US20090269644A1 - Proton conducting materials - Google Patents

Proton conducting materials Download PDF

Info

Publication number
US20090269644A1
US20090269644A1 US12/429,371 US42937109A US2009269644A1 US 20090269644 A1 US20090269644 A1 US 20090269644A1 US 42937109 A US42937109 A US 42937109A US 2009269644 A1 US2009269644 A1 US 2009269644A1
Authority
US
United States
Prior art keywords
polymer electrolyte
groups
group
substituted
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/429,371
Other languages
English (en)
Inventor
Steven J. Hamrock
Mark S. Schaberg
Neeraj Sharma
John E. Abulu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US12/429,371 priority Critical patent/US20090269644A1/en
Assigned to 3M INNOVATIVE PROPERTIES COMPANY reassignment 3M INNOVATIVE PROPERTIES COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMROCK, STEVEN J., ABULU, JOHN E., SCHABERG, MARK S., SHARMA, NEERAJ
Publication of US20090269644A1 publication Critical patent/US20090269644A1/en
Priority to US13/269,907 priority patent/US8227140B2/en
Priority to US13/529,706 priority patent/US8481227B2/en
Priority to US13/912,768 priority patent/US9160021B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/3804Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)] not used, see subgroups
    • C07F9/3834Aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4021Esters of aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/40Introducing phosphorus atoms or phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2243Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231
    • C08J5/225Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds obtained by introduction of active groups capable of ion-exchange into compounds of the type C08J5/2231 containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to materials that may be useful as ionomers or polymer ionomers.
  • each R 1 is independently chosen from the group consisting of hydrogen, alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, polymers, metals, metal oxides, metal phosphates, metal phosphonates and inorganic particles, wherein m is 0 or 1, wherein Ar is an aromatic group which may include heterocycles and polycycles and may be substituted, and wherein R 2 is chosen from the group consisting of alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, and polymers.
  • Ar is phenylene.
  • Ar is phenylene-R 3 , wherein R 3 is chosen from the group consisting of hydrogen, alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, and polymers.
  • R 2 is a fluoropolymer.
  • R 2 is substituted with one or more acid groups selected from the group consisting of sulfonic acid groups and phosphonic acid groups.
  • R 1 is chosen from the group consisting of metals, metal oxides, metal phosphates, metal phosphonates and inorganic particles, wherein m is 0 or 1, wherein Ar is an aromatic group which may include heterocycles and polycycles and may be substituted, and wherein R 2 is chosen from the group consisting of alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, and polymers.
  • Ar is phenylene.
  • Ar is phenylene-R 3 , wherein R 3 is chosen from the group consisting of hydrogen, alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, and polymers.
  • R 2 is a fluoropolymer. In some embodiments, R 2 is substituted with one or more acid groups selected from the group consisting of sulfonic acid groups and phosphonic acid groups. In some embodiments, one or more or every R 1 is a metal or metal oxide wherein the metal is selected from the group consisting of Zr, Ti, Th and Sn. In some embodiments, one or more or every R 1 is a metal or metal oxide wherein the metal is selected from the group consisting of tetravalent metals.
  • each R 1 is independently chosen from the group consisting of hydrogen, alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, polymers, metals, metal oxides, metal phosphates, metal phosphonates and inorganic particles, wherein n is 1, 2 or 3, wherein Ar is an aromatic group which may include heterocycles and polycycles and may be substituted, and wherein R 2 is chosen from the group consisting of alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, and polymers.
  • Ar is phenylene.
  • Ar is phenylene-R 3 , wherein R 3 is chosen from the group consisting of hydrogen, alkyl, alkylene or aryl groups which may contain heteroatoms and which may be substituted, and polymers.
  • R 2 is a fluoropolymer.
  • R 2 is substituted with one or more acid groups selected from the group consisting of sulfonic acid groups and phosphonic acid groups.
  • polymer electrolytes comprising a highly fluorinated backbone and first pendant groups which comprise groups according to the formula:
  • Ar is an aromatic group of 5-24 carbon atoms which may include heterocycles and polycycles and may be substituted, where A is selected from the group consisting of —SO 3 H and —PO 3 H 2 , where n is between 1 and q, where q is one-half the number of carbons in Ar.
  • the polymer electrolyte comprises a perfluorinated backbone.
  • the polymer electrolyte comprises second pendant groups which comprise groups according to the formula: —SO 3 H.
  • the ratio of first to second pendant groups is p, where p is between 0.01 and 100, between 0.1 and 10, between 0.1 and 1 or between 1 and 10.
  • the present disclosure provides polymer electrolyte membranes or membrane electrode assemblies comprising the present polymer electrolytes, which may additionally comprising a porous support or may additionally be crosslinked.
  • equivalent weight (or “EW”) of a polymer means the weight of polymer which will neutralize one equivalent of base (allowing that, where sulfonyl halide substituents or other substituents that would be converted into acidic functions during use of the polymer in a fuel cell are present, “equivalent weight” refers to the equivalent weight after hydrolyzation of such groups);
  • “highly fluorinated” means containing fluorine in an amount of 40 wt % or more, typically 50 wt % or more and more typically 60 wt % or more;
  • substituted means, for a chemical species, substituted by conventional substituents which do not interfere with the desired product or process, e.g., substituents can be alkyl, alkoxy, aryl, phenyl, halo (F, Cl, Br, I), cyano, nitro, etc.
  • This disclosure relates to production of materials, including polymers, particles and small molecules, linked to acid-containing through the covalent bonding of materials using sulfonamide, bis sulfonyl imide and phosphonic linkages.
  • this disclosure concerns fuel cell membrane materials with an increased number of strong acid groups created in some embodiments by reaction of these acid containing molecules with acid containing organic molecules, metal oxide or phosphate particles, metal salts, heteropolyacids, and the like.
  • Another aspect of this disclosure involves the use of these multifunctional materials to develop crosslinked structures for improved mechanical properties or to minimize component leaching.
  • Materials taught in this disclosure may be used for fuel cell applications such as in the manufacture of proton exchange membranes (PEM), as catalyst additives or in tie layers designed to be thermally and chemically robust while operating within a fuel cell's harsh environment at higher temperatures and to conduct protons, with significantly higher levels of bound acidic groups, while in a low hydration state.
  • PEM proton exchange membranes
  • This disclosure describes the modification of PFSA's or other polymers by the conversion of the sulfonic acid group to a bis sulfonyl imide group with an aromatic group which can be further modified by the attachment of additional acid groups (for improved conductivity) or phosphonic acid groups or silane groups (for attachment of heteropolyacids, for the attachment of inorganic particles such as zirconia or zirconyl phosphate or for the attachment of silica particles).
  • Crosslinking may be accomplished thru the use of difunctional reactants. Examples include but are not limited to: ammonia, benzene disulfonyl chloride, naphthalene disulfonyl chloride sulfonic acid sodium salt, bis-(phenyldisulfonyl anhydride) and disulfonamides (e.g. benzene disulfonamide).
  • Useful reactive groups include halides, sulfonyl halides, disulfonyl anhydrides, sulfonamides, amines, phosphonic diols, acids and esters, Tungstenic diols, and the like.
  • Aromatic groups may be sulfonated by any suitable method. Aromatic groups may be sulfonated by use of Na 2 SO 3 , chlorosulfonic acid, trimethyl silyl sulfonic acid, sulfuric acid, or other sulfonating agents.
  • This disclosure further describes the attachment of small molecules containing bis sulfonyl imides to inorganic moieties such as HPA's or particles and methods of synthesizing these compounds.
  • Polymers according to the present disclosure may be crosslinked by any suitable method, which may include methods disclosed in U.S. Pat. No. 7,179,847, issued Feb. 20, 2007; U.S. Pat. No. 7,514,481, issued Apr. 7, 2009; U.S. Pat. No. 7,265,162, issued Sep. 4, 2007; U.S. Pat. No. 7,074,841, issued Jul. 11, 2006; U.S. Pat. No. 7,435,498, issued Oct. 14, 2008; U.S. Pat. No. 7,259,208, issued Aug. 21, 2007; U.S. Pat. No. 7,411,022, issued Aug. 12, 2008; U.S. Pat. No. 7,060,756, issued Jun. 13, 2006; U.S. Pat. No.
  • a sulfonamide functional polymer was created by reacting a polymer having pendent sulfonyl fluoride groups with ammonia followed by ion exchange, as diagrammed below. As indicated, a side reaction can occur involving formation of imide crosslinks by the reaction of the sulfonamide with a second —SO 2 F group.
  • the polymer used was a copolymer of tetrafluoroethylene (TFE) and FSO 2 —CF 2 CF 2 CF 2 CF 2 —O—CF ⁇ CF 2 , described in U.S. patent applications Ser. Nos. 10/322,254, 10/322,226 and 10/325,278, which are incorporated herein by reference.
  • About 23 g of a 90/10 blend of a ⁇ 680 EW polymer and an 800 EW polymer was placed into a 600 ml Parr bomb with 150 g acetonitrile. The bomb was sealed up, evacuated and with low agitation chilled to ⁇ 20 C. Ammonia was added to 40 psig and the temperature keep below 5 C for 6 hours. It was then allowed to warm up to room temperature overnight.
  • the vessel was opened and the grey solid polymer separated and dissolved in 108 g of methanol and 20 g of DI water with modest warming.
  • the solution was then exposed to acidified and rinsed Amberlite IR-120 ion exchange beads a total of 6 times to drop the solution pH containing polymer to ⁇ 3.
  • An NMR spectrum of the lower pH solution shows a substantial sulfonamide peak at ⁇ 115.0 with a small sulfonic acid peak at ⁇ 115.7, with a peak integration ratio of 12 to 1.
  • the solution was dried at 60 C, overnight, resulting in 12.1 g of light yellow solid.
  • the polymer was then redissolved in acetonitrile, allowed to stand and settle. The dissolved portion was again coated out and dried, resulting in 8.7 g of slightly yellow, slightly cloudy, rigid film.
  • Step 1 23.6 gm of 4-Bromobenzenesulfonamide was added to 100 ml of dry Acetonitrile in a three-necked round bottom flask. The flask was cooled to 0° C. and a water cooled reflux condenser was attached to the center neck of the flask. The flask was continuously purged with Nitrogen during the course of the reaction. 30.3 gm of Triethylamine was added to the flask under stirring. 25.6 gm of 4-Bromobenzenesulfonylchloride was weighed in a Nitrogen purged box and added in portions to the flask under constant stirring.
  • Step 2 An oven dried flask was cooled under nitrogen and charged with 1 gm of product from step 1, palladium(II) acetate (8 mg) and triphenylphosphine (30 mg). 15 ml of Ethanol was introduced into the flask through a needle and syringe followed by dropwise addition of N,N-dicyclohexylmethylamine (1.25 ml) and diethyl phosphite (0.61 ml). The reaction mixture was refluxed for 15 hours at 80° C. The solvent was removed in a rotary evaporator to obtain the product as triethyl amine salt—a brown semisolid in 80% yield. The phosphonation was confirmed by 31 P NMR signal at ⁇ 16.74 ppm (referenced to H 3 PO 4 ).
  • Step 3 1 g of step 2 product was refluxed with 20 ml of 12N HCl for 36 hours to hydrolyze the phosphonate ester. The resulting mixture was dried using a rotary evaporated to yield the hydrolyzed phosphonic acid product. The completion of the hydrolysis of the diethylphosphonate ester was confirmed by the absence of the ethyl signals at 3.99 ppm, 1.22 ppm in the final product and by the 31 P NMR: ⁇ 12.06 ppm (referenced to H 3 PO 4 ).
  • Example 5 The phosphonic acid synthesized in Example 5 is attached to a lacunary heteropolyacid, such as described in U.S. patent application Ser. No. 12/266,932, filed Nov. 7, 2008, (the disclosure of which is incorporated herein by reference), by reacting the phosphonic acids with a lacunary heteropolyacid salt by the method described in Example 6.
  • a lacunary heteropolyacid such as described in U.S. patent application Ser. No. 12/266,932, filed Nov. 7, 2008, (the disclosure of which is incorporated herein by reference)
  • Example 8 The reaction described in Example 8 was carried out using 2 g of 3,5-difluorobenzenesulfonyl chloride (from Alfa Aesar, Ward Hill, Mass., USA) and 10 g of polymer at 10% solids in 45 ml of acetonitrile.
  • the polymers obtained in Examples 8 and 9 are sulfonated by reaction with Na 2 SO 3 to obtain acidic polymers with pendent disulfonated aromatic groups bound via sulfonyl imide functions.
  • the polymers obtained in Examples 10 and 11 are sulfonated by to obtain acidic polymers with pendent disulfonated aromatic groups bound via sulfonyl imide functions.
  • the polymers so obtained are further sulfonated to obtain acidic polymers with pendent polysulfonated aromatic groups bound via sulfonyl imide functions.
  • Proton conductivity was measured using a standard, in-plane, 4 point probe conductivity apparatus with platinum electrodes, commercially available form Bekktech Inc., Loveland Colo.
  • the cell was electrically connected to a potentiostat (Model 273, Princeton Applied Research) and an Impedance/Gain Phase Analyzer (SI 1260, Schlumberger). AC impedance measurements was performed using Zplot and Zview software (Scribner Associates). Temperature and relative humidity were controlled with a constant humidity oven (TestEquity Model 1000H).
  • Conductivity was measured for the polymer of Example 10, the polymer of Example 11 and a polymer of about 800 EW essentially similar to the precursor polymer used to make the polymers of Examples 10 and 11. Thus all three polymers would be expected to have similar backbone crystallinity, had the polymer backbone of a polymer with an EW of about 800, however, the polymers of Examples 10 and 11 expected to have an EW of about 550 (by calculation). Conductivity was also measured for a similar polymer of about 650 EW. The polymers of Examples 10 and 11 showed improved conductivity at relative humidities of 50% or above. At relative humidities of 65% or higher, the polymers of Examples 10 and 11 demonstrated conductivity comparable to the 650 EW polymer.
  • the polymers of Examples 10 and 11 demonstrated conductivity comparable to the 800 EW polymer. At a relative humidity of 5o%, the polymers of Examples 10 and 11 demonstrated conductivity intermediate between the 650 EW and 800 EW polymers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inert Electrodes (AREA)
US12/429,371 2008-04-24 2009-04-24 Proton conducting materials Abandoned US20090269644A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/429,371 US20090269644A1 (en) 2008-04-24 2009-04-24 Proton conducting materials
US13/269,907 US8227140B2 (en) 2008-04-24 2011-10-10 Proton conducting materials
US13/529,706 US8481227B2 (en) 2008-04-24 2012-06-21 Proton conducting materials
US13/912,768 US9160021B2 (en) 2008-04-24 2013-06-07 Proton conducting materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4764308P 2008-04-24 2008-04-24
US12/429,371 US20090269644A1 (en) 2008-04-24 2009-04-24 Proton conducting materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/269,907 Division US8227140B2 (en) 2008-04-24 2011-10-10 Proton conducting materials

Publications (1)

Publication Number Publication Date
US20090269644A1 true US20090269644A1 (en) 2009-10-29

Family

ID=41119287

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/429,371 Abandoned US20090269644A1 (en) 2008-04-24 2009-04-24 Proton conducting materials
US13/269,907 Active US8227140B2 (en) 2008-04-24 2011-10-10 Proton conducting materials
US13/529,706 Active US8481227B2 (en) 2008-04-24 2012-06-21 Proton conducting materials
US13/912,768 Active 2030-03-24 US9160021B2 (en) 2008-04-24 2013-06-07 Proton conducting materials

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/269,907 Active US8227140B2 (en) 2008-04-24 2011-10-10 Proton conducting materials
US13/529,706 Active US8481227B2 (en) 2008-04-24 2012-06-21 Proton conducting materials
US13/912,768 Active 2030-03-24 US9160021B2 (en) 2008-04-24 2013-06-07 Proton conducting materials

Country Status (5)

Country Link
US (4) US20090269644A1 (ja)
EP (3) EP2554579B1 (ja)
JP (2) JP2011523398A (ja)
CN (2) CN103788280B (ja)
WO (1) WO2009132241A2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096653A1 (en) * 2011-01-11 2012-07-19 Utc Power Corporation Proton exchange material and method therefor
US20130029249A1 (en) * 2010-04-16 2013-01-31 3M Innovative Properties Company Proton conducting materials
US8481227B2 (en) 2008-04-24 2013-07-09 3M Innovative Properties Company Proton conducting materials
WO2013162499A1 (en) * 2012-04-23 2013-10-31 United Technologies Corporation Method for dispersing particles in perfluorinated polymer ionomer
US20150337064A1 (en) * 2012-12-21 2015-11-26 Audi Ag Method of fabricating an electrolyte material
WO2016122200A1 (ko) * 2015-01-27 2016-08-04 주식회사 엘지화학 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
US9923223B2 (en) 2012-12-21 2018-03-20 Audi Ag Electrolyte membrane, dispersion and method therefor
US9923224B2 (en) 2012-12-21 2018-03-20 Audi Ag Proton exchange material and method therefor
EP3252034A4 (en) * 2015-01-26 2018-08-15 LG Chem, Ltd. Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same
US10141558B2 (en) 2013-08-28 2018-11-27 Byd Company Limited Separator for lithium-ion battery and method for preparing the same
US10505197B2 (en) 2011-03-11 2019-12-10 Audi Ag Unitized electrode assembly with high equivalent weight ionomer
US11165068B2 (en) 2018-08-08 2021-11-02 Ryo Tamaki Manufacturing of electrolytic membrane with cationic or anionic ion conducting capability comprising crosslinked inorganic-organic hybrid electrolyte in a porous support and articles comprising the same
CN114614058A (zh) * 2020-12-04 2022-06-10 中国石油化工股份有限公司 一种薄层复合质子交换膜及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129971A1 (en) * 2013-02-25 2014-08-28 National University Of Singapore Polyamide single-ion conducting composite polymer electrolyte
ES2687897T3 (es) 2013-03-18 2018-10-29 Nippon Soda Co., Ltd. Método para producir sal de metal alcalino de disulfonilamina
CN108467407B (zh) * 2018-04-09 2020-06-09 山东大学 一种增强二维层状稀土有机膦酸盐质子传导能力的方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246901A (en) * 1988-05-23 1993-09-21 Catalytica, Inc. Polysulfonic acids
US5463005A (en) * 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
US5919583A (en) * 1995-03-20 1999-07-06 E. I. Du Pont De Nemours And Company Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
US6090895A (en) * 1998-05-22 2000-07-18 3M Innovative Properties Co., Crosslinked ion conductive membranes
US6624328B1 (en) * 2002-12-17 2003-09-23 3M Innovative Properties Company Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group
US6683209B2 (en) * 2001-10-25 2004-01-27 3M Innovative Properties Company Aromatic imide and aromatic methylidynetrissulfonyl compounds and method of making
US20040116742A1 (en) * 2002-12-17 2004-06-17 3M Innovative Properties Company Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
US6863838B2 (en) * 2001-10-25 2005-03-08 3M Innovative Properties Company Zwitterionic imides
US7060756B2 (en) * 2003-11-24 2006-06-13 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7060738B2 (en) * 2003-12-11 2006-06-13 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US7074841B2 (en) * 2003-11-13 2006-07-11 Yandrasits Michael A Polymer electrolyte membranes crosslinked by nitrile trimerization
US7112614B2 (en) * 2003-12-08 2006-09-26 3M Innovative Properties Company Crosslinked polymer
US20060275636A1 (en) * 2003-05-27 2006-12-07 Zhen-Yu Yang Fuel cell membrane containing zirconium phosphate
US7173067B2 (en) * 2003-12-17 2007-02-06 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
US7179847B2 (en) * 2003-11-13 2007-02-20 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US7259208B2 (en) * 2003-11-13 2007-08-21 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7265162B2 (en) * 2003-11-13 2007-09-04 3M Innovative Properties Company Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US7285349B2 (en) * 2003-10-30 2007-10-23 3M Innovative Properties Company Polymer electrolyte membrane and method of making
US7348088B2 (en) * 2002-12-19 2008-03-25 3M Innovative Properties Company Polymer electrolyte membrane

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE791289A (nl) 1971-11-24 1973-05-14 Agfa Gevaert Nv Werkwijze voor het bereiden van fotografische zilverzoutemulsies
DE2741669A1 (de) 1977-09-16 1979-03-22 Bayer Ag Semipermeable membranen aus acrylnitrilcopolymerisaten
FR2637284B1 (fr) * 1988-10-05 1991-07-05 Elf Aquitaine Methode de synthese de sulfonylimidures
US5256821A (en) 1988-10-05 1993-10-26 Societe Nationale Elf Aquitaine Method of synthesis of sulphonylimides
US5256493A (en) * 1990-04-26 1993-10-26 Szita Jeno G Sulfonimide catalysts for coatings
US5317001A (en) * 1992-12-23 1994-05-31 Eastman Kodak Company Thermal dye transfer receiving element with aqueous dispersible polyester dye image-receiving layer
JP3159569B2 (ja) * 1993-07-09 2001-04-23 富士写真フイルム株式会社 感光性組成物及び画像形成方法
JP3117369B2 (ja) 1994-09-12 2000-12-11 セントラル硝子株式会社 スルホンイミドの製造方法
EP0815606B1 (en) * 1995-03-20 2000-06-07 E.I. Du Pont De Nemours And Company Membranes containing inorganic fillers for fuel cells
EP1312603A1 (fr) 1998-01-30 2003-05-21 Hydro-Quebec Dérivés bis-sulfonyles polymérisables et leur utilisation dans la préparation de membranes échangeuses d'ions
US6063522A (en) 1998-03-24 2000-05-16 3M Innovative Properties Company Electrolytes containing mixed fluorochemical/hydrocarbon imide and methide salts
US6420082B1 (en) 1998-11-13 2002-07-16 Fuji Photo Film Co., Ltd. Positive resist fluid and positive resist composition
JP3835786B2 (ja) * 1998-11-13 2006-10-18 富士写真フイルム株式会社 ポジ型レジスト液
JP4799776B2 (ja) * 2000-08-22 2011-10-26 富士フイルム株式会社 電解質組成物及びそれを用いた電気化学電池
US6660445B2 (en) * 2000-10-13 2003-12-09 Fuji Photo Film Co., Ltd. Photosensitive composition comprising a vinyl copolymer and an o-naphthoquinone diazide compound
US20040122256A1 (en) * 2001-02-01 2004-06-24 Masanori Ikeda Perfluorvinyl ether monomer having sulfonamide group
US20020160272A1 (en) 2001-02-23 2002-10-31 Kabushiki Kaisha Toyota Chuo Process for producing a modified electrolyte and the modified electrolyte
JP3630306B2 (ja) * 2001-02-23 2005-03-16 株式会社豊田中央研究所 多官能化電解質及びこれを用いた電気化学デバイス並びに多官能化電解質の製造方法
JP3969077B2 (ja) 2001-04-04 2007-08-29 住友化学株式会社 高分子電解質及びその製造方法
US20030013817A1 (en) * 2001-06-26 2003-01-16 Kelly Lu High temperature ionic polymers and membranes made therefrom
JP2003098657A (ja) * 2001-09-21 2003-04-04 Fuji Photo Film Co Ltd ポジ型印刷版用原版
ITPG20020015A1 (it) 2002-03-22 2003-09-22 Giulio Alberti Un metodo innovativo per la preparazione di membrane nanopolimeriche a conduzione protonica per usi in celle a combustibile o in reattori ca
JP4106983B2 (ja) * 2002-03-25 2008-06-25 住友化学株式会社 芳香族系高分子、その製造方法およびその用途
KR20110093921A (ko) * 2002-06-28 2011-08-18 스미또모 가가꾸 가부시끼가이샤 고분자 적층막
TW200416257A (en) * 2002-10-15 2004-09-01 Sumitomo Chemical Co Block copolymer and application thereof
US20040225153A1 (en) * 2003-02-13 2004-11-11 The Penn State Research Foundation Synthesis of polyphosphazenes with sulfonimide side groups
JP2004331799A (ja) * 2003-05-07 2004-11-25 Yokohama Tlo Co Ltd 新規重合体
JP2005029624A (ja) * 2003-07-08 2005-02-03 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
EP1667265B1 (en) 2003-09-17 2011-03-23 Asahi Kasei Kabushiki Kaisha Membrane-electrode assembly for solid polymer fuel cell
US7576165B2 (en) * 2004-01-27 2009-08-18 Georgia Institute Of Technology Heterocycle grafted monomers and related polymers and hybrid inorganic-organic polymer membranes
US7517604B2 (en) 2005-09-19 2009-04-14 3M Innovative Properties Company Fuel cell electrolyte membrane with acidic polymer
JP2007089017A (ja) * 2005-09-26 2007-04-05 Pioneer Electronic Corp 通信端末、データ送信方法、データ受信方法、データ送信プログラム、データ受信プログラムおよび記録媒体
EP1985636B1 (en) 2006-02-03 2019-07-17 Daikin Industries, Ltd. Method for producing -so3h group-containing fluoropolymer
WO2007125845A1 (ja) * 2006-04-28 2007-11-08 National University Corporation Yokohama National University スルホンイミド型モノマー及びその重合体
EP3012895A3 (en) 2007-11-09 2016-06-01 3M Innovative Properties Company Polymer electrolytes including heteropolyacids
WO2009086354A1 (en) 2007-12-27 2009-07-09 3M Innovative Properties Company Durable fuel cell membrane electrode assembly with combined additives
WO2009132241A2 (en) 2008-04-24 2009-10-29 3M Innovative Properties Company Proton conducting materials

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246901A (en) * 1988-05-23 1993-09-21 Catalytica, Inc. Polysulfonic acids
US5463005A (en) * 1992-01-03 1995-10-31 Gas Research Institute Copolymers of tetrafluoroethylene and perfluorinated sulfonyl monomers and membranes made therefrom
US5919583A (en) * 1995-03-20 1999-07-06 E. I. Du Pont De Nemours And Company Membranes containing inorganic fillers and membrane and electrode assemblies and electrochemical cells employing same
US6090895A (en) * 1998-05-22 2000-07-18 3M Innovative Properties Co., Crosslinked ion conductive membranes
US6683209B2 (en) * 2001-10-25 2004-01-27 3M Innovative Properties Company Aromatic imide and aromatic methylidynetrissulfonyl compounds and method of making
US6727386B2 (en) * 2001-10-25 2004-04-27 3M Innovative Properties Company Aromatic imide and aromatic methylidynetrissulfonyl compounds and method of making
US6863838B2 (en) * 2001-10-25 2005-03-08 3M Innovative Properties Company Zwitterionic imides
US6624328B1 (en) * 2002-12-17 2003-09-23 3M Innovative Properties Company Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group
US20040116742A1 (en) * 2002-12-17 2004-06-17 3M Innovative Properties Company Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
US7348088B2 (en) * 2002-12-19 2008-03-25 3M Innovative Properties Company Polymer electrolyte membrane
US20060275636A1 (en) * 2003-05-27 2006-12-07 Zhen-Yu Yang Fuel cell membrane containing zirconium phosphate
US7285349B2 (en) * 2003-10-30 2007-10-23 3M Innovative Properties Company Polymer electrolyte membrane and method of making
US7074841B2 (en) * 2003-11-13 2006-07-11 Yandrasits Michael A Polymer electrolyte membranes crosslinked by nitrile trimerization
US7179847B2 (en) * 2003-11-13 2007-02-20 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US7259208B2 (en) * 2003-11-13 2007-08-21 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7265162B2 (en) * 2003-11-13 2007-09-04 3M Innovative Properties Company Bromine, chlorine or iodine functional polymer electrolytes crosslinked by e-beam
US7411022B2 (en) * 2003-11-13 2008-08-12 3M Innovative Properties Company Reinforced polymer electrolyte membrane
US7435498B2 (en) * 2003-11-13 2008-10-14 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by nitrile trimerization
US7514481B2 (en) * 2003-11-13 2009-04-07 3M Innovative Properties Company Polymer electrolytes crosslinked by e-beam
US7060756B2 (en) * 2003-11-24 2006-06-13 3M Innovative Properties Company Polymer electrolyte with aromatic sulfone crosslinking
US7112614B2 (en) * 2003-12-08 2006-09-26 3M Innovative Properties Company Crosslinked polymer
US7060738B2 (en) * 2003-12-11 2006-06-13 3M Innovative Properties Company Polymer electrolytes crosslinked by ultraviolet radiation
US7173067B2 (en) * 2003-12-17 2007-02-06 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination
US7326737B2 (en) * 2003-12-17 2008-02-05 3M Innovative Properties Company Polymer electrolyte membranes crosslinked by direct fluorination

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8481227B2 (en) 2008-04-24 2013-07-09 3M Innovative Properties Company Proton conducting materials
US9160021B2 (en) 2008-04-24 2015-10-13 3M Innovative Properties Company Proton conducting materials
US9419300B2 (en) * 2010-04-16 2016-08-16 3M Innovative Properties Company Proton conducting materials
US20130029249A1 (en) * 2010-04-16 2013-01-31 3M Innovative Properties Company Proton conducting materials
WO2012096653A1 (en) * 2011-01-11 2012-07-19 Utc Power Corporation Proton exchange material and method therefor
US10505197B2 (en) 2011-03-11 2019-12-10 Audi Ag Unitized electrode assembly with high equivalent weight ionomer
WO2013162499A1 (en) * 2012-04-23 2013-10-31 United Technologies Corporation Method for dispersing particles in perfluorinated polymer ionomer
US9991521B2 (en) 2012-04-23 2018-06-05 Audi Ag Method for dispersing particles in perfluorinated polymer ionomer
US9663600B2 (en) * 2012-12-21 2017-05-30 Audi Ag Method of fabricating an electrolyte material
CN105637690A (zh) * 2012-12-21 2016-06-01 奥迪股份公司 制备电解质材料的方法
US9923223B2 (en) 2012-12-21 2018-03-20 Audi Ag Electrolyte membrane, dispersion and method therefor
US9923224B2 (en) 2012-12-21 2018-03-20 Audi Ag Proton exchange material and method therefor
US20150337064A1 (en) * 2012-12-21 2015-11-26 Audi Ag Method of fabricating an electrolyte material
US10141558B2 (en) 2013-08-28 2018-11-27 Byd Company Limited Separator for lithium-ion battery and method for preparing the same
EP3252034A4 (en) * 2015-01-26 2018-08-15 LG Chem, Ltd. Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same
US10418656B2 (en) 2015-01-26 2019-09-17 Lg Chem, Ltd. Compound comprising aromatic ring having sulfonamide and ion transport group, polymer comprising same, and polyelectrolyte membrane using same
CN107207424A (zh) * 2015-01-27 2017-09-26 株式会社Lg化学 包含芳环的化合物和使用该化合物的聚电解质膜
EP3252035A4 (en) * 2015-01-27 2018-08-01 LG Chem, Ltd. Compound comprising aromatic ring, and polyelectrolyte membrane using same
KR101821480B1 (ko) 2015-01-27 2018-01-24 주식회사 엘지화학 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
US10428016B2 (en) 2015-01-27 2019-10-01 Lg Chem, Ltd. Compound comprising aromatic ring, and polyelectrolyte membrane using same
WO2016122200A1 (ko) * 2015-01-27 2016-08-04 주식회사 엘지화학 방향족 고리를 포함하는 화합물 및 이를 이용한 고분자 전해질막
US11165068B2 (en) 2018-08-08 2021-11-02 Ryo Tamaki Manufacturing of electrolytic membrane with cationic or anionic ion conducting capability comprising crosslinked inorganic-organic hybrid electrolyte in a porous support and articles comprising the same
CN114614058A (zh) * 2020-12-04 2022-06-10 中国石油化工股份有限公司 一种薄层复合质子交换膜及其制备方法和应用

Also Published As

Publication number Publication date
EP2276728A2 (en) 2011-01-26
CN102066468A (zh) 2011-05-18
CN103788280B (zh) 2016-08-17
EP2276728B1 (en) 2013-07-17
US8227140B2 (en) 2012-07-24
WO2009132241A2 (en) 2009-10-29
US9160021B2 (en) 2015-10-13
CN103788280A (zh) 2014-05-14
EP2554579A1 (en) 2013-02-06
US20120029098A1 (en) 2012-02-02
EP2554580B1 (en) 2015-01-14
EP2554580A1 (en) 2013-02-06
JP2011523398A (ja) 2011-08-11
WO2009132241A3 (en) 2010-07-22
US20120276471A1 (en) 2012-11-01
EP2554579B1 (en) 2016-03-30
JP5848379B2 (ja) 2016-01-27
US8481227B2 (en) 2013-07-09
JP2014101522A (ja) 2014-06-05
US20130273457A1 (en) 2013-10-17
CN102066468B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
US9160021B2 (en) Proton conducting materials
US6987163B2 (en) Modified polybenzimidazole (PBI) membranes for enhanced polymer electrochemical cells
CA2615494C (en) Nitrogen-containing aromatic compounds, and production process, polymers and proton conductive membranes of the compounds
JP2011026604A (ja) 機能性ポリアゾール、その調製方法およびこれらの使用
JP4930690B2 (ja) イオン伝導性ポリマ及びイミドモノマ
CN114945627B (zh) 由含有氟化芳族基团的聚合物通过亲核取代制备的阳离子交换和阴离子交换聚合物和共混膜
US8058383B2 (en) Arylene-fluorinated-sulfonimide ionomers and membranes for fuel cells
US20080269360A1 (en) Solid-State Polymer Electrolyte Membrane, Method for Manufacture Thereof and Solid-State Polymer Electrolyte Fuel Cell Therewith
US10035144B2 (en) Multi-acid polymers and methods of making the same
US7592375B2 (en) Ion conductive polymers and imide monomers
WO2011049211A1 (ja) 側鎖にホスホン酸基を含む芳香環を有するポリアリーレン系共重合体
JP2005251523A (ja) プロトン伝導性電解質及び燃料電池
JP2009224132A (ja) ダイレクトメタノール型燃料電池用高分子電解質およびその用途
JP2017503041A (ja) 燃料電池膜を構成するために使用され得る架橋性プロトン生成基を備える共重合体
US20120302725A1 (en) Polyarylene ionomers
US20240262961A1 (en) New phosphonated non-fluorinated and partially fluorinated aryl polymers from sulfonated aryl polymers and new polymeric perfluorophosphonic acids from perfluorosulfonic acids, their process of preparation and use in electromembrane applications
JP2009224133A (ja) ダイレクトメタノール型燃料電池用高分子電解質およびその用途
KR101342598B1 (ko) 프로톤 전도성 고분자 전해질 및 이를 채용한 연료전지

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAMROCK, STEVEN J.;SCHABERG, MARK S.;SHARMA, NEERAJ;AND OTHERS;REEL/FRAME:022779/0930;SIGNING DATES FROM 20090601 TO 20090602

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION