21 The Randall Corporation Hydrocarbon gas processing to recover propane and heavier hydrocarbons
US4755200A (en) * 1987-02-27 1988-07-05 Air Products And Chemicals, Inc. Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes
US4851020A (en) * 1988-11-21 1989-07-25 Mcdermott International, Inc. Ethane recovery system
US4854955A (en) * 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
US4869740A (en) * 1988-05-17 1989-09-26 Elcor Corporation Hydrocarbon gas processing
US4895584A (en) * 1989-01-12 1990-01-23 Pro-Quip Corporation Process for C2 recovery
US5114541A (en) * 1980-11-14 1992-05-19 Ernst Bayer Process for producing solid, liquid and gaseous fuels from organic starting material
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5275005A (en) * 1992-12-01 1994-01-04 Elcor Corporation Gas processing
US5291736A (en) * 1991-09-30 1994-03-08 Compagnie Francaise D'etudes Et De Construction "Technip" Method of liquefaction of natural gas
US5325673A (en) * 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
US5537827A (en) * 1995-06-07 1996-07-23 Low; William R. Method for liquefaction of natural gas
US5555748A (en) * 1995-06-07 1996-09-17 Elcor Corporation Hydrocarbon gas processing
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5600969A (en) * 1995-12-18 1997-02-11 Phillips Petroleum Company Process and apparatus to produce a small scale LNG stream from an existing NGL expander plant demethanizer
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
US5651269A (en) * 1993-12-30 1997-07-29 Institut Francais Du Petrole Method and apparatus for liquefaction of a natural gas
US5669234A (en) * 1996-07-16 1997-09-23 Phillips Petroleum Company Efficiency improvement of open-cycle cascaded refrigeration process
US5737940A (en) * 1996-06-07 1998-04-14 Yao; Jame Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US5755115A (en) * 1996-01-30 1998-05-26 Manley; David B. Close-coupling of interreboiling to recovered heat
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
US5771712A (en) * 1995-06-07 1998-06-30 Elcor Corporation Hydrocarbon gas processing
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5881569A (en) * 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US5893274A (en) * 1995-06-23 1999-04-13 Shell Research Limited Method of liquefying and treating a natural gas
US5950453A (en) * 1997-06-20 1999-09-14 Exxon Production Research Company Multi-component refrigeration process for liquefaction of natural gas
US6014869A (en) * 1996-02-29 2000-01-18 Shell Research Limited Reducing the amount of components having low boiling points in liquefied natural gas
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US6023942A (en) * 1997-06-20 2000-02-15 Exxon Production Research Company Process for liquefaction of natural gas
US6053007A (en) * 1997-07-01 2000-04-25 Exxonmobil Upstream Research Company Process for separating a multi-component gas stream containing at least one freezable component
US6062041A (en) * 1997-01-27 2000-05-16 Chiyoda Corporation Method for liquefying natural gas
US6116050A (en) * 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6250105B1 (en) * 1998-12-18 2001-06-26 Exxonmobil Upstream Research Company Dual multi-component refrigeration cycles for liquefaction of natural gas
US6272882B1 (en) * 1997-12-12 2001-08-14 Shell Research Limited Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US6336344B1 (en) * 1999-05-26 2002-01-08 Chart, Inc. Dephlegmator process with liquid additive
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US6363744B2 (en) * 2000-01-07 2002-04-02 Costain Oil Gas & Process Limited Hydrocarbon separation process and apparatus
US6367286B1 (en) * 2000-11-01 2002-04-09 Black & Veatch Pritchard, Inc. System and process for liquefying high pressure natural gas
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US20030005722A1 (en) * 2001-06-08 2003-01-09 Elcor Corporation Natural gas liquefaction
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
US6578379B2 (en) * 2000-12-13 2003-06-17 Technip-Coflexip Process and installation for separation of a gas mixture containing methane by distillation
US6604380B1 (en) * 2002-04-03 2003-08-12 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US20030158458A1 (en) * 2002-02-20 2003-08-21 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US6712880B2 (en) * 2001-03-01 2004-03-30 Abb Lummus Global, Inc. Cryogenic process utilizing high pressure absorber column
US20040079107A1 (en) * 2002-10-23 2004-04-29 Wilkinson John D. Natural gas liquefaction
US20040177646A1 (en) * 2003-03-07 2004-09-16 Elkcorp LNG production in cryogenic natural gas processing plants
US20050061029A1 (en) * 2003-09-22 2005-03-24 Narinsky George B. Process and apparatus for LNG enriching in methane
US20050066686A1 (en) * 2003-09-30 2005-03-31 Elkcorp Liquefied natural gas processing
US6907752B2 (en) * 2003-07-07 2005-06-21 Howe-Baker Engineers, Ltd. Cryogenic liquid natural gas recovery process
US6915662B2 (en) * 2000-10-02 2005-07-12 Elkcorp. Hydrocarbon gas processing
US20050155381A1 (en) * 2003-11-13 2005-07-21 Foster Wheeler Usa Corporation Method and apparatus for reducing C2 and C3 at LNG receiving terminals
US20060000234A1 (en) * 2004-07-01 2006-01-05 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20060032269A1 (en) * 2003-02-25 2006-02-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20070001322A1 (en) * 2005-06-01 2007-01-04 Aikhorin Christy E Method and apparatus for treating lng
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
US7219513B1 (en) * 2004-11-01 2007-05-22 Hussein Mohamed Ismail Mostafa Ethane plus and HHH process for NGL recovery

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2603310A (en) 1948-07-12 1952-07-15 Phillips Petroleum Co Method of and apparatus for separating the constituents of hydrocarbon gases
US2880592A (en) 1955-11-10 1959-04-07 Phillips Petroleum Co Demethanization of cracked gases
US3524897A (en) 1963-10-14 1970-08-18 Lummus Co Lng refrigerant for fractionator overhead
US3292380A (en) 1964-04-28 1966-12-20 Coastal States Gas Producing C Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery
FR1535846A (fr) 1966-08-05 1968-08-09 Shell Int Research Procédé pour la séparation de mélanges de méthane liquéfié
DE1551607B1 (de) 1967-11-15 1970-04-23 Messer Griesheim Gmbh Verfahren zur Tieftemperatur-Rektifikation eines Gasgemisches
US3507127A (en) 1967-12-26 1970-04-21 Phillips Petroleum Co Purification of nitrogen which contains methane
US3516261A (en) 1969-04-21 1970-06-23 Mc Donnell Douglas Corp Gas mixture separation by distillation with feed-column heat exchange and intermediate plural stage work expansion of the feed
BE758567A (fr) 1969-11-07 1971-05-06 Fluor Corp Procede de recuperation d'ethylene a basse pression
US3763658A (en) 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method
US3902329A (en) 1970-10-28 1975-09-02 Univ California Distillation of methane and hydrogen from ethylene
US4004430A (en) 1974-09-30 1977-01-25 The Lummus Company Process and apparatus for treating natural gas
CA1021254A (en) 1974-10-22 1977-11-22 Ortloff Corporation (The) Natural gas processing
US4002042A (en) 1974-11-27 1977-01-11 Air Products And Chemicals, Inc. Recovery of C2 + hydrocarbons by plural stage rectification and first stage dephlegmation
US3983711A (en) 1975-01-02 1976-10-05 The Lummus Company Plural stage distillation of a natural gas stream
US4115086A (en) 1975-12-22 1978-09-19 Fluor Corporation Recovery of light hydrocarbons from refinery gas
US4065278A (en) 1976-04-02 1977-12-27 Air Products And Chemicals, Inc. Process for manufacturing liquefied methane
US4171964A (en) 1976-06-21 1979-10-23 The Ortloff Corporation Hydrocarbon gas processing
US4132604A (en) 1976-08-20 1979-01-02 Exxon Research & Engineering Co. Reflux return system
US4284423A (en) 1978-02-15 1981-08-18 Exxon Research & Engineering Co. Separation of carbon dioxide and other acid gas components from hydrocarbon feeds containing admixtures of methane and hydrogen
US4203741A (en) 1978-06-14 1980-05-20 Phillips Petroleum Company Separate feed entry to separator-contactor in gas separation
US4356014A (en) 1979-04-04 1982-10-26 Petrochem Consultants, Inc. Cryogenic recovery of liquids from refinery off-gases
US4318723A (en) 1979-11-14 1982-03-09 Koch Process Systems, Inc. Cryogenic distillative separation of acid gases from methane
US4322225A (en) 1980-11-04 1982-03-30 Phillips Petroleum Company Natural gas processing
IT1136894B (it) 1981-07-07 1986-09-03 Snam Progetti Metodo per il recupero di condensati da una miscela gassosa di idrocarburi
US4453958A (en) 1982-11-24 1984-06-12 Gulsby Engineering, Inc. Greater design capacity-hydrocarbon gas separation process
DE3416519A1 (de) 1983-05-20 1984-11-22 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur zerlegung eines gasgemisches
US4507133A (en) 1983-09-29 1985-03-26 Exxon Production Research Co. Process for LPG recovery
USRE33408E (en) 1983-09-29 1990-10-30 Exxon Production Research Company Process for LPG recovery
US4545795A (en) 1983-10-25 1985-10-08 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction
US4617039A (en) 1984-11-19 1986-10-14 Pro-Quip Corporation Separating hydrocarbon gases
DE3445961A1 (de) 1984-12-17 1986-06-26 Linde Ag, 6200 Wiesbaden Verfahren zur abtrennung von c(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen aus einem gasstrom
DE3528071A1 (de) 1985-08-05 1987-02-05 Linde Ag Verfahren zur zerlegung eines kohlenwasserstoffgemisches
US4746342A (en) 1985-11-27 1988-05-24 Phillips Petroleum Company Recovery of NGL's and rejection of N2 from natural gas
US4698081A (en) 1986-04-01 1987-10-06 Mcdermott International, Inc. Process for separating hydrocarbon gas constituents utilizing a fractionator
US4707170A (en) 1986-07-23 1987-11-17 Air Products And Chemicals, Inc. Staged multicomponent refrigerant cycle for a process for recovery of C+ hydrocarbons
SU1606828A1 (ru) 1986-10-28 1990-11-15 Всесоюзный Научно-Исследовательский И Проектный Институт По Переработке Газа Способ разделени углеводородных смесей
US4711651A (en) 1986-12-19 1987-12-08 The M. W. Kellogg Company Process for separation of hydrocarbon gases
US4710214A (en) 1986-12-19 1987-12-01 The M. W. Kellogg Company Process for separation of hydrocarbon gases
DE3814294A1 (de) 1988-04-28 1989-11-09 Linde Ag Verfahren zur abtrennung von kohlenwasserstoffen
US4889545A (en) 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
US4970867A (en) 1989-08-21 1990-11-20 Air Products And Chemicals, Inc. Liquefaction of natural gas using process-loaded expanders
FR2682964B1 (fr) 1991-10-23 1994-08-05 Elf Aquitaine Procede de deazotation d'un melange liquefie d'hydrocarbures consistant principalement en methane.
JPH06299174A (ja) 1992-07-24 1994-10-25 Chiyoda Corp 天然ガス液化プロセスに於けるプロパン系冷媒を用いた冷却装置
JPH06159928A (ja) 1992-11-20 1994-06-07 Chiyoda Corp 天然ガス液化方法
US5335504A (en) 1993-03-05 1994-08-09 The M. W. Kellogg Company Carbon dioxide recovery process
US5546764A (en) 1995-03-03 1996-08-20 Advanced Extraction Technologies, Inc. Absorption process for recovering ethylene and hydrogen from refinery and petrochemical plant off-gases
US5566554A (en) 1995-06-07 1996-10-22 Kti Fish, Inc. Hydrocarbon gas separation process
US5675054A (en) 1995-07-17 1997-10-07 Manley; David Low cost thermal coupling in ethylene recovery
US5685170A (en) 1995-11-03 1997-11-11 Mcdermott Engineers & Constructors (Canada) Ltd. Propane recovery process
US5983664A (en) 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
US5890377A (en) 1997-11-04 1999-04-06 Abb Randall Corporation Hydrocarbon gas separation process
US5992175A (en) 1997-12-08 1999-11-30 Ipsi Llc Enhanced NGL recovery processes
US6237365B1 (en) 1998-01-20 2001-05-29 Transcanada Energy Ltd. Apparatus for and method of separating a hydrocarbon gas into two fractions and a method of retrofitting an existing cryogenic apparatus
US6125653A (en) 1999-04-26 2000-10-03 Texaco Inc. LNG with ethane enrichment and reinjection gas as refrigerant
US6324867B1 (en) 1999-06-15 2001-12-04 Exxonmobil Oil Corporation Process and system for liquefying natural gas
US6308531B1 (en) 1999-10-12 2001-10-30 Air Products And Chemicals, Inc. Hybrid cycle for the production of liquefied natural gas
US7310971B2 (en) 2004-10-25 2007-12-25 Conocophillips Company LNG system employing optimized heat exchangers to provide liquid reflux stream
US6244070B1 (en) 1999-12-03 2001-06-12 Ipsi, L.L.C. Lean reflux process for high recovery of ethane and heavier components
US6453698B2 (en) 2000-04-13 2002-09-24 Ipsi Llc Flexible reflux process for high NGL recovery
WO2001088447A1 (en) 2000-05-18 2001-11-22 Phillips Petroleum Company Enhanced ngl recovery utilizing refrigeration and reflux from lng plants
US6361582B1 (en) 2000-05-19 2002-03-26 Membrane Technology And Research, Inc. Gas separation using C3+ hydrocarbon-resistant membranes
CN1303392C (zh) 2000-08-11 2007-03-07 弗劳尔公司 高度丙烷回收的方法和结构
US20020166336A1 (en) 2000-08-15 2002-11-14 Wilkinson John D. Hydrocarbon gas processing
US6516631B1 (en) 2001-08-10 2003-02-11 Mark A. Trebble Hydrocarbon gas processing
US6565626B1 (en) 2001-12-28 2003-05-20 Membrane Technology And Research, Inc. Natural gas separation using nitrogen-selective membranes
US7475566B2 (en) 2002-04-03 2009-01-13 Howe-Barker Engineers, Ltd. Liquid natural gas processing
US6564579B1 (en) 2002-05-13 2003-05-20 Black & Veatch Pritchard Inc. Method for vaporizing and recovery of natural gas liquids from liquefied natural gas
US6694775B1 (en) 2002-12-12 2004-02-24 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
US7484385B2 (en) 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process
US7107788B2 (en) 2003-03-07 2006-09-19 Abb Lummus Global, Randall Gas Technologies Residue recycle-high ethane recovery process
US7273542B2 (en) 2003-04-04 2007-09-25 Exxonmobil Chemical Patents Inc. Process and apparatus for recovering olefins
WO2004109206A1 (en) 2003-06-05 2004-12-16 Fluor Corporation Liquefied natural gas regasification configuration and method
US7159417B2 (en) 2004-03-18 2007-01-09 Abb Lummus Global, Inc. Hydrocarbon recovery process utilizing enhanced reflux streams
US7316127B2 (en) 2004-04-15 2008-01-08 Abb Lummus Global Inc. Hydrocarbon gas processing for rich gas streams
CN100436988C (zh) * 2004-07-01 2008-11-26 奥特洛夫工程有限公司 液化天然气的处理
US7165423B2 (en) 2004-08-27 2007-01-23 Amec Paragon, Inc. Process for extracting ethane and heavier hydrocarbons from LNG
US20060130521A1 (en) * 2004-12-17 2006-06-22 Abb Lummus Global Inc. Method for recovery of natural gas liquids for liquefied natural gas
WO2006115597A2 (en) 2005-04-20 2006-11-02 Fluor Technologies Corporation Integrated ngl recovery and lng liquefaction
US20060260355A1 (en) 2005-05-19 2006-11-23 Roberts Mark J Integrated NGL recovery and liquefied natural gas production
EP1734027B1 (en) 2005-06-14 2012-08-15 Toyo Engineering Corporation Process and Apparatus for Separation of Hydrocarbons from Liquefied Natural Gas
US9080810B2 (en) 2005-06-20 2015-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
EP1999421A1 (en) 2006-03-24 2008-12-10 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream
US7666251B2 (en) 2006-04-03 2010-02-23 Praxair Technology, Inc. Carbon dioxide purification method
CN101460800B (zh) * 2006-06-02 2012-07-18 奥特洛夫工程有限公司 液化天然气的处理
US20080078205A1 (en) 2006-09-28 2008-04-03 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US8590340B2 (en) * 2007-02-09 2013-11-26 Ortoff Engineers, Ltd. Hydrocarbon gas processing
US9869510B2 (en) 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US8919148B2 (en) 2007-10-18 2014-12-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9074814B2 (en) 2010-03-31 2015-07-07 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9080811B2 (en) 2009-02-17 2015-07-14 Ortloff Engineers, Ltd Hydrocarbon gas processing
US9052137B2 (en) 2009-02-17 2015-06-09 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9052136B2 (en) 2010-03-31 2015-06-09 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9933207B2 (en) 2009-02-17 2018-04-03 Ortloff Engineers, Ltd. Hydrocarbon gas processing
EA022672B1 (ru) 2009-02-17 2016-02-29 Ортлофф Инджинирс, Лтд. Обработка углеводородного газа
US8881549B2 (en) 2009-02-17 2014-11-11 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9939195B2 (en) 2009-02-17 2018-04-10 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
US8434325B2 (en) 2009-05-15 2013-05-07 Ortloff Engineers, Ltd. Liquefied natural gas and hydrocarbon gas processing
EP2440870A1 (en) 2009-06-11 2012-04-18 Ortloff Engineers, Ltd Hydrocarbon gas processing
US20110067443A1 (en) 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US9021832B2 (en) 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9057558B2 (en) 2010-03-31 2015-06-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
US9068774B2 (en) 2010-03-31 2015-06-30 Ortloff Engineers, Ltd. Hydrocarbon gas processing
WO2011153087A1 (en) 2010-06-03 2011-12-08 Ortloff Engineers, Ltd Hydrocarbon gas processing

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33408A (en) * 1861-10-01 Improvement in machinery for washing wool
US2952984A (en) * 1958-06-23 1960-09-20 Conch Int Methane Ltd Processing liquefied natural gas
US4033735A (en) * 1971-01-14 1977-07-05 J. F. Pritchard And Company Single mixed refrigerant, closed loop process for liquefying natural gas
US3724226A (en) * 1971-04-20 1973-04-03 Gulf Research Development Co Lng expander cycle process employing integrated cryogenic purification
US3837172A (en) * 1972-06-19 1974-09-24 Synergistic Services Inc Processing liquefied natural gas to deliver methane-enriched gas at high pressure
US4157904A (en) * 1976-08-09 1979-06-12 The Ortloff Corporation Hydrocarbon gas processing
US4140504A (en) * 1976-08-09 1979-02-20 The Ortloff Corporation Hydrocarbon gas processing
US4251249A (en) * 1977-01-19 1981-02-17 The Randall Corporation Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream
US4185978A (en) * 1977-03-01 1980-01-29 Standard Oil Company (Indiana) Method for cryogenic separation of carbon dioxide from hydrocarbons
US4278457A (en) * 1977-07-14 1981-07-14 Ortloff Corporation Hydrocarbon gas processing
US4368061A (en) * 1979-06-06 1983-01-11 Compagnie Francaise D'etudes Et De Construction "Technip" Method of and apparatus for manufacturing ethylene
US5114541A (en) * 1980-11-14 1992-05-19 Ernst Bayer Process for producing solid, liquid and gaseous fuels from organic starting material
US4404008A (en) * 1982-02-18 1983-09-13 Air Products And Chemicals, Inc. Combined cascade and multicomponent refrigeration method with refrigerant intercooling
US4430103A (en) * 1982-02-24 1984-02-07 Phillips Petroleum Company Cryogenic recovery of LPG from natural gas
US4738699A (en) * 1982-03-10 1988-04-19 Flexivol, Inc. Process for recovering ethane, propane and heavier hydrocarbons from a natural gas stream
US4445917A (en) * 1982-05-10 1984-05-01 Air Products And Chemicals, Inc. Process for liquefied natural gas
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
US4592766A (en) * 1983-09-13 1986-06-03 Linde Aktiengesellschaft Parallel stream heat exchange for separation of ethane and higher hydrocarbons from a natural or refinery gas
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
US4519824A (en) * 1983-11-07 1985-05-28 The Randall Corporation Hydrocarbon gas separation
US4600421A (en) * 1984-04-18 1986-07-15 Linde Aktiengesellschaft Two-stage rectification for the separation of hydrocarbons
US4657571A (en) * 1984-06-29 1987-04-14 Snamprogetti S.P.A. Process for the recovery of heavy constituents from hydrocarbon gaseous mixtures
US4690702A (en) * 1984-09-28 1987-09-01 Compagnie Francaise D'etudes Et De Construction "Technip" Method and apparatus for cryogenic fractionation of a gaseous feed
US4676812A (en) * 1984-11-12 1987-06-30 Linde Aktiengesellschaft Process for the separation of a C2+ hydrocarbon fraction from natural gas
US4689063A (en) * 1985-03-05 1987-08-25 Compagnie Francaise D'etudes Et De Construction "Technip" Process of fractionating gas feeds and apparatus for carrying out the said process
US4596588A (en) * 1985-04-12 1986-06-24 Gulsby Engineering Inc. Selected methods of reflux-hydrocarbon gas separation process
US4718927A (en) * 1985-09-02 1988-01-12 Linde Aktiengesellschaft Process for the separation of C2+ hydrocarbons from natural gas
US4687499A (en) * 1986-04-01 1987-08-18 Mcdermott International Inc. Process for separating hydrocarbon gas constituents
US4720294A (en) * 1986-08-05 1988-01-19 Air Products And Chemicals, Inc. Dephlegmator process for carbon dioxide-hydrocarbon distillation
US4752312A (en) * 1987-01-30 1988-06-21 The Randall Corporation Hydrocarbon gas processing to recover propane and heavier hydrocarbons
US4755200A (en) * 1987-02-27 1988-07-05 Air Products And Chemicals, Inc. Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes
US4854955A (en) * 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
US4869740A (en) * 1988-05-17 1989-09-26 Elcor Corporation Hydrocarbon gas processing
US4851020A (en) * 1988-11-21 1989-07-25 Mcdermott International, Inc. Ethane recovery system
US4895584A (en) * 1989-01-12 1990-01-23 Pro-Quip Corporation Process for C2 recovery
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
US5291736A (en) * 1991-09-30 1994-03-08 Compagnie Francaise D'etudes Et De Construction "Technip" Method of liquefaction of natural gas
US5275005A (en) * 1992-12-01 1994-01-04 Elcor Corporation Gas processing
US5325673A (en) * 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
US5651269A (en) * 1993-12-30 1997-07-29 Institut Francais Du Petrole Method and apparatus for liquefaction of a natural gas
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5555748A (en) * 1995-06-07 1996-09-17 Elcor Corporation Hydrocarbon gas processing
US5537827A (en) * 1995-06-07 1996-07-23 Low; William R. Method for liquefaction of natural gas
US5771712A (en) * 1995-06-07 1998-06-30 Elcor Corporation Hydrocarbon gas processing
US5893274A (en) * 1995-06-23 1999-04-13 Shell Research Limited Method of liquefying and treating a natural gas
US5600969A (en) * 1995-12-18 1997-02-11 Phillips Petroleum Company Process and apparatus to produce a small scale LNG stream from an existing NGL expander plant demethanizer
US5755115A (en) * 1996-01-30 1998-05-26 Manley; David B. Close-coupling of interreboiling to recovered heat
US6014869A (en) * 1996-02-29 2000-01-18 Shell Research Limited Reducing the amount of components having low boiling points in liquefied natural gas
US5737940A (en) * 1996-06-07 1998-04-14 Yao; Jame Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US5669234A (en) * 1996-07-16 1997-09-23 Phillips Petroleum Company Efficiency improvement of open-cycle cascaded refrigeration process
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5755114A (en) * 1997-01-06 1998-05-26 Abb Randall Corporation Use of a turboexpander cycle in liquefied natural gas process
US6062041A (en) * 1997-01-27 2000-05-16 Chiyoda Corporation Method for liquefying natural gas
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US5881569A (en) * 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
US5950453A (en) * 1997-06-20 1999-09-14 Exxon Production Research Company Multi-component refrigeration process for liquefaction of natural gas
