US20090142991A1 - Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method - Google Patents

Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method Download PDF

Info

Publication number
US20090142991A1
US20090142991A1 US12/329,745 US32974508A US2009142991A1 US 20090142991 A1 US20090142991 A1 US 20090142991A1 US 32974508 A US32974508 A US 32974508A US 2009142991 A1 US2009142991 A1 US 2009142991A1
Authority
US
United States
Prior art keywords
wafer
backing film
grinding
flatness
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/329,745
Other languages
English (en)
Inventor
Do Min Moon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Siltron Co Ltd
Original Assignee
Siltron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/612,008 external-priority patent/US20070141958A1/en
Application filed by Siltron Inc filed Critical Siltron Inc
Priority to US12/329,745 priority Critical patent/US20090142991A1/en
Publication of US20090142991A1 publication Critical patent/US20090142991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor

Definitions

  • This disclosure relates to a silicon wafer grinding apparatus, a retaining assembly used for the same, and a silicon wafer flatness correcting method.
  • this disclosure relates to a silicon wafer grinding apparatus, a retaining assembly used for the same, and a silicon wafer flatness correcting method for correcting a wafer flatness in a final grinding process.
  • a semiconductor technology has been developed in a higher integrated process so as to reduce production costs and to improve performance. Accordingly, a silicon wafer requires a more restrictive flatness condition.
  • a large diameter wafer manufacturing method includes a shaping process such as lapping and etching, dual-surface grinding, final grinding, and a cleaning process.
  • the wafer flatness has been rapidly improved by applying such new processes.
  • the wafer flatness is deteriorated in the final grinding after the dual-surface grinding process.
  • This disclosure has been made in an effort to provide a silicon wafer grinding apparatus having advantages of overcoming a flatness deterioration of a wafer generated on finally grinding the wafer by improving a retaining assembly without changing a structure of a wafer grinding apparatus.
  • This disclosure has been made in an effort to provide a wafer flatness correcting method having advantages of correcting wafer flatness on the final grinding of the wafer by using a heterogeneous backing film.
  • This disclosure has been made in an effort to provide a retaining assembly having advantages of correcting wafer flatness on the final grinding of the wafer by using a heterogeneous backing film.
  • This disclosure has been made in an effort to provide a heterogeneous backing film assembly used for a retaining assembly having advantages of correcting wafer flatness on the final grinding of the wafer by using a heterogeneous backing film.
  • This disclosure has been made in an effort to provide a wafer having advantages of providing a flatness of about a wafer margin EE2 mm after the final grinding of the wafer.
  • An exemplary embodiment of this disclosure provides silicon wafer grinding apparatus.
  • the silicon wafer grinding apparatus includes a grinding surface plate having a grinding pad attached thereon; a grinding head arranged opposite to the grinding surface plate and rotated in the same direction as that of the grinding surface plate; a backing film attached at a lower portion of the grinding head for supporting a wafer; and a retainer ring having an inner diameter (a wafer diameter+ ⁇ ) greater than a diameter of the wafer by as much as ⁇ and disposed on the backing film.
  • the backing film When the backing film is a uniform thickness, the backing film may be formed by a relatively soft material at an edge portion near to the retainer ring.
  • the edge portion may have a width of about 3 to 5 mm in an inner radial direction from an inner wall of the retainer ring.
  • the edge portion may have a width of less than about 2% of an inner diameter of the retainer ring.
  • the backing film When a backing film surrounded by the retainer ring may be formed of one material, the backing film may have a different thickness at a predetermined portion thereof.
  • a backing film surrounded by the retainer ring may be formed of one material, an edge portion of the backing film near the retaining ring is thicker than a center portion further away from the retainer ring.
  • the backing film when a backing film surrounded by the retainer ring may be formed of one material, the backing film include an edge portion having a predetermined width near the retaining ring and at least one land portion having a predetermined height stepped in a radial direction from the edge portion.
  • the edge portion may have a width of about 3 to 5 mm in an inner radial direction from an inner wall of the retainer ring.
  • the edge portion may have a width of less than about 2% of an inner diameter of the retainer ring.
  • the backing film may include at least one groove portion along a circumference direction.
  • the backing film may include an edge portion along a circumference direction and near the inner wall of the retaining ring, and a land portion having a predetermined height surrounded by the groove portion.
  • the edge portion may have a width of about 3 to 5 mm in an inner radial direction from an inner wall of the retainer ring.
  • the edge portion has a width of less than about 2% of an inner diameter of the retainer ring.
  • Another embodiment provides a wafer flatness correcting method.
  • the wafer flatness correcting method includes marking a center of grinding head
  • the manufacturing of a heterogeneous second backing film may include sequentially forming a part of at least one of a foaming layer, a substrate layer, and a pressure sensitive adhesive layer with different materials.
  • the manufacturing of a heterogeneous second backing film may include sequentially forming a part of at least one of a foaming layer, a substrate layer, and a pressure sensitive adhesive layer to have a different thickness.
  • the forming the secondary backing film may include removing a portion of the first backing film corresponding to a portion to correct a flatness of the wafer, aligning and attaching the center marking of the secondary backing film to the center of the first backing film.
  • the forming the secondary backing film may include removing or attaching at least one of the substrate layer of the first backing film and the foaming layer formed on the substrate layer.
  • Yet another embodiment provides a wafer retaining assembly used so as to correct a flatness of a wafer on finally grinding.
  • the wafer retaining assembly comprising a circular retainer ring having an inner diameter of the wafer diameter+ ⁇ and an outer diameter and a backing film including a pressure sensitive adhesive layer attached at a lower portion of the grinding head, a substrate layer formed on the pressure sensitive adhesive layer, a foaming layer formed on the substrate layer, which may be partly attached or detached, and an alignment mark marked at a center thereof.
  • the backing film may further include a cutting line for detaching at least one of the substrate layer and the foaming layer along a circumference direction.
  • the backing film may further include a cutting line for detaching all of the substrate layer and the foaming layer along a circumference direction.
  • the cutting line may be formed at a predetermined interval of at least 3 mm to 5 mm from an inner wall of the retainer ring.
  • the cutting line may be formed at an external periphery corresponding to 40% of a radius of the backing film.
  • the backing film includes a groove portion along a circumference direction at a predetermined distance from the center thereof.
  • the groove portion has a width of about 3 to 5 mm from the inner wall of the retainer ring.
  • At least one of the substrate layer, the foaming layer, and the pressure sensitive adhesive layer may be formed with a different material.
  • At least one of the substrate layer, the foaming layer, and the pressure sensitive adhesive layer may have a different thickness.
  • Yet another embodiment provides a wafer having a GBIR in a range of from about 0.2 to about 0.5, an SBIR of less than about 0.3, and an SFQR in a range of from about 0.13 to about 0.18 based on E.E. 2 mm after final grinding.
  • Yet another embodiment provides A wafer having a GBIR in a range of from about 0.2 to about 0.4, an SBIR in a range of from about 0.15 to about 0.3, and an SFQR in a range of from about 0.1 to about 0.13 based on E.E. 3 mm after final grinding.
  • FIG. 1 is a schematic perspective view of a silicon wafer grinding apparatus using a retaining assembly according to an exemplary embodiment.
  • FIG. 2 is a partial cross-sectional view for showing a part ‘B’ of FIG. 1 in detail.
  • FIG. 3A is a partial cross-sectional view for schematically showing a retaining assembly used for a silicon wafer grinding apparatus according to an exemplary embodiment.
  • FIG. 3B is a plane view of FIG. 3A .
  • FIG. 4 is a partial cross-sectional view for schematically showing a retaining assembly used for a silicon wafer grinding apparatus according to another exemplary embodiment.
  • FIG. 5 is a partial cross-sectional view for schematically showing a retaining assembly used for a silicon wafer grinding apparatus according to yet another exemplary embodiment.
  • FIG. 6A is a partial cross-sectional view for schematically showing a retaining assembly used for a silicon wafer grinding apparatus according to yet another exemplary.
  • FIG. 6B is a plane view of FIG. 6A .
  • FIG. 7A and FIG. 7B respectively illustrate a graph showing a variance of a thickness along a radial direction of a wafer before and after a convex wafer having a thicker center portion is finally polished according to an exemplary embodiment.
  • FIGS. 8A and 8B respectively illustrate a diagram showing a variance of a thickness along a radial direction of a wafer before and after a convex wafer having a thicker center portion is finally polished according to an exemplary embodiment.
  • FIG. 1 is a schematic perspective view of a silicon wafer grinding apparatus using a retaining assembly according to an exemplary embodiment
  • FIG. 2 is a partial cross-sectional view for showing a part ‘B’ of FIG. 1 in detail.
  • a silicon wafer grinding apparatus includes a grinding surface plate 21 on which a grinding pad 22 is attached and rotated, a grinding head 25 arranged opposite to the grinding surface plate 21 and rotated in the same direction as that of the grinding surface plate 21 , and a retaining assembly 24 including a retainer ring 28 disposed at a lower portion of the grinding head 25 and for protecting a wafer from being dislodged during the grinding process, and a backing film 24 attached at one side surface of the retainer ring 28 for supporting a wafer 23 .
  • a backing film 24 may include a foaming layer 241 for detachedly supporting a wafer thereon, a substrate layer 243 for supporting a wafer, a pressure sensitive adhesive layer 245 for attaching the foaming layer 241 and the substrate layer 243 at a lower portion of the grinding head 22 , and a release sheet (not shown) that may be attached to the pressure sensitive adhesive layer 245 and be separated therefrom.
  • the backing film 24 of in the inner diameter of the retainer ring 28 may include a first backing film 24 a and at least one second backing film 24 b having at least one of elasticity, elastic, durability, and thickness different from the same of the first backing film 24 .
  • the backing film 24 in the inner diameter of the retainer ring 28 is divided into the first backing film 24 a and the second backing film 24 b , but this is not restrictive.
  • the backing film 24 may further include a third backing film, and the first backing film 24 a may be disposed at a center portion of the wafer and the second backing film 24 b may be disposed at a peripheral portion thereof.
  • a part of at least one of the foaming layer 241 , the substrate layer 243 , and the pressure sensitive adhesive layer 245 that are sequentially formed may be differently formed by having at least one different property of matter such as elastic coefficient and durability.
  • a part of at least one of the foaming layer 241 , the substrate layer 243 , and the pressure sensitive adhesive layer 245 that are sequentially formed may be differently formed by having different thicknesses.
  • FIG. 3A is a partial cross-sectional view for schematically showing a retaining assembly used for a silicon wafer grinding apparatus according to an exemplary embodiment
  • FIG. 3B is a plane view of FIG. 3A .
  • the center of a grinding head 25 is arrayed on the center of the backing film 32 which is attached thereon, the backing film 32 is formed by heterogeneously forming a center portion 32 a and an edge portion 32 b disposed apart from the center portion 32 a so as to polish an edge portion of the wafer within the retainer ring 28 having an inner diameter (a wafer diameter+ ⁇ ) that is greater than a diameter of the wafer by as much as ⁇ .
  • the center portion 32 a and edge portion 32 b may be formed of different materials having at least one different property of matter such as elastic coefficient and durability.
  • the retainer ring 28 has an inner diameter (a wafer diameter+ ⁇ ) that is greater than a diameter of the wafer by as much as ⁇ , it is easy for the wafer to be attached to or detached from the retainer ring 28 .
  • the backing film 32 may be heterogeneously formed by changing the number or size of foaming apertures at a predetermined portion of the foaming layer 241 therein.
  • the edge portion 32 b near the retainer ring 28 (hereinafter referred to as “edge portion” because the edge portion polishes an edge portion of a wafer even though it substantially corresponds to an external periphery portion of the backing film 32 ) may be formed by a relatively soft material.
  • the edge portion 32 b has a width of about 3 to 5 mm (measured along a radial direction of the wafer) from an inner wall of the retainer ring 28 .
  • the edge portion 32 b has a width of less than about 2% (measured along a radial direction of the wafer) from an inner wall of the retainer ring 28 (e.g., since a 12 inch wafer has a diameter of 300 mm, a ratio of the edge width of 3 to 5 mm to the inner diameter 300 mm+ ⁇ of the retaining ring is expressed as a percentage).
  • edge portion 32 b By forming the edge portion 32 b in this manner, a margin of the wafer may be increased and the edge portion after the final grinding process may have a standard flatness.
  • the backing film 42 when a backing film 42 surrounded by the retainer ring 28 is formed of the same material, the backing film 42 may have a different thickness at a predetermined portion thereof.
  • the backing film 42 may include an edge portion 42 a near the inner wall of the retaining ring 28 and a land portion 42 b at a center portion further away from the retainer ring 28 in comparison with the edge portion 42 a.
  • the edge portion 42 a has a width of from about 3 to about 5 mm (measured along a radial direction of the wafer) from the inner wall of the retainer ring 28 , and the land portion 42 b may include at least one stepped land portion having different heights in a radial direction.
  • the edge portion 42 a has a width of less than about 2% (measured along a radial direction of the wafer) to an inner diameter of the retainer ring 28 considering standard deterioration of wafer flatness after the final grinding process.
  • the edge portion 42 a is disposed along a circumference direction at an edge portion of the backing film 42 , but this is not restrictive. Accordingly, the edge portion 42 a may be disposed at a center portion of the backing film 42 and at least one portion of the backing film 42 may be formed thicker than the other portion.
  • FIG. 5 is a partial cross-sectional view for schematically showing a retaining assembly used for a silicon wafer grinding apparatus according to yet another exemplary embodiment.
  • the backing film 52 when a backing film 52 surrounded by the retainer ring 28 is formed of one material, the backing film 52 may have at least one groove portion 52 a along a circumference direction thereof.
  • the backing film 52 may include a groove portion 52 a along a circumference direction and near to the inner wall of the retaining ring 28 , and a land portion 52 b having a predetermined height surrounded by the groove portion 52 a.
  • the groove portion 52 a is entirely formed along a thickness direction of the backing film 52 , but this is not restrictive.
  • the groove portion 52 a may be formed only to the foaming layer or may be formed through the foaming layer to the substrate layer.
  • the groove portion 52 a has a width of about 3 to 5 mm (measured along a radial direction of the wafer) from the inner wall of the retainer ring.
  • the groove portion 52 a has a width of less than about 2% (measured along a radial direction of the wafer) to an inner diameter of the retainer ring 28 considering a deterioration of a wafer flatness of after the final grinding process.
  • the groove portion 52 a is formed at an edge portion of the backing film 52 .
  • the groove portion 52 a may be formed at a center portion of the backing film 52 .
  • 20 numbered sample wafers are firstly prepared, grinding pads 22 are attached to a grinding plate 21 , and a slurry 27 is supplied from a nozzle 26 to the grinding pad 22 .
  • a wafer 23 is then disposed on the grinding pad 22 and the grinding plate 21 is rotated in the same direction as that of the grinding pad 22 while the wafer 23 is delicately pressed by the grinding head 25 , and thus, a surface of the wafer 23 is ground.
  • the wafer 23 is processed by a shaping process such as lapping and etching, dual-surface grinding, final grinding, and a cleaning process.
  • the sample wafers are ground, the thickness of the ground wafers are measured, and then a portion of the wafer to be corrected (hereinafter referred to as “correctable portion” is determined.
  • the wafer When the wafer is cut from an ingot, the wafer generally has a convex center portion. Accordingly, the center portion thereof may be further ground using a retaining assembly shown in FIG. 5 .
  • the retaining assembly shown in FIG. 5 may be purchased having the release sheet that is capable of being attached to or detached from a pressure sensitive adhesive layer 31 shown in FIG. 3A , FIG. 4 and FIG. 5 , may be separated by the release sheet, and may be attached on a bottom surface of the grinding head 25 using the pressure sensitive adhesive layer 31 .
  • each center of the grinding head 25 and the backing film 52 is marked and aligned, and then the retainer ring 28 having an inner diameter (a wafer diameter+ ⁇ ) that is greater than a diameter of the wafer by as much as ⁇ is disposed on the backing film 52 . Finally, the competed retaining assembly grinds a wafer.
  • the backing film is heterogeneously formed by having a groove portion 52 a of a width of 3 mm to 5 mm along a circumference portion from an inner wall of the retainer ring 28 as shown in FIG. 5 , and the wafer is actually ground using the heterogeneous backing film formed in this manner.
  • Table 1 shows a total thickness variance (GBIR) for the flatness of the whole area, a site back ideal focal plane range (SBIR) for the flatness of the local area, and a reference plane-site front least square focal plane range (SFQR) for providing a reference on patterning with respect to the wafers of before/after the final grinding using a conventional single backing film and using a heterogeneous backing film according to an exemplary embodiment.
  • the heterogeneous backing film is formed by circumferentially forming a groove portion 52 a having a width of about 3 to 5 mm (measured along a radial direction of the wafer) from the inner wall of the retainer ring.
  • a wafer maker has effected that the specification of the wafer margin has a 2 mm E.E. (Edge Exclusion).
  • the specification of the wafer margin often exceeds the standard value at a periphery portion thereof.
  • the wafer flatness is measured based on 2 mm E.E. or 3 mm E.E. (Edge Exclusion) using a probe of 2 mm or 3 mm diameter.
  • the GBIR has a smaller value such as 0.567, 0.440, and 0.294 as the groove portion 52 a has a smaller width, when the wafer is finally ground using the retaining assembly having a heterogeneous backing film 52 , which is formed by circumferentially forming a groove portion 52 a having a width of from about 3 to about 5 mm (measured along a radial direction of the wafer) from the inner wall of the retainer ring, particularly based on the standard 2 mm E.E.
  • the SBIR has a smaller value such as 0.331, 0.296, and 0.181
  • the SFQR has a smaller value such as 0.183, 0.159, and 0.134 as the groove portion 52 a has a smaller width.
  • a wafer may have a GBIR in a range of from about 0.2 to about 0.5, an SBIR being less than about 0.3, and an SFQR about 0.18 based on the standard 2 mm E.E.
  • a wafer may have a GBIR in a range of from about 0.2 to about 0.4, an SBIR ranging from about 0.15 to about 0.3, and an SFQR being less than about 0.1 to 0.13 based on the standard E.E. 3 mm.
  • the retainer assembly may be purchased having a release sheet 11 as shown in FIG. 6A .
  • a backing film 12 may include a secondary backing film by sequentially forming at least one of a substrate layer 123 and a foaming layer 125 on a pressure sensitive adhesive layer 121 with a different material.
  • the backing film 12 may include a secondary backing film by sequentially forming at least one of the substrate layer 123 and the foaming layer 125 on the pressure sensitive adhesive layer 121 to have a different thickness.
  • the secondary backing film 12 may be formed by removing a first backing film at a portion of the backing film corresponding to the correctable portion of the wafer, or by aligning and attaching a second backing film at a portion of the backing film corresponding to the correctable portion of the wafer.
  • a part of at least one of the substrate layer 123 and the foaming layer 125 sequentially formed on the pressure sensitive adhesive layer 121 may be removed.
  • a part of at least one of the substrate layer 123 and the foaming layer 125 sequentially formed on the pressure sensitive adhesive layer 121 may be additionally attached.
  • the retainer assembly may include a circular retainer ring 13 having an inner diameter of the wafer diameter+ ⁇ , an outer diameter and the backing film 24 including a pressure sensitive adhesive layer 121 attached at a lower portion of the grinding head, a substrate layer 123 formed on the pressure sensitive adhesive layer 121 , a foaming layer 125 formed on the substrate layer 123 , which may be partly attached or detached, and an alignment mark 15 marked at a center thereof.
  • the backing film 12 may further include a cutting line 17 for detaching at least one of the substrate layer 123 and the foaming layer 125 along a circumference direction.
  • the cutting line 17 may be formed at a predetermined interval of at least 3 mm to 5 mm from an inner wall of the retainer ring 13 toward the alignment mark 15 .
  • the cutting line 17 may be formed at an external periphery corresponding to 40% of a radius R of the backing film.
  • the backing film 12 may include a groove portion along a circumference direction at a predetermined distance from the center thereof.
  • the groove portion has a width of about 3 to 5 mm (measured along a radial direction of the wafer) from the inner wall of the retainer ring.
  • the groove portion has a width of less than about 2% (measured along a radial direction of the wafer) to an inner diameter of the retainer ring 28 considering a deterioration of wafer flatness after the final grinding process.
  • At least one of the substrate layer, the foaming layer, and the pressure sensitive adhesive layer may be formed with a different material.
  • At least one of the substrate layer, the foaming layer, and the pressure sensitive adhesive layer may have a different thickness.
  • the secondary backing film may be further formed by removing or attaching a first backing film at a portion of the backing film corresponding to the correctable portion of the wafer.
  • the backing film 24 and the grinding pad 22 may be compressed without deforming the grinding head 25 , wafer 23 , and the grinding plate 21 because of the relatively great elastic coefficient of the backing film 24 .
  • the elastic recuperative power is varied, and accordingly different grinding pressures are applied to a front surface of the wafer 23 .
  • E3 mm and E5 mm respectively mean a width of the edge portion of the backing film
  • FP means a final grinding
  • TA means a test after.
  • FIG. 7A and FIG. 7B respectively illustrate graphs showing a variance of a thickness along a radial direction of a wafer before and after a convex wafer having a thicker center portion is finally polished according to an exemplary embodiment.
  • the flatness of the front surface may be increased because the grinding amount of the center portion of the wafer is increased finely by using a relative hard backing at the center portion thereof.
  • FIGS. 8A and 8B respectively shows results of an SBIR of the whole surface of a wafer based on E.E. 3 mm before and after the wafer is finally polished according to an exemplary embodiment of the present invention.
  • the flatness of the wafer edge portion is maintained to be less than about 0.1.
  • Such a wafer flatness correcting method may be achieved by changing at least one physical property of the constituent elements of the backing film 32 as shown in FIG. 3A and FIG. 3B and partly changing a thickness of the backing film 42 as shown in FIG. 4 .
  • the backing film may use a hard backing material at the edge portion thereof, and accordingly it may increase a grinding amount at the edge portion of the wafer, thereby improving flatness of the entire surface of the wafer.
  • a silicon wafer retaining assembly may correct grinding non-uniformity as well as a thickness deviation of a wafer 23 .
  • the wafer may be largely warped due to a remaining stress after the grinding and a film stress generated because silicon dioxide film is deposited on the back surface of an epi wafer.
  • the grinding since the grinding is performed while the wafer 23 is factitiously spread by factitious grinding pressure, the grinding may be non-uniform.
  • the non-uniform grinding may be compensated by configuring a heterogeneous backing film 24 .
  • the wafer flatness of the final grinding may be corrected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
US12/329,745 2005-12-20 2008-12-08 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method Abandoned US20090142991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/329,745 US20090142991A1 (en) 2005-12-20 2008-12-08 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20050126460 2005-12-20
KR10-2005-0126460 2005-12-20
KR10-2006-0103968 2006-10-25
KR1020060103968A KR100841094B1 (ko) 2005-12-20 2006-10-25 실리콘 웨이퍼 연마장치, 이에 이용되는 리테이닝어셈블리, 및 이를 이용한 실리콘 웨이퍼 평평도 보정방법
US11/612,008 US20070141958A1 (en) 2005-12-20 2006-12-18 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method
US12/329,745 US20090142991A1 (en) 2005-12-20 2008-12-08 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/612,008 Division US20070141958A1 (en) 2005-12-20 2006-12-18 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method

Publications (1)

Publication Number Publication Date
US20090142991A1 true US20090142991A1 (en) 2009-06-04

Family

ID=38183164

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/329,767 Abandoned US20090149118A1 (en) 2005-12-20 2008-12-08 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method
US12/329,745 Abandoned US20090142991A1 (en) 2005-12-20 2008-12-08 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/329,767 Abandoned US20090149118A1 (en) 2005-12-20 2008-12-08 Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method

Country Status (3)

Country Link
US (2) US20090149118A1 (zh)
KR (1) KR100841094B1 (zh)
CN (1) CN1986154A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717334A (zh) * 2011-03-30 2012-10-10 鞍钢股份有限公司 一种自动砂轮磨样机样品水平定位方法
WO2013095527A1 (en) * 2011-12-22 2013-06-27 Intel Corporation Electrostatic discharge compliant patterned adhesive tape
US8981435B2 (en) 2011-10-01 2015-03-17 Intel Corporation Source/drain contacts for non-planar transistors
US9177867B2 (en) 2011-09-30 2015-11-03 Intel Corporation Tungsten gates for non-planar transistors
US9202699B2 (en) 2011-09-30 2015-12-01 Intel Corporation Capping dielectric structure for transistor gates
US9580776B2 (en) 2011-09-30 2017-02-28 Intel Corporation Tungsten gates for non-planar transistors
TWI778338B (zh) * 2019-04-05 2022-09-21 日商勝高股份有限公司 研磨頭、研磨裝置及半導體晶圓的製造方法
DE112012001458B4 (de) 2011-04-26 2024-05-08 Shin-Etsu Handotai Co., Ltd. Halbleiterwafer und Herstellungsverfahren dafür

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100917566B1 (ko) * 2008-01-02 2009-09-16 주식회사 실트론 웨이퍼 연마장치
JP5383268B2 (ja) * 2009-03-19 2014-01-08 昭和電工株式会社 円盤状基板の製造方法
KR101600606B1 (ko) * 2012-08-14 2016-03-07 주식회사 엘지화학 유리판용 백패드 부착 장치
CN104282545A (zh) * 2014-10-15 2015-01-14 易德福 一种晶片研磨方法
JP6451825B1 (ja) * 2017-12-25 2019-01-16 株式会社Sumco ウェーハの両面研磨方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666752B1 (en) * 1998-08-28 2003-12-23 Nitta Corporation Wafer retainer and method for attaching/detaching the wafer retainer to/from polishing machine base plate
US20050095958A1 (en) * 2003-11-04 2005-05-05 Yun Hyun J. Chemical mechanical polishing apparatus and methods using a polishing surface with non-uniform rigidity
US20050186691A1 (en) * 2002-03-29 2005-08-25 Hoya Corporation Method of determining a flatness of an electronic device substrate, method of producing the substrate, method of producing a mask blank, method of producing a transfer mask, polishing method, electronic device substrate, mask blank, transfer mask, and polishing apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200173174Y1 (ko) 1995-12-29 2000-03-02 김영환 웨이퍼 연마장치
KR100252765B1 (ko) * 1996-12-18 2000-06-01 김영환 웨이퍼 가장자리에 대응하는 함몰부를 구비하는 연마장치 및 그를 이용한 연마방법
US6344414B1 (en) * 1999-04-30 2002-02-05 International Business Machines Corporation Chemical-mechanical polishing system having a bi-material wafer backing film assembly
US6171513B1 (en) * 1999-04-30 2001-01-09 International Business Machines Corporation Chemical-mechanical polishing system having a bi-material wafer backing film and two-piece wafer carrier
JP2001219379A (ja) * 2000-02-09 2001-08-14 Dyuuku Planning:Kk 研磨具
KR20050001130A (ko) * 2003-06-27 2005-01-06 주식회사 하이닉스반도체 웨이퍼 연마 장치
KR20050105608A (ko) * 2004-04-30 2005-11-04 주식회사 하이닉스반도체 웨이퍼 연마장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6666752B1 (en) * 1998-08-28 2003-12-23 Nitta Corporation Wafer retainer and method for attaching/detaching the wafer retainer to/from polishing machine base plate
US20050186691A1 (en) * 2002-03-29 2005-08-25 Hoya Corporation Method of determining a flatness of an electronic device substrate, method of producing the substrate, method of producing a mask blank, method of producing a transfer mask, polishing method, electronic device substrate, mask blank, transfer mask, and polishing apparatus
US20050095958A1 (en) * 2003-11-04 2005-05-05 Yun Hyun J. Chemical mechanical polishing apparatus and methods using a polishing surface with non-uniform rigidity

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102717334A (zh) * 2011-03-30 2012-10-10 鞍钢股份有限公司 一种自动砂轮磨样机样品水平定位方法
DE112012001458B4 (de) 2011-04-26 2024-05-08 Shin-Etsu Handotai Co., Ltd. Halbleiterwafer und Herstellungsverfahren dafür
US9490347B2 (en) 2011-09-30 2016-11-08 Intel Corporation Capping dielectric structures for transistor gates
US9177867B2 (en) 2011-09-30 2015-11-03 Intel Corporation Tungsten gates for non-planar transistors
US9202699B2 (en) 2011-09-30 2015-12-01 Intel Corporation Capping dielectric structure for transistor gates
US9580776B2 (en) 2011-09-30 2017-02-28 Intel Corporation Tungsten gates for non-planar transistors
US9637810B2 (en) 2011-09-30 2017-05-02 Intel Corporation Tungsten gates for non-planar transistors
US9425316B2 (en) 2011-10-01 2016-08-23 Intel Corporation Source/drain contacts for non-planar transistors
US8981435B2 (en) 2011-10-01 2015-03-17 Intel Corporation Source/drain contacts for non-planar transistors
US9853156B2 (en) 2011-10-01 2017-12-26 Intel Corporation Source/drain contacts for non-planar transistors
US10283640B2 (en) 2011-10-01 2019-05-07 Intel Corporation Source/drain contacts for non-planar transistors
US10770591B2 (en) 2011-10-01 2020-09-08 Intel Corporation Source/drain contacts for non-planar transistors
WO2013095527A1 (en) * 2011-12-22 2013-06-27 Intel Corporation Electrostatic discharge compliant patterned adhesive tape
TWI778338B (zh) * 2019-04-05 2022-09-21 日商勝高股份有限公司 研磨頭、研磨裝置及半導體晶圓的製造方法

Also Published As

Publication number Publication date
US20090149118A1 (en) 2009-06-11
KR20070065780A (ko) 2007-06-25
CN1986154A (zh) 2007-06-27
KR100841094B1 (ko) 2008-06-25

Similar Documents

Publication Publication Date Title
US20090142991A1 (en) Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method
US20070141958A1 (en) Silicon Wafer Grinding Apparatus, Retaining Assembly Used for the Same and Silicon Wafer Flatness Correcting Method
KR101565026B1 (ko) 양면 연마 장치용 캐리어 및 이를 이용한 양면 연마 장치, 및 양면 연마 방법
US20090247057A1 (en) Polishing platen and polishing apparatus
KR20090029270A (ko) 양면 연마 장치용 캐리어 및 이를 이용한 양면 연마 장치 및 양면 연마 방법
US11969856B2 (en) Wafer manufacturing method and wafer
KR20120101146A (ko) 반도체 웨이퍼 및 그 제조 방법
JP2005223322A (ja) 研磨ヘッド用フレキシブルメンブレイン及び研磨装置
KR100239226B1 (ko) 반도체 웨이퍼 연마 방법 및 그 연마패드
US8574033B2 (en) Wafer support member, method for manufacturing the same and wafer polishing unit comprising the same
JP3218572B2 (ja) ウェーハ加圧用ポリッシングプレート
TWI716931B (zh) 太鼓晶圓環形切割製程方法
US7541826B2 (en) Compliant pad wafer chuck
US20120196512A1 (en) Polishing pad and method of fabricating semiconductor device
KR20130007179A (ko) Cmp 패드 컨디셔너 및 그 제조방법
TWI786408B (zh) 晶圓承載台及晶圓鑲埋結構的形成方法
US20220415666A1 (en) Wafer polishing method and silicon wafer
JP2003163192A (ja) 溝入り研磨布並びにワークの研磨方法及び研磨装置
JP2004114184A (ja) チャック
JP2004241723A (ja) 半導体ウエーハの製造方法、サポートリング及びサポートリング付ウエーハ
JP3916212B2 (ja) 半導体ウエーハの製造方法
JP4169432B2 (ja) 被加工物の保持具、研磨装置及び研磨方法
JP4302590B2 (ja) 研磨装置及びリテーナ取り付け構造
JPH07112360A (ja) 半導体ウェーハの研磨方法
CN115485813A (zh) 双面研磨装置用载具的制造方法及晶圆的双面研磨方法

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION