US20100158728A1 - Vacuum pump - Google Patents
Vacuum pump Download PDFInfo
- Publication number
- US20100158728A1 US20100158728A1 US11/989,920 US98992006A US2010158728A1 US 20100158728 A1 US20100158728 A1 US 20100158728A1 US 98992006 A US98992006 A US 98992006A US 2010158728 A1 US2010158728 A1 US 2010158728A1
- Authority
- US
- United States
- Prior art keywords
- rotor components
- stage
- rotor
- vacuum pump
- pump according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/082—Details specially related to intermeshing engagement type pumps
- F04C18/084—Toothed wheels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/126—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/20—Rotors
Definitions
- the present invention relates to a vacuum pump, and in particular to a multistage Roots vacuum pump.
- a multistage Roots pump generally comprises a pair of shafts each supporting plurality of rotor components within a housing providing a stator component for the pump.
- the stator comprises a gas inlet, a gas outlet and a plurality of pumping chambers, with adjacent pumping chambers being separated by a transverse wall.
- a gas flow duct connects a chamber outlet from one pumping chamber to a chamber inlet of the adjacent, downstream pumping chamber.
- Each pumping chamber houses a pair of lobed Roots rotor components to provide a pumping stage of the pump.
- the rotor components are housed with the pumping chamber such that there is a small clearance between the rotor components and between each rotor component and an inner wall of the pumping chamber.
- a multistage Roots pump can be operated at high rotational speeds up to 12,000 rpm or even higher. With rotation of the shafts, the rotor components of each pair are rotated in opposite directions at high speed to draw gas through the chamber inlet and transport the gas through the pumping chamber without internal compression to the chamber outlet. The gas thus passes through each of the pumping, chambers before being exhaust from the gas outlet of the housing.
- the energy required to transport the gas through the pumping chambers is dependent, amongst others, on the volume of the pumping chambers and the downstream pressure acting on the gas as it is transported through the pumping chamber.
- the ratio between the volume of the inlet stage of the pump and the volume of the outlet stage of the pump commonly referred to as the “volume ratio” of the pump, thus determines both the power consumption of the pump and the size of the vacuum which can be generated at the inlet of the housing.
- the thickness of the rotor components must decrease progressively from the inlet to the outlet of the pump. Whilst this tends not to be a problem at low volume ratios, for example up to 5:1, at higher ratios the rotor components of the exhaust stage can become very thin. For example, for a pump having rotor components of 30 mm thickness at the inlet stage, a rotor thickness of 1.5 mm would be required at the exhaust stage to achieve a volume ratio of 20:1. This can make machining and mounting of the rotor components very difficult.
- the present invention provides a multistage vacuum pump comprising a stator housing a multistage rotor assembly, each stage comprising intermeshing Roots rotor components, wherein the tip radius of the rotor components at an inlet stage of the pump is larger than the tip radius of the rotor components at an exhaust stage of the pump.
- a pump having a relatively high volume ratio of at least 10:1, more preferably of at least 15:1 can be achieved without having to reduce the thickness of the rotor components at the exhaust stage to the extent described above.
- a pump having a relatively high volume ratio can be achieved with exhaust stage rotor components having a thickness of around 5 mm.
- the pump may comprise a first plurality of pumping stages each comprising rotor components of a first tip radius, and a second plurality of pumping stages each to comprising rotor components of a second tip radius smaller than the first tip radius.
- each of the first and second plurality of pumping stages may comprise at least two pumping stages.
- the tip radius of the rotor components may progressively decrease from the inlet stage of the pump to the exhaust stage of the pump. Therefore, in more general terms the pump may comprise a first number (one or more) pumping stages each comprising rotor components of a first tip radius, and a second number (one or more) of pumping stages each comprising rotor components of a second tip radius smaller than the first tip radius.
- a pressure relief valve may be located between the first plurality of pumping stages and the second plurality of pumping stages for selectively exhausting gas from the pump.
- the pressure relief valve is preferably configured to automatically close when the pressure of gas at the valve inlet falls below atmospheric pressure, at which point the second plurality of pumping stages become effective in further reducing the pressure at the inlet of the pump and enhancing the net pumping speed.
- Each of the rotor components preferably comprises a plurality of lobes, with the inlet stage rotor components preferably having the same number of lobes as the exhaust stage rotor components.
- the rotor components of a stage may have the same profile, or different profiles.
- one of the rotor components of a stage may have sockets for receiving the lobes of the other rotor component of that stage.
- the rotor assembly preferably comprises two intermeshing sets of Roots rotor components, each set being mounted on a respective shaft for rotation relative to the stator.
- each set of rotor components may be integral with the shaft, with the stator being provided by two stator “half shells” that are assembled once the shafts have been mounted within one of the half shells.
- the meshing clearance between the rotor components at the inlet stage of the pump is preferably greater, most preferably between 10 and 30% greater, than the meshing clearance between the rotor components at the exhaust stage of the pump.
- the rotor components at the inlet stage of the pump may be used to “time” the rotors to gears connecting the shafts so that the shafts are rotated synchronously but in opposite directions.
- the larger meshing clearance between the rotor components at the inlet stage of the pump can thus facilitate the assembly of the pump, whilst the smaller meshing clearance between the rotor components at the exhaust stage of the pump can maintain the ultimate power consumption and pressure at acceptable levels.
- FIG. 1 illustrates a multistage vacuum pump comprising two sets of intermeshing rotor components.
- FIG. 2 illustrates a set of rotor components of the pump of FIG. 1 ;
- FIG. 3 illustrates the profiles of the rotor components of an inlet stage of the pump of FIG. 1 ;
- FIG. 4 illustrates the profiles of the rotor components of an exhaust stage of the pump of FIG. 1 .
- a multi-stage vacuum pump 10 comprises a stator 12 housing a multistage rotor assembly 14 .
- the stator 12 comprises a plurality of transverse wails 16 which divide the stator 12 into a plurality of pumping chambers.
- the stator 12 is divided into five pumping stages, although the stator 12 may be divided into any number of pumping stages required to provide the pump 10 with the desired pumping capacity.
- the rotor assembly 14 comprises two intermeshing sets of lobed Roots rotor components 18 , 20 , 22 , 24 , 26 , each set being mounted on a respective shaft 28 , 30 .
- Each shaft 28 , 30 is supported by bearings for rotation relative to the stator 12 .
- the shafts 28 , 30 are mounted within the stator 12 so that each pumping 15 , chamber houses a pair of intermeshing rotor components, which together provide a stage of the pump 10 .
- One of the shafts 28 is driven by a motor 32 connected to one end of that shaft 28 .
- the other shaft 30 is connected to that shaft 28 by means of meshed timing gears 34 so that the shafts 28 , 30 are rotated synchronously but in opposite directions within the stator 12 .
- a pump inlet 36 communicates directly with the inlet pumping stage, which comprises rotor components 18 , 18 ′ and pump outlet 38 communicates directly with the exhaust pumping stage, which comprises rotor components 26 , 26 ′.
- Gas passageways 40 , 42 , 44 , 46 , 48 are provided within the pump 10 to permit the passage therethrough of pumped gas from the inlet 36 to the outlet 38 .
- the volume of the pumping chambers defined within the stator 12 progressively decreases from the inlet pumping stage to the exhaust pumping stage.
- the reduction in the volume of the first three pumping chambers is achieved by progressively reducing the thickness of the pumping chambers
- the reduction in the volume of the last two pumping chambers is achieved both by progressively reducing the thickness of the pumping chambers and by reducing the diameter of the pumping chambers in comparison to the first three pumping chambers.
- the sets of rotor components are profiled in order to maintain small clearances between the walls of the pumping chambers and the surfaces of the rotor components.
- One of the sets of rotor components is illustrated in more detail in FIG. 2 .
- the thickness t of the rotor components progressively decreases from a thickness t 1 of the inlet stage rotor component 18 to a thickness t 2 of the exhaust stage rotor component 26 .
- the rotor components are divided into a plurality of numbers of rotor components, each number comprising one or more rotor components of a particular tip radius, that is, the maximum distance d between the outer profile of the rotor component and the centre of the rotor component.
- the rotor components are divided into a first plurality of rotor components 50 having a tip radius d 1 and a second plurality of rotor components 52 having a tip radius d 2 , where d 2 is smaller than d 1 , preferably at least 15% smaller than d 1 , more preferably at least 20% smaller than d 1 .
- d 2 is smaller than d 1 , preferably at least 15% smaller than d 1 , more preferably at least 20% smaller than d 1 .
- the first plurality of rotor components 50 comprises the three rotor components 18 , 20 , 22 proximate the inlet 36 of the pump 10
- the second plurality of rotor components 52 comprising the two rotor components 24 , 26 proximate the outlet 38 of the pump 10 .
- a six stage vacuum pump may comprises three rotor components of tip radius d 1 and three rotor components of tip radius d 2 , or three rotor components of tip radius d 1 , two rotor components of tip radius d 2 , and one rotor component of tip radius d 3 , where d 1 >d 2 >d 3 .
- Each of the rotor components 18 , 20 , 22 , 24 , 26 may comprise the same number of lobes. As illustrated in FIGS. 3 and 4 , each of the rotor components comprises three lobes 60 , although the rotor components may have any number of lobes, for example between two and five lobes. The lobes may have any desired curved profile. For example, as illustrated in FIG. 3 , one of the rotor components 18 ; 26 of a stage may comprise sockets 62 for receiving the lobes of the other rotor components 18 ′, 26 ′ of that stage.
- the required reduction of the thickness of the exhaust stage pumping component to achieve a relatively high volume ratio is less than that required if the tip radius of the exhaust stage pumping component was the same as that of the inlet stage rotor component. For example, if the tip radius was held at a constant value, the thickness of the exhaust stage rotor component would need to around 5% that of the inlet stage rotor component to achieve a volume ratio of 20:1.
- the tip radius of the exhaust stage pumping component was between 15 and 20% smaller than that of the inlet stage rotor component, the thickness of the exhaust stage rotor component would only need to around 10-15% that of the inlet stage rotor component to achieve the same volume ratio, thereby facilitating machining and mounting of the exhaust stage pumping components.
- the meshing clearance between the rotor components 18 , 18 ′ at the inlet stage of the pump 10 is preferably greater, most preferably between 10 and 30% greater, than the meshing clearance between the rotor components 26 , 26 ′ at the exhaust stage of the pump 10 .
- the rotor components 18 , 18 ′ at the inlet stage of the pump may be used to “time” the rotors to the gears 34 , and so the larger meshing clearance between the inlet stage rotor components 18 , 18 ′ can thus facilitate the assembly of the pump 10 .
- the smaller meshing clearance between the exhaust stage rotor components 26 , 26 ′ can maintain the ultimate power consumption and pressure at acceptable levels, the extra clearance between the inlet stage rotor components 18 , 18 ′ having a negligible effect on ultimate power and pressure, and on peak volumetric pumping speed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Electrophonic Musical Instruments (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0515905.8A GB0515905D0 (en) | 2005-08-02 | 2005-08-02 | Vacuum pump |
GB0515905.8 | 2005-08-02 | ||
PCT/GB2006/002679 WO2007015056A1 (fr) | 2005-08-02 | 2006-07-18 | Pompe à vide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2006/002679 A-371-Of-International WO2007015056A1 (fr) | 2005-08-02 | 2006-07-18 | Pompe à vide |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/224,301 Division US8702407B2 (en) | 2005-08-02 | 2011-09-01 | Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100158728A1 true US20100158728A1 (en) | 2010-06-24 |
Family
ID=34983964
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/989,920 Abandoned US20100158728A1 (en) | 2005-08-02 | 2006-07-18 | Vacuum pump |
US13/224,301 Active US8702407B2 (en) | 2005-08-02 | 2011-09-01 | Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/224,301 Active US8702407B2 (en) | 2005-08-02 | 2011-09-01 | Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage |
Country Status (10)
Country | Link |
---|---|
US (2) | US20100158728A1 (fr) |
EP (1) | EP1910682B1 (fr) |
JP (1) | JP2009503358A (fr) |
KR (1) | KR101351667B1 (fr) |
CN (1) | CN101238294B (fr) |
AT (1) | ATE427426T1 (fr) |
DE (1) | DE602006006062D1 (fr) |
GB (1) | GB0515905D0 (fr) |
TW (1) | TWI453342B (fr) |
WO (1) | WO2007015056A1 (fr) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100226808A1 (en) * | 2007-10-04 | 2010-09-09 | Nigel Paul Schofield | Multi stage, clam shell vacuum pump |
DE202011104491U1 (de) | 2011-08-17 | 2012-11-20 | Oerlikon Leybold Vacuum Gmbh | Wälzkolbenpumpe |
US8702407B2 (en) | 2005-08-02 | 2014-04-22 | Edwards Limited | Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage |
DE202017001029U1 (de) | 2017-02-17 | 2018-05-18 | Leybold Gmbh | Mehrstufige Wälzkolbenpumpe |
US20210140430A1 (en) * | 2017-06-17 | 2021-05-13 | Leybold Gmbh | Multi-stage rotary piston pump |
CN113574277A (zh) * | 2019-04-05 | 2021-10-29 | 普发真空公司 | 干式真空泵和泵送设备 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4767625B2 (ja) * | 2005-08-24 | 2011-09-07 | 樫山工業株式会社 | 多段ルーツ式ポンプ |
TWI518245B (zh) * | 2010-04-19 | 2016-01-21 | 荏原製作所股份有限公司 | 乾真空泵裝置、排氣單元,以及消音器 |
CN102278309A (zh) * | 2010-06-12 | 2011-12-14 | 中国科学院沈阳科学仪器研制中心有限公司 | 一种真空泵结构 |
JP5793004B2 (ja) * | 2011-06-02 | 2015-10-14 | 株式会社荏原製作所 | 真空ポンプ |
GB2499217A (en) * | 2012-02-08 | 2013-08-14 | Edwards Ltd | Vacuum pump with recirculation valve |
CN103629113B (zh) * | 2013-07-19 | 2016-01-20 | 浙江飞越机电有限公司 | 油箱侧置式双级旋片真空泵 |
JP6630174B2 (ja) * | 2015-03-09 | 2020-01-15 | 株式会社荏原製作所 | 真空ポンプ |
US20160265532A1 (en) * | 2015-03-09 | 2016-09-15 | Ebara Corporation | Vacuum pump |
GB201707458D0 (en) * | 2017-05-10 | 2017-06-21 | Edwards Ltd | Lubrication of gears in twin-shaft pumps |
JP2019039395A (ja) * | 2017-08-25 | 2019-03-14 | 樫山工業株式会社 | 多段ルーツポンプ |
GB2570925B (en) | 2018-02-12 | 2021-07-07 | Edwards Ltd | Reinforced vacuum system component |
CN110500275B (zh) * | 2019-09-23 | 2021-03-16 | 兑通真空技术(上海)有限公司 | 一种三轴多级罗茨泵的泵壳体结构 |
GB2590665B (en) * | 2019-12-23 | 2022-06-08 | Edwards S R O | Pump configured to mitigate the effect of any rotor and stator clash and its method of manufacture |
CN112963346B (zh) * | 2021-02-24 | 2022-06-07 | 西安交通大学 | 一种多级扭叶罗茨真空泵转子及其设计方法 |
FR3121716B1 (fr) * | 2021-04-08 | 2023-03-24 | Pfeiffer Vacuum | Pompe à vide |
CN116066365B (zh) * | 2023-03-23 | 2023-10-10 | 北京通嘉宏瑞科技有限公司 | 一种提高制程物容纳能力的真空泵组件及干式真空泵 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068984A (en) * | 1974-12-03 | 1978-01-17 | H & H Licensing Corporation | Multi-stage screw-compressor with different tooth profiles |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8513684D0 (en) | 1985-05-30 | 1985-07-03 | Boc Group Plc | Mechanical pumps |
JPH03111690A (ja) * | 1989-09-22 | 1991-05-13 | Tokuda Seisakusho Ltd | 真空ポンプ |
JPH0518379A (ja) * | 1991-06-23 | 1993-01-26 | Ulvac Japan Ltd | 多段ルーツ型真空ポンプ |
JPH05312173A (ja) * | 1992-05-06 | 1993-11-22 | Shimadzu Corp | ドライ真空ポンプ |
DE4232119A1 (de) * | 1992-09-25 | 1994-03-31 | Mes Und Regeltechnik Geraeteba | Regelung einer Wälzkolbenpumpe |
JP2000120538A (ja) * | 1998-10-19 | 2000-04-25 | Yoshio Abe | 多段容積式圧縮機。 |
JP2002364569A (ja) * | 2001-06-01 | 2002-12-18 | Ulvac Japan Ltd | 多段ルーツ真空ポンプ |
JP3941484B2 (ja) * | 2001-12-03 | 2007-07-04 | アイシン精機株式会社 | 多段式真空ポンプ |
WO2003102422A1 (fr) * | 2002-06-03 | 2003-12-11 | Coltec Industries Inc. | Compresseur de fluide helicoidal a deux etages |
TW200506217A (en) * | 2003-03-19 | 2005-02-16 | Ebara Corp | Positive-displacement vacuum pump |
JP2005098210A (ja) | 2003-09-25 | 2005-04-14 | Aisin Seiki Co Ltd | 多段ドライポンプ |
JP2005155540A (ja) * | 2003-11-27 | 2005-06-16 | Aisin Seiki Co Ltd | 多段ドライ真空ポンプ |
GB0515905D0 (en) | 2005-08-02 | 2005-09-07 | Boc Group Plc | Vacuum pump |
JP5312173B2 (ja) | 2009-04-22 | 2013-10-09 | 本田技研工業株式会社 | パルサープレートの取付構造 |
-
2005
- 2005-08-02 GB GBGB0515905.8A patent/GB0515905D0/en not_active Ceased
-
2006
- 2006-07-18 DE DE602006006062T patent/DE602006006062D1/de active Active
- 2006-07-18 JP JP2008524573A patent/JP2009503358A/ja active Pending
- 2006-07-18 EP EP06765014A patent/EP1910682B1/fr active Active
- 2006-07-18 KR KR1020087002669A patent/KR101351667B1/ko active IP Right Grant
- 2006-07-18 AT AT06765014T patent/ATE427426T1/de not_active IP Right Cessation
- 2006-07-18 WO PCT/GB2006/002679 patent/WO2007015056A1/fr active Application Filing
- 2006-07-18 CN CN2006800287289A patent/CN101238294B/zh active Active
- 2006-07-18 US US11/989,920 patent/US20100158728A1/en not_active Abandoned
- 2006-08-01 TW TW095128141A patent/TWI453342B/zh active
-
2011
- 2011-09-01 US US13/224,301 patent/US8702407B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068984A (en) * | 1974-12-03 | 1978-01-17 | H & H Licensing Corporation | Multi-stage screw-compressor with different tooth profiles |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8702407B2 (en) | 2005-08-02 | 2014-04-22 | Edwards Limited | Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage |
US20100226808A1 (en) * | 2007-10-04 | 2010-09-09 | Nigel Paul Schofield | Multi stage, clam shell vacuum pump |
US9279426B2 (en) * | 2007-10-04 | 2016-03-08 | Edwards Limited | Multi stage, clam shell vacuum pump |
DE202011104491U1 (de) | 2011-08-17 | 2012-11-20 | Oerlikon Leybold Vacuum Gmbh | Wälzkolbenpumpe |
WO2013023954A2 (fr) | 2011-08-17 | 2013-02-21 | Oerlikon Leybold Vacuum Gmbh | Pompe roots |
US9476423B2 (en) | 2011-08-17 | 2016-10-25 | Oerlikon Leybold Vaccum Gmbh | Roots pump connection channels separating adjacent pump stages |
DE202017001029U1 (de) | 2017-02-17 | 2018-05-18 | Leybold Gmbh | Mehrstufige Wälzkolbenpumpe |
WO2018149598A1 (fr) | 2017-02-17 | 2018-08-23 | Leybold Gmbh | Pompe roots à étages multiples |
US20210140430A1 (en) * | 2017-06-17 | 2021-05-13 | Leybold Gmbh | Multi-stage rotary piston pump |
CN113574277A (zh) * | 2019-04-05 | 2021-10-29 | 普发真空公司 | 干式真空泵和泵送设备 |
Also Published As
Publication number | Publication date |
---|---|
JP2009503358A (ja) | 2009-01-29 |
EP1910682B1 (fr) | 2009-04-01 |
EP1910682A1 (fr) | 2008-04-16 |
TW200720546A (en) | 2007-06-01 |
KR20080025194A (ko) | 2008-03-19 |
US8702407B2 (en) | 2014-04-22 |
KR101351667B1 (ko) | 2014-01-14 |
CN101238294B (zh) | 2012-09-26 |
ATE427426T1 (de) | 2009-04-15 |
DE602006006062D1 (de) | 2009-05-14 |
GB0515905D0 (en) | 2005-09-07 |
WO2007015056A1 (fr) | 2007-02-08 |
CN101238294A (zh) | 2008-08-06 |
US20110318210A1 (en) | 2011-12-29 |
TWI453342B (zh) | 2014-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8702407B2 (en) | Multistage roots vacuum pump having different tip radius and meshing clearance from inlet stage to exhaust stage | |
KR0133154B1 (ko) | 무단 압축형 스크류식 진공펌프 | |
EP2626562B1 (fr) | Pompe | |
US20100266433A1 (en) | Multi-stage dry pump | |
US7491041B2 (en) | Multistage roots-type vacuum pump | |
KR100647012B1 (ko) | 루츠 로터와 스크루 로터 복합건식진공펌프 | |
JP2003097480A (ja) | スクリュー式真空ポンプ | |
US11078910B2 (en) | Pumping unit and use | |
JP2001207984A (ja) | 真空排気装置 | |
US7744356B2 (en) | Screw vacuum pump with male and female screw rotors having unequal leads | |
KR102178373B1 (ko) | 과 압축 발생을 방지하는 진공펌프 하우징 및 이를 포함한 진공펌프 | |
TWI770196B (zh) | 多級式魯氏泵 | |
JP4839443B2 (ja) | スクリュー真空ポンプ | |
US7074026B2 (en) | Multi-stage helical screw rotor | |
GB2385890A (en) | A multi-stage vacuum pump with one end of a shaft able to move to allow for expansion | |
JP3961605B2 (ja) | 真空ポンプの改良 | |
JP2020537084A (ja) | スクリューロータ | |
JP2002364569A (ja) | 多段ルーツ真空ポンプ | |
CN112780553A (zh) | 转子组件、压缩机和空调 | |
JPH07247975A (ja) | インタークーラーレス空冷式4段ルーツ型真空ポンプ | |
GB2537635A (en) | Pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EDWARDS LIMITED,UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHOFIELD, NIGEL PAUL;BIRCH, PETER HUGH;SIGNING DATES FROM 20080112 TO 20080114;REEL/FRAME:020506/0082 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., AS NOTES COLLATERAL AGENT, TEXAS Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001 Effective date: 20160907 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLATERAL AGENT, NORTH CAROLINA Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001 Effective date: 20160907 Owner name: CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS COLLAT Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040134/0001 Effective date: 20160907 Owner name: THE BANK OF NEW YORK MELLON TRUST COMPANY, N.A., A Free format text: SECURITY AGREEMENT;ASSIGNORS:ASAP SOFTWARE EXPRESS, INC.;AVENTAIL LLC;CREDANT TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040136/0001 Effective date: 20160907 |
|
AS | Assignment |
Owner name: WYSE TECHNOLOGY L.L.C., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: SCALEIO LLC, MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: MOZY, INC., WASHINGTON Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: MAGINATICS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: FORCE10 NETWORKS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: EMC IP HOLDING COMPANY LLC, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: EMC CORPORATION, MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: DELL SYSTEMS CORPORATION, TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: DELL SOFTWARE INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: DELL PRODUCTS L.P., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: DELL MARKETING L.P., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: DELL INTERNATIONAL, L.L.C., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: DELL USA L.P., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: CREDANT TECHNOLOGIES, INC., TEXAS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: AVENTAIL LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 Owner name: ASAP SOFTWARE EXPRESS, INC., ILLINOIS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH;REEL/FRAME:058216/0001 Effective date: 20211101 |