US6016665A (en) * 1997-06-20 2000-01-25 Exxon Production Research Company Cascade refrigeration process for liquefaction of natural gas
US6023942A (en) * 1997-06-20 2000-02-15 Exxon Production Research Company Process for liquefaction of natural gas
US6053007A (en) * 1997-07-01 2000-04-25 Exxonmobil Upstream Research Company Process for separating a multi-component gas stream containing at least one freezable component
US6272882B1 (en) * 1997-12-12 2001-08-14 Shell Research Limited Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
US6116050A (en) * 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
US6269655B1 (en) * 1998-12-09 2001-08-07 Mark Julian Roberts Dual mixed refrigerant cycle for gas liquefaction
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US6250105B1 (en) * 1998-12-18 2001-06-26 Exxonmobil Upstream Research Company Dual multi-component refrigeration cycles for liquefaction of natural gas
US6336344B1 (en) * 1999-05-26 2002-01-08 Chart, Inc. Dephlegmator process with liquid additive
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
US6363744B2 (en) * 2000-01-07 2002-04-02 Costain Oil Gas & Process Limited Hydrocarbon separation process and apparatus
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US6915662B2 (en) * 2000-10-02 2005-07-12 Elkcorp. Hydrocarbon gas processing
US6367286B1 (en) * 2000-11-01 2002-04-09 Black & Veatch Pritchard, Inc. System and process for liquefying high pressure natural gas
US6578379B2 (en) * 2000-12-13 2003-06-17 Technip-Coflexip Process and installation for separation of a gas mixture containing methane by distillation
US6712880B2 (en) * 2001-03-01 2004-03-30 Abb Lummus Global, Inc. Cryogenic process utilizing high pressure absorber column
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
US20030005722A1 (en) * 2001-06-08 2003-01-09 Elcor Corporation Natural gas liquefaction
US7010937B2 (en) * 2001-06-08 2006-03-14 Elkcorp Natural gas liquefaction
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
US7210311B2 (en) * 2001-06-08 2007-05-01 Ortloff Engineers, Ltd. Natural gas liquefaction
US7565815B2 (en) * 2001-06-08 2009-07-28 Ortloff Engineers, Ltd. Natural gas liquefaction
US20030158458A1 (en) * 2002-02-20 2003-08-21 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US7069743B2 (en) * 2002-02-20 2006-07-04 Eric Prim System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas
US6941771B2 (en) * 2002-04-03 2005-09-13 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6604380B1 (en) * 2002-04-03 2003-08-12 Howe-Baker Engineers, Ltd. Liquid natural gas processing
US6945075B2 (en) * 2002-10-23 2005-09-20 Elkcorp Natural gas liquefaction
US20040079107A1 (en) * 2002-10-23 2004-04-29 Wilkinson John D. Natural gas liquefaction
US7191617B2 (en) * 2003-02-25 2007-03-20 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US20060032269A1 (en) * 2003-02-25 2006-02-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US6889523B2 (en) * 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
US20040177646A1 (en) * 2003-03-07 2004-09-16 Elkcorp LNG production in cryogenic natural gas processing plants
US6907752B2 (en) * 2003-07-07 2005-06-21 Howe-Baker Engineers, Ltd. Cryogenic liquid natural gas recovery process
US20050061029A1 (en) * 2003-09-22 2005-03-24 Narinsky George B. Process and apparatus for LNG enriching in methane
US7155931B2 (en) * 2003-09-30 2007-01-02 Ortloff Engineers, Ltd. Liquefied natural gas processing
US20050066686A1 (en) * 2003-09-30 2005-03-31 Elkcorp Liquefied natural gas processing
US20050155381A1 (en) * 2003-11-13 2005-07-21 Foster Wheeler Usa Corporation Method and apparatus for reducing C2 and C3 at LNG receiving terminals
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
US20060000234A1 (en) * 2004-07-01 2006-01-05 Ortloff Engineers, Ltd. Liquefied natural gas processing
US7216507B2 (en) * 2004-07-01 2007-05-15 Ortloff Engineers, Ltd. Liquefied natural gas processing
US7219513B1 (en) * 2004-11-01 2007-05-22 Hussein Mohamed Ismail Mostafa Ethane plus and HHH process for NGL recovery
US20070001322A1 (en) * 2005-06-01 2007-01-04 Aikhorin Christy E Method and apparatus for treating lng

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481834B2 (en) 2007-01-10 2016-11-01 Pilot Energy Solutions, Llc Carbon dioxide fractionalization process
US8709215B2 (en) 2007-01-10 2014-04-29 Pilot Energy Solutions, Llc Carbon dioxide fractionalization process
US20100258401A1 (en) * 2007-01-10 2010-10-14 Pilot Energy Solutions, Llc Carbon Dioxide Fractionalization Process
US10316260B2 (en) 2007-01-10 2019-06-11 Pilot Energy Solutions, Llc Carbon dioxide fractionalization process
US20110067442A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US20110067443A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US9476639B2 (en) 2009-09-21 2016-10-25 Ortloff Engineers, Ltd. Hydrocarbon gas processing featuring a compressed reflux stream formed by combining a portion of column residue gas with a distillation vapor stream withdrawn from the side of the column
US20110167868A1 (en) * 2010-01-14 2011-07-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US9021832B2 (en) 2010-01-14 2015-05-05 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US8667812B2 (en) 2010-06-03 2014-03-11 Ordoff Engineers, Ltd. Hydrocabon gas processing
US20150007606A1 (en) * 2012-02-10 2015-01-08 Salavat Zainetdinovich Imaev Gas mixture separation method
WO2016135042A1 (en) * 2015-02-25 2016-09-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Apparatus and method for supplying liquid fuel gas
US12000653B2 (en) 2015-04-10 2024-06-04 Chart Energy & Chemicals, Inc. System and method for removing freezing components from a feed gas
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
CN114127500A (zh) * 2019-04-23 2022-03-01 查特能源化工股份有限公司 具有侧吸式热泵回流系统的单塔脱氮装置和方法
CN114739118A (zh) * 2022-05-19 2022-07-12 杭州中泰深冷技术股份有限公司 一种lng冷能利用的合成气深冷分离系统及方法

Also Published As

Publication number Publication date
CN102428334B (zh) 2014-06-25
MX2011012185A (es) 2011-12-08
CN102428334A (zh) 2012-04-25
US8794030B2 (en) 2014-08-05
CA2760963A1 (en) 2010-11-18
MY161650A (en) 2017-04-28
GB201121593D0 (en) 2012-01-25
WO2010132678A1 (en) 2010-11-18
CO6470814A2 (es) 2012-06-29
BRPI1011152A2 (pt) 2016-03-15
US20130283853A1 (en) 2013-10-31
GB2487110A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
US8794030B2 (en) Liquefied natural gas and hydrocarbon gas processing
US8434325B2 (en) Liquefied natural gas and hydrocarbon gas processing
US8850849B2 (en) Liquefied natural gas and hydrocarbon gas processing
US7631516B2 (en) Liquefied natural gas processing
US7216507B2 (en) Liquefied natural gas processing
US7191617B2 (en) Hydrocarbon gas processing
US8590340B2 (en) Hydrocarbon gas processing
US7155931B2 (en) Liquefied natural gas processing
US8919148B2 (en) Hydrocarbon gas processing
US9476639B2 (en) Hydrocarbon gas processing featuring a compressed reflux stream formed by combining a portion of column residue gas with a distillation vapor stream withdrawn from the side of the column
US9869510B2 (en) Liquefied natural gas processing
US20190170435A1 (en) Hydrocarbon Gas Processing
US20080078205A1 (en) Hydrocarbon Gas Processing
US10533794B2 (en) Hydrocarbon gas processing
WO2018038895A1 (en) Hydrocarbon gas processing
US11643604B2 (en) Hydrocarbon gas processing
US20210116174A1 (en) Hydrocarbon gas processing

Legal Events

Date Code Title Description
AS Assignment

Owner name: ORTLOFF ENGINEERS, LTD, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MARTINEZ, TONY L.;WILKINSON, JOHN D.;HUDSON, HANK M.;AND OTHERS;SIGNING DATES FROM 20090603 TO 20090604;REEL/FRAME:022971/0130

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION