US20090324748A1 - Trauma therapy - Google Patents

Trauma therapy Download PDF

Info

Publication number
US20090324748A1
US20090324748A1 US12/375,182 US37518207A US2009324748A1 US 20090324748 A1 US20090324748 A1 US 20090324748A1 US 37518207 A US37518207 A US 37518207A US 2009324748 A1 US2009324748 A1 US 2009324748A1
Authority
US
United States
Prior art keywords
adenosine
heart
composition
lignocaine
tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/375,182
Other languages
English (en)
Inventor
Geoffrey Philip Dobson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hibernation Therapeutics KF LLC
Original Assignee
Hibernation Therapeutics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006904007A external-priority patent/AU2006904007A0/en
Application filed by Hibernation Therapeutics Ltd filed Critical Hibernation Therapeutics Ltd
Publication of US20090324748A1 publication Critical patent/US20090324748A1/en
Assigned to HIBERNATION THERAPEUTICS LIMITED reassignment HIBERNATION THERAPEUTICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DOBSON, GEOFFREY PHILIP
Assigned to HIBERNATION THERAPEUTICS GLOBAL LTD reassignment HIBERNATION THERAPEUTICS GLOBAL LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIBERNATION THERAPEUTICS LTD
Assigned to HIBERNATION THERAPEUTICS, A KF LLC reassignment HIBERNATION THERAPEUTICS, A KF LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIBERNATION THERAPEUTICS GLOBAL LTD
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7076Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines containing purines, e.g. adenosine, adenylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • A61K31/4045Indole-alkylamines; Amides thereof, e.g. serotonin, melatonin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • A61P23/02Local anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/02Non-specific cardiovascular stimulants, e.g. drugs for syncope, antihypotensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • This invention relates to a method of reducing injury to cells, tissues or organs of a body following trauma, including injury to cells, tissues or organs resulting from shock, stroke, heart conditions or other injuries that may occur as a consequence of trauma.
  • Trauma refers to a serious or critical bodily injury, wound, or shock which in some cases may require resuscitation therapy. Trauma is often associated with trauma medicine practiced in hospital (such as in hospital emergency rooms), in emergency transport environments (such as in ambulances), or at out-of-hospital environments where a trauma has occurred, such as domestic or industrial accidents, transport accidents, the battlefield, and terrorist attacks.
  • Shock is a circulatory dysfunction causing decreased tissue oxygenation and accumulation of oxygen debt, which can ultimately lead to multi-organ system failure if left untreated.
  • the most common form of shock in both paediatric and adult trauma patients is hemorrhagic or hypovolemic shock (not enough blood volume).
  • Cardiogenic shock (not enough output of blood by the heart, see below) is also a common form of shock.
  • Shock as a result of blood loss is a frequent complication of trauma. About half of trauma deaths occur during the first hour after injury from a profound compromise in cardiopulmonary and cerebral function.
  • the signs and symptoms of shock include low blood pressure (hypotension), overbreathing (hyperventilation), a weak rapid pulse, cold clammy greyish-bluish (cyanotic) skin, decreased urine flow (oliguria), and mental changes (a sense of great anxiety and foreboding, confusion and, sometimes, combativeness).
  • blood pressure hypertension
  • overbreathing hyperventilation
  • a weak rapid pulse cold clammy greyish-bluish (cyanotic) skin
  • decreased urine flow oliguria
  • mental changes a sense of great anxiety and foreboding, confusion and, sometimes, combativeness
  • Cardiogenic shock is a medical emergency requiring immediate treatment to save the patient's life.
  • damage to the heart muscle as may result from a large myocardial infarction (heart-attack), disorders of the heart muscle (including rupture), disturbances to the electrical excitation-relaxation (or conduction) system and tamponade.
  • Cardiogenic shock may also be caused by arrhythmias (eg ventricular tachycardia and ventricular fibrillation), cardiomyopathy, cardiac valve problems, ventricular outflow obstruction and the like. Cardiogenic shock is a medical emergency requiring immediate treatment to save the patient's life.
  • Heart-attack This term is used to refer to a number of different conditions which lead to heart ischaemia, which leads to the death of heart muscle (typically caused by blockage of a coronary artery). The muscle death causes chest pain and electrical instability of the heart muscle tissue. This electrical instability may manifest as “ventricular tachycardia” and “ventricular fibrillation”. Ventricular tachycardia is a tachydysrhythmia originating from a ventricular ectopic focus and characterized by a rate typically greater than 120 beats per minute and must be treated quickly to avoid morbidity or mortality as it may deteriorate rapidly into ventricular fibrillation.
  • Ventricular fibrillation is a condition in which there is chaotic electrical disturbances of the ventricles, such that they no longer beat regularly, nor pump blood effectively, but simply quiver.
  • the heart muscle is affected by a poor supply of oxygen or by specific heart disorders and the ventricles contract independently of the atria, and some areas of the ventricles contract while others are relaxing, in a disorganized manner.
  • Ventricular fibrillation leads to widespread ischaemia. Unless treated immediately, ventricular fibrillation causes death and is responsible for 75% to 85% of sudden deaths in persons with heart problems. In the USA alone there are nearly 450,000 sudden deaths per year, and in the united kingdom around 70,000-90,000 sudden deaths per year.
  • Ventricular tachycardia and ventricular fibrillation are therefore medical emergencies because if they persist more than a few seconds, the blood circulation will cease, there will be no pulse, no blood pressure and no respiration and death will occur.
  • medications and procedures at this time are directed towards stabilising the rhythm of the heart and, in the case of the unconscious subject with no measurable pulse, resuscitating the subject by restarting the heart, opening the airways and restoring spontaneous breathing.
  • Amiodarone can be used to treat life-threatening heart arrhythmias, however, the drug can have serious side effects including causing cardiac rhythm irregularities and cardiac arrest itself.
  • Other side effects of amiodarone include lung infiltration, neuropathy, tremors, thyroid disorders, nausea, low blood pressure and liver damage.
  • Noradrenalin or adrenalin can be used in conjunction with cardiopulmonary resuscitation, however, epinephrine can exacerbate heart contractions and promote heart dysfunction by increasing myocardial oxygen consumption during ventricular fibrillation, as well as eliciting microvascular disorders.
  • a number of medications are then administered such as oxygen (if available to help breathing), beta-blockers (to help relax the heart), vasodilators (to help deliver more blood to the heart), blood agents (anti-coagulants, anti-platelet agents, thrombolytics and the like) and pain relievers.
  • oxygen if available to help breathing
  • beta-blockers to help relax the heart
  • vasodilators to help deliver more blood to the heart
  • blood agents anti-coagulants, anti-platelet agents, thrombolytics and the like
  • pain relievers Apart from a few drugs to treat the heart as well as other tissues and organs, the medications are not directed to treating the cardiac tissue specifically. There is no effective pharmaceutical treatment for the failing heart muscle itself, nor for common ventricular fibrillation. If treated, this is usually treated by electrical shock (cardioversion).
  • Reperfusion Damage may also be caused to a heart upon reperfusion.
  • reperfusion damage is when a heart becomes “stunned”. In this condition, the bloodflow has been restored but the heart is functioning abnormally and may result in a further heart-attack (such as ventricular fibrillation) if not treated.
  • Cardiac reanimation inevitably involves reperfusion of the heart with the consequent dangers associated with reperfusion injury, particularly to heart muscle. Where the muscle cells die, this is regarded as an infarction.
  • the cells may respond to the reperfusion and survive (thus not forming an infarction) but may be “stunned” in the sense that they do not operate normally nor perform their usual function during reperfusion.
  • mediators toxic oxygen species, proteolytic enzymes, adherence molecules, cytokines
  • the critical core body temperature also can aggravate many of these post-traumatic secondary complications. Below 34° C. mortality increases significantly. Despite this, a number of investigators have suggested a beneficial effect of deliberate hypothermia because this may prolong the “golden hour” of trauma victims by preventing hypoxic organ dysfunction and initiation of the inflammatory response. Organ failure is also the leading cause of death in the postoperative phase after major surgery. An excessive inflammatory response followed by a dramatic depression of cell-mediated immunity after major surgery appears to be responsible for the increased susceptibility to subsequent sepsis.
  • Resuscitation therapy is generally regarded as any procedure which improves the management of sudden states of life-threatening illnesses or traumatic injuries, such as those from cardiac arrest, respiratory failure, hemorrhagic blood loss, neurological injury, and traumatic injuries to the soft tissues and body skeleton.
  • resuscitation therapy deals with treating whole body oxygen deprivation.
  • current resuscitation strategies aim to optimize tissue supply and demand ratio and avoid complications of overaggressive volume replacement, which exacerbate haemorrhage, pulmonary oedema, and intracranial hypertension following brain injury.
  • Resuscitation therapy is very different from treating a localized “big heart attack” or a localized “big stroke”. It involves a complex interplay between multiple organ-tissue responses via poorly understood actions, which separates this science from treatments to preserve particular organs or tissues. Resuscitation is known to involve a complex biological system, with many interactions. These cannot be predicted from study of individual components. Injured organs have secondary effects on other organs, which affects the whole body and can lead to debilitating injuries and death.
  • Crystalloids are commonly used for resuscitation therapy because they appear to be safe and help with the negative side effects of coagulation. Crystalloids have been shown to increase coagulation, an effect which seems to be independent of the type of crystalloid used. A crystalloid-induced hypercoagulable state appears to be due to an imbalance between naturally occurring anticoagulants and activated procoagulants. Crystalloids used for volume replacement can be three main types: 1) hypotonic (eg. dextrose in water), 2) isotonic (normal saline or Ringers solution with lactate or acetate) or 3) hypertonic (eg 7.5% saline).
  • hypotonic eg. dextrose in water
  • isotonic normal saline or Ringers solution with lactate or acetate
  • hypertonic eg 7.5% saline
  • Crystalloids are freely permeable to the vascular membrane, only about 25% remain in the blood compartment and the remainder in the body's interstitial and/or intercellular compartment leading to tissue oedema. Crystalloid resuscitation is therefore less likely to achieve adequate restoration of microcirculatory blood flow compared to a colloidal-based volume replacement strategy.
  • Colloid replacement therapies employ colloids, such as dextran-70, dextran-40, hydroxyethyl starch, pentastarch, lactobionate, sucrose, mannitol and a modified fluid gelatine as artificial colloids, for this purpose. There is much controversy as to the most appropriate solution for volume replacement.
  • MOF organ dysfunction and failure
  • MOF is the leading cause of mortality secondary to shock (hemorrhage/trauma) and resuscitation, and involves the lungs, kidneys, intestinal tract, pancreas, liver, brain and heart.
  • MOF is not an end-point per se but a process involving an overwhelming self-destructive, local and systemic, inflammatory responses and immunologic functions.
  • resuscitation fluids restore tissue perfusion, however they have no specific anti-inflammatory, immunosuppression or pro-survival properties.
  • the activation of shock-induced inflammatory response occurs during the shock itself, during early crystalloid or colloid-based resuscitation therapy, and during final resuscitation efforts with blood replacement.
  • WO00/56145, WO04/056180 and WO04/056181 describe compositions useful to limit damage to a cell, tissue or organ by administering them in a clinical setting prior to a medical procedure. These compositions are also usually administered following diagnosis of the patient and directly to the cell, tissue or organ. However, much damage or injury to cells, tissues or organs may arise before the patient gets to the hospital and/or at hospital, for example, before substantive medical attention is available or a condition can be diagnosed.
  • the present invention is directed toward overcoming or at least alleviating one or more of the difficulties and deficiencies of the prior art.
  • the invention is directed to a method of reducing injury to cells, tissues or organs of a body following trauma by administering a composition to the body following trauma, including: (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic.
  • compositions comprising components (i) and (ii) may be administered to the body following administration of the composition.
  • Either composition may include Magnesium cations (divalent) and/or may be hypertonic.
  • the invention is directed to a composition for reducing injury to cells, tissues or organs of a body following trauma including: (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic.
  • the composition may include divalent magnesium cations and/or may be hypertonic.
  • the invention is directed to improved resuscitation therapies for trauma victims in hospital, emergency transport and out-of-hospital environments.
  • the invention has application to minimise life-threatening complications of persons suffering injury to cells, tissues or organs resulting from burns, shock, stroke, heart attack or other physical events, including complications from surgical or clinical interventions, as a consequence of trauma.
  • Injured soldiers on the battlefield or civilians at a natural disaster site or injured from a terrorist attack are situations where such treatment may be useful.
  • the invention applies to protecting, preserving or stabilising key organs such as the heart and brain, other neuronal tissues and cells, renal tissue, lung tissue, muscle tissue, liver and other tissues of the body.
  • the invention provides a method of reducing injury to the cells, tissues or organs of a body following trauma by administering a composition to the body following trauma including: (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic.
  • the invention is directed towards treating tachycardia and/or fibrillation.
  • the invention treats heart arrhythmias of atrial or ventricular origin, especially ventricular fibrillation.
  • the treatment of tachycardia and/or fibrillation, including ventricular fibrillation and arrhythmias comprises administering a composition including: (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic, in amounts effective to arrest a heart.
  • the amount administered is effective to arrest the heart only momentarily. This is often sufficient to facilitate the heart cardioconverting back to normal rhythm.
  • the amount administered is effective to substantially down-regulate the beating of the heart for a period of a few beats, before allowing the heart to regain its usual rhythm.
  • the invention also extends to a method for treating tachycardia and/or fibrillation accordingly.
  • the composition is administered as a bolus. The administration of the composition is believed to quell the tachycardia and/or fibrillation allowing the heart to cardiovert to a normal and desirable sinus rhythm.
  • the invention comprises the further step of subsequently administering a second composition which includes (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic, in amounts below that effective to arrest a heart.
  • the purpose of the second composition is to protect the heart and other tissues such as brain, liver, lung and kidney, or assist in doing so.
  • this embodiment is directed towards reducing reperfusion injury or stunning.
  • reperfusion injury is a common deleterious occurrence upon successfully converting a tachycardic/fibrillating heart to a normal and desirable sinus rhythm.
  • the second composition is administered as another non-arresting bolus injection or delivered continuously via an intravenous drip or by another delivery device or route.
  • composition according to the invention can be used to place the body, in effect, toward a state of suspended animation like a natural hibernator or to stabilise the body prior to diagnosis or until suitable medical attention can be provided to the trauma victim.
  • the overall protection provided by therapy according to the invention is thought to involve a multi-tiered system from modulating membrane excitability to a multitude of intracellular signalling pathways, including heat shock and pro-survival kinase pathways.
  • a primary focus is on reducing damage to the brain, heart and lungs, because this has been correlated with improved recovery and clinical outcomes. Nonetheless, broad-acting approaches reducing damage throughout the body in a non-specific way are desirable.
  • Proposed mechanisms of the composition of the invention include (i) reduced ion imbalances, in particular sodium and calcium ion loading in the cells, which may help defend the cell's voltage when stressed; (ii) attenuation of local and systemic inflammatory response to injury, which is protective in itself to reduce injury as well as reduce secondary effects such as free radical production; and (iii) protection from entering into a hypercoagulable state, ie an anti-clotting or anti-thrombolytic activity.
  • the invention simultaneously provides improved atrial and ventricular matching of electrical conduction to metabolic demand, which may involve modulation of gap junction communication, and, in respect of the brain, improved brain function.
  • the composition may reduce the body's demand for oxygen to varying degrees and thus reduce damage to the body's cells, tissues or organs.
  • the invention provides a composition for reducing injury to cells, tissues or organs of a body following trauma including (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic.
  • the composition may further include other components as identified below.
  • the potassium channel opener or agonist and/or adenosine receptor agonist is replaced by another component such as a calcium channel blocker.
  • the composition preferably contains an effective amount of (i) and (ii) for a single dose to reduce injury.
  • the invention may also be used to treat or inhibit arrhythmias including ventricular fibrillation during or prior to an angiogram test or an exercise test. Similarly it has application during emergency transport of an injured patient and for on-site emergency treatment (ie, at the site of injury or heart-attack such as an airport, sports stadium, hospital, battlefield or disaster site). It can also be used before, during and/or after coronary interventions such as angioplasty, cardiac catheter procedures, or insertion of a pacemaker or leads or a device, or for surgical procedures including paediatric or adult heart surgery, hip, knee, vascular or brain surgery, aortic dissections, carotid endaterectomy or general surgery.
  • on-site emergency treatment ie, at the site of injury or heart-attack such as an airport, sports stadium, hospital, battlefield or disaster site.
  • coronary interventions such as angioplasty, cardiac catheter procedures, or insertion of a pacemaker or leads or a device, or for surgical procedures including paediatric or adult heart surgery, hip, knee, vascular or brain surgery
  • component (i) of the composition may be an adenosine receptor agonist. While this obviously includes adenosine itself, the “adenosine receptor agonist” may be replaced or supplemented by a compound that has the effect of raising endogenous adenosine levels. This may be particularly desirable where the compound raises endogenous adenosine levels in a local environment within a body.
  • the effect of raising endogenous adenosine may be achieved by a compound that inhibits cellular transport of adenosine and therefore removal from circulation or otherwise slows its metabolism and effectively extends its half-life (for example, dipyridamole) and/or a compound that stimulates endogenous adenosine production such as purine nucleoside analogue AcadesineTM or AICA-riboside (5-amino-4-imidazole carboxamide ribonucleoside).
  • a compound that inhibits cellular transport of adenosine and therefore removal from circulation or otherwise slows its metabolism and effectively extends its half-life for example, dipyridamole
  • a compound that stimulates endogenous adenosine production such as purine nucleoside analogue AcadesineTM or AICA-riboside (5-amino-4-imidazole carboxamide ribonucleoside).
  • the composition, and optionally the second composition also contains divalent magnesium cations.
  • the concentration of magnesium is up to about 2.5 mM and in another embodiment magnesium is present in higher concentrations, for example up to about 20 mM.
  • the magnesium is present as a physiologically and pharmaceutically acceptable salt, such as for example magnesium chloride and magnesium sulphate.
  • the composition according to the invention is hypertonic.
  • the composition contains 7.5% NaCl.
  • the inventor has found that only a small volume of this hypertonic composition may be administered to the subject in need thereof. This is particularly advantageous where the composition according to the invention has application during emergency or for emergency transport. According to this aspect, only a small amount of the composition according to the invention needs to be available, for example, in a medical kit or ambulance. Thus the composition is easier to store and/or transport.
  • This “low volume” composition has unique features of fluid replacement and specific anti-inflammatory, immunosuppression pro-survival properties.
  • composition according to this aspect of the invention pharmacologically “buys” time for wounded soldiers on the battlefield or civilians in urban “disaster zones” which allow for safer evacuation, triage, and initiation of supportive therapies.
  • a Hypertonic solution contains a higher concentration of electrolytes than that found in body cells and, therefore, relatively less water in this compartment than inside the body cells. In such a hypertonic environment, osmotic pressure causes water to flow out of the cell into the hypertonic environment.
  • a hypertonic solution creates a hyperosmotic environment and the higher osmotic pressure in this environment relative to the surrounding cells in tissues causes fluid to flow from the cells towards such a system. If too much water is removed in this way, the cell may have difficulty functioning.
  • composition of the invention largely relates to methods of treatment, and methods of manufacturing a medicament for treatment involving a composition which is described as containing these components (i) and (ii).
  • this composition will be referred to in this specification as the “composition of the invention”, although there are a number of combinations of components embodying the invention which are compositions according to the invention.
  • the components (i) and (ii) may be present in a concentration which arrests, or does not arrest a heart.
  • the arresting composition contains adenosine and lignocaine, each at greater than 0.1 mM (and preferably below 20 mM).
  • the arresting composition may in some circumstances be referred to as a “cardioplegia solution”.
  • adenosine and lignocaine are both below 0.1 mM and preferably 50 nM to 95 uM, or more preferably from 1 uM to 90 uM.
  • the invention provides use of (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic, for the preparation of a medicament for reducing injury to cells, tissues or organs of a body following trauma.
  • the use preferably includes administering the medicament in one or more of the ways set out elsewhere in this specification.
  • the invention provides a method of, in effect, placing the body in or toward a hibernating-like state of suspended animation following trauma. This is achieved by administering a composition as described above.
  • Trauma is used herein in its broadest sense and refers to a serious or critical injury, wound or shock to the body. Trauma may be caused by unexpected physical damage (or injury) to the body as a result of, for example, transport or industrial accidents, birth, surgery, heart attack, stroke, burns, complications due to surgery or other medical interventions etc. Trauma may result from injury to a body, both in a hospital or out of hospital. Trauma is often associated with trauma medicine practiced in hospital (such as in hospital emergency rooms), during emergency transport or at out-of-hospital environments where a trauma has occurred, such as domestic or industrial accidents, transport accidents, the battlefield, and terrorist attacks. In many cases, trauma therapy may also include resuscitation therapy.
  • tissue is used herein in its broadest sense and refers to any part of the body exercising a specific function including organs and cells or parts thereof, for example, cell lines or organelle preparations.
  • Other examples include circulatory organs such as the heart, blood vessels and vasculature, respiratory organs such as the lungs, urinary organs such as the kidneys or bladder, digestive organs such as the stomach, liver, pancreas or spleen, reproductive organs such as the scrotum, testis, ovaries or uterus, neurological organs such as the brain, germ cells such as spermatozoa or ovum and somatic cells such as skin cells, heart cells ie, myocytes, nerve cells, brain cells or kidney cells.
  • the tissues may come from human or animal donors.
  • the donor organs may also be suitable for xenotransplantation.
  • organ is used herein in its broadest sense and refers to any part of the body exercising a specific function including tissues and cells or parts thereof, for example, endothelium, epithelium, blood brain barrier, cell lines or organelle preparations.
  • Other examples include circulatory organs such as the blood vessels, heart, respiratory organs such as the lungs, urinary organs such as the kidneys or bladder, digestive organs such as the stomach, liver, pancreas or spleen, reproductive organs such as the scrotum, testis, ovaries or uterus, neurological organs such as the brain, germ cells such as spermatozoa or ovum and somatic cells such as skin cells, heart cells i.e., myocytes, nerve cells, brain cells or kidney cells.
  • Potassium channel openers are agents which act on potassium channels to open them through a gating mechanism. This results in efflux of potassium across the membrane along its electrochemical gradient which is usually from inside to outside of the cell.
  • potassium channels are targets for the actions of transmitters, hormones, or drugs that modulate cellular function.
  • the potassium channel openers include the potassium channel agonists which also stimulate the activity of the potassium channel with the same result.
  • there are diverse classes of compounds which open or modulate different potassium channels for example, some channels are voltage dependent, some rectifier potassium channels are sensitive to ATP depletion, adenosine and opioids, others are activated by fatty acids, and other channels are modulated by ions such as sodium and calcium (ie. channels which respond to changes in cellular sodium and calcium). More recently, two pore potassium channels have been discovered and thought to function as background channels involved in the modulation of the resting membrane potential.
  • Potassium channel openers may be selected from the group consisting of: nicorandil, diazoxide, minoxidil, pinacidil, aprikalim, cromokulim and derivative U-89232, P-1075 (a selective plasma membrane KATP channel opener), emakalim, YM-934, (+)-7,8-dihydro-6,6-dimethyl-7-hydroxy-8-(2-oxo-1-piperidinyl)-6H-pyrano[2,3-f]benz-2,1,3-oxadiazole (NIP-121), RO316930, RWJ29009, SDZPCO400, rimakalim, symakalim, YM099, 2-(7,8-dihydro-6,6-dimethyl-6H-[1,4]oxazino[2,3-f][2,1,3]benzoxadiazol-8-yl) pyridine N-oxide, 9-(3-cyanophenyl)-3,4,6,7,
  • potassium channel openers can be selected from BK-activators (also called BK-openers or BK(Ca)-type potassium channel openers or large-conductance calcium-activated potassium channel openers) such as benzimidazolone derivatives NS004 (5-trifluoromethyl-1-(5-chloro-2-hydroxyphenyl)-1,3-dihydro-2H-benzimidazole-2-one), NS1619 (1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one), NS1608 (N-(3-(trifluoromethyl)phenyl)-N′-(2-hydroxy-5-chlorophenyl)urea), BMS-204352, retigabine (also GABA agonist).
  • BK-activators also called BK-openers or BK(Ca)-type potassium channel openers or large-conductance calcium-activated potassium channel
  • KATP channels There are also intermediate (eg. benzoxazoles, chlorzoxazone and zoxazolamine) and small-conductance calcium-activated potassium channel openers.
  • Other compounds that are believed to open KATP channels include Levosimendan and hydrogen sulphide gas (H 2 S) or the H 2 S donors (eg sodium hydrosulphide, NaHS).
  • potassium channel openers may act as indirect calcium antagonists, ie they act to reduce calcium entry into the cell by shortening the cardiac action potential duration through the acceleration of phase 3 repolarisation, and thus shorten the plateau phase. Reduced calcium entry is thought to involve L-type calcium channels, but other calcium channels may also be involved.
  • Adenosine (6-amino-9- ⁇ -D-ribofuranosyl-9H-purine) is particularly preferred as the potassium channel opener.
  • Adenosine is capable of opening the potassium channel, hyperpolarising the cell, depressing metabolic function, possibly protecting endothelial cells, enhancing preconditioning of tissue and protecting from ischaemia or damage.
  • Adenosine is also an indirect calcium antagonist, vasodilator, antiarrhythmic, antiadrenergic, free radical scavenger, arresting agent, anti-inflammatory agent (attenuates neutrophil activation), metabolic agent and possible nitric oxide donor. More recently, adenosine is known to inhibit several steps which can lead to slowing of the blood clotting process. In addition, elevated levels of adenosine in the brain has been shown to cause sleep and may be involved in different forms of dormancy. An adenosine analogue, 2-chloro-adenosine, may be used.
  • Suitable adenosine receptor agonists may be selected from: N 6 -cyclopentyladenosine (CPA), N-ethylcarboxamido adenosine (NECA), 2-[p-(2-carboxyethyl)phenethyl-amino-5′-N-ethylcarboxamido adenosine (CGS-21680), 2-chloroadenosine, N 6 -[2-(3,5-demethoxyphenyl)-2-(2-methoxyphenyl]ethyladenosine, 2-chloro-N-6-cyclopentyladenosine (CCPA), N-(4-aminobenzyl)-9-[5-(methylcarbonyl)-beta-D-robofuranosyl]-adenine (AB-MECA), ([IS-[1a,2b,3b,4a(S*)]]-4-[7-[[2-(3-chloro
  • CCPA is a particularly preferred.
  • Others include full adenosine A1 receptor agonists such as N-[3-(R)-tetrahydrofuranyl]-6-aminopurine riboside (CVT-510), or partial agonists such as CVT-2759 and allosteric enhancers such as PD81723.
  • agonists may include N 6 -cyclopentyl-2-(3 phenylaminocarbonyltriazene-1-yl) adenosine (TCPA), a very selective agonist with high affinity for the human adenosine A1 receptor and allosteric enhancers of A1 adenosine receptor includes the 2-amino-3-napthoylthiophenes.
  • TCPA N 6 -cyclopentyl-2-(3 phenylaminocarbonyltriazene-1-yl) adenosine
  • composition according to the invention includes an A1 adenosine receptor agonist and a local anaesthetic.
  • CCPA is a particularly preferred A1 adenosine receptor agonist.
  • Some embodiments of the invention utilise direct calcium antagonists, the principal action of which is to reduce calcium entry into the cell. These are selected from at least five major classes of calcium channel blockers as explained in more detail below. It will be appreciated that these calcium antagonists share some effects with potassium channel openers, particularly ATP-sensitive potassium channel openers, by inhibiting calcium entry into the cell.
  • Calcium channel blockers are also called calcium antagonists or calcium blockers. They are often used clinically to decrease heart rate and contractility and relax blood vessels.
  • Beta-blockers include atenolol (TenorminTM), propranolol hydrochloride (such as InderalTM), esmolol hydrochloride (BreviblocTM), metoprolol succinate (such as LopressorTM or Toprol XLTM), acebutolol hydrochloride (SectralTM), carteolol (such as CartrolTM), penbutolol sulfate (LevatolTM) and pindolol (ViskenTM).
  • Benzothiazepines eg Diltiazem
  • Dihydropyridines eg nifedipine, Nicardipine, nimodipine and many others
  • Phenylalkylamines eg Verapamil
  • Diarylaminopropylamine ethers eg Bepridil
  • Benzimidazole-substituted tetralines eg Mibefradil.
  • L-type calcium channels L-type calcium channels
  • slow channels L-type calcium channels
  • Different classes of L-type calcium channel blockers bind to different sites on the alpha1-subunit, the major channel-forming subunit (alpha2, beta, gamma, delta subunits are also present).
  • Different sub-classes of L-type channel are present which may contribute to tissue selectivity.
  • Bepridil is a drug with Na+ and K+ channel blocking activities in addition to L-type calcium channel blocking activities.
  • Mibefradil is a drug with Na+ and K+ channel blocking activities in addition to L-type calcium channel blocking activities.
  • Mibefradil is a drug with Na+ and K+ channel blocking activities in addition to L-type calcium channel blocking activities.
  • Mibefradil is a drug with Na+ and K+ channel blocking activities in addition to L-type calcium channel blocking activities.
  • Mibefradil is a drug with Na+ and K+ channel blocking activities in addition to L-type calcium channel blocking activities.
  • Nifedipine and related dihydropyridines do not have significant direct effects on the atrioventricular conduction system or sinoatrial node at normal doses, and therefore do not have direct effects on conduction or automaticity. While other calcium channel blockers do have negative chronotropic/dromotropic effects (pacemaker activity/conduction velocity). For example, Verapamil (and to a lesser extent diltiazem) decreases the rate of recovery of the slow channel in AV conduction system and SA node, and therefore act directly to depress SA node pacemaker activity and slow conduction.
  • Verapamil is also contraindicated in combination with beta-blockers due to the possibility of AV block or severe depression of ventricular function.
  • mibefradil has negative chronotropic and dromotropic effects.
  • Calcium channel blockers may also be particularly effective in treating unstable angina if underlying mechanism involves vasospasm.
  • Omega conotoxin MVIIA (SNX-111) is an N type calcium channel blocker and is reported to be 100-1000 fold more potent than morphine as an analgesic but is not addictive. This conotoxin is being investigated to treat intractable pain.
  • SNX-482 a further toxin from the venom of a carnivorous spider venom, blocks R-type calcium channels. The compound is isolated from the venom of the African tarantula, Hysterocrates gigas, and is the first R-type calcium channel blocker described. The R-type calcium channel is believed to play a role in the body's natural communication network where it contributes to the regulation of brain function.
  • Calcium channel blockers from animal kingdom include Kurtoxin from South African Scorpion, SNX-482 from African Tarantula, Taicatoxin from the Australian Taipan snake, Agatoxin from the Funnel Web Spider, Atracotoxin from the Blue Mountains Funnel Web Spider, Conotoxin from the Marine Snail, HWTX-1 from the Chinese bird spider, Grammotoxin SIA from the South American Rose Tarantula. This list also includes derivatives of these toxins that have a calcium antagonistic effect.
  • Direct ATP-sensitive potassium channel openers eg nicorandil, aprikalem
  • indirect ATP-sensitive potassium channel openers eg adenosine, opioids
  • One mechanism believed for ATP-sensitive potassium channel openers also acting as calcium antagonists is shortening of the cardiac action potential duration by accelerating phase 3 repolarisation and thus shortening the plateau phase. During the plateau phase the net influx of calcium may be balanced by the efflux of potassium through potassium channels.
  • the enhanced phase 3 repolarisation may inhibit calcium entry into the cell by blocking or inhibiting L-type calcium channels and prevent calcium (and sodium) overload in the tissue cell.
  • Calcium channel blockers can be selected from nifedipine, nicardipine, nimopidipine, nisoldipine, lercanidipine, telodipine, angizem, altiazem, bepridil, amlopidine, felodipine, isradipine and cavero and other racemic variations.
  • the potassium channel opener or agonist and/or an adenosine receptor agonist has a blood half-life of less than one minute, preferably less than 20 seconds.
  • the composition may include additional potassium channel openers or agonists, for example diazoxide or nicorandil.
  • composition according to the invention further includes diazoxide.
  • Diazoxide is a potassium channel opener and in the present invention it is believed to preserve ion and volume regulation, oxidative phosphorylation and mitochondrial membrane integrity (appears concentration dependent). More recently, diazoxide has been shown to provide cardioprotection by reducing mitochondrial oxidant stress at reoxygenation. At present it is not known if the protective effects of potassium channel openers are associated with modulation of reactive oxygen species generation in mitochondria.
  • the concentration of the diazoxide is between about 1 to 200 uM. Typically this is as an effective amount of diazoxide. More preferably, the concentration of diazoxide is about 10 uM.
  • composition according to the invention further includes nicorandil.
  • Nicorandil is a potassium channel opener and nitric oxide donor which can protect tissues and the microvascular integrity including endothelium from ischemia and reperfusion damage. Thus it can exert benefits through the dual action of opening KATP channels and a nitrate-like effect. Nicorandil can also reduce hypertension by causing blood vessels to dilate which allows the heart to work more easily by reducing both preload and afterload. It is also believed to have anti-inflammatory and anti-proliferative properties which can further attenuates ischemia/reperfusion injury.
  • the composition according to the invention also includes a compound for inducing local anaesthesia, otherwise known as a local anaesthetic.
  • the local anaesthetic may be selected from mexiletine, diphenylhydantoin, prilocalne, procaine, mepivocaine, quinidine, disopyramide and Class 1B antiarrhythmic agents such as lignocaine or derivatives thereof, for example, QX-314.
  • the local anaesthetic is Lignocaine.
  • the terms “lidocaine” and “lignocaine” are used interchangeably.
  • Lignocaine is preferred as it is capable of acting as a local anaesthetic probably by blocking sodium fast channels, depressing metabolic function, lowering free cytosolic calcium, protecting against enzyme release from cells, possibly protecting endothelial cells and protecting against myofilament damage.
  • lignocaine normally has little effect on atrial tissue, and therefore is ineffective in treating atrial fibrillation, atrial flutter, and supraventricular tachycardias.
  • Lignocaine is also a free radical scavenger, an antiarrhythmic and has anti-inflammatory and anti-hypercoagulable properties.
  • lignocaine is believed to target small sodium currents that normally continue through phase 2 of the action potential and consequently shortens the action potential and the refractory period.
  • sodium channel blockers include compounds that act to substantially block sodium channels or at least downregulate sodium channels.
  • suitable sodium channel blockers include venoms such as tetrodotoxin and the drugs primaquine, QX, HNS-32 (CAS Registry # 186086-10-2), NS-7, kappa-opioid receptor agonist U50 488, crobenetine, pilsicainide, phenytoin, tocainide, mexiletine, NW-1029 (a benzylamino propanamide derivative), RS100642, riluzole, carbamazepine, flecainide, propafenone, amiodarone, sotalol, bretylium, imipramine and moricizine, or any of derivatives thereof.
  • Other suitable sodium channel blockers include: Vinpocetine (ethyl apovincaminate); and Beta-carboline derivative, nootropic beta-carboline (ambocarb, AMB).
  • composition according to the invention consists essentially of (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic.
  • composition according to the invention may further include an opioid.
  • the further addition of an opioid may have similar if not improved effect on the reduction of injury.
  • Opioids also known or referred to as opioid agonists, are a group of drugs that inhibit opium (Gr opion, poppy juice) or morphine-like properties and are generally used clinically as moderate to strong analgesics, in particular, to manage pain, both peri- and post-operatively.
  • Other pharmacological effects of opioids include drowsiness, respiratory depression, changes in mood and mental clouding without loss of consciousness.
  • Opioids are also believed to be involved as part of the ‘trigger’ in the process of hibernation, a form of dormancy characterised by a fall in normal metabolic rate and normal core body temperature. In this hibernating state, tissues are better preserved against damage that may otherwise be caused by diminished oxygen or metabolic fuel supply, and also protected from ischemia reperfusion injury.
  • Opioids act as agonists, interacting with stereospecific and saturable binding sites, in the heart, brain and other tissues.
  • Three main opioid receptors have been identified and cloned, namely mu, kappa, and delta receptors. All three receptors have consequently been classed in the G-protein coupled receptors family (which class includes adenosine and bradykinin receptors).
  • Opioid receptors are further subtyped, for example, the delta receptor has two subtypes, delta-1 and delta-2.
  • Cardiovascular effects of opioids are directed within the intact body both centrally (ie, at the cardiovascular and respiratory centres of the hypothalamus and brainstem) and peripherally (ie, heart myocytes and both direct and indirect effects on the vasculature).
  • opioids have been shown to be involved in vasodilation.
  • Some of the action of opioids on the heart and cardiovascular system may involve direct opioid receptor mediated actions or indirect, dose dependent non-opioid receptor mediated actions, such as ion channel blockade which has been observed with antiarrhythmic actions of opioids, such as arylacetamide drugs.
  • the heart is capable of synthesising or producing the three types of opioid peptides, namely, enkephalin, endorphin and dynorphin.
  • opioid peptides namely, enkephalin, endorphin and dynorphin.
  • delta and kappa opioid receptors have been identified on ventricular myocytes.
  • opioids are considered to provide cardioprotective effects, by limiting ischemic damage and reducing the incidence of arrhythmias, which are produced to counter-act high levels of damaging agents or compounds naturally released during ischemia. This may be mediated via the activation of ATP sensitive potassium channels in the sarcolemma and in the mitochondrial membrane and involved in the opening potassium channels. Further, it is also believed that the cardioprotective effects of opioids are mediated via the activation of ATP sensitive potassium channels in the sarcolemma and in the mitochondrial membrane. Thus it is believed that the opioid can be used instead or in combination with the potassium channel opener or adenosine receptor agonist as they are also involved in indirectly opening potassium channels.
  • opioids include compounds (natural or synthetic) which act both directly and indirectly on opioid receptors.
  • Opioids also include indirect dose dependent, non-opioid receptor mediated actions such as ion channel blockade which have been observed with the antiarrhythmic actions of opioids.
  • the opioid may be selected from enkephalins, endorphins and dynorphins.
  • the opioid is an enkephalin which targets delta, kappa and/or mu receptors. More preferably the opioid is a delta opioid receptor agonist. Even more preferably the opioid is selected from delta-1-opioid receptor agonists and delta-2-opioid receptor agonists.
  • DPDPE D-Pen 2, 5]enkephalin
  • DPDPE is a particularly preferred delta-1-opioid receptor agonist.
  • composition of the invention consists essentially of (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; (ii) a local anaesthetic and (iii) a delta-1-opioid.
  • DPDPE is a particularly preferred delta-1-opioid receptor agonist.
  • the inventor has found that the inclusion of a compound for minimizing or reducing the uptake of water by a cell in a tissue with a potassium channel opener or adenosine receptor agonist and a local anaesthetic assists in reducing injury to a body, such as a composition comprising sucrose, adenosine and lignocaine.
  • composition according to the invention may further include at least one compound for minimizing or reducing the uptake of water by a cell in the cell, tissue or organ.
  • a compound for minimizing or reducing the uptake of water by a cell in the tissue tends to control water shifts, ie, the shift of water between the extracellular and intracellular environments. Accordingly, these compounds are involved in the control or regulation of osmosis.
  • a compound for minimizing or reducing the uptake of water by a cell in the tissue reduces cell swelling that is associated with Oedema, such as Oedema that can occur during ischemic injury.
  • An impermeant according to the present invention may be selected from one or more of the group consisting of: sucrose, pentastarch, hydroxyethyl starch, raffinose, mannitol, gluconate, lactobionate, and colloids. Colloids include albumin, hetastarch, polyethylene glycol (PEG), Dextran 40 and Dextran 60.
  • osmotic purposes include those from the major classes of osmolytes found in the animal kingdom including polyhydric alcohols (polyols) and sugars, other amino acids and amino-acid derivatives, and methylated ammonium and sulfonium compounds.
  • polyhydric alcohols polyols
  • sugars other amino acids and amino-acid derivatives
  • methylated ammonium and sulfonium compounds include those from the major classes of osmolytes found in the animal kingdom including polyhydric alcohols (polyols) and sugars, other amino acids and amino-acid derivatives, and methylated ammonium and sulfonium compounds.
  • Substance P an important pro-inflammatory neuropeptide is known to lead to cell oedema and therefore antagonists of substance P may reduce cell swelling.
  • antagonists of substance P (-specific neurokinin-1) receptor (NK-1) have been shown to reduce inflammatory liver damage, i.e., oedema formation, neutrophil infiltration, hepatocyte apoptosis, and necrosis.
  • NK-1 antagonists include CP-96,345 or [(2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo[2.2.2.)-octan-3-amine (CP-96,345)] and L-733,060 or [(2S,3S) 3 -([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine].
  • R116301 or [(2R-trans)-4-[1-[3,5-bis(trifluoromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-N-(2,6-dimethylphenyl)-1-acetamide (S)-Hydroxybutanedioate] is another specific, active neurokinin-1 (NK(1)) receptor antagonist with subnanomolar affinity for the human NK(1) receptor (K(i): 0.45 nM) and over 200-fold selectivity toward NK(2) and NK(3) receptors.
  • Antagonists of neurokinin receptors 2 (NK-2) that may also reduce cell swelling include SR48968 and NK-3 include SR142801 and SB-222200.
  • Blockade of mitochondrial permeability transition and reducing the membrane potential of the inner mitochondrial membrane potential using cyclosporin A has also been shown to decrease ischemia-induced cell swelling in isolated brain slices.
  • glutamate-receptor antagonists AP5/CNQX
  • reactive oxygen species scavengers ascorbate, Trolox(R), dimethylthiourea, tempol(R)
  • the compound for minimizing or reducing the uptake of water by a cell in a tissue can also be selected from any one of these compounds.
  • Suitable energy substrate can be selected from one or more from the group consisting of: glucose and other sugars, pyruvate, lactate, glutamate, glutamine, aspartate, arginine, ectoine, taurine, N-acetyl-beta-lysine, alanine, proline, beta-hydroxy butyrate and other amino acids and amino acid derivatives, trehalose, floridoside, glycerol and other polyhydric alcohols (polyols), sorbitol, myo-innositol, pinitol, insulin, alpha-keto glutarate, malate, succinate, triglycerides and derivatives, fatty acids and carnitine and derivatives.
  • the at least one compound for minimizing or reducing the uptake of water by the cells in the tissue is an energy substrate.
  • the energy substrate helps with recovering metabolism.
  • the energy substrate can be selected from one or more from the group consisting of: glucose and other sugars, pyruvate, lactate, glutamate, glutamine, aspartate, arginine, ectoine, taurine, N-acetyl-beta-lysine, alanine, proline and other amino acids and amino acid derivatives, trehalose, floridoside, glycerol and other polyhydric alcohols (polyols), sorbitol, myo-innositol, pinitol, insulin, alpha-keto glutarate, malate, succinate, triglycerides and derivatives, fatty acids and carnitine and derivatives.
  • energy substrates are sources of reducing equivalents for energy transformations and the production of ATP in a cell, tissue or organ of the body
  • a direct supply of the energy reducing equivalents could be used as substrates for energy production.
  • a supply of either one or more or different ratios of reduced and oxidized forms of nicotinamide adenine dinucleotide (e.g. NAD or NADP and NADH or NADPH) or flavin adenine dinucleotides (FADH or FAD) could be directly used to supply bond energy for sustaining ATP production in times of stress.
  • beta-hydroxy butyrate is added to the composition of the invention for treatment of trauma or reducing injury.
  • H 2 S hydrogen sulphide
  • H2S donors eg NaHS
  • H 2 S hydrogen sulphide
  • H2S donors eg NaHS
  • Concentrations of Hydrogen sulfide above 1 microM (10-6 M) concentration can be a metabolic poison that inhibits respiration at Respiratory Complex IV, which is part of the mitochondrial respiratory chain that couples metabolising the high energy reducing equivalents from energy substrates to energy (ATP) generation and oxygen consumption.
  • concentrations below 10- 6 M (eg 10- 10 to 10- 9 M)
  • hydrogen sulfide may reduce the energy demand of the whole body, organ, tissue or cell which may result in arrest, protection and preservation.
  • very low levels of sulfide down-regulate mitochondria, reduce O 2 consumption and actually increase “Respiratory Control” whereby mitochondria consume less O 2 without collapsing the electrochemical gradient across the inner mitochondrial membrane.
  • hydrogen sulphide (H 2 S) or H 2 S donors may be energy substrates themselves in addition to improving the metabolism of other energy substrates.
  • the invention provides a composition as described above further including hydrogen sulphide or a hydrogen sulfide donor.
  • the at least one compound for minimizing or reducing the uptake of water by the cells in the tissue is sucrose.
  • Sucrose reduces water shifts as an impermeant.
  • Impermeant agents such as sucrose, lactobionate and raffinose are too large to enter the cells and hence remain in the extracellular spaces within the tissue and resulting osmotic forces prevent cell swelling that would otherwise damage the tissue, which would occur particularly during storage of the tissue.
  • the at least one compound for minimizing or reducing the uptake of water by the cells in the tissue is a colloid.
  • Suitable colloids include, but not limited to, Dextran-70, 40, 50 and 60, hydroxyethyl starch and a modified fluid gelatin.
  • a colloid is a composition which has a continuous liquid phase in which a solid is suspended in a liquid. Colloids can be used clinically to help restore balance to water and ionic distribution between the intracellular, extracellular and blood compartments in the body after an severe injury. Colloids can also be used in solutions for organ preservation. Administration of crystalloids can also restore water and ionic balance to the body but generally require greater volumes of administration because they do not have solids suspended in a liquid. Thus volume expanders may be colloid-based or crystalloid-based
  • the concentration of the compound for minimizing or reducing the uptake of water by the cells in the tissue is between about 5 to 500 mM. Typically this is an effective amount for reducing the uptake of water by the cells in the tissue. More preferably, the concentration of the compound for reducing the uptake of water by the cells in the tissue is between about 20 and 100 mM. Even more preferably the concentration of the compound for reducing the uptake of water by the cells in the tissue is about 70 mM.
  • the composition according to the invention may include more than one compound for minimizing or reducing the uptake of water by the cells in the tissue.
  • a combination of impermeants raffinose, sucrose and pentastarch
  • a combination of colloids, and fuel substrates may be included in the composition.
  • composition according to the invention may be hypo, iso or hyper osmotic.
  • the inventor has also found that the inclusion of a compound for inhibiting transport of sodium and hydrogen ions across a plasma membrane of a cell in the tissue with a potassium channel opener or adenosine receptor agonist and a local anaesthetic assists in reducing injury.
  • composition according to the invention further includes a compound for inhibiting transport of sodium and hydrogen ions across a plasma membrane of a cell in the tissue.
  • the compound for inhibiting transport of sodium and hydrogen across the membrane of the cell in the tissue is also referred to as a sodium hydrogen exchange inhibitor.
  • the sodium hydrogen exchange inhibitor reduces sodium and calcium entering the cell.
  • the compound for inhibiting transport of sodium and hydrogen across the membrane of the cell in the tissue may be selected from one or more of the group consisting of Amiloride, EIPA(5-(N-entyl-N-isopropyl)-amiloride), cariporide (HOE-642), eniporide, Triamterene (2,4,7-triamino-6-phenylteride), EMD 84021, EMD 94309, EMD 96785, EMD 85131, HOE 694.
  • B11 B-513 and T-162559 are other inhibitors of the isoform 1 of the Na+/H+ exchanger.
  • the sodium hydrogen exchange inhibitor is Amiloride (N-amidino-3,5-diamino-6-chloropyrzine-2-carboximide hydrochloride dihydrate). Amiloride inhibits the sodium proton exchanger (Na+/H+ exchanger also often abbreviated NHE-1) and reduces calcium entering the cell. During ischemia excess cell protons (or hydrogen ions) are believed to be exchanged for sodium via the Na+/H+ exchanger.
  • the concentration of the compound for inhibiting transport of sodium and hydrogen across the membrane of the cell in the tissue is between about 1.0 nM to 1.0 mM. More preferably, the concentration of the compound for inhibiting transport of sodium and hydrogen across the membrane of the cell in the tissue is about 20 uM.
  • composition of the present invention may further include an antioxidant.
  • Antioxidants are commonly enzymes or other organic substances that are capable of counteracting the damaging effects of oxidation in the tissue.
  • the antioxidant component of the composition according to the present invention may be selected from one or more of the group consisting of: allopurinol, carnosine, histidine, Coenzyme Q 10, n-acetyl-cysteine, superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GP) modulators and regulators, catalase and the other metalloenzymes, NADPH and AND(P)H oxidase inhibitors, glutathione, U-74006F, vitamin E, Trolox (soluble form of vitamin E), other tocopherols (gamma and alpha, beta, delta), tocotrienols, ascorbic acid, Vitamin C, Beta-Carotene (plant form of vitamin A), selenium, Gamma Linoleic Acid (GLA), alpha-lipoic acid
  • antioxidants include the ACE inhibitors (captopril, enalapril, lisinopril) which are used for the treatment of arterial hypertension and cardiac failure on patients with myocardial infarction.
  • ACE inhibitors exert their beneficial effects on the reoxygenated myocardium by scavenging reactive oxygen species.
  • Other antioxidants that could also be used include beta-mercaptopropionylglycine, O-phenanthroline, dithiocarbamate, selegilize and desferrioxamine (Desferal), an iron chelator, has been used in experimental infarction models, where it exerted some level of antioxidant protection.
  • DMPO 5′-5-dimethyl-1-pyrrolione-N-oxide
  • POBN 4-pyridyl-1-oxide-N-t-butylnitrone
  • antioxidants include: nitrone radical scavenger alpha-phenyl-tert-N-butyl nitrone (PBN) and derivatives PBN (including disulphur derivatives); N-2-mercaptopropionyl glycine (MPG) a specific scavenger of the OH free radical; lipooxygenase inhibitor nordihydroguaretic acid (NDGA); Alpha Lipoic Acid; Chondroitin Sulfate; L-Cysteine; oxypurinol and Zinc.
  • PBN nitrone radical scavenger alpha-phenyl-tert-N-butyl nitrone
  • MPG N-2-mercaptopropionyl glycine
  • NDGA lipooxygenase inhibitor nordihydroguaretic acid
  • Alpha Lipoic Acid Chondroitin Sulfate
  • L-Cysteine oxypurinol and Zinc.
  • the antioxidant is allopurinol (1H-Pyrazolo[3,4-a]pyrimidine-4-ol).
  • Allopurinol is a competitive inhibitor of the reactive oxygen species generating enzyme xanthine oxidase.
  • Allopurinol's antioxidative properties may help preserve myocardial and endothelial functions by reducing oxidative stress, mitochondrial damage, apoptosis and cell death.
  • the concentration of the antioxidant is between about 1 nM to 100 uM.
  • the inventor has also found that the inclusion of particular amounts of calcium and magnesium ions with a potassium channel opener or adenosine receptor agonist and a local anaesthetic reduces injury.
  • the effect of the particular amounts of calcium and magnesium ions is to control the amount of ions within the intracellular environment. Calcium ions tend to be depleted, exported or otherwise removed from the intracellular environment and magnesium ions tend to be increased or otherwise restored to the levels typically found in a viable, functioning cell.
  • the composition according to the invention further includes a source of magnesium in an amount for increasing the amount of magnesium in a cell in body tissue.
  • a source of magnesium in an amount for increasing the amount of magnesium in a cell in body tissue.
  • the magnesium is present at a concentration of between 0.5 mM to 20 mM, more preferably about 2.5 mM. It will be appreciated that these concentrations refer to the effective concentration of the magnesium in the composition that contacts the tissue, organ or cell.
  • typical buffers or carriers in which the composition of the invention is administered typically contain calcium at concentrations of around 1 mM as the total absence of calcium has been found to be detrimental to the cell, tissue or organ.
  • the invention also includes using carriers with low calcium (such as for example less than 0.5 mM) so as to decrease the amount of calcium within a cell in body tissue, which may otherwise build up during injury/trauma/stunning.
  • carriers with low calcium such as for example less than 0.5 mM
  • elevated magnesium and low calcium has been associated with protection during ischemia and reoxygenation of an organ. The action is believed to be due to decreased calcium loading.
  • the calcium present is at a concentration of between 0.1 mM to 0.8 mM, more preferably about 0.3 mM.
  • the composition includes elevated divalent magnesium ions.
  • Magnesium sulphate and magnesium chloride is a suitable source.
  • compositions with corresponding concentrations of Adenosine(Ado), Lignocaine (Lido) and magnesium sulphate are provided, without limitation:
  • Ado Lido MgSO4 7 H2O I 2.25 mM 1.844 mM 243.4 mM II 3.74 mM 3.688 mM 243.4 mM III 3.74 mM 7.376 mM 243.4 mM IV 5.61 mM 3.688 mM 243.4 mM V 5.61 mM 7.376 mM 243.4 mM VI 22.5 mM 18.44 mM 243.4 mM VII 37.4 mM 36.88 mM 243.4 mM VIII 37.4 mM 73.76 mM 243.4 mM IX 56.1 mM 36.88 mM 243.4 mM X 56.1 mM 73.76 mM 243.4 mM
  • concentrations of each respective active ingredient in these compositions refer to the concentrations in the composition before administration. It will be appreciated that the concentrations may be diluted by body fluids or other fluids that may be administered together with the composition. Typically, the composition will be administered such that the concentration of these ingredients at the tissue is about 100-fold less than the concentrations in the table above. For example, containers (such as vials) of such a composition may be diluted 1 to a 100 parts of blood, plasma, crystalloid or blood substitute for administration.
  • the composition according to the invention includes Adenosine and Lignocaine.
  • the concentration of Adenosine and Lidocaine in the composition is between about 1 mM to 100 mM.
  • the final concentration of these components once administered may be between about 0.1 mM to 10 mM.
  • the composition includes a cellular transport enzyme inhibitor, such as dipyridamole, to prevent metabolism or breakdown of components in the composition.
  • a cellular transport enzyme inhibitor such as dipyridamole
  • the invention provides a composition including a local anaesthetic and one or more of:
  • this composition has two, three or four of the above.
  • Preferred compounds for these components are listed above.
  • the invention provides a composition including a potassium channel opener and/or an adenosine agonist and one or more of:
  • this composition has two, three or four of the above.
  • Preferred compounds for these components are listed above.
  • further anti-inflammatory therapies have included the administration of aspirin, normal heparin, low-molecular-weight heparin (LMWH), non-steroidal anti-inflammatory agents, anti-platelet drugs and glycoprotein (GP) IIb/IIIa receptor inhibitors, statins, angiotensin converting enzyme (ACE) inhibitor, angiotensin blockers and antagonists of substance P.
  • aspirin normal heparin
  • LMWH low-molecular-weight heparin
  • GP glycoprotein IIb/IIIa receptor inhibitors
  • statins angiotensin converting enzyme (ACE) inhibitor
  • angiotensin blockers antagonists of substance P.
  • protease inhibitors examples include indinavir, nelfinavir, ritonavir, lopinavir, amprenavir or the broad-spectrum protease inhibitor aprotinin, a low-molecular-weight heparin (LMWH) is enoxaparin, non-steroidal anti-inflammatory agent are indomethacin, ibuprofen, rofecoxib, naproxen or fluoxetine, an anti-platelet drug is Clopidogrel or aspirin, a glycoprotein (GP) IIb/IIIa receptor inhibitor is abciximab, a statin is pravastatin, an angiotensin converting enzyme (ACE) inhibitor is captopril and an angiotensin blocker is valsartin.
  • LMWH low-molecular-weight heparin
  • non-steroidal anti-inflammatory agent are indomethacin
  • ibuprofen rofecoxib
  • composition according to the invention a selection of these agents is added to a composition according to the invention to deliver improved management of inflammation and clotting.
  • the composition according to the invention may be administered together with any one or more of these agents.
  • protease inhibitors attenuate the systemic inflammatory response in patients undergoing cardiac surgery with cardiopulmonary bypass, and other patients where the inflammatory response has been heightened such as AIDS or in the treatment of chronic tendon injuries.
  • Some broad spectrum protease inhibitors such as aprotinin are also reduce blood loss and need for blood transfusions in surgical operations such as coronary bypass.
  • nucleoside transport inhibitors such as dipyridamole
  • dipyridamole adenoside transport inhibitors
  • the half life of adenosine in the blood is about 10 seconds so the presence of a medicament to substantially prevent its breakdown will maximise the effect of the composition of the present invention.
  • the composition according to the invention may also include Dipyridamole is advantageously included in a concentration from about 0.01 microM to about 10 mM, preferably 0.05 to 100 microM., Dipyridamole and has major advantages with respect to cardioprotection. Dipyridamole may supplement the actions of adenosine by inhibiting adenosine transport and breakdown leading to increased protection of cells, tissues and organs of the body during times of stress. Dipyridamole may also be administered separately for example by 400 mg daily tablets to produce a plasma level of about 0.4 microgram/ml, or 0.8 microM concentration.
  • composition according to the present invention is highly beneficial at about 10° C. but can also be used to prevent injury over a wider temperature range up to about 37° C.
  • the composition according to the invention may be used at a temperature range selected from the following: 0° C. to 5° C., 5° C. to 20° C., 20° C. to 32° C. and 32° C. to 38° C.
  • the composition may be administered intravenously or be administered both intravenously and intraperitoneally or in special circumstances directly accessing a major artery such as the femoral artery or aorta in patients who have no pulse from massive exsanguination.
  • the composition of the invention may be administered intravenously and intraperineally simultaneously, the perineum acting as, in effect, a reservoir of composition for the bloodstream as well as acting on organs in the vicinity with which it comes into contact. This is particularly suitable for a trauma victim, such as one suffering shock.
  • the composition of the present invention protects and preserves tissue of a body after trauma, such as heart attacks, strokes etc, with good to excellent recoveries of function or viability of body tissue after reperfusion.
  • Affecting viability of a tissue during preservation and recovery of the body tissue, such that affected tissue remains viable or living during those processes and is capable of returning to its function, particularly after the tissue has been subject to shock, is crucial.
  • reducing injury to a body relates to maintaining affected tissue in a viable state, such that the tissue is capable of returning to its function, after trauma.
  • Maintaining or stabilising the tissue in a viable state includes maintaining the membrane potential of tissue cells at or around resting level, so as to reduce sodium or calcium loading of the cell which is a cause of injury during ischaemia and reperfusion.
  • Preservation is known as the act or process of preserving the tissue or keeping from injury, destruction or decay.
  • the composition according to the invention acts to minimise any potential injury, destruction or decay of the tissue of a body which may be caused by trauma.
  • reversible cell injury can lead to heart dysfunction usually from arrhythmias and/or stunning.
  • Stunning is normally characterised as loss of left pump function during restoration of blood flow following periods of ischemia. If severe, it can lead to the death of the heart, usually from arrhythmias, even though the heart cells themselves are not initially dead.
  • Irreversible injury by definition arises from actual cell death which may be fatal depending upon the extent of the injury. The amount of cell death can be measured as infarct size.
  • the heart can be restored substantially to normal function of the tissue by reperfusion, with minimal infarct size.
  • the most common ways to assess return of function of a heart are by measuring pressures that the heart can generate:
  • heart pump flow ; and the electrical activity of the heart.
  • This data is then compared to data measured from pre-arrest conditions.
  • the composition of the present invention is particularly useful in reducing injury to heart tissue during heart surgery (open-heart or robotic heart surgery), including heart transplants, and neonate/infant hearts.
  • Other applications include reducing heart damage before, during or following cardiovascular intervention which may include a heart attack, angioplasty or angiography.
  • the composition may be administered to subjects who have suffered or are developing a heart attack and used at the time of administration of blood clot-busting drugs such as streptokinase. As the clot is dissolved, the presence of the composition may protect the heart from further injury such as reperfusion injury.
  • the composition may be particularly effective as a cardioprotectant in those portions of the heart that have been starved of normal flow, nutrients and/or oxygen for different periods of time.
  • the pharmaceutical composition may also be used to treat heart ischaemia which could be pre-existing or induced by cardiovascular intervention.
  • Other applications include assisting in diagnostic procedures such as assessment of a subject's health while exercising on a treadmill or, if subjects cannot exercise on a treadmill, to assist in visualising areas of the body such as the heart that may have partially or fully blocked blood vessels, or damaged heart cells.
  • the invention may be used during different visualization procedures such as X-ray (routine and computerized tomography) or magnetic resonance imaging (MRI) of a subject's body or organs and tissues within the body or isolated from the body.
  • the invention may be used to temporarily lower the heart rate of a subject and thereby reduce movement (ie. from increasing heart relaxation) and permit faster scan times during the diagnostic assessment of potential injury in a blood vessel, tissue or organ of the body, particularly in the heart. Lowering heart rate and permitting faster scan times may also lower the doses of radiation required to visualize the potential areas of injury or damage.
  • a method of preserving a vessel, tissue or organ of the body, such as a heart comprising administering a composition as described above before, during or after medical intervention affecting the vessel, tissue or organ of the body, such as a heart.
  • the composition used in this embodiment of the invention may have an arresting or a non-arresting concentration of active components in it.
  • the method includes administering a non-arresting concentration of the composition and, in another form, it has an arresting concentration of the composition (preferably as a bolus) followed by a non-arresting concentration of the composition.
  • the present invention may be administered with or contain blood or blood products or artificial blood or oxygen binding molecules or solutions to improve the body's oxygen transport ability and survival by helping to reduce hypoxic and ischemic damage from blood loss.
  • the oxygen-containing molecules, compounds or solutions may be selected from natural or artificial products.
  • an artificial blood-based product is perfluorocarbon-based or other haemoglobin-based substitute.
  • Some of the components may be added to mimic human blood's oxygen transport ability such HemopureTM, GelenpolTM, OxygentTM, and PolyHemeTM.
  • Hemopore is based on a chemically stabilized bovine hemoglobin.
  • Gelenpol is a polymerized hemoglobin which comprises synthetic water-soluble polymers and modified heme proteins.
  • Oxygent is a perflubron emulsion for use as an intravenous oxygen carrier to temporarily substitute for red blood cells during surgery.
  • Polyheme is a human hemoglobin-based solution for the treatment of life-threatening blood loss.
  • oxygenation of the body from a variety of ways including but not limited to oxygen gas mixture, blood, blood products or artificial blood or oxygen binding solutions maintains mitochondrial oxidation and this helps preserve the myocyte and endothelium of the organ. Without being bound by any particular mode or theory, the inventor has found that gentle bubbling with 95% 0 2 /5% CO 2 helps maintains mitochondrial oxidation which helps preserve the myocyte and coronary vasculature.
  • the composition is aerated with a source of oxygen before and/or during use.
  • the source of oxygen may be an oxygen gas mixture where oxygen is the predominant component.
  • the oxygen may be mixed with, for example, CO 2 .
  • the oxygen gas mixture is 95% O 2 and 5% CO 2 .
  • a method for reducing injury including:
  • the oxygen source is an oxygen gas mixture.
  • oxygen is the predominant component.
  • the oxygen may be mixed with, for example CO 2 . More preferably, the oxygen gas mixture is 95% O 2 and 5% CO 2 .
  • the composition is aerated before and/or during contact with the tissue.
  • composition according to this aspect of the invention may be in liquid form.
  • Liquid preparations of the pharmaceutical composition may take the form of, for example, solutions, syrups, or suspensions, or may be presented as a dry product for constitution with water or other suitable vehicle.
  • Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents, emulsifying agents, non-aqueous vehicles, preservatives and energy sources.
  • the invention comprises a composition in tablet form and in another form, the invention comprises an aerosol which could be administered via oral, skin or nasal routes.
  • a method of protecting heart tissue from reperfusion injury comprising inflammatory and blood clotting and coagulation effects often experienced during reperfusion following an ischaemic event, such as in the post-operative period or longer-term recovery.
  • the method comprises administering a solution comprising a non-arresting form of the composition according to the present invention, optionally following a bolus of an arresting form.
  • the invention also provides a method for reducing infarction size and/or reducing inflammation and blood coagulation responses in heart tissue during ischaemia and/or reperfusion comprising administration of the same solution.
  • the body may be a human or an animal such as a livestock animal (eg, sheep, cow or horse), laboratory test animal (eg, mouse, rabbit or guinea pig) or a companion animal (eg, dog or cat), particularly an animal of economic importance.
  • a livestock animal eg, sheep, cow or horse
  • laboratory test animal eg, mouse, rabbit or guinea pig
  • a companion animal eg, dog or cat
  • the body is human.
  • the invention also provides a method for managing pain, including neuropathic pain, including administering an effective amount of a composition according to the invention described above.
  • the present invention is particularly advantageous in reducing injury in the body, for example in the treatment of the heart in circumstances of myocardial infarction or heart attack, or during surgical procedures, for example during open-heart surgery.
  • the method of the present invention involves contacting a tissue with the composition according to the invention, for a time and under conditions sufficient for the tissue to be preconditioned, arrested, protected and/or preserved.
  • the composition may be infused or administered as a bolus intravenous, intracoronary or any other suitable delivery route as pre-treatment for protection during a cardiac intervention such as open heart surgery (on-pump and off-pump), angioplasty (balloon and with stents or other vessel devices) and as with clot-busters (anti-clotting drug or agents).
  • the composition may be administered intravenously or be administered both intravenously and intraperitoneally or in special circumstances directly accessing a major artery such as the femoral artery or aorta in patients who have no pulse from massive exsanguination, or in the carotid artery or another artery during aortic dissection to protect the brain from hypoxia or ischemia.
  • the composition of the invention may be administered intravenously and intraperineally simultaneously, the perineum acting as, in effect, a reservoir of composition for the bloodstream as well as acting on organs in the vicinity with which it comes into contact. This is particularly suitable for a trauma victim, such as one suffering shock.
  • the composition contains two or more components, these may be administered separately but simultaneously.
  • Substantially simultaneous delivery of the component to the target site is desirable. This may be achieved by pre-mixing the components for administration as one composition, but that is not essential.
  • the invention is directed towards the simultaneous increase in local concentration (for example an organ such as the heart) of the components of a composition according to the invention (for example, where a first component is (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic).
  • a first component is (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic).
  • a first component is (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a local anaesthetic).
  • a first component is (i) a potassium channel opener or agonist and/or an adenosine receptor agonist; and (ii) a
  • the invention may be practised by administering the compound using a perfusion pump, often associated with a procedure known as “miniplegia” or “microplegia”, in which minimal amount of actives are titrated by means of a finely adjustable pump directly via a catheter.
  • miniplegia or “microplegia”
  • a protocol utilises miniplegia as described above, where micro amounts are titrated directly to the heart, using the patient's own oxygenated blood.
  • the reference to a “setting” is a measure on the pump, such as a syringe pump, of the amount of substance being delivered directly to the organ, such as a heart.
  • composition can also be infused or administered as a bolus intravenous, intracoronary or any other suitable delivery route for protection during cardiac intervention such as open heart surgery (on-pump and off-pump), angioplasty (balloon and with stents or other vessel devices) and as with clot-busters to protect and preserve the cells from injury.
  • open heart surgery on-pump and off-pump
  • angioplasty balloon and with stents or other vessel devices
  • clot-busters to protect and preserve the cells from injury.
  • composition may also be infused or administered as a bolus intravenous, intracoronary or any other suitable delivery route for protection following a cardiac intervention such as open heart surgery (on-pump and off-pump), angioplasty (balloon and with stents or other vessel devices) and as with clot-busters to protect and preserve the cells from injury.
  • a cardiac intervention such as open heart surgery (on-pump and off-pump), angioplasty (balloon and with stents or other vessel devices) and as with clot-busters to protect and preserve the cells from injury.
  • the tissue may be contacted by delivering the composition according to the invention intravenously to the tissue.
  • the composition according to the invention may be used for blood cardioplegia.
  • the composition may be administered directly as a bolus by a puncture (eg, by syringe) directly to the tissue or organ, particularly useful when blood flow to a tissue or organ is limiting.
  • the composition for arresting, protecting and preserving a tissue may also be administered as an aerosol, powder, solution or paste via oral, skin or nasal routes.
  • the composition may be administered directly to the tissue, organ or cell or to exposed parts of the internal body to reduce injury.
  • the composition according to the invention may be used for crystalloid cardioplegia.
  • composition according to the invention may be delivered according to one of or a combination of the following delivery protocols: intermittent, continuous and one-shot.
  • compositions for arresting, protecting and preserving a tissue of a body upon administration of a single dose of the composition including a primary potassium channel opener or agonist and/or adenosine receptor agonist and a local anaesthetic.
  • the invention also provides a method for arresting and protecting an tissue comprising administering as a single dose an effective amount of that composition.
  • a composition for arresting, protecting and preserving a tissue by intermittent administration of the composition including an effective amount of a primary potassium channel opener or agonist and/or adenosine receptor agonist and a local anaesthetic.
  • a suitable administration schedule is a 2 minute induction dose every 20 minutes throughout the arrest period. The actual time periods can be adjusted based on observations by one skilled in the art administering the composition, and the animal/human model selected.
  • the invention also provides a method for intermittently administering a composition for arresting, protecting and preserving a tissue.
  • composition can of course also be used in continuous infusion with both normal and injured tissues or organs, such as heart tissue.
  • Continuous infusion also includes static storage of the tissue, whereby the tissue is stored in a composition according to the invention, for example the tissue may be placed in a suitable container and immersed in a solution according to the invention for transporting donor tissues from a donor to recipient.
  • composition according to the invention may be delivered as a one-shot to the tissue to initially arrest of the tissue.
  • a further composition according to the invention may then be administered continuously to maintain the tissue in an arrested state.
  • a further composition according to the invention may be administered continuously to reperfuse the tissue or recover normal function.
  • the composition according to the invention may be used or contact the tissue at a temperature range selected from one of the following: from about 0° C. to about 5° C., from about 5° C. to about 20° C., from about 20° C. to about 32° C. and from about 32° C. to about 38° C.
  • profound hypothermia is used to describe a tissue at a temperature from about 0° C. to about 5° C.
  • Mode hypothermia is used to describe a tissue at a temperature from about 5° C. to about 2° C.
  • “Mild hypothermia” is used to describe a tissue at a temperature from about 20° C. to about 32° C.
  • Normal body temperature is around 37 to 38° C.
  • each component of the composition While it is possible for each component of the composition to contact the tissue alone, it is preferable that the components of the pharmaceutical composition be provided together with one or more pharmaceutically acceptable carriers, diluents, adjuvants and/or excipients.
  • Each carrier, diluent, adjuvant and/or excipient must be pharmaceutically acceptable such that they are compatible with the components of the pharmaceutical composition and not harmful to the subject.
  • the pharmaceutical composition is prepared with liquid carriers, diluents, adjuvants and/or excipients.
  • composition according to the invention may be suitable for administration to the tissue in liquid form, for example, solutions, syrups or suspensions, or alternatively they may be administered as a dry product for constitution with water or other suitable vehicle before use.
  • Such liquid preparations may be prepared by conventional means.
  • composition according to the invention may be suitable for topical administration to the tissue.
  • Such preparation may be prepared by conventional means in the form of a cream, ointment, jelly, solution or suspension.
  • compositions may also be formulated as depot preparations. Such long acting formulations may be administered by implantation (eg, subcutaneously or intramuscularly) or by intramuscular injection.
  • composition according to the invention may be formulated with suitable polymeric or hydrophobic materials (eg, as an emulsion in an acceptable oil or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
  • this aspect of the invention also provides a method for reducing injury, which includes providing the composition together with a pharmaceutically acceptable carrier, diluent, adjuvant and/or excipient.
  • a pharmaceutically acceptable carrier is a buffer having a pH of about 6 to about 9, preferably about 7, more preferably about 7.4 and/or low concentrations of potassium.
  • the composition has a total potassium concentration of up to about 10 mM, more preferably about 2 to about 8 mM, most preferably about 4 to about 6 mM.
  • One advantage of using low potassium is that it renders the present composition less injurious to the subject, in particular paediatric subjects such as neonates/infants.
  • High potassium has been linked to an accumulation of calcium which may be associated with irregular heart beats during recovery, heart damage and cell swelling. Neonates/infants are even more susceptible than adults to high potassium damage during cardiac arrest. After surgery a neonate/infant's heart may not return to normal for many days, sometimes requiring intensive therapy or life support.
  • composition according to the present invention for reducing injury.
  • composition is aerated before and/or during administration or contact with the tissue.
  • FIG. 1 shows ECG trace of rat heart (A) prior to hemorrhagic shock (B) during shock and (C) after bolus administration of 0.5 ml Adenosine/Lignocaine solution directly into the heart of the rat.
  • FIG. 2 shows in more detail the ECG trace of the rat heart from FIG. 1 (A) during hemorrhagic shock and after injection of Adenosine/Lignocaine solution directly into the heart of the rat and (B) 10 seconds following injection.
  • the time of injection of the solution is indicated by the arrow (I).
  • Arrow (II) denotes the proposed time at which further treatment may be required.
  • FIG. 3 shows an ECG trace of normal rat heart prior to commencement of hemorrhagic shock.
  • FIG. 4 shows ECG trace of rat at end of bleed period prior to commencement of “shock period”
  • FIG. 5 shows ECG trace of rat heart at the end of first 60 mins shock period
  • FIG. 6 shows ECG trace of rat heart at the end of 120 mins shock period
  • FIG. 7 shows an ECG trace of rat heart at the end of 3 hour shock period
  • FIG. 8 shows an ECG trace of rat heart 10 mins after bolus administration of ALM (Adenosine;Lignocaine;Magnesium)
  • FIG. 9 shows an ECG trace of rat heart 30 mins after bolus administration of ALM
  • FIG. 10 shows an ECG trace of rat heart 60 mins after bolus administration of ALM
  • FIG. 11 shows an ECG trace of rat heart 90 mins after bolus administration of ALM
  • FIG. 12 shows ECG trace of rat heart (A) prior to Hemorrhagic shock (45% blood loss); (B) 60 min following hemorrhagic shock and intravenous administration of Adenosine/Lignocaine resuscitation fluid (C) 180 mins following hemorrhagic shock and intravenous administration of Adenosine/Lignocaine resuscitation fluid.
  • FIG. 13 shows in more detail the ECG monitoring of the rat heart from FIG. 12 following hemorrhagic shock (A) after administration of 0.5 ml 7.5% saline and (B) after administration of 0.5 ml Adenosine/Lignocaine resuscitation fluid.
  • compositions of the invention for the purpose of illustrating the invention.
  • mice Male Sprague Dawley rats (300-350 g) from the James Cook University Breeding Colony are fed ad libitum and housed in a 12-hour light/dark cycle. On the day of the experiment rats are anesthetized with an intraperitoneal injection of Nembutal (Sodium Thiopentone (Thiobarb); 100 mg/kg) and the anaesthetic administered as required throughout the protocol. Animals are treated in accordance with the Guide for the Care and Use of Laboratory Animals published by the US national Institutes of Health (NIH Publication No. 85-23, revised 1996).
  • Nembutal Sodium Thiopentone (Thiobarb); 100 mg/kg
  • Lignocaine hydrochloride is sourced as a 2% solution (ilium) from the local Pharmaceutical Suppliers (Lyppard, Queensland). All other chemicals, including adenosine (A9251>99% purity), are sourced from Sigma Aldrich (Castle Hill, NSW).
  • Anesthetized non-heparinized animals are positioned in a specially designed plexiglass cradle.
  • a tracheotomy is performed and the animals artificially ventilated at 75-80 strokes per min on humidified room air using a Harvard Small Animal Ventilator (Harvard Apparatus, Mass., USA) to maintain blood pO 2 , pCO 2 and pH in the normal physiological range (Ciba-Corning 865 blood gas analyzer).
  • Body temperature is maintained at 37° C. (Homeothermic Blanket Control Unit, Harvard Apparatus, Mass., USA).
  • a rectal probe is used to measure core body temperature.
  • the left femoral vein is cannulated using PE-50 tubing for drug withdrawal and infusions while the right femoral artery is cannulated for blood collection and blood pressure monitoring (UFI 1050 BP coupled to a MacLab). All cannulae contains heparinized saline (100 U/ml saline).
  • Electrocardiogram (ECG) leads are implanted subcutaneously in a lead II ECG configuration. Rats are stabilized for 15-20 minutes prior to blood withdrawal. Any animal that had dysrhythmias and/or a sustained fall in mean arterial blood pressure below 80 mmHg are discarded from the study.
  • Hemorrhagic shock is induced by withdrawing blood from the femoral vein or artery at a rate of 3 ml/100 g rat over 10 min to lower the mean arterial blood pressure (MAP) to between 30 and 35 mmHg.
  • MAP mean arterial blood pressure
  • rats receive the resuscitation solutions outlined in each of the experiments below to achieve a MAP of 80-90 mmHg (Note: in some experiments the MAP is kept low to around 40-60 mmHg from the hypotensive effect of adenosine and lignocaine to better balance the body's energy supply and energy demand index).
  • MAP haemodynamics
  • HR heart rate
  • Rats are prepared, subjected to hemorrhagic shock and resuscitated as described in Example 3 together with an intraperitoneal bolus of 5 ml of 0.2 mM adenosine (or adenosine analogues or agonists) and 0.5 mM lignocaine.
  • Rats are prepared, subjected to hemorrhagic shock and resuscitated as described in Example 4 together with an intraperitoneal bolus of 5 ml of 0.2 mM adenosine (or adenosine analogues or agonists) and 0.5 mM lignocaine.
  • Examples 1 to 6 are repeated at 35, 33, 20, and 4° C.
  • the formulations are equilibrated with air or, if found to be efficacious in preliminary testings, may be aerated or have an oxygen containing perfluorocarbon based, or haemoglobin based substitute present or blood, a blood product or artificial blood.
  • Components may be added to mimic human blood's oxygen transport ability such as HemopureTM, GelenpolTM, OxygentTM, PolyHemeTM.
  • the cardioplegia composition and protocol for human patients in Groups A-E are as follows.
  • Each 500 ml contains: Sodium Chloride BP 4.5 g, Potassium Chloride BP 1 g, Magnesium Chloride BP 2.6 g.
  • Sodium Bicarbonate 25 mmol/500 ml
  • monosodium Aspartate 14 mmol/500 ml
  • the arrest solution is same as K+ maintenance but the myocardial heart temperature during induction, maintenance and terminal shot is 32 to 38° C. The heart remains arrested at this time.
  • A is about 0.2 to 2 mM and L is about 0.2 to 4 mM. These concentrations have been shown to be safe in humans. Magnesium may be 1.0-20 mM. The arresting induction is at higher levels of A and L and maintenance dose may be lower e.g. at half the concentration to induce arrest. Final K+ infused into the heart around final 3-6 mM (normally around 5 mM). The temperature profiles of the induction and maintenance volumes are similar to the temperature protocol described for Group A & B.
  • the adenosine and lignocaine solution does not arrest the heart but protects and preserves the heart during reanimation. It may beat prior to release of cross clamp.
  • Concentrations of AL and M are A 10-40 micromolar, L: 30-50 micromolar and magnesium sulphate of 10-20 mM and the temperatures 32 to 38° C.
  • Composition of cardioplegia solution for Group E Same as Group D above but with pretreatment/preconditioning doses of adenosine and lignocaine concentrations with or without magnesium sulphate during reperfusion or during postconditioning +adenosine and lignocaine concentrations with or without magnesium sulphate.
  • AL plus Mg++ (also called “ALM”) used at 10 uM A, 30 uM L and 16 mM MgSO4 cassette.
  • ventricular tachycardia and/or fibrillation Treatment of patients enrolled in the study who suddenly experience life-threatening arrhythmias (ventricular tachycardia and/or fibrillation): If a patient has a sudden cardiac event such as a heart attack and the heart's beating rhythm abruptly changes (eg. converts to ventricular tachycardia or ventricular fibrillation) in hospital prior to or after surgery, a bolus dose of adenosine and lignocaine with or without magnesium is given intravenously (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required).
  • a sudden cardiac event such as a heart attack and the heart's beating rhythm abruptly changes (eg. converts to ventricular tachycardia or ventricular fibrillation) in hospital prior to or after surgery
  • a bolus dose of adenosine and lignocaine with or without magnesium is given intravenously (or
  • a bolus dose of adenosine and lignocaine with or without magnesium is given intravenously (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required).
  • Intravenous infusion of adenosine and lignocaine using a lower lignocaine dose was highly cardioprotective.
  • Adenosine and lignocaine with lower lignocaine concentrations resulted in no deaths, virtually abolished severe arrhythmias and decreased infarct size in the rat model of acute ischemia.
  • a composition of the invention administered in patients undergoing beating-heart surgery will be via an intravenous route through a dedicated port on a central venous line.
  • the composition comprises 305 ⁇ g/kg/min adenosine plus 60 ⁇ g/kg/min lignocaine and is administered intravenously 5 min before and during each coronary artery anastomosis.
  • a single lignocaine bolus (1 mg/kg) is injected for 3 min immediately before the first administration of the AL solution.
  • Lignocaine per minute Prior to adenosine and lignocaine solution 70 mg of lignocaine-HCL is given as a bolus.
  • Example of IV infusion Protocol To make 300 ml (not 500 ml) it would be 3 ⁇ 5 ⁇ 13.23 g Ado and 3 ⁇ 5 ⁇ 132 ml lignocaine HCl and infuse iv at 50 ml per hour.
  • Ado Ado
  • 3 ⁇ 5 ⁇ 132 ml lignocaine HCl Ado and 3 ⁇ 5 ⁇ 132 ml lignocaine HCl and infuse iv at 50 ml per hour.
  • Adenosine infusion rate 0.311 mg/kg/min or 21.77 mg/human patient/min
  • Lignocaine-HCl infusion rate 0.0627 mg/kg/min or 4.39 mg/human patient/min.
  • Timing of administration 5 min before surgery, continued during regional ischaemia and stop following completion of the anastomosis.
  • High potassium-linked Ca 2+ loading has been linked to myocardial stunning, ventricular arrhythmias, ischaemic injury, microvascular injury, tissue oedema, free radical production and functional loss during the reperfusion period.
  • Depolarising potassium is also a potent coronary vasoconstrictor and this may further compound any antecedent vulnerability of the heart to injury during cardioplegic arrest, maintenance and recovery.
  • a large number of sudden deaths are caused by acute ventricular tachyarrhythmias (ventricular tachycardia and/or fibrillation) and often triggered by acute coronary events in association with heart disease or in persons without known cardiac disease.
  • the most common pathophysiological cascade in the appearance of fatal arrhythmias is that ventricular tachycardia degenerates to ventricular fibrillation and later to asystole or cardiac arrest and death. If a patient experiences a sudden cardiac event such as a heart attack and the heart's beating rhythm abruptly changes (eg.
  • a bolus dose of adenosine and lignocaine with or without magnesium is given intravenously (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required).
  • a bolus dose of adenosine and lignocaine with or without magnesium is given intravenously (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required).
  • the method to treat human subjects suffering from an unexpected cardiac event leading to irregular arrhythmias such as acute ventricular tachyarrhythmias and pharmacologically convert the heart to normal beating or sinus rhythm using adenosine and lignocaine with and without magnesium is as follows.
  • Microplegia is an alternative method to infusing the myocardium with the standard 4:1 mixture of blood and cardioplegia to arrest the heart.
  • Microplegia aims to induce and maintain aerobic arrest of the heart by delivering continuous oxygen rich blood coupled with micro titrations of potassium (arrest) and magnesium (additive) solutions. Aerobic arrest offers superior myocardial protection over that of standard 4:1 cardioplegia regimens and tighter control of blood glucose levels.
  • adenosine and lignocaine to the additive mixture, an even higher level of myocardial protection is expected to produce long-lasting perioperative benefits to the patient.
  • the composition of adenosine and lignocaine makes cardiac surgery safer for the patient and more predictable for the surgeon.
  • This example compares potassium arrest induction and maintenance cardioplegia and a non-arrest reanimation solution using adenosine and lignocaine with and without magnesium.
  • the maintenance solution may also contain adenosine and lignocaine but the principal mode of arrest in these groups will be high potassium.
  • adenosine and lignocaine will be the principal mode of arrest, protection and preservation for induction and maintenance cardioplegia and reanimation will be compared to the potassium arrest, maintenance and reanimation groups.
  • a bolus of adenosine and lignocaine with or without magnesium will be given in the perfusion line (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required).
  • Microplegia Delivery Protocol Patients scheduled for on-pump coronary artery bypass surgery, valve surgery or combined procedure; or re-operations of the same. Patients receive anaesthesia and cardiac surgery as per usual practice.
  • the use of inotropes, vasoconstrictors is “protocol-driven” and based on criteria for use as agreed upon by the surgical/anaesthesia team.
  • the following are cassette formulations designed for arrest, maintenance and reanimation of the heart in, for example, the Quest MPS® Microplegia System.
  • a bolus dose of adenosine and lignocaine with or without magnesium will be given in the perfusion line or suitable entry point to the heart muscle (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required). If the patient has life-threatening severe arrhythmias in the intensive care ward a bolus dose of adenosine and lignocaine with or without magnesium will be given intravenously (or intracardiac) to resuscitate the heart prior to using the defibrillator (if a defibrillator is required).
  • compositions and methods of the invention can also be used during periods of reduced metabolic activity to reduce damage, such as cell quiescence (medically induced or otherwise). Cardiac surgery is one example. In this example, a known hyperkalemic cardioplegic is used, and the composition of the present invention is administered to reduce tissue damage during the operation.
  • This protocol uses miniplegia as described above, where micro amounts of the composition of the invention are mixed at various proportions with the patient's own oxygenated blood and perfused into the heart at different settings.
  • the reference to a “setting” is a measure on the pump, such as a syringe pump, of the amount of substance being mixed in blood and delivered directly to the organ, in this example a heart.
  • Lignocaine is added to this cassette as described below to deliver the improved results.
  • Lignocaine is added at a concentration of 0.1 to 10 times that of adenosine, preferably 0.5 to 2 times.
  • lignocaine is added to this cassette from its first use so that a combination of adenosine and lignocaine is administered during the maintenance or quiescent phase of a procedure. It is found that this further improves the prospects of heart recovery and/or reduced post-operative complications.
  • the procedure used to administer the composition in this example was as follows, with an overall objective of creating aerobic arrest, not ischemic arrest.
  • hypothermia The clinical results attained with warm blood cardioplegia have suggested that earlier observations on impairment of some cell functions by hypothermia may be more relevant than previously thought. These include reduced:
  • Cold maintenance provides a reduction in metabolic uptake with the slow increase in temperature occurring during the natural course of cross clamp due to ice melting. Average temperature will drift to around 12 to 14° C.
  • the warm shot at the end is a most important aspect of myocardial protection.
  • the Additive cassette was used as described above, such that during the recovery phase it contained Adenosine, Lignocaine and Magnesium (hence the label “ALM”).
  • ALM was administered at cross-clamp removal in accordance with the protocol described above.
  • Table 1 sets out the characteristics of the 2688 patients and Table 2 sets out the occurrence of different post-operative complications measured.
  • Table 2 the clinical outcomes are tabulated for the patients identified in Table 1.
  • the third column represents the ALM proportion of patients as a percentage of the proportion of standard cardioplegia patients for each outcome (ie second column as a percentage of the first column). All of the outcomes in the left column are negative outcomes, and thus their minimisation is desired.
  • AL solution 200 microM Adenosine, 500 microM Lignocaine in Krebs Henseleit solution
  • Rats were subjected to hemorrhagic shock for 2 hrs and 10 mins as described above.
  • FIG. 1 shows the ECG monitoring of the rat heart during this experiment.
  • FIG. 1C shows that the HR increased to 207 bpm 1.5 seconds following administration of the solution.
  • FIG. 2A shows in more detail the cardioversion of the rat heart during this experiment.
  • the rat heart rate increased from 35 bpm to 207 bpm.
  • the point of administration of the solution is denoted as (I).
  • FIG. 2B shows the heart rate of this rat slowing again 10 seconds after the administration of the solution.
  • This example aims to pharmacologically induce a hypometabolic ‘hibernating-like’ state during resuscitation to better balance the whole body oxygen supply-demand ratio and to aggressively attenuate the inflammatory and hypercoagulable imbalances associated with traumatic hemorrhagic shock and resuscitation with particular emphasis on reducing damage to the vital organs such as brain, heart, lung and gut.
  • the inflammatory state and edematous nature of the lung, the so-called “wet-lung”, “shock lung”, “Da-nang lung” or “acute respiratory distress syndrome” can occur in up to 50% of severely traumatized patients.
  • ALM resuscitation solution
  • FIG. 3 shows the ECG trace of the rat during normal period.
  • the MAP and HR measured at this time are shown in Table 3 below.
  • Rats were subjected to hemorrhagic shock involving approximately 45% blood loss as described above until MAP drops to around 30 to 35 mmHg.
  • the maximum blood withdrawn was 8.6 ml over the course of the shock period.
  • FIG. 4 shows the ECG monitoring of the Rat heart at the end of the bleed period prior to the commencement of the “shock period”.
  • the MAP and HR measured at this time are shown in Table 3 below.
  • the animal was kept in shock for 180 mins then either ALM or 7.5% saline is administered via iv bolus.
  • the HR and MAP were measured during each 60 mins shock period, ie (i) 0-60 mins, (ii) 60-120 mins, (iii) 120-180 mins, and shown in Table 3 below.
  • the ECG monitoring was continued ( FIG. 5 , FIG. 6 and FIG. 7 ).
  • ECG trace 10 mins after infusion is shown in FIG. 8 .
  • the HR and MAP measurements taken at this time are shown in Table 3 below.
  • ECG trace 30 mins after infusion is shown in FIG. 9 .
  • the HR and MAP measurements taken at this time are shown in Table 3 below.
  • ECG trace 60 mins after infusion is shown in FIG. 10 .
  • the HR and MAP measurements taken at this time are shown in Table 3 below.
  • ECG trace 90 mins after infusion is shown in FIG. 11 .
  • the HR and MAP measurements taken at this time are shown in Table 3 below.
  • ALM resuscitation solution
  • Rats were subjected to hemorrhagic shock involving approximately 45% blood loss as described in the previous example until MAP drops to around 30 to 35 mmHg.
  • FIG. 12 shows the ECG trace of the rat during this experiment.
  • FIG. 12A shows the rat heart as normal prior to hemorrhagic shock (HR approx 350 bpm; MAP 100 mmHg).
  • FIG. 12B shows the ECG monitoring 60 mins after shock. The MAP and HR were measured at this time (MAP 44 mmHg; HR increased approx 280 bpm) ( FIG. 12B ). ECG monitoring is continued for a further 120 mins.
  • FIG. 12C shows that the MAP remains relatively stabile after 180 mins of shock at 40 mmHg (HR approx 239 bpm).
  • FIG. 13A shows the ECG trace of the rat following administration of 0.5 mL 7.5% saline after 180 mins shock.
  • the HR dropped to around 39 bpm (MAP 30 mmHg). This was maintained for about 10 mins after administration of the 7.5% saline solution.
  • the heart rate then increased to 270 bpm
  • FIG. 13B shows the ECG trace of the rat following administration of 0.5 ml bolus of ALM after 180 mins shock.
  • the HR increased to 261 bpm (MAP 35 mmHg) immediately.
  • this (and the previous example) shows that heart function can be maintained by periodic bolus administration of ALM to a subject that has suffered hemorrhagic shock.
  • this low volume solution could be used in situations where sufficient medical assistance is delayed.
  • the solution could be administered at periodic intervals by field medics at the site of an accident or in the battlefield to provide intraperitoneal support during complicated or prolonged evacuations or transport of the patient to a hospital.
  • an intravenous (iv) bolus of the solution could be deployed immediately after severe blood loss to stabilize and protect the heart from ischemic depolarization and arrhythmias and to pharmacological down-regulate the major organs of the body before resuscitation.
  • This possible battlefield scenario assumes a military medic or combat life-saver is able to assist the wounded soldier near the scene of trauma/injury.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Molecular Biology (AREA)
  • Pain & Pain Management (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Diabetes (AREA)
  • Anesthesiology (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Medicinal Preparation (AREA)
US12/375,182 2006-07-25 2007-07-25 Trauma therapy Abandoned US20090324748A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2006904007 2006-07-25
AU2006904007A AU2006904007A0 (en) 2006-07-25 Trauma Therapy
AU2007900283A AU2007900283A0 (en) 2007-01-19 Trauma therapy (II)
AU2007900283 2007-01-19
PCT/AU2007/001029 WO2008011670A1 (en) 2006-07-25 2007-07-25 Trauma therapy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2007/001029 A-371-Of-International WO2008011670A1 (en) 2006-07-25 2007-07-25 Trauma therapy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/749,214 Continuation US9125929B2 (en) 2006-07-25 2013-01-24 Trauma therapy

Publications (1)

Publication Number Publication Date
US20090324748A1 true US20090324748A1 (en) 2009-12-31

Family

ID=38981058

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/375,182 Abandoned US20090324748A1 (en) 2006-07-25 2007-07-25 Trauma therapy
US13/749,214 Active US9125929B2 (en) 2006-07-25 2013-01-24 Trauma therapy
US14/825,710 Abandoned US20160051572A1 (en) 2006-07-25 2015-08-13 Trauma therapy

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/749,214 Active US9125929B2 (en) 2006-07-25 2013-01-24 Trauma therapy
US14/825,710 Abandoned US20160051572A1 (en) 2006-07-25 2015-08-13 Trauma therapy

Country Status (12)

Country Link
US (3) US20090324748A1 (es)
EP (1) EP2139316B1 (es)
JP (2) JP2009544628A (es)
KR (2) KR20140108346A (es)
CN (2) CN103495173B (es)
AU (1) AU2007278754B2 (es)
CA (1) CA2692256C (es)
ES (1) ES2539762T3 (es)
IL (1) IL196702A0 (es)
SG (1) SG173404A1 (es)
WO (1) WO2008011670A1 (es)
ZA (1) ZA200901376B (es)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100160799A1 (en) * 2006-12-06 2010-06-24 The Hospital For Sick Children Methods and system for performing remote ischemic preconditioning
US20100292619A1 (en) * 2009-05-13 2010-11-18 The Hospital For Sick Children Performance enhancement
US20110190807A1 (en) * 2010-02-01 2011-08-04 The Hospital For Sick Children Remote ischemic conditioning for treatment and prevention of restenosis
US20110318431A1 (en) * 2008-12-30 2011-12-29 Endogenx Pharmaceutical Compositions and Methods of Treating Neurological Insults
USD708338S1 (en) 2012-08-15 2014-07-01 CellAegis Devices Inc. Cuff for remote ischemic conditioning
US8764789B2 (en) 2011-04-15 2014-07-01 CellAegis Devices Inc. System for performing remote ischemic conditioning
US20150112302A1 (en) * 2013-10-22 2015-04-23 Medtronic Minimed, Inc. Methods and systems for inhibiting foreign-body responses in diabetic patients
US20150148739A1 (en) * 2013-11-27 2015-05-28 April Marie Radicella Simplified Microplegia Delivery System
US20160158280A1 (en) * 2013-07-17 2016-06-09 Hibernation Therapeutics, A Kf Llc A method for organ arrest, protection and preservation and reducing tissue injury
US9393025B2 (en) 2010-04-08 2016-07-19 The Hospital For Sick Children Use of remote ischemic conditioning for traumatic injury
US10098779B2 (en) 2013-03-15 2018-10-16 The Hospital For Sick Children Treatment of erectile dysfunction using remote ischemic conditioning
US10136895B2 (en) 2010-03-31 2018-11-27 The Hospital For Sick Children Use of remote ischemic conditioning to improve outcome after myocardial infarction
US10213206B2 (en) 2013-03-15 2019-02-26 CellAegis Devices Inc. Gas powered system for performing remote ischemic conditioning
US10252052B2 (en) 2013-03-15 2019-04-09 The Hospital For Sick Children Methods relating to the use of remote ischemic conditioning
US10272241B2 (en) 2013-03-15 2019-04-30 The Hospital For Sick Children Methods for modulating autophagy using remote ischemic conditioning
US11974568B2 (en) 2020-03-20 2024-05-07 The Cleveland Clinic Foundation Portable, ex vivo, normothermic limb perfusion machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ514515A (en) 1999-03-23 2003-11-28 Global Cardiac Solutions Pty L Organ arrest, protection and preservation using a potassium channel operator and/or adenosine receptor and a local anaesthetic
WO2007137321A1 (en) 2006-05-29 2007-12-06 Hibernation Therapeutics Limited Improved tissue maintenance
SG173404A1 (en) 2006-07-25 2011-08-29 Hibernation Therapeutics Ltd Trauma therapy
WO2008070741A1 (en) * 2006-12-06 2008-06-12 Ikaria, Inc. Compositions and methods for enhancing survival and reducing injury under ischemic or hypoxic conditions
US20100119554A1 (en) 2007-03-02 2010-05-13 Hibernation Therapeutics Limited Transplants
US7754247B2 (en) 2007-05-29 2010-07-13 University Of South Carolina Resuscitation fluid
JP2010534208A (ja) * 2007-07-25 2010-11-04 ハイバーネイション セラピューティクス リミテッド 改善された臓器の保護、保存および回復

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798824A (en) * 1985-10-03 1989-01-17 Wisconsin Alumni Research Foundation Perfusate for the preservation of organs
US5145771A (en) * 1990-04-12 1992-09-08 The University Of North Carolina At Chapel Hill Rinse solution for organs and tissues
US5206222A (en) * 1991-05-22 1993-04-27 Vanderbilt University Methods for the reduction of myocardial reperfusion injury
US5256770A (en) * 1990-04-09 1993-10-26 Schering Ag Oxidation resistant thrombomodulin analogs
US5370989A (en) * 1992-04-03 1994-12-06 The Trustees Of Columbia University In The City Of New York Solution for prolonged organ preservation
US5407793A (en) * 1991-10-18 1995-04-18 University Of Pittsburgh Of The Commonwealth System Of Higher Education An aqueous heart preservation and cardioplegia solution
US5432053A (en) * 1992-02-10 1995-07-11 Berdyaev; Sergei J. Solution for conservation of living organs
US5514536A (en) * 1993-07-16 1996-05-07 Cryomedical Sciences, Inc. Solutions for tissue preservation and bloodless surgery and methods using same
US5656420A (en) * 1995-02-24 1997-08-12 University Of Kentucky Research Foundation Method for employing the delta opioid dadle to extend tissue survival time during ischemia
US5679706A (en) * 1994-09-30 1997-10-21 Bristol-Myers Squibb Company Combination of a potassium channel activator and an antiarrhythmic agent
US5693462A (en) * 1994-12-12 1997-12-02 Charlotte-Mecklenburg Hospital Authority Organ transplant solutions and method for transplanting an organ
US6011017A (en) * 1998-04-15 2000-01-04 Cypros Pharmaceutical Corp. Method of reducing pulmonary hypertension and atrial fibrillation after surgery using cardiopulmonary bypass
US6187756B1 (en) * 1996-09-05 2001-02-13 The Massachusetts Institute Of Technology Composition and methods for treatment of neurological disorders and neurodegenerative diseases
US6187615B1 (en) * 1998-08-28 2001-02-13 Samsung Electronics Co., Ltd. Chip scale packages and methods for manufacturing the chip scale packages at wafer level
US6358208B1 (en) * 1998-11-21 2002-03-19 Philipp Lang Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid
US6372723B1 (en) * 1997-06-18 2002-04-16 Discovery Therapeutics, Inc. Compositions and methods for preventing restenosis following revascularization procedures
US6569615B1 (en) * 2000-04-10 2003-05-27 The United States Of America As Represented By The Department Of Veteran's Affairs Composition and methods for tissue preservation
US6586413B2 (en) * 1999-11-05 2003-07-01 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for reducing ischemic injury of the heart by administering adenosine receptor agonists and antagonists
US20040229780A1 (en) * 2002-09-20 2004-11-18 Olivera Baldomero M. KappaM-conopeptides as organ protectants
US20050176763A1 (en) * 2003-10-14 2005-08-11 Boy Kenneth M. 3-Thia-4-arylquinolin-2-one potassium channel modulators
US6955814B1 (en) * 1999-03-23 2005-10-18 Global Cardiac Solutions Pty Ltd. Organ arrest, protection and preservation
US6992075B2 (en) * 2003-04-04 2006-01-31 Barr Laboratories, Inc. C(14) estrogenic compounds
US20060034941A1 (en) * 2002-12-23 2006-02-16 Global Cardiac Solutions Pty Ltd Organ preconditioning, arrest, protection, preservation and recovery

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU878297A1 (ru) 1978-05-03 1981-11-07 Научно-Исследовательский Институт Трансплантологии И Искусственных Органов Состав дл сохранени жизнеспособности оперируемого сердца
US5006512A (en) 1987-10-02 1991-04-09 Tsuyoshi Ohnishi Therapeutic usages of inhibitors for a potassium efflux channel
DE3926287A1 (de) 1989-08-09 1991-02-21 Bernhard Clasbrummel Medizinische anwendung von omega-conotoxin gvia oder omega-conotoxin gvia-analoga zur sympathikolyse
CN1057192A (zh) 1991-06-30 1991-12-25 汪庆富 风油精聚胺酯海绵的制备工艺
JP3875295B2 (ja) 1995-11-30 2007-01-31 功 竹内 心筋保護液
IT1297886B1 (it) 1997-02-28 1999-12-20 Carmine Antropoli Nifedipina per uso topico
CN1057192C (zh) 1997-09-10 2000-10-11 上海长征医院 一种配制多器官保存液的方法
ATE344035T1 (de) 1998-07-16 2006-11-15 Memorial Sloan Kettering Inst Topische zusammensetzung enthaltend ein opioid- analgetikum und einen nmda-antagonisten
AU752255B2 (en) * 1998-10-23 2002-09-12 Polyheal Ltd. Compositions of microspheres for wound healing
US20020006435A1 (en) 2000-01-27 2002-01-17 Samuels Paul J. Transdermal anesthetic and vasodilator composition and methods for topical administration
JP2001261575A (ja) 2000-03-13 2001-09-26 General Hospital Corp 血管収縮を調節する方法とその組成物
IL152473A0 (en) 2000-04-28 2003-05-29 Sloan Kettering Inst Cancer Topical anesthetic/opioid formulations and uses thereof
WO2002026140A1 (en) 2000-09-26 2002-04-04 Medtronic, Inc. Medical method and system for directing blood flow
WO2006069170A2 (en) 2004-12-22 2006-06-29 Emory University Therapeutic adjuncts to enhance the organ protective effects of postconditioning
EP1478660A4 (en) 2002-01-29 2005-02-09 Cognetix Inc KAPPA-PVIIA-RELATED CONOTOXINES AS MEANS FOR THE PROTECTION OF ORGANS
EP1494685B1 (en) 2002-04-18 2008-12-31 Cv Therapeutics, Inc. Method of treating arrhythmias comprising administration of an a1 adenosine agonist with a beta blocker
AUPS312602A0 (en) * 2002-06-21 2002-07-18 James Cook University Organ arrest, protection, preservation and recovery
US6921633B2 (en) 2002-11-18 2005-07-26 Biolife Solutions Incorporated Methods and compositions for the preservation of cells, tissues or organs in the vitreous state
US20040167226A1 (en) * 2002-12-16 2004-08-26 Serafini Tito A. Methods for the treatment of pain and traumatic injury using benzamides and compositions containing the same
GB2436255B (en) 2002-12-23 2007-11-28 Global Cardiac Solutions Pty L Organ preconditioning, arrest, protection, preservation and recovery
CA2561452A1 (en) 2003-06-02 2004-12-16 Samaritan Pharmaceuticals, Inc. Neuroprotective benzoate and benzamide compounds
WO2007030198A2 (en) 2005-07-11 2007-03-15 Human Biosystems Improved methods and solutions for storing donor organs
WO2007137321A1 (en) 2006-05-29 2007-12-06 Hibernation Therapeutics Limited Improved tissue maintenance
SG173404A1 (en) 2006-07-25 2011-08-29 Hibernation Therapeutics Ltd Trauma therapy
US20100119554A1 (en) 2007-03-02 2010-05-13 Hibernation Therapeutics Limited Transplants
CN100423638C (zh) 2007-03-22 2008-10-08 南京吉脉生物技术有限公司 一种器官保存液及其制备方法
JP2010534208A (ja) 2007-07-25 2010-11-04 ハイバーネイション セラピューティクス リミテッド 改善された臓器の保護、保存および回復

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798824A (en) * 1985-10-03 1989-01-17 Wisconsin Alumni Research Foundation Perfusate for the preservation of organs
US5256770A (en) * 1990-04-09 1993-10-26 Schering Ag Oxidation resistant thrombomodulin analogs
US5145771A (en) * 1990-04-12 1992-09-08 The University Of North Carolina At Chapel Hill Rinse solution for organs and tissues
US5206222A (en) * 1991-05-22 1993-04-27 Vanderbilt University Methods for the reduction of myocardial reperfusion injury
US5407793A (en) * 1991-10-18 1995-04-18 University Of Pittsburgh Of The Commonwealth System Of Higher Education An aqueous heart preservation and cardioplegia solution
US5432053A (en) * 1992-02-10 1995-07-11 Berdyaev; Sergei J. Solution for conservation of living organs
US5370989A (en) * 1992-04-03 1994-12-06 The Trustees Of Columbia University In The City Of New York Solution for prolonged organ preservation
US5514536A (en) * 1993-07-16 1996-05-07 Cryomedical Sciences, Inc. Solutions for tissue preservation and bloodless surgery and methods using same
US5679706A (en) * 1994-09-30 1997-10-21 Bristol-Myers Squibb Company Combination of a potassium channel activator and an antiarrhythmic agent
US5693462A (en) * 1994-12-12 1997-12-02 Charlotte-Mecklenburg Hospital Authority Organ transplant solutions and method for transplanting an organ
US5656420A (en) * 1995-02-24 1997-08-12 University Of Kentucky Research Foundation Method for employing the delta opioid dadle to extend tissue survival time during ischemia
US6187756B1 (en) * 1996-09-05 2001-02-13 The Massachusetts Institute Of Technology Composition and methods for treatment of neurological disorders and neurodegenerative diseases
US6372723B1 (en) * 1997-06-18 2002-04-16 Discovery Therapeutics, Inc. Compositions and methods for preventing restenosis following revascularization procedures
US6011017A (en) * 1998-04-15 2000-01-04 Cypros Pharmaceutical Corp. Method of reducing pulmonary hypertension and atrial fibrillation after surgery using cardiopulmonary bypass
US6187615B1 (en) * 1998-08-28 2001-02-13 Samsung Electronics Co., Ltd. Chip scale packages and methods for manufacturing the chip scale packages at wafer level
US6358208B1 (en) * 1998-11-21 2002-03-19 Philipp Lang Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid
US7223413B2 (en) * 1999-03-23 2007-05-29 Hibernation Therapeutics Limited Organ arrest, protection and preservation
US7749522B2 (en) * 1999-03-23 2010-07-06 Hibernation Therapeutics Limited Organ arrest, protection and preservation
US6955814B1 (en) * 1999-03-23 2005-10-18 Global Cardiac Solutions Pty Ltd. Organ arrest, protection and preservation
US6586413B2 (en) * 1999-11-05 2003-07-01 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for reducing ischemic injury of the heart by administering adenosine receptor agonists and antagonists
US6569615B1 (en) * 2000-04-10 2003-05-27 The United States Of America As Represented By The Department Of Veteran's Affairs Composition and methods for tissue preservation
US20040229780A1 (en) * 2002-09-20 2004-11-18 Olivera Baldomero M. KappaM-conopeptides as organ protectants
US20060034941A1 (en) * 2002-12-23 2006-02-16 Global Cardiac Solutions Pty Ltd Organ preconditioning, arrest, protection, preservation and recovery
US6992075B2 (en) * 2003-04-04 2006-01-31 Barr Laboratories, Inc. C(14) estrogenic compounds
US20050176763A1 (en) * 2003-10-14 2005-08-11 Boy Kenneth M. 3-Thia-4-arylquinolin-2-one potassium channel modulators

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9119761B2 (en) 2006-12-06 2015-09-01 The Hospital For Sick Children Methods and system for performing remote ischemic preconditioning
US20100305607A1 (en) * 2006-12-06 2010-12-02 The Hospital For Sick Children System for performing remote ischemic preconditioning
US8790266B2 (en) 2006-12-06 2014-07-29 The Hospital For Sick Children Methods and system for performing remote ischemic preconditioning
US20100160799A1 (en) * 2006-12-06 2010-06-24 The Hospital For Sick Children Methods and system for performing remote ischemic preconditioning
US9119759B2 (en) 2006-12-06 2015-09-01 The Hospital For Sick Children System for performing remote ischemic preconditioning
US20110318431A1 (en) * 2008-12-30 2011-12-29 Endogenx Pharmaceutical Compositions and Methods of Treating Neurological Insults
US20100292619A1 (en) * 2009-05-13 2010-11-18 The Hospital For Sick Children Performance enhancement
US20110190807A1 (en) * 2010-02-01 2011-08-04 The Hospital For Sick Children Remote ischemic conditioning for treatment and prevention of restenosis
US10136895B2 (en) 2010-03-31 2018-11-27 The Hospital For Sick Children Use of remote ischemic conditioning to improve outcome after myocardial infarction
US11045207B2 (en) 2010-04-08 2021-06-29 The Hospital For Sick Children Use of remote ischemic conditioning for traumatic injury
US10194918B2 (en) 2010-04-08 2019-02-05 The Hospital For Sick Children Use of remote ischemic conditioning for traumatic injury
US9393025B2 (en) 2010-04-08 2016-07-19 The Hospital For Sick Children Use of remote ischemic conditioning for traumatic injury
US9205019B2 (en) 2011-04-15 2015-12-08 CellAegis Devices Inc. System for performing remote ischemic conditioning
USD709197S1 (en) 2011-04-15 2014-07-15 CellAegis Devices Inc. Combined controller and cuff for remote ischemic conditioning
USRE47219E1 (en) 2011-04-15 2019-02-05 CellAegis Devices Inc. System for performing remote ischemic conditioning
US8764789B2 (en) 2011-04-15 2014-07-01 CellAegis Devices Inc. System for performing remote ischemic conditioning
USD709048S1 (en) 2011-04-15 2014-07-15 CellAegis Devices Inc. Controller for remote ischemic conditioning
USD708338S1 (en) 2012-08-15 2014-07-01 CellAegis Devices Inc. Cuff for remote ischemic conditioning
US10098779B2 (en) 2013-03-15 2018-10-16 The Hospital For Sick Children Treatment of erectile dysfunction using remote ischemic conditioning
US10213206B2 (en) 2013-03-15 2019-02-26 CellAegis Devices Inc. Gas powered system for performing remote ischemic conditioning
US10252052B2 (en) 2013-03-15 2019-04-09 The Hospital For Sick Children Methods relating to the use of remote ischemic conditioning
US10272241B2 (en) 2013-03-15 2019-04-30 The Hospital For Sick Children Methods for modulating autophagy using remote ischemic conditioning
US20160158280A1 (en) * 2013-07-17 2016-06-09 Hibernation Therapeutics, A Kf Llc A method for organ arrest, protection and preservation and reducing tissue injury
CN105848693A (zh) * 2013-10-22 2016-08-10 美敦力迷你迈德公司 用于抑制糖尿病患者的异物反应的方法和系统
US20150112302A1 (en) * 2013-10-22 2015-04-23 Medtronic Minimed, Inc. Methods and systems for inhibiting foreign-body responses in diabetic patients
US10517892B2 (en) * 2013-10-22 2019-12-31 Medtronic Minimed, Inc. Methods and systems for inhibiting foreign-body responses in diabetic patients
US20150148739A1 (en) * 2013-11-27 2015-05-28 April Marie Radicella Simplified Microplegia Delivery System
US11974568B2 (en) 2020-03-20 2024-05-07 The Cleveland Clinic Foundation Portable, ex vivo, normothermic limb perfusion machine

Also Published As

Publication number Publication date
AU2007278754A1 (en) 2008-01-31
CN101516185A (zh) 2009-08-26
ZA200901376B (en) 2015-12-23
EP2139316A4 (en) 2012-04-25
KR20140108346A (ko) 2014-09-05
JP2014065724A (ja) 2014-04-17
AU2007278754B2 (en) 2014-11-13
US9125929B2 (en) 2015-09-08
US20130190264A1 (en) 2013-07-25
JP5833618B2 (ja) 2015-12-16
ES2539762T3 (es) 2015-07-03
CA2692256C (en) 2017-01-10
CN103495173B (zh) 2016-11-23
US20160051572A1 (en) 2016-02-25
CN103495173A (zh) 2014-01-08
SG173404A1 (en) 2011-08-29
CA2692256A1 (en) 2008-01-31
KR20090047489A (ko) 2009-05-12
EP2139316A1 (en) 2010-01-06
KR101490836B1 (ko) 2015-02-09
IL196702A0 (en) 2009-11-18
EP2139316B1 (en) 2015-03-18
JP2009544628A (ja) 2009-12-17
WO2008011670A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
US9125929B2 (en) Trauma therapy
JP2009544628A5 (es)
EP2173353B1 (en) Composition including Adenosine and Lignocaine
US20130302779A1 (en) Organ protection, preservation and recovery
US10251905B2 (en) Tissue maintenance
JP2010534208A5 (es)
JP2013234200A (ja) 組織維持の改善

Legal Events

Date Code Title Description
AS Assignment

Owner name: HIBERNATION THERAPEUTICS LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOBSON, GEOFFREY PHILIP;REEL/FRAME:023722/0461

Effective date: 20070924

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: HIBERNATION THERAPEUTICS GLOBAL LTD, IRELAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIBERNATION THERAPEUTICS LTD;REEL/FRAME:033375/0319

Effective date: 20091211

Owner name: HIBERNATION THERAPEUTICS, A KF LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIBERNATION THERAPEUTICS GLOBAL LTD;REEL/FRAME:033375/0359

Effective date: 20130611