US20090288780A1 - Perforated support plate - Google Patents

Perforated support plate Download PDF

Info

Publication number
US20090288780A1
US20090288780A1 US12/448,499 US44849907A US2009288780A1 US 20090288780 A1 US20090288780 A1 US 20090288780A1 US 44849907 A US44849907 A US 44849907A US 2009288780 A1 US2009288780 A1 US 2009288780A1
Authority
US
United States
Prior art keywords
support plate
perforated support
base material
area
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/448,499
Other languages
English (en)
Inventor
Akihiko Nakamura
Atsushi Miyanari
Yoshihiro Inao
Yasumasa Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Ohka Kogyo Co Ltd
Original Assignee
Tokyo Ohka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Ohka Kogyo Co Ltd filed Critical Tokyo Ohka Kogyo Co Ltd
Assigned to TOKYO OHKA KOGYO CO., LTD. reassignment TOKYO OHKA KOGYO CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INAO, YOSHIHIRO, IWATA, YASUMASA, MIYANARI, ATSUSHI, NAKAMURA, AKIHIKO
Publication of US20090288780A1 publication Critical patent/US20090288780A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/17Surface bonding means and/or assemblymeans with work feeding or handling means
    • Y10T156/1798Surface bonding means and/or assemblymeans with work feeding or handling means with liquid adhesive or adhesive activator applying means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49998Work holding

Definitions

  • the present invention relates to a support plate for supporting a wafer, and more particularly, to a support plate having penetration holes (referred to as a perforated support plate in this specification).
  • a wafer to be thinned to a certain extent is handled after the strength of the surface is reinforced by being pasted with a support plate made of glass, a nickel-iron alloy, or the like in advance as the support member.
  • the pasting of the support plate to the wafer is made by interposing a substance having an adhesive property (such as an adhesive agent, etc.) between the wafer and the support plate.
  • peeling of the support plate from the wafer is made by dissolving the above described substance with a solvent. This solvent is guided to the above described substance by immersing the wafer and the support plate within the solvent.
  • a support plate on which many minute penetration holes for guiding the solvent between the wafer and the support plate are provided in the thickness direction of the support plate namely, a perforated support plate is widely used as the above described support plate in order to make the solvent react with the above described substance in a short time.
  • the penetration holes are sometimes structured to be unopened so that a glass substance is partially left to be opened later especially on a glass support plate.
  • Such many penetration holes are arranged on the support plate almost evenly with high density over the entire range to which the wafer is pasted.
  • Patent Document 1 A configuration of the support plate that is made of an iron-nickel alloy and includes penetration holes is disclosed by Patent Document 1.
  • Patent Document 1 Japanese Laid-open Patent Publication No. 2005-191550
  • a glass support plate of 0.7 mm in thickness is used.
  • the penetration holes are evenly arranged at a high density within the entire area except for the edge of the perforated support plate and its neighboring area. Accordingly, the solvent is efficiently guided to the entire surface pasted to the wafer through the penetration holes, and the substance having the adhesive property interposed between the wafer and the perforated support plate may be made to quickly react so as to peel the support plate from the wafer in a short time.
  • the diameter of a perforated support plate has been demanded to increase to 300 mm or more as the diameter of a wafer is increasing to 300 mm or more.
  • the perforated support plate is lacking in a substance configuring a base material by an amount corresponding to the penetration holes, leading to a low rigidity.
  • a certain degree of strength can be secured.
  • the above described certain degree of strength cannot be secured due to the lack of rigidity, leading to a deflection. Namely, the conventional perforated support plates cannot prevent a wafer from deflecting if it increases in diameter and deflects.
  • a support plate processed by thinning a glass plate base material of 1 mm in thickness to be 0.8 mm is conventionally used as a perforated support plate of a large diameter of 300 mm or more.
  • a plate base material of 1 mm in thickness must be shaved to 0.8 mm. Therefore, the number of process steps increases in comparison with the case where the glass plate base material of 0.7 mm in thickness is used unchanged.
  • the thickness of a perforated support plate of a large diameter of 300 mm or more is different from that of a perforated support plate of a smaller diameter.
  • components for respective thicknesses must be provided to handle perforated support plates of different thicknesses for each device handling perforated support plates (such as a pasting device, a peeling device, etc.), leading to an increase in the number of components or the size of the device.
  • a perforated support plate deflects if it increases in diameter, and a wafer cannot be prevented from deflecting as a result. Therefore, a perforated support plate with high rigidity is provided by arranging a reinforcing part for deflection prevention on the perforated support plate for supporting a surface of a wafer by interposing an adhesive layer.
  • the reinforcing part for deflection prevention is arranged as a no-hole area for deflection prevention that is formed on a plate base material and configured with a line of a geometric pattern.
  • the perforated support plate is configured by using a plate glass material as a base material
  • the above described reinforcing part for deflection prevention is arranged on the plate glass material as a no-hole area for deflection prevention configured with a line of a geometric pattern.
  • the geometric pattern is configured with a plurality of concentric circles, line extending radially, or a repetition of the same graphic.
  • the line width of the geometric pattern is 1 mm or less.
  • an unopened area for suction for a vacuum suction device may be provided on the perforated support plate.
  • the perforated support plate is approximately 300 mm in diameter and is 0.7 mm or less in thickness.
  • a reinforcing part for deflection prevention is comprised. Therefore, the rigidity of the perforated support plate can be increased.
  • the thickness of the perforated support plate can be made identical to that of the plate base material.
  • the geometric pattern is configured with a plurality of concentric circles, lines extending radially, or a repetition of the same graphic, the strength of the surface can be efficiently increased over the wide range of the perforated support plate.
  • the line width of the geometric pattern is 1 mm or less, a difference between a pitch of penetration holes and a pitch of penetration holes adjacent via the reinforcing part for deflection prevention is reduced. Therefore, the time required to peel the perforated support plate from the wafer, which is increased by arranging the reinforcing part for deflection prevention, can be decreased.
  • a sucking property when a vacuum suction device is used can be also improved by arranging an unopened area for suction.
  • a perforated support plate of 300 mm or more in diameter and 0.7 mm in thickness can be prevented from deflecting by improving the rigidity, whereby availability as a perforated support plate is improved.
  • FIG. 1 is explanatory views of a perforated support plate in a first embodiment of the present invention
  • FIG. 2 is enlarged views of part of the perforated support plate
  • FIG. 3 is explanatory views of a perforated support plate in a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram (No. 1 ) illustrating a modification example of a line of a geometric pattern in a no-hole area for deflection prevention;
  • FIG. 5 is a schematic diagram (No. 2 ) illustrating a modification example of the line of the geometric pattern in the no-hole area for deflection prevention;
  • FIG. 6 is a schematic diagram (No. 1 ) illustrating a modification example of the shape of an unopened area for suction
  • FIG. 7 is a schematic diagram (No. 2 ) illustrating a modification example of the shape of the unopened area for suction.
  • FIG. 8 is a schematic diagram (No. 3 ) illustrating a modification example of the shape of the unopened area for suction.
  • FIGS. 1 and 2 are explanatory views of a perforated support plate in a first embodiment of the present invention.
  • FIG. 1A is a perspective view of the perforated support plate
  • FIG. 1B is a top view of the perforated support plate.
  • FIG. 2A is an enlarged view of the part enclosed with a dotted line A in FIG. 1B
  • FIG. 2B is a cross-sectional view taken along a line B-B′ in FIG. 2A .
  • the perforated support plate 1 illustrated in FIGS. 1A and 1B is configured by making many penetration holes 12 (represented with dots in these figures) of 0.4 mm in diameter over a plate base material 10 obtained by processing a plate glass material of 0.7 mm in thickness to be a circle of 300 mm in diameter.
  • the penetration holes 12 are formed, for example, by removing the glass substance from either or both sides of the plate base material 10 in the thickness direction with etching, etc.
  • the penetration holes 12 are used as a passage for guiding a liquid toward the surface (the surface of the plate base material 10 illustrated in FIG. 1B ) to be pasted to a wafer (not illustrated).
  • a solvent of an adhesive member such as an adhesive agent, etc.
  • the plate base material 10 on the surface of the plate base material 10 illustrated in FIG. 1B
  • intended to paste the wafer and the plate base material 10 is used.
  • the penetration holes 12 may be made to penetrate the plate base material 10 when the plate base material 10 is peeled.
  • the penetration holes 12 are assumed to be holes that penetrate the plate base material 10 in the thickness direction. However, part of the glass substance may be left not to penetrate so that the penetration holes 12 can penetrate the plate base material immediately before the plate base material is peeled.
  • the plate base material 10 of the perforated support plate 1 has a structure where penetration holes are not arranged in a line portion 14 of a geometric pattern configured with a repetition of a circle.
  • FIG. 2A Further details of the structure of the above described line portion 14 of the geometric pattern are as represented by the enlarged view of the part illustrated in FIG. 2A , and the cross-sectional view illustrated in FIG. 2B .
  • many penetration holes (black dots of FIG. 2A ) 12 are arranged on the plate base material 10 almost evenly with high density.
  • penetration holes are not arranged in the line portion (white thick lines of FIG. 2A ) 14 of the geometric pattern.
  • FIG. 2A many penetration holes (black dots of FIG. 2A ) 12 are arranged on the plate base material 10 almost evenly with high density.
  • penetration holes are not arranged in the line portion (white thick lines of FIG. 2A ) 14 of the geometric pattern.
  • FIG. 2A As illustrated in FIG.
  • the line of the geometric pattern is approximately 1 mm in width
  • the inner diameter of the circle is 29 mm
  • the outer diameter of the circle is 31 mm.
  • the penetration holes 12 are approximately 0.4 mm in diameter, and arranged approximately with 0.6-mm pitches.
  • the line of the geometric pattern has a predetermined width as described above. As illustrated in FIG. 2A , the line portion 14 of the geometric pattern separates the areas where the penetration holes 12 are provided in the form of an island.
  • the size of the diameter of the penetration holes 12 and their arrangement have a close relationship with the precision of pasting between the wafer and the plate base material 10 , and the time required to peel the plate base material 10 from the wafer. Therefore, attention must be paid not to extend the peeling time while maintaining required deflection prevention effect if the reinforcing part is arranged.
  • setting the line width of the reinforcing part to 1 mm or less is proved to be preferable in order to prevent the peeling time from extending.
  • the above described reinforcing part and penetration holes are formed on one plate base material 10 here. Therefore, both of them can be simultaneously formed. Namely, for example, a resist mask where positions at which the penetration holes 12 are formed are opened and an area functioning as a reinforcing part is not opened is laminated on the plate base material through a photolithography process step, the penetration holes are made to penetrate the plate base material through the opened part with anisotropic etching such as dry etching, etc., and the resist mask on the plate base material is removed. In this case, an area of 1 mm or less, which is represented with the line of the geometric pattern and left at a position from which the resist mask is removed last, is implemented as a reinforcing part.
  • the reinforcing part namely, the no-hole area for deflection prevention formed on the plate base material is described above.
  • the reinforcing part may be arranged not only as the no-hole area for deflection prevention but also as another form.
  • the rigidity can be increased also by preparing another reinforcing plate where an area except for the range represented by the above described line of the geometric pattern is opened or a plurality of penetration holes are arranged, and by providing the reinforcing plate by pasting it to a glass plate base material where penetration holes are opened on the entire surface.
  • the line portion of the circular geometric pattern is made not to penetrate the plate base material on the glass plate base material, and this line portion is implemented as a reinforcing part in the first embodiment.
  • the strength of the surface can be increased over a wide range with high efficiency.
  • the rigidity of the entire surface of the plate base material can be increased.
  • the glass plate base material of 300 mm in diameter and 0.7 mm in thickness can be prevented from deflecting, and availability to a pasting device and a peeling device is improved.
  • the thickness of the glass plate base material is the same as that of a plate of less than 300 mm in diameter and 0.7 mm in thickness. Therefore, perforated support plates of large and small diameters can be similarly used without significantly changing the configuration of, for example, the pasting device, the peeling device etc., and without significantly increasing the number of components.
  • the thickness of the plate base material on which the reinforcing part, namely, the no-hole area for deflection prevention is configured as described above is the same as that of the reinforcing part. Therefore, the perforated support plate and the plate base material can be made identical in thickness.
  • the line width of the above described geometric pattern is 1 mm or less, a difference between a pitch of penetration holes and a pitch of penetration holes adjacent via the reinforcing part for deflection prevention is reduced. Therefore, the time required to peel the perforated support plate from the wafer, which is increased by providing the reinforcing part for deflection prevention, can be decreased.
  • the second embodiment refers to a perforated support plate used in a suction device type of vacuum-sucking and holding one side.
  • FIG. 3A is a top view of the perforated support plate in the second embodiment
  • FIG. 3B is an enlarged view of the part C represented with a dotted line in FIG. 3A
  • the same components as those in FIG. 1B or 2 A are denoted with the same reference numerals.
  • the perforated support plate 2 of FIGS. 3A and 3B is manufactured by processing the glass plate base material 10 of 0.7 mm in thickness to be a circle of 300 mm in diameter in a similar manner as in the first embodiment.
  • a plurality of penetration holes 12 of approximately 0.4 mm in diameter are arranged on the entire surface with high density.
  • Unopened areas for suction 20 are further formed on the plate base material 10 .
  • Each unopened area for suction 20 is configured to be applied with a high negative pressure by evacuation from a vacuum suction device having a vacuum chuck, etc. Therefore, the unopened area for suction 20 is arranged to align with the position of a groove or hole for suction arranged in the vacuum suction device, and its arrangement and shape are determined according to a design of the vacuum suction device.
  • the unopened areas for suction 20 are arranged as represented with a plurality of concentric circles illustrated in FIG. 3A .
  • the unopened areas for suction 20 are structured at least not to penetrate the plate base material so that the air does not escape to the upper and the lower surfaces of the plate base material 10 .
  • Examples of the structure include a structure where the upper and the lower surfaces are blocked, and a structure having a shielding part partially in the thickness direction of the plate base material.
  • the unopened area for suction 20 does not have penetration holes as described above, and totally different from the reinforcing part in terms of a position at which the unopened area for suction 20 is formed, an area where the unopened area for suction 20 is formed, and its function and specific structure.
  • the unopened area for suction 20 and the no-hole area for deflection prevention 14 are mutually different, for example, in line width.
  • the line width of the no-hole area for deflection prevention 14 is formed to be narrower than that of the unopened area for suction 20 .
  • Examples of the numerical data of the line widths for comparison purpose are as follows. Namely, each penetration hole 12 is arranged to be approximately 0.4 mm in diameter with approximately 0.6-mm pitches, and the line 14 of the geometric pattern configured with the repetition of the circle is arranged to be approximately 0.7 mm in width, with the inner diameter of 29.5 mm of the circle, and the outer diameter of 30 mm of the circle.
  • the lines of the concentric circles configuring the unopened area for suction 20 are arranged to be approximately 1 mm in width. However, since the unopened area for suction 20 must be arranged to block the suction groove or hole of the vacuum suction device, it is preferable to form the line width to be at least 0.5 mm or more to suit the suction groove or hole of the vacuum suction device.
  • the common area is configured as the no-hole area for deflection prevention 14 .
  • the unopened area for suction 20 and the no-hole area for deflection prevention 14 can be formed simultaneously with the process step of forming the penetration holes 12 as follows. Namely, these areas can be formed, for example, by laminating a resist mask, on which positions at which the penetration holes 12 are formed are opened and positions corresponding to the unopened area for suction 20 and the no-hole area for deflection prevention 14 are unopened, on the glass plate base material 10 through a photolithography process step by making the penetration holes penetrate the plate base material 10 via the opened part with anisotropic etching such as dry etching, and by removing the resist mask on the plate base material 10 last.
  • anisotropic etching such as dry etching
  • an area of, for example, 0.7 mm or less, which is represented with the line of the geometric pattern in the area left at a position from which the resist mask is removed last, is implemented as the no-hole area for deflection prevention 14
  • an area of, for example, 1 mm or more, which is represented with the line of the concentric circle, is implemented as the unopened area for suction 20 .
  • the unopened area for suction 20 is further provided on the plate base material referred to in the first embodiment. Since the unopened area for suction 20 is provided on the perforated support plate in the second embodiment, its sucking property is superior to that of the perforated support plate 1 referred to in the first embodiment. Moreover, especially, the no-hole area for deflection prevention 14 includes the area (common are) that overlaps the unopened area for suction 20 , but penetration holes are not configured in the common area. Therefore, effects similar to the perforated support plate 1 in the first embodiment can be also obtained.
  • the third embodiment refers to modification examples of the reinforcing part (especially, the no-hole area for deflection prevention) and the unopened area for suction, which are configured on the perforated support plates referred to in the first and the second embodiments. Assume that the no-hole area for deflection prevention and the unopened area for suction are provided under the conditions referred to in the second embodiment although this is not particularly described below.
  • FIGS. 4 and 5 illustrate modification examples of the line of the circular geometric pattern of the reinforcing part referred to in the first embodiment (or the no-hole area for deflection prevention referred to in the second embodiment).
  • FIG. 4 is an example of a case where the above described line of the circular geometric pattern is changed to a line of a polygonal geometric pattern.
  • the reinforcing part (or the no-hole area for deflection prevention) is configured with a line 30 of a geometric pattern as a repetition of a hexagonal pattern.
  • FIG. 5 is an example of a case where the above described line of the circular geometric pattern is changed to a line of a geometric pattern configured with a combination of a plurality of concentric circles.
  • the reinforcing part (or the no-hole area for deflection prevention) is configured with lines 40 of six concentric circles of different diameters.
  • FIGS. 6 to 8 illustrate examples of transforming the shape of the concentric circles of the unopened area for suction referred to in the second embodiment. Each shape is transformed according to the position of a groove or hole for suction configured in the vacuum suction device.
  • FIG. 6 is an example of a case where the unopened area for suction is provided in the form of an island.
  • elliptical unopened areas for suction 50 are provided at four positions equally distant from the center as illustrated in FIG. 6 .
  • FIG. 7 is an example of a case where the unopened area for suction is provided as mutually orthogonal two band-like lines 60 .
  • FIG. 8 is an example of a case where the unopened area for suction is provided by forming the central part and an outer area respectively as an island and a line 70 of a concentric circle.
  • the patterns of the reinforcing part are merely examples. Therefore, the pattern of the reinforcing part (or the no-hole area for deflection prevention) may be configured with a line of another geometric pattern.
  • the line of the geometric pattern may be configured by using only one circle or polygon.
  • the above described shapes of the unopened area for suction are merely examples. Accordingly, the shape of the unopened area for suction can be suitably transformed according to the groove or hole for suction configured in the vacuum suction device.
  • the pattern of the no-hole area for deflection prevention and the shape of the unopened area for suction can be configured by arbitrarily combining the above described patterns and shapes.
  • the reinforcing part can be configured in various patterns in the third embodiment. Accordingly, an optimum pattern can be selected in terms of the material and the design of a plate base material. Moreover, the pattern of the no-hole area for deflection prevention and the shape of the unopened area for suction can be configured by combining various patterns and shapes. As a result, a perforated support plate with high sucking property and high rigidity can be suitably selected according to a configuration of a vacuum suction device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Packaging Frangible Articles (AREA)
US12/448,499 2006-12-28 2007-11-26 Perforated support plate Abandoned US20090288780A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006-355508 2006-12-28
JP2006355508A JP4922752B2 (ja) 2006-12-28 2006-12-28 孔あきサポートプレート
PCT/JP2007/001295 WO2008081561A1 (fr) 2006-12-28 2007-11-26 Plaque support perforée

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001295 A-371-Of-International WO2008081561A1 (fr) 2006-12-28 2007-11-26 Plaque support perforée

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/939,524 Division US8882096B2 (en) 2006-12-28 2013-07-11 Perforated support plate

Publications (1)

Publication Number Publication Date
US20090288780A1 true US20090288780A1 (en) 2009-11-26

Family

ID=39588251

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/448,499 Abandoned US20090288780A1 (en) 2006-12-28 2007-11-26 Perforated support plate
US13/939,524 Expired - Fee Related US8882096B2 (en) 2006-12-28 2013-07-11 Perforated support plate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/939,524 Expired - Fee Related US8882096B2 (en) 2006-12-28 2013-07-11 Perforated support plate

Country Status (4)

Country Link
US (2) US20090288780A1 (fr)
JP (1) JP4922752B2 (fr)
TW (1) TWI456686B (fr)
WO (1) WO2008081561A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159191A1 (en) * 2008-12-19 2010-06-24 Hirofumi Imai Processed substrate and method for manufacturing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426855B2 (ja) * 2008-09-18 2014-02-26 東京応化工業株式会社 ガラス基板の製造方法
JP5695304B2 (ja) * 2009-06-09 2015-04-01 東京応化工業株式会社 サポートプレート及びその製造方法、基板処理方法
JP2016146429A (ja) * 2015-02-09 2016-08-12 トヨタ自動車株式会社 半導体装置の製造方法
WO2016142240A1 (fr) 2015-03-11 2016-09-15 Nv Bekaert Sa Support pour plaquettes liées temporairement
WO2016142239A1 (fr) 2015-03-11 2016-09-15 Nv Bekaert Sa Support pour tranches temporairement collées
KR20170126899A (ko) 2015-03-11 2017-11-20 엔브이 베카에르트 에스에이 임시 결합된 웨이퍼용 캐리어
WO2016142238A1 (fr) 2015-03-11 2016-09-15 Nv Bekaert Sa Support pour plaquettes temporairement collées
JP7184722B2 (ja) 2019-09-19 2022-12-06 株式会社東芝 支持基板、支持基板の剥離方法、及び、半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298337A (en) * 1989-07-05 1994-03-29 Alabama Cryogenic Engineering, Inc. Perforated plates for cryogenic regenerators and method of fabrication
US20040235269A1 (en) * 2002-10-18 2004-11-25 Masahiko Kitamura Semiconductor wafer protective device and semiconductor wafer treatment method
US20050170612A1 (en) * 2003-12-01 2005-08-04 Tokyo Ohka Kogyo Co., Ltd. Substrate attaching method
US20060141412A1 (en) * 2004-12-27 2006-06-29 Masten James H Burner plate and burner assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195878A (ja) * 1998-12-24 2000-07-14 Toshiba Corp ウェーハ搬送・固定治具及び半導体装置の製造方法
JP2006135272A (ja) * 2003-12-01 2006-05-25 Tokyo Ohka Kogyo Co Ltd 基板のサポートプレート及びサポートプレートの剥離方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298337A (en) * 1989-07-05 1994-03-29 Alabama Cryogenic Engineering, Inc. Perforated plates for cryogenic regenerators and method of fabrication
US20040235269A1 (en) * 2002-10-18 2004-11-25 Masahiko Kitamura Semiconductor wafer protective device and semiconductor wafer treatment method
US6943045B2 (en) * 2002-10-18 2005-09-13 Disco Corporation Semiconductor wafer protective device and semiconductor wafer treatment method
US20050170612A1 (en) * 2003-12-01 2005-08-04 Tokyo Ohka Kogyo Co., Ltd. Substrate attaching method
US7268061B2 (en) * 2003-12-01 2007-09-11 Tokyo Ohka Kogyo Co., Ltd. Substrate attaching method
US20060141412A1 (en) * 2004-12-27 2006-06-29 Masten James H Burner plate and burner assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100159191A1 (en) * 2008-12-19 2010-06-24 Hirofumi Imai Processed substrate and method for manufacturing same
US9017932B2 (en) 2008-12-19 2015-04-28 Tokyo Ohka Kogyo Co., Ltd. Processed substrate and method for manufacturing same

Also Published As

Publication number Publication date
JP4922752B2 (ja) 2012-04-25
JP2008166566A (ja) 2008-07-17
WO2008081561A1 (fr) 2008-07-10
TW200834807A (en) 2008-08-16
US8882096B2 (en) 2014-11-11
TWI456686B (zh) 2014-10-11
US20130333833A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
US8882096B2 (en) Perforated support plate
US10642151B2 (en) Pellicle support frame and production method
US20020037631A1 (en) Method for manufacturing semiconductor devices
US20080012096A1 (en) Semiconductor chip and method of forming the same
JP2007042739A (ja) 光電変換素子の製造方法および光電変換素子
JP2009088252A (ja) ウエハのダイシング方法および半導体チップ
JPWO2012164612A1 (ja) 接合体の製造方法及び接合体
US7207554B2 (en) Semiconductor element holding apparatus and semiconductor device manufactured using the same
JP2007073813A (ja) 基板の薄板化方法及び回路素子の製造方法
CN111698623A (zh) 薄膜滤波器及其基体、薄膜滤波器及其基体的制造方法、mems麦克风及其制造方法
DE112012005792B4 (de) Kapazitiver Sensor
US7592236B2 (en) Method for applying a structure of joining material to the back surfaces of semiconductor chips
KR20170022428A (ko) 반도체패키지 스퍼터링 프레임 및 이를 이용한 스퍼터링 방법
JP2015076615A (ja) チップパッケージおよびそれを形成する方法
US11425508B2 (en) Thin-film filter, thin-film filter substrate, method of manufacturing the thin-film filter, method of manufacturing the thin-film filter substrate, MEMS microphone and method of manufacturing the MEMS microphone
US10497603B2 (en) Electronic component supply body and method for manufacturing the same
CN109801863B (zh) 用于加工封装基板内槽的治具及加工方法
KR20120005422A (ko) 반도체 패키지용 기판의 제조 방법
JP2010283204A (ja) 半導体装置の製造方法
CN102832158B (zh) 半导体器件的制造装置和半导体器件的制造方法
US8039363B2 (en) Small chips with fan-out leads
CN113692105B (zh) 利用补强框制作电路板的方法
US7372150B2 (en) Semiconductor wafer having identification indication
US20220165684A1 (en) Semiconductor device and method for fabricating the same
JP2019212842A (ja) ウェーハ用スペーサ

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOKYO OHKA KOGYO CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAKAMURA, AKIHIKO;MIYANARI, ATSUSHI;INAO, YOSHIHIRO;AND OTHERS;REEL/FRAME:023053/0512

Effective date: 20090605

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION