US20090314023A1 - Heating, Ventilating and/or Air Conditioning System With Cold Air Storage - Google Patents

Heating, Ventilating and/or Air Conditioning System With Cold Air Storage Download PDF

Info

Publication number
US20090314023A1
US20090314023A1 US12/487,534 US48753409A US2009314023A1 US 20090314023 A1 US20090314023 A1 US 20090314023A1 US 48753409 A US48753409 A US 48753409A US 2009314023 A1 US2009314023 A1 US 2009314023A1
Authority
US
United States
Prior art keywords
refrigerant
air conditioning
heat exchanger
compressor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/487,534
Other languages
English (en)
Inventor
Laurent Labaste Mauhe
Regine Haller
Jean Luc THUEZ
Laurent Delaforge
Abdelmajid Taklanti
Thierry Cheng
Kevin Morvan
Marie Lecollier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of US20090314023A1 publication Critical patent/US20090314023A1/en
Assigned to VALEO SYSTEMES THERMIQUES reassignment VALEO SYSTEMES THERMIQUES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHENG, THIERRY, DELAFORGE, LAURENT, HALLER, REGINE, LABASTE MAUHE, LAURENT, LECOLLIER, MARIE, MORVAN, KEVIN, TAKLANTI, ABDELMAJID, THUEZ, JEAN LUC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/005Regenerative cooling means, e.g. cold accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3297Expansion means other than expansion valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat

Definitions

  • This invention concerns a heating, ventilation and/or air conditioning system and, in particular, heating, ventilation and/or air conditioning systems that allow storage of cold air.
  • the invention has an application in the area of heating, ventilation and/or air conditioning systems for motor vehicles with an internal combustion engine. More specifically, the invention has a particularly advantageous application in the area of heating, ventilation and/or air conditioning systems for motor vehicles equipped with an automatic stop and start system for their internal combustion engine. Such a configuration is also known in English under the name “Stop & Start.”
  • Heating, ventilation and/or air conditioning systems involve a thermodynamic air conditioning loop, usually including a compressor designed to compress and circulate a refrigerant, generally a fluoroethane compound such as the one designated under the name of R134a.
  • the compressor is driven by the vehicle's internal combustion engine by means of a belt connected to the engine crankshaft.
  • the refrigerant in its high pressure gaseous state then traverse a condenser and exchanges heat with ambient air coming directly from the front of the vehicle and/or a fan.
  • the refrigerant comes out of the condenser in its high pressure liquid state.
  • an expander specifically an escape valve, reduces liquid refrigerant pressure and temperature.
  • the refrigerant then goes through an evaporator In which it exchanges heat with air assigned to the thermal treatment of the vehicle interior.
  • low temperature evaporation of the refrigerant requires an energy input which is provided by the air going through the evaporator.
  • the air for the thermal treatment of the vehicle interior is cooled.
  • the refrigerant is vaporized under low pressure, at least partially. It is then introduced in its gaseous state into the compressor to run again through the thermodynamic air conditioning loop.
  • thermodynamic air conditioning loop is stopped when the engine is turned off.
  • This invention seeks to remedy the above-mentioned problems. More specifically, it targets the micro hybridization case specifically illustrated by the “Stop & Start” system, in which the internal combustion engine shuts down when the vehicle stops for relatively short periods and during which it is advisable to maintain passenger comfort by ensuring the continued operation of the heating, ventilation and/or air conditioning system.
  • phase change material PCM
  • phase change material can modify their state during normal operation of the thermodynamic air conditioning loop.
  • phase change material allows storing heat energy in the form of latent heat from solidification or phase change. This thermal energy is returned in the form of cold to the conditioned air when the compressor stops operating after the internal combustion engine is turned off; the phase change material returns to its initial state by releasing stored heat.
  • phase change materials most traditionally used are paraffins, with a melting point, for instance, between 5 and 12° C.
  • This storage evaporator technology does however have a certain number of drawbacks.
  • phase change material taken on is limited by the space allowed in the internal volume of the evaporators and by the space allowed to the heating, ventilation and/or air conditioning system in the vehicle. And increasingly this space is being decreased by automotive manufacturers.
  • Another drawback is represented by an increased loss of charge in the air circulation circuit for air conditioning.
  • the pipes of the storage evaporators are larger than those of traditional evaporators, this creates a decrease of the section where air flows, which can only be compensated by using a more powerful fan motor unit.
  • Such a component is more expensive and it is uses a significantly greater amount of electric energy.
  • thermodynamic air conditioning loops based on separating evaporation and cold storage functions and putting in place two thermodynamic air conditioning loops. Therefore, on one hand there is a traditional main thermodynamic loop that allows generation of frigories in an evaporator when the compressor is in operation and, on the other hand, a secondary loop that allows storing these frigories in a cold storage heat exchanger and returning them by cooling the evaporators with the cold stored in the cold storage heat exchanger when the compressor is not operating.
  • a secondary loop that allows storing these frigories in a cold storage heat exchanger and returning them by cooling the evaporators with the cold stored in the cold storage heat exchanger when the compressor is not operating.
  • thermodynamic air conditioning loop in addition to the usual heating, ventilation and/or air conditioning system components, includes a cold storage heat exchanger arranged serially with the evaporator downstream from the expansion member.
  • a main thermodynamic air conditioning loop in addition to the usual heating, ventilation and/or air conditioning system components, includes a cold storage heat exchanger arranged serially with the evaporator downstream from the expansion member.
  • the refrigerant circulates in the main thermodynamic loop successively cools the phase change material in the cold storage heat exchanger, and the conditioned air through the evaporator.
  • a secondary thermodynamic loop is activated.
  • the secondary thermodynamic loop includes the cold storage heat exchanger, the evaporator and a circulating pump.
  • the secondary thermodynamic loop consists of two sections connected in parallel on the main thermodynamic loop.
  • a first section which includes the circulating pump is placed between the outlet of the cold storage heat exchanger and the evaporator inlet
  • a second section which includes a first valve
  • a second valve is also placed in the main loop between the cold storage heat exchanger and the evaporator.
  • the valves are configured in such a way so when the compressor is operating, the first valve is closed and the second valve is open, whereas, when the compressor is turned off, the second valve is closed and the first valve is open.
  • the purpose of the invention is to offer a simpler to produce heating, ventilation and/or air conditioning system with two thermodynamic air conditioning loops.
  • thermodynamic air conditioning loop which includes at least a compressor, a condenser, an expansion member, an evaporator, a cold storage heat exchanger capable of storing cold during compressor operation, a secondary thermodynamic air conditioning loop that integrates the cold storage heat exchanger and assigned to cool the evaporators when the compressor is not in operation.
  • the secondary air conditioning loop includes a fluid circulation section placed in parallel with the main thermodynamic air conditioning loop on a common section including at least the evaporator, the fluid circulation section which contains a cold-producing element capable of cooling the refrigerant going to the evaporator.
  • the secondary loop of the heating, ventilation and/or air conditioning system only includes a single section instead of two as in the case of the above-mentioned French patent application.
  • the cold-producing element consists of a cold storage heat exchanger.
  • the cold storage heat exchanger has the role of cold spot assigned to cool the refrigerant before it flows into the evaporator.
  • the fluid circulation section needs a refrigerant circulation pump.
  • the fluid circulation section includes a refrigerant expander located upstream from the cold storage heat exchanger and an expander bypass device. Sub-cooling of the phase change material is also obtained, which gives improved storage time frames.
  • the secondary thermodynamic air conditioning loop preferably contains a switching device, specifically made in the shape of three way valve with at least a first position in which the switching device allows the refrigerant to flow through the expander placed upstream from the cold storage heat exchanger and stops the refrigerant from flowing through the expander bypass section, and a second position in which the switching device stops the flow of the refrigerant through the expander and allows the refrigerant to flow into the expander bypass section.
  • a switching device specifically made in the shape of three way valve with at least a first position in which the switching device allows the refrigerant to flow through the expander placed upstream from the cold storage heat exchanger and stops the refrigerant from flowing through the expander bypass section, and a second position in which the switching device stops the flow of the refrigerant through the expander and allows the refrigerant to flow into the expander bypass section.
  • the invention requires the expansion device of the main air conditioning loop to be an ejector with a low pressure inlet connected to the fluid circulation section.
  • the cold producing element consists of a secondary expander.
  • the secondary thermodynamic air conditioning loop therefore includes a secondary compressor.
  • the section common to the main and secondary thermodynamics air conditioning loops includes, in addition to the evaporator, the secondary compressor and the cold storage heat exchanger.
  • the secondary thermodynamic air conditioning loop preferably includes a switching device, specifically made in the form of a three-way valve, with at least a first position in which the switching device allows the refrigerant to flow through the secondary compressor located upstream from the cold storage heat exchanger and it stops the refrigerant from flowing into a section that bypasses the secondary compressor and a second position in which the switching device stops the refrigerant from flowing through the secondary compressor, allowing refrigerant to flow into the section that bypasses the secondary compressor.
  • a switching device specifically made in the form of a three-way valve
  • the cold storage heat exchanger works as a condenser in the secondary thermodynamic de air conditioning loop.
  • the secondary thermodynamic air conditioning loop requires a control device, specifically in the form of a three way valve, with a first position in which the control device allows storing cold in the storage heat exchanger and a second position in which the control device allows returning the stored cold from the cold storage heat exchanger.
  • FIG. 1 b is the outline of the first implementation method of the heating, ventilation and/or air conditioning system in FIG. 1 a that operates when the compressor is shut down,
  • FIG. 2 a is the outline of a second implementation method of a heating, ventilation and/or air conditioning system according to the invention that operates when the compressor is operating, and
  • FIG. 2 b is the outline of a second implementation method of the heating, ventilation and/or air conditioning system in FIG. 2 a which operates when the compressor is turned off.
  • FIGS. 1 a and 1 b show a heating, ventilation and/or air conditioning system according to a first implementation method, which includes a main thermodynamic air conditioning loop 10 including, in the direction of refrigerant flow, a compressor 11 , a condenser 12 , an expansion device 13 , an evaporator 14 and a tank 15 .
  • a main thermodynamic air conditioning loop 10 including, in the direction of refrigerant flow, a compressor 11 , a condenser 12 , an expansion device 13 , an evaporator 14 and a tank 15 .
  • the compressor 11 is driven by the internal combustion engine, not illustrated, of a motor vehicle.
  • the refrigerant for instance R134a
  • the refrigerant then undergoes a stage change when passing through the condenser 12 and exchanges calories with the ambient air from the front of the vehicle, drawn or not, in order to be cooled.
  • the refrigerant is then in its liquid state at high pressure.
  • Pressure and temperature of the refrigerant in its liquid form are lowered when it flows through expansion device 13 , such as an expander or, as in the example shown in FIGS. 1 a and 1 b, an ejector. Then refrigerant temperature drops when it passes through the evaporator 14 .
  • the evaporator 14 is traversed by a flow of air that can be distributed into the vehicle's interior.
  • the liquid and gaseous states of the refrigerant that come out of the evaporator 14 are separated by the tank 15 , the gaseous state is returned to the compressor 11 to be again compressed, whereas the liquid state flows through a storage loop assigned to store cold in a storage heat exchanger capable of storing cold.
  • the cold stored in the heat exchanger will be further returned to the refrigerant in order to extend the air conditioning function in the vehicle interior after the compressor is turned off following a shutdown of the internal combustion engine.
  • FIG. 1 a presents a first implementation method of the heating, ventilation and/or air conditioning system in which the compressor 11 is operating.
  • the liquid and gaseous states of the refrigerant coming out of the evaporator 14 are separated by the Tank 15 , with the gaseous states being returned to the compressor 11 to be compressed again, whereas the liquid state flows into a storage loop assigned to storing cold in a storage heat exchanger capable of storing cold, 10 From the tank 15 , the refrigerant under low pressure in its liquid state is directed by a first three way valve 22 into the storage loop 20 .
  • Storage loop 20 consists also of a secondary thermodynamic air conditioning loop 20 a.
  • Storage loop 20 includes, in the refrigerant circulation direction, an expander 23 , a storage heat exchanger 21 , a second three-way valve 24 , an electric circulating pump 25 and a one-way valve 26 .
  • the secondary thermodynamic air conditioning loop 20 a consists specifically of the storage heat exchanger 21 , a second three way valve 24 , an electric circulating pump 25 and the one-way valve 26 .
  • the secondary thermodynamic air conditioning loop 20 a therefore consists of a fluid circulating section located on a common section in parallel with the main thermodynamic main air conditioning loop 10 .
  • the secondary thermodynamic air conditioning loop 20 a and the main thermodynamic air conditioning loop 10 have in common at least the evaporator 14 .
  • both the main thermodynamic air conditioning loops 10 and secondary thermodynamic air conditioning 20 a require tank 15 in common.
  • the main 10 and secondary 20 a thermodynamic air conditioning loops can be isolated from each other by means of the second three way valve 24
  • the first three way valve 22 is connected with the storage heat exchanger 21 by means of two circulation sections arranged in parallel.
  • One of the circulation sections includes an expander 23 and the other section constitutes a bypass section of expander 23 .
  • the first three way valve 22 constitutes a switching device between the circulation section containing expander 23 and the bypass section of expander 23 .
  • the first three way valve 22 10 occupies a first position in which it opens circulation of the refrigerant from the tank 15 to the storage heat exchanger 21 through the expander 23 and the appropriate circulation section.
  • the first position is also such that the three way valve 22 closes the bypass section of expander 23 .
  • Expander 23 operates as a second pressure stage for the refrigerant whose temperature has dropped to a figure compatible with the solidification temperature of the phase change material (PCM) of the cold storage heat exchanger 21 .
  • PCM phase change material
  • the refrigerant After flowing through the expander 23 , the refrigerant enters into the cold storage heat exchanger 21 After it flows through it, the refrigerant is at a temperature that allows the phase changing fluid (PCM) to change phase and take calories from the refrigerant. This step constitutes the cold storage stage in the cold storage heat exchanger 21 .
  • PCM phase changing fluid
  • the refrigerant taken by means of the second three way valve 24 , set in the first position, from the cold storage heat exchanger 21 to a low pressure inlet of the expansion device 13 .
  • the expansion device 13 according to the implementation example in FIGS. 1 a and 1 b is an ejector.
  • the ejector also ensures the circulation of the refrigerant in the storage loop 20 .
  • FIG. 1 b shows the first implementation method of the heating, ventilation and/or air conditioning system in which the compressor 11 is not in operation. In this state, the compressor ( 11 ) is no longer driven by the vehicle's internal combustion engine.
  • Comfort in the vehicle's interior is maintained by the storage loop 20 and more specifically by an adapted configuration of the storage loop 20 which constitutes the secondary thermodynamic air conditioning loop 20 a the operation of which will be described in reference to FIG. 1 b.
  • the secondary thermodynamic air conditioning loop 20 a is defined by the first and second three way valves 22 and 24 , being placed in the second positions.
  • the secondary thermodynamic air conditioning loop 20 a includes a fluid circulation section set on a common section in parallel with the main thermodynamic air conditioning loop. According to the implementation example, this common section consists, specifically, of the evaporator 14 .
  • the secondary thermodynamic air conditioning loop 20 air conditioning secondary 20 a is such that the first three way valve 22 stops the flow of the refrigerant from the tank 15 to the expander 23 .
  • the first three way valve 22 therefore occupies a second position in which it opens the flow of the refrigerant from the tank 15 to the storage heat exchanger 21 by means of the bypass expander section 23 and closes the circulation section where the extender 23 is located.
  • the secondary thermodynamic air conditioning loop 20 a is such that the second three way valve 24 stops the flow of the refrigerant from the cold storage heat exchanger 21 to the low pressure inlet of expansion device 13 .
  • the second three way valve 24 then takes a second position in which it opens the flow of the fluid that refrigerates the cold storage heat exchanger 21 toward the evaporator 14 by means of the electric circulation pump 25 and the one way valve 26 .
  • the expander 23 When the secondary thermodynamic air conditioning loop 20 a is in operation, the expander 23 is bypassed by the first three way valve 22 so that the fluid circulation section essentially consists of the cold storage heat exchanger 21 connected with the electric circulating pump 25 by the second three way valve 24 .
  • the one-way valve 26 is located at the outlet of the electric circulating pump 25 .
  • the cold storage heat exchanger 21 when the compressor 11 is not operating, the cold storage heat exchanger 21 is used as a cold spot to cool the refrigerant that circulates in the secondary thermodynamic air conditioning loop 20 a.
  • the cold storage heat exchanger 21 therefore operates as an element to produce cold and is capable of cooling the refrigerant going into the evaporator 14 . So evaporator 14 can continue for a certain period of time to ensure its function of cooling the air flow into the vehicle's interior and thus maintain passenger comfort.
  • the second three way valve 24 which constitutes a control device with a first position in which the second three way valve 24 allows storing cold in the cold storage heat exchanger 21 and a second position in which the second three way valve 24 allows the cold stored in the cold storage heat exchanger 21 to be returned.
  • FIGS. 2 a and 2 b show a heating, ventilation and/or air conditioning system in accordance with a second implementation method which includes a main thermodynamic air conditioning loop 10 ′ which involves, in the direction of refrigerant flow, a compressor 11 , a condenser 12 , an expansion device 13 ′, an evaporator 14 and a tank 15 .
  • a main thermodynamic air conditioning loop 10 ′ which involves, in the direction of refrigerant flow, a compressor 11 , a condenser 12 , an expansion device 13 ′, an evaporator 14 and a tank 15 .
  • the main thermodynamic air conditioning loop 10 therefore includes the traditional components of a heating, ventilation and/or air conditioning system.
  • the expansion device 13 consists of an expander, in particular a thermostatic expander.
  • the main thermodynamic air conditioning loop 10 ′ also includes, in the direction of refrigerant flow and located between the evaporator 14 and the tank ( 15 ), in the direction of refrigerant flow, a third three way valve 16 , a secondary electric compressor 17 and a cold storage heat exchanger 18 .
  • the cold storage heat exchanger 18 in the implementation example in FIGS. 2 a and 2 b is similar to the storage heat exchanger 21 in FIGS. 1 a and 1 b. Consequently, the characteristics of the storage heat exchanger 21 will be, unless otherwise indicated, also those of storage heat exchanger 18 .
  • the third three way valve 16 is connected with the storage heat exchanger 18 by two circulation sections set in parallel.
  • One of the circulation sections includes the secondary electric compressor 17 and the other section is a section that bypasses the secondary electric compressor 17 .
  • the secondary electric compressor 17 has a low cylinder capacity.
  • the third three way valve 16 constitutes a switching device between the circulation section that includes the secondary electric compressor 17 and the section that bypasses the secondary electric compressor 17 . Additionally the fourth three way valve 27 is located between the expansion device 13 and the evaporator 14 .
  • the heating, ventilation and/or air conditioning system in FIGS. 2 a and 2 b also contains a secondary thermodynamic air conditioning loop 20 ′ a.
  • the secondary thermodynamic air conditioning loop 20 ′ a consists of a section for refrigerant circulation that goes from the tank 15 to the fourth three way valve 27 . Upstream from the fourth three way valve 27 , the secondary thermodynamic air conditioning valve 20 ′ a includes a secondary expander 23 ′, in particular a thermostatic expander.
  • the secondary thermodynamic air conditioning loop 20 ′ a is located in parallel on a common section with the main thermodynamic air conditioning loop 10 ′.
  • the secondary thermodynamic air conditioning loop 20 ′ a and the main thermodynamic air conditioning loop are located in parallel with one another.
  • the secondary thermodynamic air conditioning loop 20 ′ a consists also of the fourth three way valve 27 , the evaporator 14 , the third three way valve 16 , the secondary electric compressor 17 , and the cold storage heat exchanger 18 .
  • thermodynamic air conditioning loops can be insulated one from the other by means of the fourth three way valve 27 .
  • a first operating mode of the second implementation method is with the compressor 11 in operation. Vehicle interior comfort is ensured in the traditional way by the main thermodynamic air conditioning loop 10 ′.
  • the third three way valve 16 occupies a first position in which it opens the flow of the refrigerant from the evaporator 14 to the storage heat exchanger 18 through the section that bypasses the secondary compressor 17 .
  • the first position of the third three way valve 16 is also such that the third three way valve 16 closes the circulation section in which the secondary compressor 17 is located.
  • the fourth three way valve 27 occupies a first position in which it opens the flow of the refrigerant from the expander 13 to the evaporator 14 .
  • the first position of the fourth three way valve 27 is also such that the fourth three way valve 27 closes the secondary thermodynamic air conditioning loop 20 ′ a.
  • the phase change material of the cold storage heat exchanger 18 cools when in contact with the refrigerant coming out of the evaporator 14 . And stores cold which will be further used in the event the compressor is turned off 11 .
  • a second operating mode of the second implementation method according to the provisions of FIG. 2 b is such that the compressor 11 is not operating. Comfort in the vehicle interior is then ensured by the secondary thermodynamic air conditioning loop 20 ′ a, in accordance with the operating schematics illustrated in FIG. 2 b.
  • the third three way valve 16 is set in a second position in which it stops the direct flow of the refrigerant from the evaporator 14 to the cold storage heat exchanger 18 .
  • the third three way valve 16 therefore occupies the second position in which it opens refrigerant circulation from the evaporator 14 of the cold storage heat exchanger 18 through the section containing the secondary compressor 17 .
  • the secondary compressor 17 is then started.
  • the fourth three way valve 27 is set in a second position in which it stops the refrigerant 20 from flowing from the expander 13 to the evaporator 14 .
  • the second position of the fourth three way valve 27 is also such that the fourth three way valve 27 opens the secondary thermodynamic air conditioning loop 20 ′ a. Therefore it allows the refrigerant to flow between the secondary expander 23 ′ and the evaporator 14 .
  • the secondary thermodynamic air conditioning loop 20 ′ a operates as a traditional thermodynamic air conditioning loop.
  • the cold storage heat exchanger 18 serves as a condenser for the refrigerant flowing out of the secondary compressor 17 .
  • the refrigerant in its liquid state coming from the cold storage heat exchanger 18 is expanded and cooled by the secondary expander 23 ′ before flowing into the evaporator 14 .
  • the secondary expander 23 ′ therefore operates as a cold producing element capable of cooling the refrigerant flowing into the evaporator 14 .
  • the air conditioning effectiveness of the secondary thermodynamic air conditioning loop 20 ′ a is limited by the quantity of cold stored in the cold storage heat exchanger 18 .
  • the fourth three way valve 27 constitutes a control device with a first position in which the fourth three way valve ( 27 ) allows storing cold in the cold storage heat exchanger 18 and a second position in which the fourth three way valve 27 allows the return of the cold stored in the cold storage heat exchanger stockage 18 .
  • the refrigerant may be a fluoroethane compound, specifically R134a, or any other alternative fluids, either natural or synthetic, specifically carbon dioxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)
US12/487,534 2008-06-19 2009-06-18 Heating, Ventilating and/or Air Conditioning System With Cold Air Storage Abandoned US20090314023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0803441A FR2932875B1 (fr) 2008-06-19 2008-06-19 Installation de chauffage, ventilation et/ou climatisation a stockage de froid
FRFR08/03441 2008-06-19

Publications (1)

Publication Number Publication Date
US20090314023A1 true US20090314023A1 (en) 2009-12-24

Family

ID=40455713

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/487,534 Abandoned US20090314023A1 (en) 2008-06-19 2009-06-18 Heating, Ventilating and/or Air Conditioning System With Cold Air Storage

Country Status (3)

Country Link
US (1) US20090314023A1 (fr)
EP (1) EP2136161B1 (fr)
FR (1) FR2932875B1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259041A1 (en) * 2010-04-21 2011-10-27 Whirlpool Corporation High efficiency condenser
US20140238056A1 (en) * 2011-10-05 2014-08-28 Toyota Jidosha Kabushiki Kaisha Method of controlling cooling device
EP2860472A1 (fr) * 2013-10-09 2015-04-15 A/S Dybvad Stalindustri Installation de refroidissement
US20150292776A1 (en) * 2014-04-10 2015-10-15 Mahle Behr Usa Inc. Method to control a cooling circuit
US20160161162A1 (en) * 2013-09-10 2016-06-09 Mitsubishi Electric Corporation Refrigerating apparatus
US20170045276A1 (en) * 2015-08-12 2017-02-16 Caterpillar Inc. Engine Off Vapor Compression Adsorption Cycle
US9975399B2 (en) 2015-10-27 2018-05-22 Ford Global Technologies, Llc Vehicle thermal management systems and methods
US10000109B2 (en) 2016-06-24 2018-06-19 Denso International America, Inc. Vehicle air conditioning system
US10358015B2 (en) 2016-03-15 2019-07-23 Caterpillar Inc. Air-conditioning system for a machine
US10596880B2 (en) 2015-05-29 2020-03-24 Thermo King Corporation Method and system for controlling the release of heat by a temperature control unit
CN111542721A (zh) * 2017-09-11 2020-08-14 法雷奥热系统公司 用于启动包括液体泵的冷却剂流体回路的方法
WO2021103845A1 (fr) * 2019-11-29 2021-06-03 青岛海尔空调电子有限公司 Procédé de commande pour climatiseur dans des conditions de réfrigération, et climatiseur
DE112014002448B4 (de) 2013-05-16 2022-03-10 Valeo Systèmes Thermiques Klimaanlage mit Selbstenteisung und Verfahren hierzu
US11370264B2 (en) 2017-11-16 2022-06-28 Ford Global Technologies, Llc Multifunction reservoir for a secondary loop, climate control system and a secondary loop climate control system incorporating that multifunction reservoir
WO2022271872A1 (fr) * 2021-06-22 2022-12-29 Booz Allen Hamilton Inc. Systèmes de gestion thermique pour fonctionnement étendu

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083394B2 (ja) * 2010-09-16 2012-11-28 パナソニック株式会社 蓄熱装置及び該蓄熱装置を備えた空気調和機
ES2574932B1 (es) * 2014-12-22 2017-02-13 Mariano LARA JURADO Procedimiento para incrementar el rendimiento de una instalación frigorífica productora de hielo
ES2935768T3 (es) 2015-05-13 2023-03-09 Carrier Corp Circuito de refrigeración de eyector
CN105737436B (zh) * 2016-02-26 2024-01-05 孙业国 一种风冷与压缩制冷联合的冷水机组及控制方法
FR3071047B1 (fr) * 2017-09-11 2020-06-19 Valeo Systemes Thermiques Circuit de fluide refrigerant comprenant un circulateur
FR3077241A1 (fr) * 2018-01-30 2019-08-02 Valeo Systemes Thermiques Architecture de pompe a chaleur avec un evaporateur a double etage combine a un ejecteur
CN110017717B (zh) * 2019-04-18 2023-10-27 杭州联投能源科技有限公司 一种能量转换与储存系统及其工作方法
CN112082286A (zh) * 2020-09-25 2020-12-15 珠海格力电器股份有限公司 热管与制冷循环复合系统、制冷设备及控制方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007776A (en) * 1974-12-23 1977-02-15 Universal Oil Products Company Heating and cooling system utilizing solar energy
US4438633A (en) * 1982-11-12 1984-03-27 Hiser Leland L Method and apparatus for using low grade thermal energy to improve efficiency of air conditioning and refrigeration systems
US5117648A (en) * 1990-10-16 1992-06-02 Northeastern University Refrigeration system with ejector and working fluid storage
US5220809A (en) * 1991-10-11 1993-06-22 Nartron Corporation Apparatus for cooling an air conditioning system electrical controller
US6606873B2 (en) * 2001-10-04 2003-08-19 Denso Corporation Ejector circuit
US20030159455A1 (en) * 2002-02-28 2003-08-28 Yasukazu Aikawa Vehicle air conditioner with cold storage unit
US6675609B2 (en) * 2002-01-30 2004-01-13 Denso Corporation Refrigerant cycle system with ejector pump
US6698221B1 (en) * 2003-01-03 2004-03-02 Kyung Kon You Refrigerating system
US20050138936A1 (en) * 2002-07-08 2005-06-30 Dube Serge High-speed defrost refrigeration system
US20050188717A1 (en) * 2004-02-27 2005-09-01 Yasukazu Aikawa Air conditioning system for vehicle
US7156156B2 (en) * 2002-11-29 2007-01-02 Valeo Climatisation Heat exchanger with thermal inertia for a heat transfer fluid circuit, particularly of a motor vehicle
US20070119197A1 (en) * 2003-10-21 2007-05-31 Valeo Climatisation Device for storing cold for an evaporator
US8136364B2 (en) * 2006-09-18 2012-03-20 Carrier Corporation Refrigerant system with expansion device bypass

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000313226A (ja) * 1999-05-06 2000-11-14 Nissan Motor Co Ltd 自動車用空気調和装置
DE10224754B4 (de) * 2002-06-04 2004-11-25 Webasto Thermosysteme International Gmbh Einsatz eines Kältespeichers zur COP-Optimierung eines Kältekreislaufes
JP4285060B2 (ja) * 2003-04-23 2009-06-24 株式会社デンソー 蒸気圧縮式冷凍機
JP2005271906A (ja) * 2004-02-27 2005-10-06 Denso Corp 車両用空調装置
FR2878613B1 (fr) 2004-11-30 2007-04-06 Valeo Climatisation Sa Dispositif d'echange thermique a accumulateur thermique

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4007776A (en) * 1974-12-23 1977-02-15 Universal Oil Products Company Heating and cooling system utilizing solar energy
US4438633A (en) * 1982-11-12 1984-03-27 Hiser Leland L Method and apparatus for using low grade thermal energy to improve efficiency of air conditioning and refrigeration systems
US5117648A (en) * 1990-10-16 1992-06-02 Northeastern University Refrigeration system with ejector and working fluid storage
US5220809A (en) * 1991-10-11 1993-06-22 Nartron Corporation Apparatus for cooling an air conditioning system electrical controller
US6606873B2 (en) * 2001-10-04 2003-08-19 Denso Corporation Ejector circuit
US6675609B2 (en) * 2002-01-30 2004-01-13 Denso Corporation Refrigerant cycle system with ejector pump
US20030159455A1 (en) * 2002-02-28 2003-08-28 Yasukazu Aikawa Vehicle air conditioner with cold storage unit
US6701731B2 (en) * 2002-02-28 2004-03-09 Denso Corporation Vehicle air conditioner with cold storage unit
US20050138936A1 (en) * 2002-07-08 2005-06-30 Dube Serge High-speed defrost refrigeration system
US7156156B2 (en) * 2002-11-29 2007-01-02 Valeo Climatisation Heat exchanger with thermal inertia for a heat transfer fluid circuit, particularly of a motor vehicle
US6698221B1 (en) * 2003-01-03 2004-03-02 Kyung Kon You Refrigerating system
US20070119197A1 (en) * 2003-10-21 2007-05-31 Valeo Climatisation Device for storing cold for an evaporator
US20050188717A1 (en) * 2004-02-27 2005-09-01 Yasukazu Aikawa Air conditioning system for vehicle
US6964178B2 (en) * 2004-02-27 2005-11-15 Denso Corporation Air conditioning system for vehicle
US8136364B2 (en) * 2006-09-18 2012-03-20 Carrier Corporation Refrigerant system with expansion device bypass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP 2000-313226 (English abstract) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110259041A1 (en) * 2010-04-21 2011-10-27 Whirlpool Corporation High efficiency condenser
US20140238056A1 (en) * 2011-10-05 2014-08-28 Toyota Jidosha Kabushiki Kaisha Method of controlling cooling device
US9217594B2 (en) * 2011-10-05 2015-12-22 Toyota Jidosha Kabushiki Kaisha Method of controlling cooling device
DE112014002448B4 (de) 2013-05-16 2022-03-10 Valeo Systèmes Thermiques Klimaanlage mit Selbstenteisung und Verfahren hierzu
US20160161162A1 (en) * 2013-09-10 2016-06-09 Mitsubishi Electric Corporation Refrigerating apparatus
US10082325B2 (en) * 2013-09-10 2018-09-25 Mitsubishi Electric Corporation Refrigerating apparatus
EP2860472A1 (fr) * 2013-10-09 2015-04-15 A/S Dybvad Stalindustri Installation de refroidissement
US9476613B2 (en) * 2014-04-10 2016-10-25 Mahle International Gmbh Method to control a cooling circuit
US20150292776A1 (en) * 2014-04-10 2015-10-15 Mahle Behr Usa Inc. Method to control a cooling circuit
US10596880B2 (en) 2015-05-29 2020-03-24 Thermo King Corporation Method and system for controlling the release of heat by a temperature control unit
US9796240B2 (en) * 2015-08-12 2017-10-24 Caterpillar Inc. Engine off vapor compression adsorption cycle
US20170045276A1 (en) * 2015-08-12 2017-02-16 Caterpillar Inc. Engine Off Vapor Compression Adsorption Cycle
US9975399B2 (en) 2015-10-27 2018-05-22 Ford Global Technologies, Llc Vehicle thermal management systems and methods
US11027592B2 (en) 2015-10-27 2021-06-08 Ford Global Technologies, Llc Vehicle thermal management systems and methods
US10358015B2 (en) 2016-03-15 2019-07-23 Caterpillar Inc. Air-conditioning system for a machine
US10000109B2 (en) 2016-06-24 2018-06-19 Denso International America, Inc. Vehicle air conditioning system
CN111542721A (zh) * 2017-09-11 2020-08-14 法雷奥热系统公司 用于启动包括液体泵的冷却剂流体回路的方法
US11370264B2 (en) 2017-11-16 2022-06-28 Ford Global Technologies, Llc Multifunction reservoir for a secondary loop, climate control system and a secondary loop climate control system incorporating that multifunction reservoir
US11613154B2 (en) 2017-11-16 2023-03-28 Ford Global Technologies, Llc Multifunction reservoir for a secondary loop, climate control system and a secondary loop climate control system incorporating that multifunction reservoir
WO2021103845A1 (fr) * 2019-11-29 2021-06-03 青岛海尔空调电子有限公司 Procédé de commande pour climatiseur dans des conditions de réfrigération, et climatiseur
WO2022271872A1 (fr) * 2021-06-22 2022-12-29 Booz Allen Hamilton Inc. Systèmes de gestion thermique pour fonctionnement étendu
US11644251B2 (en) 2021-06-22 2023-05-09 Booz Allen Hamilton Inc. Thermal management systems for extended operation
US11781817B2 (en) 2021-06-22 2023-10-10 Booz Allen Hamilton Inc. Thermal management systems for extended operation

Also Published As

Publication number Publication date
EP2136161A1 (fr) 2009-12-23
EP2136161B1 (fr) 2019-09-11
FR2932875A1 (fr) 2009-12-25
FR2932875B1 (fr) 2013-09-13

Similar Documents

Publication Publication Date Title
US20090314023A1 (en) Heating, Ventilating and/or Air Conditioning System With Cold Air Storage
EP2524830B1 (fr) Système de climatisation pour véhicule
JP5989328B2 (ja) 熱交換装置
EP2110274B1 (fr) Unité de chauffage et de climatisation améliorée pour véhicule automobile
JP6047314B2 (ja) 車両用空調装置
JP5021773B2 (ja) 車両用空調システム
EP2135758B1 (fr) Système de climatisation pour un véhicule à moteur, avec un circuit secondaire de refroidissement d'air pouvant être connecté au circuit de chauffage
WO2010079818A1 (fr) Dispositif de climatisation pour véhicule
US20140060102A1 (en) Mild ambient vehicular heat pump system
AU2014258181B2 (en) Heat pump system for vehicle
US20110067427A1 (en) Air Conditioning Device For Heating, Ventilation and/or Air Conditioning Installation
JP5003639B2 (ja) 車両用冷却システム
JP2012081955A (ja) 自動車の空気調和装置の冷媒サイクル
JP2017030724A (ja) ヒートポンプシステム
JP2006118754A (ja) 蒸気圧縮式冷凍機
CN108790672B (zh) 车辆用空调装置
CN111152622B (zh) 汽车空调系统
JP2020183857A (ja) 電気自動車用ヒートポンプシステム及びその制御方法
JP2014037179A (ja) 電動車両用熱管理システム
WO2019111621A1 (fr) Système de pompe à chaleur
CN107791781B (zh) 汽车空调系统
WO2019029218A1 (fr) Système de climatisation de véhicule automobile
JP2000313226A (ja) 自動車用空気調和装置
JP2003285633A (ja) 車両用空調装置
CN115087839A (zh) 用于给车辆、尤其是机动车辆的热调节回路除霜的方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: VALEO SYSTEMES THERMIQUES,FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LABASTE MAUHE, LAURENT;HALLER, REGINE;THUEZ, JEAN LUC;AND OTHERS;REEL/FRAME:023884/0250

Effective date: 20090527

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION