US20090156446A1 - Corrosion Inhibition - Google Patents

Corrosion Inhibition Download PDF

Info

Publication number
US20090156446A1
US20090156446A1 US11/577,748 US57774805A US2009156446A1 US 20090156446 A1 US20090156446 A1 US 20090156446A1 US 57774805 A US57774805 A US 57774805A US 2009156446 A1 US2009156446 A1 US 2009156446A1
Authority
US
United States
Prior art keywords
lubricating composition
composition
ppm
lubricating
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/577,748
Other languages
English (en)
Inventor
Rodney J. McAtee
Michael B. Boyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lubrizol Corp
Original Assignee
Lubrizol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lubrizol Corp filed Critical Lubrizol Corp
Priority to US11/577,748 priority Critical patent/US20090156446A1/en
Assigned to THE LUBRIZOL CORPORATION reassignment THE LUBRIZOL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCATEE, RODNEY J., BOYER, MICHAEL
Publication of US20090156446A1 publication Critical patent/US20090156446A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/021Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/022Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines

Definitions

  • the present invention relates to corrosion inhibition in a lubricating composition with a low total sulphated ash content.
  • the invention further relates to the use of the lubricating composition in a internal combustion engine.
  • Corrosion inhibitors are known and have been utilised in a variety of lubricant formulations. However, corrosion inhibitors are rarely used in a lubricant, e.g., an engine lubricant, because of their known adverse effect on the performance of antiwear chemistry, particularly zinc dialkyl dithiophosphate (ZDDP). Consequently the absence of corrosion inhibitors results in an increase in corrosion. Conversely the presence of corrosion inhibitors reduces antiwear performance resulting in increased wear.
  • ZDDP zinc dialkyl dithiophosphate
  • the present invention provides a lubricating composition with acceptable corrosion inhibition and antiwear performance.
  • the invention provides a lubricating composition comprising:
  • the invention provides a lubricating composition as defined above.
  • the lubricating composition has a total sulphated ash content of 0.75 wt % or less, 0.7 wt % or less, 0.65 wt % or less, 0.6 wt % or less, or 0.5 wt % or less.
  • suitable ranges for the total sulphated ash content include 0.01 wt % to 0.68 wt %, or 0.1 wt % to 0.63 wt %, or 0.2 wt % to 0.55 wt %.
  • the lubricating composition has a phosphorus content of 900 ppm or less, 800 ppm or less or 750 ppm or less.
  • suitable ranges include 50 ppm to 850 ppm of phosphorus, 100 ppm to 700 ppm of phosphorus or 150 ppm to 500 ppm.
  • the lubricating composition has a sulphur content of less than 3000 ppm, 2000 ppm or less, 1500 ppm or less or 1000 ppm or less.
  • suitable ranges include 50 ppm to 1750 ppm, or 50 ppm to 2000 ppm of sulphur, 200 ppm to 1250 ppm of sulphur or 300 ppm to 900 ppm of sulphur.
  • the lubricating oil composition includes natural or synthetic oils of lubricating viscosity, oil derived from hydrocracking, hydrogenation, hydrofinishing, and unrefined, refined and re-refined oils and mixtures thereof.
  • Natural oils include animal oils, vegetable oils, mineral oils and mixtures thereof.
  • Synthetic oils include hydrocarbon oils, silicon-based oils, and liquid esters of phosphorus-containing acids. Synthetic oils may be produced by Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
  • the polymer composition of the present invention is useful when employed in a gas-to-liquid oil. Often Fischer-Tropsch hydrocarbons or waxes may be hydroisomerised.
  • Oils of lubricating viscosity may also be defined as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
  • the oil of lubricating viscosity comprises an API Group I, II, III, IV, V, VI or mixtures thereof, and in another embodiment API Group I, II, III or mixtures thereof. If the oil of lubricating viscosity is an API Group II, III, IV, V or VI oil there may be up to 40 wt % and in another embodiment up to a maximum of 5 wt % of the lubricating oil an API Group I oil present.
  • the oil of lubricating viscosity in one embodiment is present from 15 wt % to 99.9 wt % of the composition, in another embodiment from 30 wt % to 98.9 wt % of the composition, in another embodiment from 40 wt % to 97.9 wt % of the composition, in another embodiment and in another embodiment from 50 wt % to 94.5 wt % of the composition.
  • the lubricating composition contains a corrosion inhibitor.
  • the corrosion inhibitor is a polyhydric alcohol. In one embodiment the corrosion inhibitor comprises a polyhydric alcohol with oxyalkylene groups. In one embodiment the corrosion inhibitor comprises a polyhydric alcohol comprising monomeric units of oxyalkylene groups.
  • the polyhydric alcohol is often aliphatic, cycloaliphatic, aromatic, or heterocyclic.
  • the polyhydric alcohol may be selected from the group consisting of aliphatic-substituted cycloaliphatic alcohols, aliphatic-substituted aromatic alcohols, aliphatic-substituted heterocyclic alcohols, cycloaliphatic-substituted aliphatic alcohols, cycloaliphatic-substituted aromatic alcohols, cycloaliphatic-substituted heterocyclic alcohols, heterocyclic-substituted aliphatic alcohols, heterocyclic-substituted cycloaliphatic alcohols, heterocyclic-substituted aromatic alcohols or mixtures thereof.
  • the polyhydric alcohol typically contains 2 to 10, 2 to 6 or 2 to 4 hydroxy groups.
  • the polyhydric alcohol may be derived from a polyglycol contain up to 150, up to 100, up to 75 or up to 50 oxyalkylene groups.
  • the oxyalkylene group may be present in repeat units present from 2 to 150 repeat units, or 2 to 125 repeat units, 4 to 90 repeat units, or 6 to 45 repeat units.
  • Each oxyalkylene group may independently contain a number of carbon atoms present from 2 to 8, 2 to 5 or 3 to 4. In one embodiment the oxyalkylene group contains 3 or 4 carbon atoms.
  • polyhydric alcohols include glycols such as ethylene glycol, propylene glycol, butylene glycol, pentaerthyritol, mannitol, sorbitol, glycerol, di-glycerol, tri-glycerol, tetra-glycerol, erythritol, 2-hydroxymethyl-2-methyl-1,3-propanediol (trimethylolethane), 2-ethyl-2-(hydroxymethyl)-1,3-propanediol (trimethylolpropane), 1,2,4-hexanetriol and mixtures thereof.
  • glycols such as ethylene glycol, propylene glycol, butylene glycol, pentaerthyritol, mannitol, sorbitol, glycerol, di-glycerol, tri-glycerol, tetra-glycerol, erythritol, 2-hydroxymethyl-2-methyl-1,3-
  • Examples of a suitable polyhydric alcohol corrosion inhibitor include a polyalkylene glycol called Pluriol® commercially available from BASF, or Synalox® 100-20B, Synalox® 100-30B, Synalox® 100-50B, Synalox® 100-85B, Synalox® 100-120B or Synalox® 100-150B (all commercially available from Dow).
  • the Synalox® corrosion inhibitors are polyhydric alcohol with oxyalkylene groups that is, poly or oligo-oxyalkylene groups, with very low pour points and high viscosity indices.
  • the Synalox® corrosion inhibitor comprises a homopolymer or copolymer of propylene oxide.
  • the Synalox® corrosion inhibitor is described in more detail in a product brochure with Form No. 118-01453-0702 AMS, published by The Dow Chemical Company. The product brochure is entitled “SYNALOX Lubricants, High-Performance Polyglycols for Demanding Applications.”
  • the corrosion inhibitor comprises the polyhydric alcohol with poly- or oligo-oxyalkylene groups
  • the monomeric oxyalkylene groups contain at least 50 wt % or at least 65 wt % or at least 80 wt % or at least 95 wt %, groups of 3 to 8 carbon atoms.
  • a number of oxyalkylene groups may be ethylene oxide, provided the corrosion inhibitor is oil soluble.
  • the corrosion inhibitor comprises a fatty amine or amide, such as an oil soluble saturated or unsaturated alkylated amine or derivatives thereof.
  • the amine is a monoamine and in another embodiment the amine is a polyamine.
  • the fatty amine has a terminal —NH 2 group.
  • a suitable fatty amine examples include oleyl amine, octylamine octanoate or the reaction product of a fatty acid such as oleic acid with a polyamine or mixtures thereof.
  • the corrosion inhibitor includes condensation products of dodecenyl succinic acid or anhydride.
  • the corrosion inhibitor may be a the same as a metal deactivator, i.e., derivatives of benzotriazoles, 1,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles or 2-alkyldithiobenzothiazoles.
  • the benzotriazole compounds may be substituted at one of the following ring positions 1- or 2- or 4- or 5- or 6- or 7-benzotriazoles.
  • the hydrocarbyl groups contain 1 to 30, 1 to 15 or 1 to 7 carbon atoms. Examples of a benzotriazole include tolylbenzotriazole.
  • the corrosion inhibitor is present from 0.01 to 10, in one embodiment 0.01 to 5, in another embodiment 0.02 to 2 and in yet another embodiment 0.05 to 1 weight percent of the lubricating composition.
  • the corrosion inhibitor agent may be used alone or in combination.
  • the lubricating composition contains an antiwear agent.
  • the antiwear agent is a metal hydrocarbyl dithiophosphate.
  • the hydrocarbyl group in one embodiment in an alkyl or cycloalkyl group with 1 to 30, in another embodiment 3 to 10 and in yet another embodiment 3 to 8 carbon atoms.
  • the metal includes mono- or di- or tri-valent metal, in one embodiment divalent and in another embodiment a divalent transition metal. In one embodiment the metal is zinc, in another embodiment calcium or barium.
  • Examples of a metal hydrocarbyl dithiophosphate include zinc dihydrocarbyl dithiophosphates (often referred to as ZDDP, ZDP or ZDTP).
  • Examples of suitable zinc hydrocarbyl dithiophosphates compounds may include the reaction product(s) of heptylated or octylated or nonylated dithiophosphoric acids with ethylene diamine, morpholine or mixtures thereof.
  • the antiwear agent is ashless i.e. the antiwear agent is metal-free (prior to mixture with other components). Often the metal-free antiwear agent is an amine salt. The ashless antiwear agent often contains an atom including sulphur, phosphorus, boron or mixtures thereof.
  • the amine is often a primary amine, a secondary amine a tertiary amine or mixtures thereof. Often a primary amine and/or a secondary amine will contain at least one hydrocarbyl group with the number of carbon atoms present from 2 to 30, in one embodiment 8 to in one embodiment 26, in another embodiment 10 to 20, and in yet another embodiment 11 to 18.
  • primary amines useful in the present invention include ethylamine, propylamine, butylamine, 2-ethylhexylamine, octylamine and dodecylamine.
  • suitable primary fatty amines which include n-octylamine, n-decylamine, n-dodecylamine, n-tetradecylamine, n-hexadecylamine, n-octadecylamine and oleyamine.
  • fatty amines include commercially available fatty amines such as “Armeen®” amines (products available from Akzo Chemicals, Chicago, Ill.), such as Armeen C, Armeen O, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups.
  • suitable secondary amines include dimethylamine, diethylamine, dipropylamine, dibutylamine, diamylamine, dihexylamine, diheptylamine, methylethylamine, ethylbutylamine and ethylamylamine.
  • the secondary amines may be cyclic amines such as piperidine, piperazine and morpholine.
  • the amine may also be a tertiary-aliphatic primary amine.
  • the aliphatic group is an alkyl group containing a number of carbon atoms from 2 to 30, in one embodiment 6 to 26 and in another embodiment 8 to 24.
  • the tertiary alkyl primary amines are monoamines such as tert-butylamine, terthexylamine, 1-methyl-1-amino-cyclohexane, tert-octylamine, tert-decylamine, tertdodecylamine, tert-tetradecylamine, tert-hexadecylamine, tert-octadecylamine, terttetracosanylamine, and tert-octacosanylamine.
  • amines may also be used in the invention.
  • Especially useful mixtures of amines are “Primene 81R” and “Primene JMT.”
  • Primene 81R and Primene JMT are mixtures of C 11 to C 14 tertiary alkyl primary amines and C 18 to C 22 tertiary alkyl primary amines respectively.
  • the ashless antiwear agent may also include phosphoric acid esters or salt thereof; dialkyldithiophosphoric acid esters or salt thereof; phosphites; and phosphorus-containing carboxylic esters, ethers, and amides or mixtures thereof.
  • ashless antiwear agent compounds include sulphur-containing ashless anti-wear additives are thiocarbamate-containing compounds, such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulfides.
  • thiocarbamate-containing compounds such as thiocarbamate esters, thiocarbamate amides, thiocarbamic ethers, alkylene-coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulfides.
  • the dithiocarbamate-containing compounds may be prepared by reacting a dithiocarbamate acid or salt with an unsaturated compound.
  • the dithiocarbamate containing compounds may also be prepared by simultaneously reacting an amine, carbon disulfide and an unsaturated compound. Generally, the reaction occurs at a temperature from 25° C. to 125° C.
  • U.S. Pat. Nos. 4,758,362 and 4,997,969 describe dithiocarbamate compounds and methods of making them.
  • Useful fatty amines include commercially available fatty amines such as “Armeen”® amines (products available from Akzo Chemicals, Chicago, Ill.), such as Akzo's, Armeen C, Armeen O, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups.
  • the ashless antiwear agent may be a monoester of a polyol and an aliphatic carboxylic acid, often an acid containing 12 to 24 carbon atoms.
  • the monoester of a polyol and an aliphatic carboxylic acid is in the form of a mixture with a sunflower oil or the like, which may be present in the friction modifier mixture from 5 to 95, in one embodiment 10 to 90, in another embodiment 20 to 85 and in yet another embodiment 20 to 80 weight percent of said mixture.
  • the aliphatic carboxylic acids (especially a monocarboxylic acid) which form the esters are those acids containing 12 to 24 carbon atoms and in one embodiment 14 to 20 carbon atoms. Examples of carboxylic acids include dodecanoic acid, stearic acid, lauric acid, behenic acid, and oleic acid.
  • Polyols include diols, triols, and alcohols with higher numbers of alcoholic OH groups.
  • Polyhydric alcohols include ethylene glycols, including di-, tri- and tetraethylene glycols; propylene glycols, including di-, tri- and tetrapropylene glycols; glycerol; butane diol; hexane diol; sorbitol; arabitol; mannitol; sucrose; fructose; glucose; cyclohexane diol; erythritol; and pentaerythritols, including di- and tripentaerythritol.
  • the polyol is diethylene glycol, triethylene glycol, glycerol, sorbitol, pentaerythritol or dipentaerythritol.
  • glycerol monooleate The commercially available monoester known as “glycerol monooleate” is believed to include 60 ⁇ 5 percent by weight of the chemical species glycerol monooleate, along with 35 ⁇ 5 percent glycerol dioleate, and less than 5 percent trioleate and oleic acid.
  • the amounts of the monoesters, described above, are calculated based on the actual, corrected, amount of polyol monoester present in any such mixture.
  • the antiwear agent is a borated ester.
  • the borated ester may be prepared by the reaction of a boron compound and at least one compound selected from epoxy compounds, halohydrin compounds, epihalohydrin compounds, alcohols and mixtures thereof.
  • the alcohols include monohydric alcohols, dihydric alcohols, trihydric alcohols or higher alcohols.
  • Boron compounds suitable for preparing the borate ester include a boric acid (including metaboric acid, HBO 2 , orthoboric acid, H 3 BO 3 , and a tetraboric acid, H 2 B 4 O 7 ), a boric oxide, a boron trioxide and an alkyl borate.
  • the borate ester may also be prepared from boron halides.
  • the borated ester further contains at least one hydrocarbyl group often containing about 8 to about 30 carbon atoms.
  • the antiwear agent is present from 0.01 to 20, in one embodiment 0.01 to 10, in one embodiment 0.01 to 5, in another embodiment 0.02 to 4 and in yet another embodiment 0.05 to 2.5 weight percent of the lubricating composition.
  • the antiwear agent may be used alone or in combination.
  • composition of the invention optionally further includes at least one other performance additive.
  • the other performance additives include metal deactivators, detergents, dispersants, viscosity modifiers, friction modifiers, dispersant viscosity modifiers, extreme pressure agents, antioxidant, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents and mixtures thereof.
  • the total combined amount of the other performance additives present ranges from 0 wt % to 25 wt %, in one embodiment 0.01 wt % to 20 wt %, in another embodiment 0.1 wt % to 15 wt % and in yet another embodiment 0.5 wt % to 10 wt % of the lubricating composition. Although one or more of the other performance additives may be present, it is common for the other performance additives to be present in different amounts relative to each other.
  • the present invention is in the form of a concentrate (which may be combined with additional oil to form, in whole or in part, a finished lubricant), the amount of each of the above-mentioned additives, as well as the other performance additives, will be present in a concentration which is approximately 5 or 10-fold greater than the values given. The amount of oil will be correspondingly reduced.
  • the lubricating composition further comprises a viscosity modifier.
  • Viscosity modifiers include styrene-butadiene rubbers, ethylene-propylene copolymers, hydrogenated styrene-isoprene polymers, hydrogenated isoprene polymers, polyalkyl styrenes, polyolefins, polyalkylmethacrylates and esters of maleic anhydride-styrene copolymers, or mixtures thereof.
  • the polymeric thickener is poly(meth)acrylate.
  • the polymeric thickener has a weight average molecular weight (Mw) of at least 10,000, in another embodiment at least 15,000, in another embodiment at least 25,000 and in another embodiment at least 35,000.
  • Mw weight average molecular weight
  • the polymeric thickener generally has no upper limit on Mw, however in one embodiment the Mw is less than 2,000,000 in another embodiment less than 500,000 and in another embodiment less than 150,000. Examples of suitable ranges of Mw include in one embodiment 12,000 to 1,000,000, in another embodiment 20,000 to 300,000 and in another embodiment 30,000 to 75,000.
  • Antioxidants include a molybdenum dithiocarbamate, a sulphurised olefin, a hindered phenol, a diphenylamine; detergents include neutral or overbased, Newtonian or non-Newtonian, basic salts of alkali, alkaline earth and transition metals with one or more substrates.
  • the substrates include a substituted phenol (forms a phenate), a sulphur bridging substituted phenol (forms a sulphurised phenate), a sulphonic acid (forms a sulphonate (often a calcium sulphonate detergent with a TBN ranging from 300 to 500, or 330 to 450), a carboxylic acid (forms a carboxylate), a phosphorus acid (forms a phosphonate), a mono- and/or a di-thiophosphoric acid (forms a thiophosphonate), a saligenin, an alkyl salicyclic acid (forms alkylsalicylates), a salixarate; dispersants include N-substituted long chain alkenyl succinimides as well as posted treated versions thereof; post-treated dispersants include those by reaction with urea, thiourea, dimercaptothiadiazoles, carbon disulphide, al
  • Antiscuffing agents including organic sulphides and polysulphides, such as benzyldisulphide, bis-(chlorobenzyl) disulphide, dibutyl tetrasulphide, di-tertiary butyl polysulphide, di-tert-butylsulphide, sulphurised Diels-Alder adducts or alkyl sulphenyl N′N-dialkyl dithiocarbamates; extreme pressure (EP) agents including chlorinated wax, organic sulphides and polysulphides, such as benzyldisulphide, bis-(chlorobenzyl) disulphide, dibutyl tetrasulphide, sulphurised methyl ester of oleic acid, sulphurised alkylphenol, sulphurised dipentene, sulphurised terpene, and sulphurised Diels-Alder adducts.
  • foam inhibitors including copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers; pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides; and seal swell agents including Exxon Necton-37TM (FN 1380) and Exxon Mineral Seal Oil (FN 3200) may also be used in the composition of the invention.
  • foam inhibitors including copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate
  • demulsifiers including trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers
  • pour point depressants including est
  • the lubricating composition of the invention may be prepared by a process comprising blending:
  • the blending conditions are typically 15° C. to 130° C., in one embodiment 20° C. to 120° C. and in another embodiment 25° C. to 110° C.; and for a period of time in the range 30 seconds to 48 hours, in one embodiment 2 minutes to 24 hours, and in another embodiment 5 minutes to 16 hours; and at pressures in the range 86.4 kPa to 266 kPa (650 mm Hg to 2000 mm Hg), in one embodiment 91.8 kPa to 200 kPa (690 mm Hg to 1500 mm Hg), and in another embodiment 95.1 kPa to 133 kPa (715 mm Hg to 1000 mm Hg).
  • the process optionally includes mixing other performance additives as described above.
  • the optional performance additives may be added sequentially, separately or as a concentrate.
  • the lubricating composition of the present invention is useful for an internal combustion engine, for example a diesel fuelled engine, a gasoline fuelled engine, a natural gas fuelled engine or a mixed gasoline/alcohol fuelled engine.
  • the internal combustion engine is a diesel fuelled engine and in another embodiment a gasoline fuelled engine.
  • the invention provides a method for lubricating an internal combustion engine, comprising supplying thereto a lubricant comprising the composition as described herein.
  • a lubricant comprising the composition as described herein.
  • the use of the composition may impart one or more of corrosion inhibition and antiwear performance.
  • the invention provides the use of a polyhydric alcohol comprising monomeric units of oxyalkylene groups with 2 to 8 carbon atoms as a corrosion inhibitor in a lubricating composition.
  • Reference Example 1 is prepared by blending into an oil of lubricating viscosity comprising a NexbaseTM oil with a viscosity of 4.3 mm 2 s ⁇ 1 , 12.1 wt % of a viscosity modifier, 11.4 wt % of other additives including an effective amount of an antiwear agent.
  • the composition has a total sulphated ash content of greater than 1 wt %, a phosphorus content of greater than 960 ppm and a sulphur content of greater than 3000 ppm.
  • Reference Example 2 is the same as Reference Example 1, except 0.5 wt % of oleyl amine is additionally blended
  • Reference Example 3 is prepared by blending 0.5 wt % of oleyl amine into an oil of lubricating viscosity comprising 49.9 wt % of a PAO-6 with 9 wt % of a viscosity modifier, 14.2 wt % of other additives including an effective amount of an antiwear agent.
  • the composition has a total sulphated ash content of greater than 1 wt %, a phosphorus content of greater than 960 ppm and a sulphur content of greater than 3000 ppm.
  • Example 1 is prepared by blending 0.1 wt % of Pluriol® corrosion inhibitor into a lubricating composition comprising a NexbaseTM oil with a viscosity of 4.3 mm 2 s ⁇ 1 , 12.1 wt % of a viscosity modifier, 11.4 wt % of other additives including an effective amount of an antiwear agent.
  • the composition has a total sulphated ash content of less than 0.08 wt %, a phosphorus content of less than 960 ppm and a sulphur content of less than 3000 ppm.
  • Example 2 is the same as Example 1, except the amount of Pluriol® corrosion inhibitor present is 0.2 wt %.
  • Example 3 is the same as Example 1, except the corrosion inhibitor is oleyl amine present at 0.1 wt %.
  • Example 4 is the same as Example 3, except the oleyl amine is present at 0.2 wt %.
  • Example 5 is the same as Example 1, except the corrosion inhibitor is Synalox® 100-120B present at 0.1 wt %.
  • Example 6 is the same as Example 5, except the corrosion inhibitor is Synalox® 100-120B present at 0.2 wt %.
  • the PV1401 is a Volkswagen corrosion prevention test.
  • the test requires submersing steel plates in an oil of lubricating viscosity followed by draining the oil off the plate and then suspending the plate in a sealed moist chamber at 50° C. and 100 % humidity.
  • the plates are then analysed to determine the amount of corrosion by classifying the degree of corrosion on a scale of 1 to 5 summarised in Table 1:
  • the invention provides a lubricating composition with corrosion inhibition and antiwear performance in a low sulphated ash engine lubricant.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
  • hydrocarbyl groups include:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
US11/577,748 2004-10-25 2005-10-21 Corrosion Inhibition Abandoned US20090156446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/577,748 US20090156446A1 (en) 2004-10-25 2005-10-21 Corrosion Inhibition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62187404P 2004-10-25 2004-10-25
US11/577,748 US20090156446A1 (en) 2004-10-25 2005-10-21 Corrosion Inhibition
PCT/US2005/038319 WO2006047486A1 (fr) 2004-10-25 2005-10-21 Inhibition de la corrosion

Publications (1)

Publication Number Publication Date
US20090156446A1 true US20090156446A1 (en) 2009-06-18

Family

ID=35840509

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/577,748 Abandoned US20090156446A1 (en) 2004-10-25 2005-10-21 Corrosion Inhibition

Country Status (6)

Country Link
US (1) US20090156446A1 (fr)
EP (1) EP1824950A1 (fr)
JP (1) JP2008518059A (fr)
CN (1) CN101084295B (fr)
CA (1) CA2584779A1 (fr)
WO (1) WO2006047486A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090061234A1 (en) * 2007-09-04 2009-03-05 Baker Hughes Incorporated Method for Inhibiting Corrosion of Metal in Distillation Units Caused by Organic Acids
WO2011126736A1 (fr) 2010-04-06 2011-10-13 The Lubrizol Corporation Salicylates de zinc pour l'inhibition de rouille dans des lubrifiants
WO2012097026A1 (fr) 2011-01-12 2012-07-19 The Lubrizol Corporation Lubrifiants pour moteur contenant un polyéther
US20140107004A1 (en) * 2011-06-14 2014-04-17 Dow Global Techologies LLC Natural and Synthetic Ester-Containing Lubricants Having Enhanced Hydrolytic Stability
US10669505B2 (en) 2015-03-18 2020-06-02 The Lubrizol Corporation Lubricant compositions for direct injection engines
US11608478B2 (en) 2015-03-25 2023-03-21 The Lubrizol Corporation Lubricant compositions for direct injection engine
US20240199969A1 (en) * 2022-12-20 2024-06-20 Afton Chemical Corporation Low ash lubricating compositions for controlling steel corrosion

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009275885B2 (en) * 2008-07-31 2013-07-04 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions
US8785357B2 (en) 2008-09-16 2014-07-22 The Lubrizol Corporation Composition containing heterocyclic compounds and a method of lubricating an internal combustion engine
EP2398874B1 (fr) 2009-02-18 2017-04-26 The Lubrizol Corporation Compose et procede de lubrification d'un moteur a combustion interne
CA2753414A1 (fr) 2009-02-26 2010-09-02 The Lubrizol Corporation Compositions lubrifiantes contenant le produit de reaction d'une amine aromatique et d'un polymere a fonctionnalite carboxylique et un dispersant
WO2010146030A1 (fr) * 2009-06-18 2010-12-23 Akzo Nobel Chemicals International B.V. Composition liquide de sel de type carboxylate d'amine grasse
PL2467460T3 (pl) 2009-08-18 2014-05-30 Lubrizol Corp Kompozycja smarująca zawierająca środek przeciwzużyciowy
EP2467456B2 (fr) 2009-08-18 2023-08-09 The Lubrizol Corporation Procede de lubrification
IN2012DN01627A (fr) 2009-08-18 2015-06-05 Lubrizol Corp
US9976103B2 (en) 2009-12-14 2018-05-22 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2011075401A1 (fr) 2009-12-14 2011-06-23 The Lubrizol Corporation Composition lubrifiante contenant un composé nitrile
EP2513272B1 (fr) 2009-12-14 2019-08-07 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
WO2011084657A1 (fr) 2009-12-17 2011-07-14 The Lubrizol Corporation Composition lubrifiante contenant un composé aromatique
CN104531267A (zh) 2010-05-20 2015-04-22 路博润公司 含分散剂的润滑组合物
WO2011146692A1 (fr) 2010-05-20 2011-11-24 The Lubrizol Corporation Composition lubrifiante contenant un dispersant
EP2611893A1 (fr) 2010-08-31 2013-07-10 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
BR112013015860A2 (pt) 2010-12-21 2016-09-13 Lubrizol Corp composição lubrificante contendo um detergente
CN103380201B (zh) 2010-12-21 2015-09-16 路博润公司 含有抗磨剂的润滑组合物
CN103502404A (zh) 2011-03-10 2014-01-08 路博润公司 含有硫代氨基甲酸酯化合物的润滑组合物
WO2012174075A1 (fr) 2011-06-15 2012-12-20 The Lubrizol Corporation Composition lubrifiante contenant un ester d'un acide carboxylique aromatique
US9243202B2 (en) 2011-06-15 2016-01-26 The Lubrizol Corporation Lubricating composition containing a salt of a carboxylic acid
US9249699B2 (en) 2011-06-21 2016-02-02 The Lubrizol Corporation Lubricating composition containing a dispersant
CN103703113A (zh) 2011-06-21 2014-04-02 路博润公司 含有分散剂的润滑组合物
WO2013062924A2 (fr) 2011-10-27 2013-05-02 The Lubrizol Corporation Composition lubrifiante contenant un polymère estérifié
WO2013066585A1 (fr) 2011-10-31 2013-05-10 The Lubrizol Corporation Modificateurs de frottement sans cendre pour compositions lubrifiantes
BR112015005371A2 (pt) 2012-09-11 2017-07-04 Lubrizol Corp composição lubrificante contendo um intensificador de número de base total (tbn) isento de cinzas
EP3030639A1 (fr) 2013-08-09 2016-06-15 The Lubrizol Corporation Dépôts réduits dans un moteur provenant d'agent dispersant traité au cuivre
CN105612246A (zh) 2013-08-09 2016-05-25 路博润公司 由用钴处理的分散剂减少发动机沉积物
CA2924890C (fr) 2013-09-19 2022-03-22 The Lubrizol Corporation Compositions lubrifiantes pour moteurs a injection directe
EP4438702A2 (fr) 2013-09-19 2024-10-02 The Lubrizol Corporation Compositions lubrifiantes pour moteurs à injection directe
CN115093893A (zh) 2014-04-25 2022-09-23 路博润公司 多级润滑组合物
EP3234078A1 (fr) 2014-12-17 2017-10-25 The Lubrizol Corporation Composition lubrifiante pour l'inhibition de la corrosion du plomb et du cuivre
EP3268454B1 (fr) 2015-03-10 2023-10-04 The Lubrizol Corporation Compositions lubrifiantes comprenant un agent anti-usure/modificateur de la friction
EP3271442A1 (fr) 2015-03-18 2018-01-24 The Lubrizol Corporation Compositions lubrifiantes pour moteurs à injection directe
CN108026473A (zh) 2015-07-20 2018-05-11 路博润公司 无锌润滑组合物
WO2017031145A1 (fr) 2015-08-20 2017-02-23 The Lubrizol Corporation Dérivés azole utilisés en tant qu'additifs aux matières lubrifiantes
CN105040008B (zh) * 2015-09-07 2017-11-28 黄山学院 一种盐酸用酸洗缓蚀剂及其制备方法
CA3004729C (fr) 2015-11-11 2024-04-30 The Lubrizol Corporation Composition lubrifiante comprenant un compose phenolique a substitution thioether
EP3420056B1 (fr) 2016-02-24 2022-08-31 The Lubrizol Corporation Compositions lubrifiantes pour moteurs à injection directe
EP3440165A1 (fr) 2016-04-07 2019-02-13 The Lubrizol Corporation Dérivés mercaptoazole utilisés en tant qu'additifs de graissage
CN109563430B (zh) 2016-05-24 2021-11-19 路博润公司 用于润滑组合物的密封溶胀剂
WO2017205271A1 (fr) 2016-05-24 2017-11-30 The Lubrizol Corporation Agents gonflants de joints d'étanchéité pour compositions lubrifiantes
US11174449B2 (en) 2016-05-24 2021-11-16 The Lubrizol Corporation Seal swell agents for lubricating compositions
EP3255129B1 (fr) 2016-06-06 2024-01-24 The Lubrizol Corporation Adduits thiol-carboxyliques comme additifs de lubrification
WO2018057678A1 (fr) 2016-09-21 2018-03-29 The Lubrizol Corporation Composants antimousse à base de polyacrylate fluoré pour compositions lubrifiantes
JP7123057B2 (ja) 2016-09-21 2022-08-22 ザ ルブリゾル コーポレイション 改善された熱安定性を有するポリアクリレート消泡成分
CN110312781A (zh) 2016-12-22 2019-10-08 路博润公司 用于润滑组合物的氟化聚丙烯酸酯消泡组分
CN111032838A (zh) 2017-07-17 2020-04-17 路博润公司 低分散剂润滑剂组合物
CA3069718A1 (fr) 2017-07-17 2019-01-24 The Lubrizol Corporation Composition de lubrifiant a faible teneur en zinc
WO2019108588A1 (fr) 2017-11-28 2019-06-06 The Lubrizol Corporation Compositions lubrifiantes pour moteurs à haut rendement
EP3768810A1 (fr) 2018-03-21 2021-01-27 The Lubrizol Corporation Nouveaux anti-mousses à base de polyacrylates fluorés dans des fluides finis à ultra-basse viscosité (<5 cst)
CN112513232B (zh) 2018-06-22 2022-09-13 路博润公司 用于重负荷柴油发动机的润滑组合物
CA3122566A1 (fr) 2018-12-10 2020-06-18 The Lubrizol Corporation Compositions lubrifiantes comprenant un melange d'additifs dispersants
DE102019206560A1 (de) * 2019-05-07 2020-11-12 Aktiebolaget Skf Sulfonatzusammensetzung und Schutzmittelzusammensetzung mit der Sulfonatzusammensetzung
BR112022005699A2 (pt) 2019-09-26 2022-06-21 Lubrizol Corp Composições de lubrificação e métodos de operação de um motor de combustão interna
US20230212476A1 (en) 2019-09-26 2023-07-06 The Lubrizol Corporation Lubricating compositions and methods of operating an internal combustion engine
CA3154905A1 (fr) 2019-10-15 2021-04-22 James D. Burrington Composition lubrifiante a bon rendement energetique
BR112022011985A2 (pt) 2019-12-19 2022-08-30 Lubrizol Corp Composição de aditivo antissedimentação de cera para uso em combustíveis diesel
EP4097196A1 (fr) 2020-01-31 2022-12-07 The Lubrizol Corporation Procédés de production d'acides alkylsalicyliques et détergents surbasiques dérivés de ceux-ci
CN115052958A (zh) 2020-02-04 2022-09-13 路博润公司 润滑组合物和操作内燃机的方法
CA3203263A1 (fr) 2020-12-23 2022-06-30 Scott Capitosti Composes de benzazepine utilises en tant qu'antioxydants pour compositions lubrifiantes
CN117043306A (zh) 2021-04-01 2023-11-10 路博润公司 不含锌的润滑组合物及其使用方法
CN117716007A (zh) 2021-07-29 2024-03-15 路博润公司 1,4-苯并噁嗪化合物和含有1,4-苯并噁嗪化合物的润滑油组合物
WO2023023224A1 (fr) 2021-08-19 2023-02-23 The Lubrizol Corporation Modificateurs de frottement présentant des propriétés de frottement améliorées et compositions lubrifiantes contenant ceux-ci
CN118525074A (zh) 2022-01-04 2024-08-20 路博润公司 化合物和含有其的润滑剂组合物
WO2024006125A1 (fr) 2022-06-27 2024-01-04 The Lubrizol Corporation Composition lubrifiante et procédé de lubrification d'un moteur a combustion interne
WO2024019952A1 (fr) 2022-07-18 2024-01-25 The Lubrizol Corporation Composés de contrôle de dépôt pour compositions lubrifiantes
WO2024091494A1 (fr) 2022-10-25 2024-05-02 The Lubrizol Corporation Compositions lubrifiantes et procédés de lubrification de moteurs à combustion interne
WO2024091553A1 (fr) 2022-10-25 2024-05-02 The Lubrizol Corporation Compositions de lubrifiants et procédés de lubrification de moteurs à combustion interne
WO2024206736A1 (fr) 2023-03-31 2024-10-03 The Lubrizol Corporation Processus de préparation d'alkylhydroxybenzoate de métal alcalino-terreux surbasique

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030426A (en) * 1957-12-23 1962-04-17 Shell Oil Co Low ash polyoxyalkylene compounds and their preparation
US4130494A (en) * 1976-05-05 1978-12-19 Exxon Research & Engineering Co. Synthetic lubricant composition
US4278555A (en) * 1978-11-15 1981-07-14 Ethyl Corporation Lubricant composition
US5143640A (en) * 1988-07-21 1992-09-01 Bp Chemicals Limited Polyether lubricants
US5494595A (en) * 1994-12-30 1996-02-27 Huntsman Corporation Oil soluble polyethers
US5641729A (en) * 1995-09-05 1997-06-24 Hilton Oil Corporation Internal combustion engine preparation composition
US5652204A (en) * 1991-12-24 1997-07-29 Oecanfloor Limited Lubricating oil compositions containing specified end-capped polyethers
US20020019320A1 (en) * 2000-06-02 2002-02-14 Morikuni Nakazato Lubricating oil composition
US6403541B1 (en) * 1999-08-13 2002-06-11 New Japan Chemical Co., Ltd. Oil filter clogging preventing agent and oil filter clogging preventing method, and engine oil compositions comprising said oil filter clogging preventing agent
US6412469B1 (en) * 1999-07-21 2002-07-02 Nissan Motor Co., Ltd. Fuel injection control system for diesel engine
US20050148477A1 (en) * 2004-01-05 2005-07-07 The Lubrizol Corporation Lubricating composition substantially free of ZDDP

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608962A1 (fr) * 1985-03-14 1994-08-03 The Lubrizol Corporation Condensats à haut poids moléculaire contenant de l'azote, carburants et lubrifiants les contenant
CA1327350C (fr) * 1987-10-02 1994-03-01 Glen Paul Fetterman, Jr. Compositions lubrifiantes sans cendre pour moteurs a combustion interne
CA2013545C (fr) * 1989-04-03 1999-01-26 Glen Paul Fetterman Jr. Compositions lubrificantes sans cendre pour moteurs a combustion interne
EP1340804B1 (fr) * 2002-02-27 2016-11-16 Infineum International Limited Composition d'huile lubrifiante
JP4373650B2 (ja) * 2002-08-05 2009-11-25 新日本石油株式会社 潤滑油組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3030426A (en) * 1957-12-23 1962-04-17 Shell Oil Co Low ash polyoxyalkylene compounds and their preparation
US4130494A (en) * 1976-05-05 1978-12-19 Exxon Research & Engineering Co. Synthetic lubricant composition
US4278555A (en) * 1978-11-15 1981-07-14 Ethyl Corporation Lubricant composition
US5143640A (en) * 1988-07-21 1992-09-01 Bp Chemicals Limited Polyether lubricants
US5652204A (en) * 1991-12-24 1997-07-29 Oecanfloor Limited Lubricating oil compositions containing specified end-capped polyethers
US5494595A (en) * 1994-12-30 1996-02-27 Huntsman Corporation Oil soluble polyethers
US5641729A (en) * 1995-09-05 1997-06-24 Hilton Oil Corporation Internal combustion engine preparation composition
US6412469B1 (en) * 1999-07-21 2002-07-02 Nissan Motor Co., Ltd. Fuel injection control system for diesel engine
US6403541B1 (en) * 1999-08-13 2002-06-11 New Japan Chemical Co., Ltd. Oil filter clogging preventing agent and oil filter clogging preventing method, and engine oil compositions comprising said oil filter clogging preventing agent
US20020019320A1 (en) * 2000-06-02 2002-02-14 Morikuni Nakazato Lubricating oil composition
US20050148477A1 (en) * 2004-01-05 2005-07-07 The Lubrizol Corporation Lubricating composition substantially free of ZDDP

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090061234A1 (en) * 2007-09-04 2009-03-05 Baker Hughes Incorporated Method for Inhibiting Corrosion of Metal in Distillation Units Caused by Organic Acids
WO2011126736A1 (fr) 2010-04-06 2011-10-13 The Lubrizol Corporation Salicylates de zinc pour l'inhibition de rouille dans des lubrifiants
WO2012097026A1 (fr) 2011-01-12 2012-07-19 The Lubrizol Corporation Lubrifiants pour moteur contenant un polyéther
US9347017B2 (en) 2011-01-12 2016-05-24 The Lubrizol Corporation Engine lubricants containing a polyether
US20140107004A1 (en) * 2011-06-14 2014-04-17 Dow Global Techologies LLC Natural and Synthetic Ester-Containing Lubricants Having Enhanced Hydrolytic Stability
JP2014517125A (ja) * 2011-06-14 2014-07-17 ダウ グローバル テクノロジーズ エルエルシー 加水分解安定性が向上された天然及び合成エステル含有潤滑剤
US9556394B2 (en) * 2011-06-14 2017-01-31 Dow Global Technologies Llc Natural and synthetic ester-containing lubricants having enhanced hydrolytic stability
US10669505B2 (en) 2015-03-18 2020-06-02 The Lubrizol Corporation Lubricant compositions for direct injection engines
US11608478B2 (en) 2015-03-25 2023-03-21 The Lubrizol Corporation Lubricant compositions for direct injection engine
US20240199969A1 (en) * 2022-12-20 2024-06-20 Afton Chemical Corporation Low ash lubricating compositions for controlling steel corrosion

Also Published As

Publication number Publication date
CA2584779A1 (fr) 2006-05-04
EP1824950A1 (fr) 2007-08-29
CN101084295A (zh) 2007-12-05
JP2008518059A (ja) 2008-05-29
WO2006047486A1 (fr) 2006-05-04
CN101084295B (zh) 2011-08-10

Similar Documents

Publication Publication Date Title
US20090156446A1 (en) Corrosion Inhibition
EP1963469B1 (fr) Procede de graissage d un moteur diesel marin
EP1996683B1 (fr) Dispersant contenant de l&#39;azote en tant renforcant de tnb sans cendre pour lubrifiants
US10519396B2 (en) Method of lubricating a mechanical device
US8435932B2 (en) Method of lubricating and lubricating compositions thereof
US7678746B2 (en) Lubricating compositions containing sulphonates and phenates
US20060276352A1 (en) Oil composition and its use in a transmission
CA2701358A1 (fr) Lubrifiants qui diminuent les micro-piqures d&#39;engrenages industriels
US20110143977A1 (en) Lubricating Compositions Containing Sulphonates and Phenates
US20100160191A1 (en) Lubricating Composition
US9683194B2 (en) Quaternary ammonium salt containing compositions that provide balanced deposit control and wear performance without seal compatibility issues
EP2288679B1 (fr) Procédé de lubrification d&#39;équipement de ligne cinématique avec une composition anti-usure
US11136524B2 (en) Seal swell agents for lubricating compositions
EP1805287B1 (fr) Methode de lubrification d&#39;un moteur diesel a deux temps avec compositions lubrifiantes contenant des sulfonates

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE LUBRIZOL CORPORATION, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCATEE, RODNEY J.;BOYER, MICHAEL;REEL/FRAME:019494/0851;SIGNING DATES FROM 20070521 TO 20070529

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION