US20100114022A1 - Spiral balloon catheter - Google Patents

Spiral balloon catheter Download PDF

Info

Publication number
US20100114022A1
US20100114022A1 US12/593,226 US59322608A US2010114022A1 US 20100114022 A1 US20100114022 A1 US 20100114022A1 US 59322608 A US59322608 A US 59322608A US 2010114022 A1 US2010114022 A1 US 2010114022A1
Authority
US
United States
Prior art keywords
balloon
catheter
spiral
conduit
deflated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/593,226
Other languages
English (en)
Inventor
Eran Hirszowicz
Hila Yaron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intratech Medical Ltd
Original Assignee
Intratech Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intratech Medical Ltd filed Critical Intratech Medical Ltd
Priority to US12/593,226 priority Critical patent/US20100114022A1/en
Publication of US20100114022A1 publication Critical patent/US20100114022A1/en
Assigned to INTRATECH MEDICAL LTD. reassignment INTRATECH MEDICAL LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIRSZOWICZ, ERAN, YARON, HILA
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1002Balloon catheters characterised by balloon shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1011Multiple balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1011Multiple balloon catheters
    • A61M2025/1013Multiple balloon catheters with concentrically mounted balloons, e.g. being independently inflatable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/109Balloon catheters with special features or adapted for special applications having balloons for removing solid matters, e.g. by grasping or scraping plaque, thrombus or other matters that obstruct the flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1006Balloons formed between concentric tubes

Definitions

  • the present invention relates to a balloon catheter device for use inside blood vessels and other body passages. More specifically, the presently-disclosed invention is a catheter device comprising a balloon that is capable of adopting a spiral conformation upon inflation.
  • Balloon catheters have, over the course of the last few decades, found use in the diagnosis and treatment of many medical conditions. While different versions of these devices have been designed and constructed for use in many different body passages—such as the urinary tract, uterus and fallopian tubes and gastrointestinal tract—the intravascular use of balloon catheters is arguably their fastest-growing field of application. Thus, balloon catheters have been used in various angioplasty procedures, stent implantation, thrombus-crossing, embolic protection, and so on.
  • a balloon catheter system that has been designed for use in removing thrombotic material and other intravascular particulate matter from the body is that disclosed in U.S. Pat. No. 4,762,130 (Fogarty). While several different embodiments of the catheter are described in the patent, a feature common to all of these embodiments is that a balloon is advanced into the region of the thrombus to be treated and then expanded into a helical or spiral configuration, thereby engaging said thrombus within the spiral channels of the inflated balloon. The spiral balloon is then withdrawn from the body with the thrombus still attached thereto.
  • a particular disadvantage of this prior art system is that the catheter is usually inflated distally to the thrombus (or other particulate matter) and is then pulled back in order to facilitate collection of the thrombotic material by the balloon. This procedure can be traumatic for the blood vessel. Furthermore the balloon does not always completely seal the vessel and some of the debris escapes into the blood stream and is not removed.
  • a further key problem associated with the aforementioned prior art system is the fact that during balloon inflation, the blood flow through the vessel is blocked. Indeed, in many balloon catheter systems, the volume taken up by the balloon when inflated is problematic. In addition, many existing catheter balloons, even when in their deflated state present an unacceptably large cross-sectional profile, thereby causing problems in the insertion and maneuvering of the catheter within the vasculature.
  • compliant tubes i.e. balloons or sheaths
  • the compliant tubes of the present invention are able to adopt spiral conformations upon inflation without the need for any additional structural features such as external restraining bands or intraluminal spiral-forming wires.
  • the balloons of the present invention have an intrinsic ability to adopt a spiral shape upon inflation, said ability being a function of the materials used in the construction of the balloon, the dimensions of the balloon, and the attachment of the balloon at each of its ends to a catheter shaft.
  • This novel form of compliant balloon has significant advantages in relation to prior art balloons, in terms of possessing both an extremely low cross sectional profile when deflated, and a helical or spiral shape when inflated.
  • the present invention in its most general form, is a balloon catheter device comprising a tubular compliant balloon that is attached at its distal and proximal extremities to a catheter tube.
  • the balloon Upon inflation, the balloon, which is incapable of any significant elongation in a proximal-distal direction (due to its terminal attachment to the catheter shaft), adopts a spiral or helical conformation.
  • the balloon in its deflated state, the balloon appears as a conventional, low profile, linear (i.e. non-spiral) sheath surrounding the conduit to which it is attached. It is only during inflation that this linear sheath adopts a spiral conformation.
  • the present invention is therefore primarily directed to a balloon catheter system comprising one or more conduits to which is/are attached a compliant balloon having a non-helical shape in its deflated state, wherein said balloon is constructed such that upon inflation, it is capable of adopting a spiral or helical conformation, and wherein said balloon does not require the use of any ancillary structures such as wires, bands or formers in order to adopt said helical shape upon inflation.
  • proximal and distal are defined from the physician's (or other operator's) perspective.
  • proximal is used to refer to the side or end of a device or portion thereof that is closest to the external body wall and/or the operator, while the term “distal” refers to the side or end of a structure that is in an opposite direction to the external body wall and/or operator.
  • the distal and proximal necks of the balloon are attached to a single catheter conduit.
  • the distal neck of the balloon is attached to one catheter conduit while the proximal neck thereof is attached to a second conduit, wherein said first and second conduits are arranged such that at least a portion of the shaft of one of the conduits is disposed within the lumen of the other conduit.
  • the balloon catheter system further comprises an aspiration element.
  • the general form of this element is a low-profile suction tube, the proximal end of which is connected to a negative pressure source, and the open distal end of which is located close to the proximal neck of the balloon.
  • the aspiration element is bound to the catheter conduit.
  • the present invention is directed to a method for removing particulate matter from a body passage in a patient in need of such treatment, comprising the steps of:
  • the particulate matter to be removed is thrombotic or embolic in origin.
  • the present invention also provides a method for removing thrombotic material from a body passage in a patient in need of such treatment, comprising the steps of:
  • the present invention further provides a method for removing a thrombus from a body passage in a patient in need of such treatment, comprising the steps of:
  • FIG. 1 depicts the balloon catheter of the present invention with the compliant balloon in its collapsed, deflated state.
  • FIG. 2 illustrates the catheter of the present invention following inflation of the balloon.
  • FIG. 3 illustrates one preferred embodiment of the balloon catheter of the present invention having an aspiration element that ends on the proximal side of the balloon (shown inflated).
  • FIG. 4 is a schematic longitudinal section view of a balloon catheter of the present invention in its deflated state, in which various critical balloon design parameters are defined.
  • FIG. 5 is a schematic longitudinal section view of a balloon catheter of the present invention in its inflated state, in which various critical balloon design parameters are defined.
  • FIG. 6 shows a longitudinal section of a spiral-forming balloon (deflated) mounted on a single-lumen stainless steel tube.
  • FIG. 7 shows a longitudinal section of a spiral-forming balloon (deflated) mounted on a guidewire state having a sliced distal portion.
  • FIG. 8 depicts a longitudinal section of a spiral-forming balloon (deflated) having a stainless steel wire welded to the distal end of a stainless steel conduit.
  • FIG. 9 depicts a longitudinal section of a spiral-forming balloon (deflated) featuring a side-hole for the injection of contrast agents, thrombolytic agents or other fluids.
  • FIG. 10 shows a longitudinal section of an embodiment of the present invention in which a specially-designed guidewire is used to block the distal catheter exit.
  • FIG. 11 shows a longitudinal section of an alternative embodiment of the device of the present invention, in which the inner catheter lumen has a narrowed distal end, thereby allowing the distal catheter exit to be blocked by a standard guidewire.
  • the invention is based on the use of a compliant balloon which is fitted over a catheter conduit in a conventional (i.e. non-spiral) and manner, the distal and proximal ends of said balloon being attached to said conduit.
  • the balloon In its deflated state ( FIG. 1 ), the balloon is in the form of a tube of compliant material with a diameter, in one preferred embodiment, of up to 1/15 of the final crossing profile of the inflated balloon.
  • the tube can be constructed with a uniform wall thickness or with a wall thickness which varies along its length.
  • the collapsed balloon is indicated in FIG. 1 by part number 12 attached to catheter shaft 10 .
  • the balloon can be made from one material. Alternatively, it may be constructed from two or more different materials, thereby producing a non-uniform spiral balloon upon inflation. Suitable materials for use in constructing the compliant balloon include (but are not limited to): silicones and thermoplastic elastomers (TPEs) such as (but not limited to) Evoperene and Monoprene.
  • TPEs thermoplastic elastomers
  • the balloon may be manufactured from these materials using standard balloon production techniques well known to the skilled artisan in this field.
  • the balloon 12 is bound at two points to a rigid or semi-rigid conduit 10 which is threaded through the balloon. Since the balloon is made of a compliant material it elongates during inflation.
  • the attachment of the balloon to the catheter conduit may be achieved using any of the standard bonding techniques and materials well known in the art, for example adhesion using biocompatible glues such as silicone glue.
  • the balloon 12 Since the balloon 12 is bound at both its ends, its longitudinal elongation is restrained. Provided certain balloon-related design parameter criteria are met (as will be discussed hereinbelow), said balloon 12 will then buckle and assume a spiral shape as shown in FIGS. 2 and 3 .
  • FIG. 3 illustrates a preferred embodiment of the balloon catheter which further comprises an aspiration element 14 .
  • the general form of this element is a low-profile suction tube, the proximal end of which is connected to a negative pressure source, and the open distal end of which is located close to the proximal neck of the balloon.
  • the aspiration element is bound to the catheter conduit by means of loops, ties or any other suitable method.
  • the aspiration element may be unattached to the catheter conduit.
  • the aspiration tube may be made from any suitable biocompatible material such as (but not limited to) Pebax and Nylon.
  • the aspiration tube may have an external diameter of 6 Fr and an internal diameter of 0.070′′.
  • Typical aspiration pressures are in the order of 640 to 680 mmHg, and may be provided by standard negative pressure sources such as are available in hospitals and other health-care centers.
  • the critical balloon and catheter tube parameters are defined in FIG. 4 (deflated state) and FIG. 5 (inflated state), and in the following list:
  • N the number of spiral threads
  • N the number of spiral threads
  • a compliant balloon having a length of 30 mm, an outer diameter of 1 mm and a wall thickness of 0.25 mm readily adopts a spiral conformation upon inflation, provided that both ends of said balloon are bound to a rigid conduit.
  • the compliant balloon will have a length in the range of 15 mm to 50 mm and a wall thickness in the range of 100 micron to 400 micron. It should be emphasized that the preceding dimensions (and all other dimensions that appear herein) are exemplary values only, and should not be construed as limiting the size of the presently-disclosed device in any way.
  • the catheter is constructed of a single-lumen stainless steel tube with a distally assembled spiral balloon ( FIG. 6 ).
  • the deflated cross profile ranges between 0.4 and 0.8 mm.
  • the tube may be delivered to the target through a 2.4 Fr or 3.8 Fr microcatheter.
  • the catheter tube 18 can have a laser cut (spiral cut or grooves) at its distal section or all along its length to increase its flexibility.
  • a thin (approximately 0.0005′′) polymeric jacket 19 (for example, PET or PTFE) is applied over the tube (e.g. by a heat-shrink process).
  • An aperture 26 is created at the distal section of the hypotube for the inflation of the spiral balloon.
  • the distal end of the hypotube 28 is plugged by using a plasma weld process, laser weld process or adhesive process.
  • the compliant balloon 24 is shown in this figure and in the figures that follow in its deflated state.
  • a reduced cross-section profile of the distal portion of the hypotube 20 (i.e. in the region of the balloon attachment) is obtained by longitudinally slicing said portion, thereby creating a reduced diameter tube region 22 of approximately semi-circular cross sectional form.
  • a stainless steel wire 30 having a diameter of, for example, 0.2 mm may be welded to the distal end of the tube 20 .
  • a balloon 24 with a smaller ID may be used, thereby leading to a distal section having a significantly smaller cross section profile.
  • the catheter may be delivered (in either over-the-wire or rapid exchange mode) over a coronary 0.014′′ guidewire ( FIG. 9 ).
  • the minimum cross sectional profile of the catheter may be in the order of 0.8-1.0 mm.
  • the balloon 24 depicted in the longitudinal section shown in FIG. 9 is mounted in a conventional manner on a two-conduit coaxial design catheter similar to standard balloon catheters known in art, with the proximal end of the balloon 24 being attached to the outer tube 34 and the distal end thereof being attached to the inner tube 32 .
  • Both the inner tube and the outer tube may be constructed by the use of extrusion techniques from materials commonly used in the art including Nylon, Pebax, PET and Polyurethane.
  • the balloon 24 is inflated in a conventional manner well known to skilled artisans in the field, through an inflation lumen formed by the space between the inner and outer tubes.
  • the lumen of the inner conduit functions primarily as a guidewire lumen.
  • the presence of one or more side exits (or apertures) 38 proximal to the balloon that communicate between said guidewire lumen 36 and the area surrounding the outer tube permit said lumen to be additionally used for the delivery of liquid substances of various types to the region of the blood vessel that is in proximity to said exit(s).
  • the guidewire lumen may used for injecting liquids (including, but not limited to standard contrast media and thrombolytic agents, such as tPA) through both the side exit and distal exit of the lumen.
  • liquids including, but not limited to standard contrast media and thrombolytic agents, such as tPA
  • fluid injection takes place while the guidewire is still indwelling.
  • the aforementioned side aperture 38 will generally be sized such that its surface area will be approximately equal to the cross-sectional area of the inner tube lumen.
  • the aperture is formed by means of a laser cut, and the side walls of said aperture are sealed by thermo-bonding methods, in order to prevent seepage between the inner and outer tubes.
  • the conduits used to construct the catheter device of the present invention may be made of any suitable material including (but not limited to) a biocompatible polymer such as polyurethane or nylon or PET, or a biocompatible metal such as stainless steel, and may be manufactured utilizing conventional methods, such as extrusion and laser cutting.
  • the diameter of the conduits is generally in the range of 0.5-2.0 mm, and their length is generally in the range of 100-2000 mm.
  • the compliant balloon may be inflated by introducing a pressurized inflation media via an inflation fluid port that is in fluid connection with a source of pressurized media and a pumping device or syringe.
  • the inflation media passes through openings in the wall of the catheter shaft located between the proximal and distal attachment points of the balloon.
  • the inflation media passes via an inflation fluid lumen formed between the inner wall of the outer conduit and the outer surface of the inner conduit.
  • the balloon of the present invention may be assembled onto a two-conduit catheter, wherein the inner conduit is movable in relation to the outer conduit.
  • the cross-sectional profile of the non-inflated balloon may be reduced even further by means of moving the inner tube distally prior to insertion of the catheter into the vasculature, thereby stretching the balloon and thus reducing its wall thickness.
  • the pressure in the balloon when fully inflated with an expansion medium such as saline or a contrast medium is in the range of 0.5-4 atmospheres, and often in the range of 1.5-2 atmospheres.
  • the spiral-forming balloon catheter of the present invention has many different applications, in addition to the use in thrombus removal described above.
  • the expanded spiral balloon may be used for anchoring a catheter (or other elongate device) within a blood vessel, without blocking blood flow in the region of the anchoring balloon.
  • the spiral balloon may be used for the purpose of cooling or heating tissue or blood in the immediate vicinity of said balloon.
  • the balloon may be covered or partly covered with a network of thin filaments, thereby creating a distal protection element, which may serve to enhance the ability of the spiral balloon to trap thrombotic material during withdrawal of the catheter.
  • a further application for the spiral-forming balloon of the present invention is in the treatment and/or remodeling of vascular aneurysms (including, but not limited to, cerebral aneurysms).
  • vascular aneurysms including, but not limited to, cerebral aneurysms.
  • Prior art methods of treatment generally use an inflated catheter balloon as a ‘floor’ or base during the insertion of coils into the aneurysm that is being re-modeled.
  • one drawback of the use of conventional balloons in this situation is that blockage (total or near-total) of blood flow in the region of the aneurysm. This blockage may clearly have serious negative implications, particularly when dealing with a cerebral aneurysm.
  • the use of a spiral-forming balloon of the present invention permits blood flow to continue through and around the spiral channels, thereby preventing ischemic and hypoxic damage to sensitive tissues distal to the treatment site.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Child & Adolescent Psychology (AREA)
  • Pulmonology (AREA)
  • Vascular Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)
US12/593,226 2007-03-27 2008-03-27 Spiral balloon catheter Abandoned US20100114022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/593,226 US20100114022A1 (en) 2007-03-27 2008-03-27 Spiral balloon catheter

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US92014507P 2007-03-27 2007-03-27
US97812207P 2007-10-07 2007-10-07
US3879508P 2008-03-24 2008-03-24
US12/593,226 US20100114022A1 (en) 2007-03-27 2008-03-27 Spiral balloon catheter
PCT/IB2008/051158 WO2008117256A2 (en) 2007-03-27 2008-03-27 Spiral balloon catheter

Publications (1)

Publication Number Publication Date
US20100114022A1 true US20100114022A1 (en) 2010-05-06

Family

ID=39789110

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/593,226 Abandoned US20100114022A1 (en) 2007-03-27 2008-03-27 Spiral balloon catheter
US12/593,211 Abandoned US20100137793A1 (en) 2007-03-27 2008-03-27 Spiral balloon catheter
US12/078,191 Active 2028-04-25 US7766871B2 (en) 2007-03-27 2008-03-27 Spiral balloon catheter
US12/822,865 Expired - Fee Related US8079978B2 (en) 2007-03-27 2010-06-24 Spiral balloon catheter

Family Applications After (3)

Application Number Title Priority Date Filing Date
US12/593,211 Abandoned US20100137793A1 (en) 2007-03-27 2008-03-27 Spiral balloon catheter
US12/078,191 Active 2028-04-25 US7766871B2 (en) 2007-03-27 2008-03-27 Spiral balloon catheter
US12/822,865 Expired - Fee Related US8079978B2 (en) 2007-03-27 2010-06-24 Spiral balloon catheter

Country Status (7)

Country Link
US (4) US20100114022A1 (enExample)
EP (2) EP2136869B1 (enExample)
JP (4) JP2010522601A (enExample)
CN (2) CN101743032B (enExample)
CA (2) CA2681925C (enExample)
ES (1) ES2884648T3 (enExample)
WO (2) WO2008117257A2 (enExample)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100262124A1 (en) * 2007-03-27 2010-10-14 Intratech Medical Ltd. Spiral balloon catheter
US20110060186A1 (en) * 2008-04-27 2011-03-10 Alexander Quillin Tilson Biological navigation device
US8708955B2 (en) 2008-06-02 2014-04-29 Loma Vista Medical, Inc. Inflatable medical devices
US9592119B2 (en) 2010-07-13 2017-03-14 C.R. Bard, Inc. Inflatable medical devices
JP2018535810A (ja) * 2015-11-09 2018-12-06 リヴァンプ メディカル リミテッド 心血管処置のための血流低減器
US10188436B2 (en) 2010-11-09 2019-01-29 Loma Vista Medical, Inc. Inflatable medical devices
US10188273B2 (en) 2007-01-30 2019-01-29 Loma Vista Medical, Inc. Biological navigation device
US10765475B2 (en) 2017-10-31 2020-09-08 Biosense Webster (Israel) Ltd. All-in-one spiral catheter
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter
US12232838B2 (en) 2021-08-12 2025-02-25 Imperative Care, Inc. Method of robotically performing a neurovascular procedure
US12295580B2 (en) 2018-12-11 2025-05-13 Revamp Medical Ltd. Systems, devices, and methods for adjusting blood flow in a body lumen
USD1077996S1 (en) 2021-10-18 2025-06-03 Imperative Care, Inc. Inline fluid filter

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
AU2004222494A1 (en) 2003-03-18 2004-09-30 Veryan Medical Limited Helical stent
GB0306176D0 (en) 2003-03-18 2003-04-23 Imp College Innovations Ltd Tubing
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US8066757B2 (en) 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US9198687B2 (en) 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
RU2506912C2 (ru) 2008-02-22 2014-02-20 Микро Терапьютикс, Инк. Способы и устройство для восстановления потока
JP2011517607A (ja) 2008-04-11 2011-06-16 マインドフレーム, インコーポレイテッド 脳卒中を処置する医療デバイスの送達のためのモノレール神経マイクロカテーテル、モノレール神経マイクロカテーテルによるプロセス、およびモノレール神経マイクロカテーテルによる製品
WO2009134337A1 (en) 2008-05-01 2009-11-05 Aneuclose Llc Aneurysm occlusion device
US8939991B2 (en) 2008-06-08 2015-01-27 Hotspur Technologies, Inc. Apparatus and methods for removing obstructive material from body lumens
EP2307086B1 (en) 2008-07-03 2015-04-15 Hotspur Technologies, Inc Apparatus for treating obstructions within body lumens
US8945160B2 (en) 2008-07-03 2015-02-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US9101382B2 (en) 2009-02-18 2015-08-11 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
JP2012505002A (ja) * 2008-10-10 2012-03-01 ヴェリヤン・メディカル・リミテッド 医療器具
US9539120B2 (en) * 2008-10-10 2017-01-10 Veryan Medical Ltd. Medical device suitable for location in a body lumen
US9597214B2 (en) 2008-10-10 2017-03-21 Kevin Heraty Medical device
JP2012505003A (ja) 2008-10-10 2012-03-01 ヴェリヤン・メディカル・リミテッド 体腔内に配置するのに適した医療器具
US10987494B2 (en) 2008-11-11 2021-04-27 Covidien Lp Pleated or folded catheter-mounted balloon
US20120109057A1 (en) 2009-02-18 2012-05-03 Hotspur Technologies, Inc. Apparatus and methods for treating obstructions within body lumens
US20120283819A1 (en) * 2009-05-08 2012-11-08 Charles Taylor Medical device suitable for location in a body lumen
US10456276B2 (en) 2009-05-08 2019-10-29 Veryan Medical Limited Medical device suitable for location in a body lumen
US8906057B2 (en) 2010-01-04 2014-12-09 Aneuclose Llc Aneurysm embolization by rotational accumulation of mass
US8821438B2 (en) 2010-04-30 2014-09-02 Abbott Cardiovascular Systems, Inc. Catheter system having a fluid circuit
US8540669B2 (en) 2010-04-30 2013-09-24 Abbott Cardiovascular Systems Inc. Catheter system providing step reduction for postconditioning
US9168361B2 (en) 2010-04-30 2015-10-27 Abbott Cardiovascular Systems Inc. Balloon catheter exhibiting rapid inflation and deflation
EP2563446A1 (en) * 2010-04-30 2013-03-06 Abbott Cardiovascular Systems Inc. Improved balloon catheter exhibiting rapid inflation and deflation
US9084609B2 (en) * 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9138232B2 (en) 2011-05-24 2015-09-22 Aneuclose Llc Aneurysm occlusion by rotational dispensation of mass
US10022127B2 (en) * 2011-11-02 2018-07-17 Abbott Cardiovascular Systems Inc. Double bellow occluder for sclerotherapy
US9126013B2 (en) 2012-04-27 2015-09-08 Teleflex Medical Incorporated Catheter with adjustable guidewire exit position
US8951296B2 (en) * 2012-06-29 2015-02-10 Medtronic Ardian Luxembourg S.A.R.L. Devices and methods for photodynamically modulating neural function in a human
US9277905B2 (en) * 2012-08-02 2016-03-08 W. L. Gore & Associates, Inc. Space-filling device
WO2014030078A1 (en) 2012-08-23 2014-02-27 Strait Access Technologies Holdings (Pty) Ltd Inflatable distender
US10286184B2 (en) * 2012-10-01 2019-05-14 Qmax, Llc Helical balloon catheter
EP2964127A4 (en) * 2013-03-08 2016-12-07 Symple Surgical Inc BALLOON CATHETER CONTROL PANEL WITH MICROWAVE MIXER
US10076384B2 (en) 2013-03-08 2018-09-18 Symple Surgical, Inc. Balloon catheter apparatus with microwave emitter
US10076404B2 (en) 2013-03-12 2018-09-18 Boston Scientific Limited Catheter system with balloon-operated filter sheath and fluid flow maintenance
EP3582334A1 (en) * 2013-07-01 2019-12-18 TE Connectivity Nederland B.V. Socket assembly for a combined power and data connector
EP2848225A1 (en) * 2013-09-13 2015-03-18 Covidien LP A pleated or folded catheter-mounted balloon
WO2015061801A2 (en) 2013-10-26 2015-04-30 Accumed Radial Systems Llc System, apparatus, and method for creating a lumen
JP2017510328A (ja) * 2014-02-11 2017-04-13 オール ケイプ ガイナコロジー エルエルシー エンドサイトカニューレ
US10182841B1 (en) * 2015-06-16 2019-01-22 C.R. Bard, Inc. Medical balloon with enhanced focused force control
US12171962B2 (en) 2015-07-13 2024-12-24 Biotronik Ag Mechanically actuated and functionally integratable catheter system for treating vascular and non-vascular diseases and related methods
WO2018013787A1 (en) 2016-07-13 2018-01-18 Boston Scientific Scimed, Inc. Apparatus and method for maintaining patency in a vessel adjacent to nearby surgery
US10492937B2 (en) 2016-10-17 2019-12-03 Cook Medical Technologies Llc Deploying a balloon expandable stent to induce spiral flow
US11083876B2 (en) * 2017-02-15 2021-08-10 Tevar (Pty) Ltd Dilation device
CN115624683A (zh) * 2017-05-23 2023-01-20 波士顿科学医学有限公司 用于血管内导管系统的低温球囊
US10918390B2 (en) * 2018-03-30 2021-02-16 DePuy Synthes Products, Inc. Helical balloon assist device and method for using the same
US10786259B2 (en) 2018-03-30 2020-09-29 DePuy Synthes Products, Inc. Split balloon assist device and method for using the same
GB201820151D0 (en) * 2018-12-11 2019-01-23 Cook Medical Technologies Llc Introducer assembly particularly for balloon catheters
US12251512B2 (en) * 2020-06-18 2025-03-18 Covidien Lp Physiologically conformable tracheal tube
US12214160B2 (en) * 2021-01-25 2025-02-04 Alcon Inc. Method and apparatus for subretinal injection
CN117479973A (zh) 2021-02-08 2024-01-30 因特拉泰克医药有限公司 供冠状窦使用的螺旋形成球囊
EP4323044A2 (en) * 2021-04-12 2024-02-21 Medtronic Ireland Manufacturing Unlimited Company Chemical ablation therapy delivery system
CN114732955A (zh) * 2022-04-19 2022-07-12 苏州大学 花瓣形双层人工血管及其制备方法
CN117959050A (zh) * 2024-04-01 2024-05-03 上海宏普医疗器械有限公司 一种可回收的螺旋球囊支架
CN118415715B (zh) * 2024-07-05 2024-08-23 北京华脉泰科医疗器械股份有限公司 附壁血栓清除装置
CN118924381B (zh) * 2024-10-14 2025-03-21 上海宏普医疗器械有限公司 一种多级血栓清除装置

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US591386A (en) * 1897-10-12 Potato-planter
US4271839A (en) * 1979-07-25 1981-06-09 Thomas J. Fogarty Dilation catheter method and apparatus
US4762130A (en) * 1987-01-15 1988-08-09 Thomas J. Fogarty Catheter with corkscrew-like balloon
CN2049956U (zh) * 1989-07-28 1989-12-27 王东亚 用于除去血管内血栓的导管系统
US5295959A (en) * 1992-03-13 1994-03-22 Medtronic, Inc. Autoperfusion dilatation catheter having a bonded channel
US5308356A (en) * 1993-02-25 1994-05-03 Blackshear Jr Perry L Passive perfusion angioplasty catheter
US5383856A (en) * 1993-03-19 1995-01-24 Bersin; Robert M. Helical spiral balloon catheter
US5395333A (en) 1993-09-01 1995-03-07 Scimed Life Systems, Inc. Multi-lobed support balloon catheter with perfusion
DE69433506T2 (de) 1993-10-01 2004-06-24 Boston Scientific Corp., Natick Medizinische, thermoplastische elastomere enthaltende ballone
US6896842B1 (en) 1993-10-01 2005-05-24 Boston Scientific Corporation Medical device balloons containing thermoplastic elastomers
US5545132A (en) 1993-12-21 1996-08-13 C. R. Bard, Inc. Helically grooved balloon for dilatation catheter and method of using
US5484411A (en) * 1994-01-14 1996-01-16 Cordis Corporation Spiral shaped perfusion balloon and method of use and manufacture
FI1694U1 (fi) * 1994-08-17 1995-01-12 Alusystems Ky Svaengbar balkongglaskonstruktion
NL1000106C2 (nl) 1995-04-10 1996-10-11 Cordis Europ Balloncatheter met gelobde ballon en werkwijze voor het vervaardigen daarvan.
US5871475A (en) 1995-06-05 1999-02-16 Frassica; James J. Catheter system
US5855546A (en) 1996-02-29 1999-01-05 Sci-Med Life Systems Perfusion balloon and radioactive wire delivery system
US5735816A (en) 1996-07-23 1998-04-07 Medtronic, Inc. Spiral sheath retainer for autoperfusion dilatation catheter balloon
US5749852A (en) 1996-07-23 1998-05-12 Medtronic, Inc. Sheath system for autoperfusion dilatation catheter balloon
US6123712A (en) * 1996-08-23 2000-09-26 Scimed Life Systems, Inc. Balloon catheter with stent securement means
US5954740A (en) 1996-09-23 1999-09-21 Boston Scientific Corporation Catheter balloon having raised radial segments
CA2217092C (en) 1996-10-03 2007-07-10 Cordis Corporation Centering balloon catheter
US5797948A (en) 1996-10-03 1998-08-25 Cordis Corporation Centering balloon catheter
JPH10179749A (ja) * 1996-12-24 1998-07-07 Buaayu:Kk インフュージョンカテーテル
US5814064A (en) 1997-03-06 1998-09-29 Scimed Life Systems, Inc. Distal protection device
US5891386A (en) 1997-04-25 1999-04-06 Medtronic, Inc. Method for making catheter balloons
US6190356B1 (en) 1997-10-20 2001-02-20 Robert M. Bersin Helical spiral balloon catheter
US6716236B1 (en) * 1998-04-21 2004-04-06 Alsius Corporation Intravascular catheter with heat exchange element having inner inflation element and methods of use
US6129706A (en) 1998-12-10 2000-10-10 Janacek; Jaroslav Corrugated catheter balloon
US6743196B2 (en) * 1999-03-01 2004-06-01 Coaxia, Inc. Partial aortic occlusion devices and methods for cerebral perfusion augmentation
US6350271B1 (en) 1999-05-17 2002-02-26 Micrus Corporation Clot retrieval device
US6350253B1 (en) * 1999-07-19 2002-02-26 I-Flow Corporation Catheter for uniform delivery of medication
JP2001029475A (ja) * 1999-07-23 2001-02-06 Kanegafuchi Chem Ind Co Ltd 血液灌流バルーンカテーテル
US6340364B2 (en) 1999-10-22 2002-01-22 Nozomu Kanesaka Vascular filtering device
US6450988B1 (en) 1999-12-29 2002-09-17 Advanced Cardiovascular Systems, Inc. Centering catheter with improved perfusion
US6443926B1 (en) * 2000-02-01 2002-09-03 Harold D. Kletschka Embolic protection device having expandable trap
JP2001252987A (ja) * 2000-03-13 2001-09-18 Jiro Fukuda スパイラルバルーン
US6478807B1 (en) 2000-06-08 2002-11-12 Advanced Cardiovascular Systems, Inc. Pre-formed expandable member having grooves
US6875212B2 (en) * 2000-06-23 2005-04-05 Vertelink Corporation Curable media for implantable medical device
US6527739B1 (en) 2000-12-29 2003-03-04 Advanced Cardiovascular Systems, Inc. Spiraled balloon arrangement for treatment of a tortuous vessel
US6679860B2 (en) 2001-06-19 2004-01-20 Medtronic Ave, Inc. Intraluminal therapy catheter with inflatable helical member and methods of use
US6776945B2 (en) 2001-07-03 2004-08-17 Scimed Life Systems, Inc. Medical device with extruded member having helical orientation
DE60317474T2 (de) * 2002-03-05 2008-10-02 Salviac Ltd. System aus embolischem filter und rückziehschlinge
US20050171572A1 (en) 2002-07-31 2005-08-04 Microvention, Inc. Multi-layer coaxial vaso-occlusive device
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6923808B2 (en) 2003-02-24 2005-08-02 Boston Scientific Scimed, Inc. Probes having helical and loop shaped inflatable therapeutic elements
US7122003B2 (en) 2003-04-16 2006-10-17 Granit Medical Innovations, Llc Endoscopic retractor instrument and associated method
US20060276820A1 (en) 2003-05-19 2006-12-07 Youichi Yamaguchi Balloon catheter and method of manufacturing the same
US20050177130A1 (en) 2004-02-10 2005-08-11 Angioscore, Inc. Balloon catheter with spiral folds
US20050228417A1 (en) 2004-03-26 2005-10-13 Teitelbaum George P Devices and methods for removing a matter from a body cavity of a patient
US7462175B2 (en) * 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
US7491188B2 (en) * 2004-10-12 2009-02-17 Boston Scientific Scimed, Inc. Reinforced and drug-eluting balloon catheters and methods for making same
US7457661B2 (en) * 2005-03-24 2008-11-25 Medtronic Vascular, Inc. Catheter-based, dual coil photopolymerization system
US10076641B2 (en) * 2005-05-11 2018-09-18 The Spectranetics Corporation Methods and systems for delivering substances into luminal walls
WO2008057554A1 (en) 2006-11-08 2008-05-15 Cook Incorporated Thrombus removal device
US7914549B2 (en) 2007-01-05 2011-03-29 Hesham Morsi Mechanical embolectomy and suction catheter
CA2681925C (en) 2007-03-27 2015-06-30 Intratech Medical Ltd. Spiral balloon catheter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10188273B2 (en) 2007-01-30 2019-01-29 Loma Vista Medical, Inc. Biological navigation device
US8079978B2 (en) 2007-03-27 2011-12-20 Intratech Medical Ltd. Spiral balloon catheter
US20100262124A1 (en) * 2007-03-27 2010-10-14 Intratech Medical Ltd. Spiral balloon catheter
US20110060186A1 (en) * 2008-04-27 2011-03-10 Alexander Quillin Tilson Biological navigation device
US8708955B2 (en) 2008-06-02 2014-04-29 Loma Vista Medical, Inc. Inflatable medical devices
US9186488B2 (en) 2008-06-02 2015-11-17 Loma Vista Medical, Inc. Method of making inflatable medical devices
US9504811B2 (en) 2008-06-02 2016-11-29 Loma Vista Medical, Inc. Inflatable medical devices
US9592119B2 (en) 2010-07-13 2017-03-14 C.R. Bard, Inc. Inflatable medical devices
US10188436B2 (en) 2010-11-09 2019-01-29 Loma Vista Medical, Inc. Inflatable medical devices
US11918229B2 (en) 2015-11-09 2024-03-05 Revamp Medical Ltd. Blood flow reducer for cardiovascular treatment
JP2018535810A (ja) * 2015-11-09 2018-12-06 リヴァンプ メディカル リミテッド 心血管処置のための血流低減器
US10765475B2 (en) 2017-10-31 2020-09-08 Biosense Webster (Israel) Ltd. All-in-one spiral catheter
US11350991B2 (en) 2017-10-31 2022-06-07 Biosense Webster (Israel) Ltd. All-in-one spiral catheter
US11850349B2 (en) 2018-07-06 2023-12-26 Incept, Llc Vacuum transfer tool for extendable catheter
US12295580B2 (en) 2018-12-11 2025-05-13 Revamp Medical Ltd. Systems, devices, and methods for adjusting blood flow in a body lumen
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
US11638637B2 (en) 2019-12-18 2023-05-02 Imperative Care, Inc. Method of removing embolic material with thrombus engagement tool
US12232838B2 (en) 2021-08-12 2025-02-25 Imperative Care, Inc. Method of robotically performing a neurovascular procedure
US12376928B2 (en) 2021-08-12 2025-08-05 Imperative Care, Inc. Catheter drive system for supra-aortic access
USD1077996S1 (en) 2021-10-18 2025-06-03 Imperative Care, Inc. Inline fluid filter

Also Published As

Publication number Publication date
EP2134405A2 (en) 2009-12-23
EP2134405B1 (en) 2021-06-02
US20100137793A1 (en) 2010-06-03
WO2008117256A2 (en) 2008-10-02
CA2681925C (en) 2015-06-30
CA2681925A1 (en) 2008-10-02
ES2884648T3 (es) 2021-12-10
US7766871B2 (en) 2010-08-03
JP2010522602A (ja) 2010-07-08
CN101730563A (zh) 2010-06-09
WO2008117257A3 (en) 2009-02-05
EP2136869B1 (en) 2021-07-21
JP2014012198A (ja) 2014-01-23
US8079978B2 (en) 2011-12-20
US20080306440A1 (en) 2008-12-11
JP2016025921A (ja) 2016-02-12
CA2681923A1 (en) 2008-10-02
CN101743032A (zh) 2010-06-16
CN101730563B (zh) 2012-12-26
JP2010522601A (ja) 2010-07-08
CA2681923C (en) 2015-09-15
WO2008117257A2 (en) 2008-10-02
US20100262124A1 (en) 2010-10-14
CN101743032B (zh) 2012-09-19
JP5944355B2 (ja) 2016-07-05
EP2136869A2 (en) 2009-12-30
WO2008117256A3 (en) 2009-02-05

Similar Documents

Publication Publication Date Title
CA2681923C (en) Spiral balloon catheter
US20250360286A1 (en) Enhanced flexibility neurovascular catheter
US11565082B2 (en) Enhanced flexibility neurovascular catheter
CN100382859C (zh) 栓子切除导液管及其治疗方法
CN110392591B (zh) 抽吸导管系统和使用方法
US8298210B2 (en) Catheter having oval aspiration lumen and method of making
US6645222B1 (en) Puncture resistant branch artery occlusion device and methods of use
JP7640040B2 (ja) 調製不要なバルーン・ガイド・カテーテル
US20130268050A1 (en) Devices and methods for accessing a cerebral vessel
US20120172798A1 (en) Devices and methods for accessing a cerebral vessel
JP2009513246A5 (enExample)
JPH10513382A (ja) フレキシブルなニチノール製ワイアを有する食道用拡張バルーンカテーテル
CN116058921A (zh) 具有低剪切末端的导管
HK40079378A (zh) 在颅内血管中执行医疗手术的系统、导管和导管前进装置
JP2007202614A (ja) カテーテル
HK40015164A (en) Aspiration catheter systems and methods of use
WO2007001033A1 (ja) カテーテル

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTRATECH MEDICAL LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRSZOWICZ, ERAN;YARON, HILA;REEL/FRAME:024914/0277

Effective date: 20081214

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION