US20080278828A1 - Optical Element - Google Patents

Optical Element Download PDF

Info

Publication number
US20080278828A1
US20080278828A1 US11/994,482 US99448206A US2008278828A1 US 20080278828 A1 US20080278828 A1 US 20080278828A1 US 99448206 A US99448206 A US 99448206A US 2008278828 A1 US2008278828 A1 US 2008278828A1
Authority
US
United States
Prior art keywords
optical element
mount component
friction
dissipates
mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/994,482
Inventor
Johannes Rau
Armin Schoeppach
Bernhard Geuppert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Priority to US11/994,482 priority Critical patent/US20080278828A1/en
Assigned to CARL ZEISS SMT AG reassignment CARL ZEISS SMT AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHOEPPACH, ARMIN, GEUPPERT, BERNHARD, RAU, JOHANNES
Publication of US20080278828A1 publication Critical patent/US20080278828A1/en
Assigned to CARL ZEISS SMT GMBH reassignment CARL ZEISS SMT GMBH A MODIFYING CONVERSION Assignors: CARL ZEISS SMT AG
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/001Counterbalanced structures, e.g. surgical microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/01Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/108Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on plastics springs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Definitions

  • the invention relates to an optical element, a mount component, a mount for an optical element, a projection objective and a method for producing microstructures.
  • EP 1 275 995 A2 describes an optical system having a number of optical elements with a device for detecting the position of the optical element, which are fitted on a measuring structure that is mounted on a base plate via a spring and a damper.
  • DE 100 41 993 C1 discloses a damper having a damper mass, an elastomeric spring, a base and a fastening bolt that is intended to be used for absorbing vibrations, in particular in the case of motor vehicles.
  • vibration dampers are certainly suitable for the very large vibration amplitudes such as occur in motor vehicles.
  • these vibration dampers cannot be used with optical elements.
  • most known vibration dampers have a preferred direction in which they damp particularly well the vibrations occurring, and are, moreover, tuned to specific frequencies.
  • the object is further achieved by a mount component for an optical element having at least one additional element fitted thereon which dissipates the vibrational energy of the mount component by friction.
  • the element according to the invention transforms the vibrational energy by friction into heat.
  • the term “friction” comprises all effects that are capable of dissipating energy, that is to say, in particular, also by Coulomb friction, internal friction and/or by effects caused by the viscosity or viscoelasticity of the participating materials.
  • the element which dissipates the vibrational energy of the optical element or of the mount component by friction does not itself form a vibrational system, it is effective for a very wide frequency spectrum, it being possible for this effectiveness of the vibrational damping to be improved by increasing the mass of the element which dissipates the vibrational energy of the mount component by friction. By contrast, it is possible to reduce the mass of the element which dissipates the vibrational energy of the mount component by friction when the aim is to damp vibrations of high frequency.
  • a particular advantage of the element according to the invention consists in the fact that it requires only a very small additional installation space, or no installation space at all in specific embodiments, and can therefore be used without a problem for the most varied applications.
  • the element which dissipates the vibrational energy of the optical element or of the mount component by friction to be very easily adapted to the respective geometrical conditions of the optical element or of the mount.
  • the element according to the invention which dissipates the vibrational energy of the optical element or of the mount component by friction results in a passive vibration damping that therefore requires only a very slight outlay on design.
  • the element which dissipates the vibrational energy of the optical element or of the mount component by friction is fitted directly on the optical element or on the mount component and not on a holding structure or the like, and so the vibrations are influenced directly.
  • the element is not arranged between two components vibrating relative to one another, and therefore does not produce direct coupling.
  • the element according to the invention which dissipates vibrations of the optical element or of the mount component can advantageously be used both with manipulable and with non-manipulable optical elements, it being fitted either on the optical element itself or on a mount component of a mount holding the optical element. There is thereby no change at all in the position of the optical element or of the mount component because of the nature of the vibration damping.
  • the element which dissipates the vibrational energy of the optical element or of the mount component by friction has an additional mass. Such an additional mass substantially increases the possible damping of the vibrations.
  • a soft elastic adhesive such as, for example, a polyurethane elastomer adhesive
  • a polyurethane elastomer adhesive can be very well suited to fitting the additional mass on the optical element or the mount. Energy is dissipated inside the adhesive upon the occurrence of vibrations by the internal friction inside the adhesive as well as by viscous effects and effects of entropy elasticity.
  • the fibrous medium can be, for example, a fleece, a felt or a loose tangle of fibers, or else a fiber-modified elastomer, for example.
  • the additional mass is designed as a ring connected to the optical element or to the mount component.
  • the ring is designed as a ring connected to the optical element or to the mount component.
  • the element which dissipates the vibrational energy of the mount component by friction is fitted on one or more of those points of the optical element or of the mount component at which the amplitude of the vibration is highest, this results in a particularly good damping of the vibrations of the optical element or of the mount component.
  • the element which dissipates the vibrational energy of the optical element or of the mount component by friction is arranged on the outside of the optical element or of the mount component.
  • the pourable medium can be, for example, sand, a granular material or a powder.
  • the element which dissipates the vibrational energy of the optical element by friction has a wire cable having a number of individual wires and on the ends of which respective masses are arranged.
  • the element which dissipates the vibrational energy of the optical element by friction is designed as a tube filled with a pourable medium.
  • the tube consists of a flexible material.
  • the element which dissipates the vibrational energy of the optical element or of the mount component by friction is tuned to the natural frequency of the optical element or of the mount component.
  • a substantially improved damping of the vibrations results from such a tuning of the element.
  • the element which dissipates the vibrational energy of the mount component by friction is arranged in a cutout in the mount component, the result is a very slight space requirement therefor.
  • Claim 35 results in a mount for holding an optical element having at least one mount component as claimed in one of claims 19 to 34 .
  • an alternative solution can consist in a mount having at least two mount components, one of the two mount components having a resilient element that is connected at a contact point to the other mount component and exerts a contact pressure on the latter, an element which dissipates the vibrational energy of the mount by friction being formed by the contact point and the two mount components.
  • a lithography objective having at least one optical element according to the invention is specified in claim 37 .
  • a lithography objective having at least one mount according to the invention is specified in claim 38 .
  • Claim 39 relates to a projection exposure machine having an illumination system and having a lithography objective as claimed in claim 37 or 38 .
  • Claim 40 yields a method for producing semiconductor components by using such a projection exposure machine.
  • FIG. 1 shows a first embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction, on a mount component of an optical element;
  • FIG. 2 shows a second embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction, in the case of which the additional mass is arranged on the outside of the optical element;
  • FIG. 3 shows an alternative to the embodiment in accordance with FIG. 2 ;
  • FIG. 4 shows a further alternative to the embodiment in accordance with FIG. 2 ;
  • FIG. 5 shows a further alternative to the embodiment in accordance with FIG. 2 ;
  • FIG. 6 shows a further alternative to the embodiment in accordance with FIG. 2 ;
  • FIG. 7 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 8 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 9 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 10 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 11 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 12 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 13 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction
  • FIG. 14 shows a further embodiment of the inventive element which dissipates vibrational energy of the optical element by friction, in the case of which the additional mass is the mount component coupled to the optical element via at least one resilient element;
  • FIG. 15 shows a projection exposure machine having a lithography objective
  • FIG. 16 shows a graph for illustrating the inventive damping of vibrations in the case of weak damping.
  • FIG. 17 shows a graph for illustrating the inventive damping of vibrations in the case of strong damping.
  • FIG. 1 shows an optical element 1 , which is designed in this case as a lens and is held in a mount 2 .
  • the mount 2 has two mount components, specifically an inner ring 3 , on which the optical element 1 is fitted, and an outer ring 5 connected to the inner ring 3 via an actuating element 4 .
  • the inner ring 3 can be moved within certain limits via the actuating element 4 , which can be, for example, of the type described in detail in U.S. Pat. No. 6,191,898 B1, and can also be denoted as a manipulator.
  • the inner ring 3 is, moreover, connected to the outer ring 5 via a spring element 6 whose function is likewise described in detail in U.S. Pat. No. 6,191,898 B1, for which reason it is not intended to go into more detail there on the ring.
  • the disclosure content of U.S. Pat. No. 6,191,898 B1 is incorporated in full hereby as the subject matter of the present application.
  • the optical element 1 could also be designed as a mirror or as a prism.
  • an element which dissipates the vibrational energy of the optical element by friction which can also be denoted as a vibration-damping device or vibration damper and is assigned in the present case to the inner ring 3 .
  • the element 7 described below in detail and which dissipates the vibrational energy of the optical element 1 by friction has an additional mass 8 that can also be denoted as an inertial mass or as a seismic mass.
  • the element 7 which dissipates the vibrational energy of the optical element 1 by friction should be tuned as accurately as possible to a natural frequency f 0 or to a natural frequency of the spectrum of natural frequencies of the optical element 1 or of the mount component 3 or 5 , because the best damping of vibrations can be achieved in this way.
  • Calculation methods known per se can be used to design and dimension the element 7 .
  • a large roll in the design of the element 7 which dissipates the vibrational energy of the optical element 1 is played in this case by the mass of said dissipating element, which is determined to a not inconsiderable extent by the additional mass 8 . It holds here that the element 7 must be the more accurately tuned the less the mass of the same.
  • the mass, determined by the additional mass 8 , if appropriate, of the element 7 which dissipates the vibrational energy of the optical element 1 by friction is sufficiently large, for example 1/10- 1/100 of the mass of the optical element 1 , or of the mount 2 or of the mount component 3 or 5 , to be damped.
  • a low mass of the element 7 has the advantage of a slight additional volume and a negligible additional load in the event of shock etc.
  • the natural frequency f 0 of the element 7 is calculated as follows:
  • the additional mass 8 is arranged in a container 10 filled with a pourable medium 9 and which is located in a cutout 11 of the inner ring 3 .
  • Sand, a granular material or a powder, for example can be used as the pourable medium 9 in which the mass 8 is arranged or which forms a part of the mass 8 .
  • the mass 8 can be a weight consisting of a metal such as steel, for example and which is loosely embedded in the pourable medium 9 .
  • the pourable medium 9 converts the vibrational energy of the optical element 1 and/or of the mount 2 into heat by friction.
  • the damping effect of the element 7 which dissipates the vibrational energy of the optical element by friction can be influenced and optimized by varying the density and/or the grain size or, given different types of the pourable medium 9 , by the differences in the densities and/or the grain sizes.
  • the mass 8 is preferably fitted at those points of the mount 2 at which the amplitude of the vibration is highest, that is to say at an antinode, and this leads to optimum damping of vibrations.
  • the pourable medium 9 it is also possible, if appropriate, to use very viscous liquids, pastes, fats, waxes, elastomers and, in particular, fibers or fibrous media, or mixtures of these components.
  • the additional mass 8 can be arranged thereon or be surrounded thereby.
  • the pourable medium 9 or the other materials named above can be used to tune the element 7 which dissipates the vibrations of the optical element 1 to a multiplicity of natural frequencies of the optical element 1 . Consequently, the above-named problems with regard to tuning the element 7 to the natural frequency of the optical element 1 are circumvented or at least eased. This results from the many different natural frequencies of the individual elements of the pourable medium 9 .
  • FIG. 2 shows an embodiment of the element 7 which dissipates the vibrational energy of the optical element by friction, and in this case the mass 8 is likewise fitted in a container 10 filled with the pourable medium 9 .
  • the container 10 with the mass 8 is arranged on the outside of the optical element 1 and in this way damps the vibrations thereof.
  • the connection of the container 10 to the optical element 1 can be performed, for example, by bonding.
  • the mass 8 is fitted at those points of the optical element 1 at which the amplitude of the vibration is highest, that is to say at an antinode. Consequently, as illustrated in FIG. 2 , it is also possible for a number of elements 7 which dissipate the vibrational energy of the optical element by friction to be provided around the periphery of the optical element 1 .
  • the element 7 which dissipates the vibrational energy of the optical element 1 by friction in accordance with FIG. 3
  • said element is once again fitted on the outside of the optical element 1 , the mass 8 being formed by the pourable medium 9 .
  • the pourable medium 9 can take the form of individual particles consisting, for example, of lead or another material of a relatively high density, and be enclosed in the container 10 .
  • the container 10 is formed in this case by a foil sealed by means of laser welding, for example.
  • the element 7 in accordance with FIG. 5 has a tube 14 consisting of a flexible material, for example of an elastomer, and which is filled with the pourable medium 9 .
  • the tube 14 filled with the pourable medium 9 is already sufficient as the mass which dissipates the vibrations of the optical element 1 , and can thus form the element 7 .
  • FIG. 6 A further embodiment of the element 7 is illustrated in FIG. 6 .
  • a stiff rod 15 is provided at both its ends with respective masses 8 and fitted on the optical element 1 via an articulated joint 16 , preferably consisting of an elastomer, and a connecting element 17 .
  • the elastomer in this case takes over a similar function to the pourable medium 9 described above.
  • FIG. 7 A further embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction is illustrated in section in FIG. 7 .
  • a ring 28 constituting the additional mass 8 rests on the inner ring 3 of the mount 2
  • a flat component 29 is arranged between the two rings, for example a fibrous material such as, for example, an annular paper or a felt or an elastomer.
  • the additional mass 8 designed as a ring 28 , and the flat component 29 together form the element 7 , which dissipates the vibrational energy of the mount 2 or of the optical element 1 (not illustrated in this figure) by friction.
  • the flat component 9 can also be used to tune the element 7 which dissipates the vibrations of the optical element 1 to the natural frequency of the optical element 1 , since the element 7 designed in this way has a number of natural frequencies.
  • the ring 28 could also consist of a number of individual ring elements of which then one corresponds at least approximately to the natural frequency or one of the natural frequencies of the optical element 1 , such that it is possible, if appropriate, to avoid a complicated design of the element 7 .
  • the inner ring 3 of the mount 2 has a recess 30 in which there is arranged the flat component 29 designed in the form of a fleece-like medium such as, for example, a felt, a piece of paper, a fleece or a fiber mat.
  • the flat component 29 is once again preferably of annular design.
  • the ring 28 Located on the flat component 29 is the ring 28 , which can consist, for example, of metal.
  • the ring 28 in turn forms the additional, inertial mass 8
  • the flat component 29 forms the medium that ensures the friction which dissipates the vibrations.
  • the recess 30 the element 7 which dissipates vibrations can be accommodated inside the mount 2 in a particularly space saving fashion.
  • FIG. 9 illustrates a further embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction.
  • the ring 28 consisting of metal, for example, is connected to the optical element 1 .
  • This connection of the ring 28 to the optical element 1 can be implemented directly or via an additional component such as, for example, the flat component 29 or, as in the present case, an adhesive 31 .
  • This embodiment of the element 7 requires only a very small space, and can also be retrofitted on virtually any optical element 1 .
  • an adhesive 31 in particular a soft elastic adhesive such as, for example, a polyurethane elastomer adhesive, for fitting the ring 28 , which forms the additional mass 8 , on the optical element 1 .
  • the elastomeric properties of the adhesive 31 contribute substantially to the damping properties thereof.
  • fitting the additional mass 8 on the mount component 2 as described above repeatedly, to which end it is thus likewise possible to use the adhesive 31 .
  • a dissipation of energy comes about inside the adhesive 31 , and this can be explained by the internal friction inside the adhesive 31 as well as by viscous effects and effects of entropy elasticity.
  • the thickness of the adhesive 31 substantially determines the dimensions of the spring constant.
  • the adhesive 31 can either be provided unfilled, that is to say as a pure adhesive 31 , or in a fashion filled with powder, fibers and/or another suitable material as filler, in order to increase the damping effect. Moreover, it is conceivable to introduce the adhesive 31 both over the entire area and in a punctiform fashion.
  • the adhesive 31 is also to be taken into account with reference to the above-described adaptation of the element 7 which dissipates the vibrational energy of the optical element 1 by friction, since both the material used and, in particular, the thickness of the adhesive 31 , influence the natural frequency of the element 7 , and thus the adaptation thereof to the natural frequency of the optical element 1 .
  • the mass of the element 7 should be as large as possible, especially as compared with the mass of the adhesive 31 , in order to prevent excessively sharp deviations from the natural frequency of the optical element 1 .
  • the type of loading of the adhesive 31 also plays a role in this context, since a different adhesive 31 must be used in the case of a tensile load than in that of a sheer or compressive load.
  • the stiffness k of the adhesive 31 can be calculated using the following formula:
  • being the transverse contraction coefficient of the adhesive 31 .
  • FIGS. 11 , 12 and 13 show various ways of fitting the additional mass 8 , which is represented in each case by the ring 28 , on the optical element 1 .
  • the adhesive 31 is located in FIG. 11 both between the upper surface and the lateral surface of the optical element 1 and the correspondingly designed ring 28 , whereas the adhesive 31 is applied only to the cylindrical lateral surface in the case of the design in accordance with FIG. 12 , and only to the upper surface of the optical element 1 in the case of FIG. 13 , in order to connect the ring 28 to the optical element 1 .
  • FIG. 14 shows a further embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction.
  • the mount 2 is coupled to the optical element 1 by two resilient elements 18 a and 18 b so as to produce between the two resilient elements 18 a and 18 b a locally restricted friction or contact point 19 at which the resilient elements 18 a and 18 b exert contact pressures on one another.
  • the vibrational energy of the optical element 1 is converted into heat by dry friction, and thus the vibrations of the optical element 1 are damped, in the event of moving the two mount components 3 and 5 relative to one another or in the event of a relative movement between the optical element 1 and the resilient elements 18 a and 18 b or the mount 2 .
  • the mount 2 or, in general, one of the mount components 3 or 5 , forms the mass 8
  • the element 7 is formed by the contact point 19 and the two mount components 3 and 5 . It is advantageous that only very slight forces occur which influence the position of the optical element 1 only insubstantially.
  • the resilient element 18 b can, for example, be a support for the optical element 1 , as is, for example, known from U.S. Pat. No. 6,392,825 or U.S. Pat. No. 4,733,945.
  • a lithography objective 20 is illustrated extremely schematically in FIG. 15 . It has a housing 21 in which a number of optical elements 1 are arranged and held, preferably by means of appropriate mounts 2 .
  • the lithography objective 20 is part of a projection exposure machine 22 that serves the purpose of producing semiconductor components and has an illumination system 23 , fitted on the top side of the lithography objective 20 , with a light source 24 that transmits a beam path 25 through the lithography objective 20 with the aid of which a reticle 26 is imaged in a manner known per se onto a wafer 27 located below the lithography objective 1 .
  • This projection exposure machine 22 can therefore be used to carry out a method for producing semiconductor components that is known per se and therefore not described in more detail below.
  • At least one of the optical elements 1 and/or at least one of the mounts 10 is provided with an element 7 , described above, which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction.
  • FIG. 16 shows a graph in which various amplitude profiles are plotted against frequency f.
  • the line denoted by “32” shows the vibration amplitude A of the optical element 1 in the region of its natural frequency f 0 without the inventive element 7 . It is to be seen here that there is a very high vibration amplitude in the case of the natural frequency f 0 of the optical element 1 or of the mount 2 on which the optical element 7 can be fitted.
  • an element 7 that is designed for this natural frequency f 0 but which is very weakly damped results in the curve denoted by “33” of the vibration amplitude of the optical element 1 or of the mount 2 , measured at the optical element 1 or at the mount 2 , in the case of which because of the design there is no longer any or at least only a very little vibration amplitude at the natural frequency f 0 , but there are two secondary maxima, which can also be very disturbing.
  • the run of the vibration amplitude of the element 7 is illustrated by the reference “34”.
  • the absolute value of the vibration amplitude of the element 7 does not have to be in conformity with the vibration amplitude of the optical element 1 .

Abstract

An optical element has at least one additional element fitted thereon which dissipates the vibrational energy of the optical element by friction.

Description

  • The invention relates to an optical element, a mount component, a mount for an optical element, a projection objective and a method for producing microstructures.
  • A system for damping vibrations that act on an optical element in an imaging apparatus is described in U.S. Pat. No. 6,700,715 B1. In this case, vibrations occurring are detected by sensors integrated in the optical element, and frequencies counteracting the natural frequencies introduced by the vibrations or deformations are introduced in the form of an adaptronic control loop by activating piezoelectric elements as actuators. The relatively high complexity of the system is disadvantageous here.
  • EP 1 275 995 A2 describes an optical system having a number of optical elements with a device for detecting the position of the optical element, which are fitted on a measuring structure that is mounted on a base plate via a spring and a damper.
  • DE 100 41 993 C1 discloses a damper having a damper mass, an elastomeric spring, a base and a fastening bolt that is intended to be used for absorbing vibrations, in particular in the case of motor vehicles.
  • DE 84 17 760 U1 describes a vibration damper that can be built onto a unit of a motor vehicle and exists as a spring system with one or more bundles of wires, fibers or strips that are intended to ensure temperature-dependent damping of vibrations.
  • Such vibration dampers are certainly suitable for the very large vibration amplitudes such as occur in motor vehicles. However, by virtue of their size alone, these vibration dampers cannot be used with optical elements. Moreover, most known vibration dampers have a preferred direction in which they damp particularly well the vibrations occurring, and are, moreover, tuned to specific frequencies.
  • Since, however, in the case of optical elements or the mounts in which the optical elements are mounted, vibrations of very different frequencies and directions of vibration can occur, such vibration dampers cannot be used for optical elements. Particularly in the case of mounts for optical elements that are fitted with manipulators such as are described for example, in U.S. Pat. No. 6,191,898 B1, the optical element vibrates not only at its natural frequency, but there also occurs vibrations of the manipulator or of the optical element in common with one or more mount components, it being possible for very low natural frequencies that are difficult to control to occur in conjunction with relatively high amplitudes.
  • It is therefore an object of the present invention to provide an optical element and a mount for an optical element that experience a very good damping of vibration in the case of different vibration frequencies and of different alignments of these vibrations.
  • This object is achieved according to the invention by means of an optical element having at least one additional element fitted thereon which dissipates the vibrational energy of the optical element by friction.
  • The object is further achieved by a mount component for an optical element having at least one additional element fitted thereon which dissipates the vibrational energy of the mount component by friction.
  • The element provided according to the invention which dissipates the vibrational energy of the mount component by friction and can also be denoted as a vibration damper or as a vibration damping device damps the vibrations of the optical element by dissipating the vibrational energy, vibrations being damped in all six degrees of freedom. Here, the element according to the invention transforms the vibrational energy by friction into heat. Within the scope of the present patent application, the term “friction” comprises all effects that are capable of dissipating energy, that is to say, in particular, also by Coulomb friction, internal friction and/or by effects caused by the viscosity or viscoelasticity of the participating materials.
  • Since the element which dissipates the vibrational energy of the optical element or of the mount component by friction does not itself form a vibrational system, it is effective for a very wide frequency spectrum, it being possible for this effectiveness of the vibrational damping to be improved by increasing the mass of the element which dissipates the vibrational energy of the mount component by friction. By contrast, it is possible to reduce the mass of the element which dissipates the vibrational energy of the mount component by friction when the aim is to damp vibrations of high frequency.
  • A particular advantage of the element according to the invention consists in the fact that it requires only a very small additional installation space, or no installation space at all in specific embodiments, and can therefore be used without a problem for the most varied applications. In particular, it is also possible for the element which dissipates the vibrational energy of the optical element or of the mount component by friction to be very easily adapted to the respective geometrical conditions of the optical element or of the mount. Moreover, the element according to the invention which dissipates the vibrational energy of the optical element or of the mount component by friction results in a passive vibration damping that therefore requires only a very slight outlay on design.
  • The element which dissipates the vibrational energy of the optical element or of the mount component by friction is fitted directly on the optical element or on the mount component and not on a holding structure or the like, and so the vibrations are influenced directly. In particular, the element is not arranged between two components vibrating relative to one another, and therefore does not produce direct coupling.
  • The element according to the invention which dissipates vibrations of the optical element or of the mount component can advantageously be used both with manipulable and with non-manipulable optical elements, it being fitted either on the optical element itself or on a mount component of a mount holding the optical element. There is thereby no change at all in the position of the optical element or of the mount component because of the nature of the vibration damping.
  • In an advantageous refinement of the invention, it can be provided that the element which dissipates the vibrational energy of the optical element or of the mount component by friction has an additional mass. Such an additional mass substantially increases the possible damping of the vibrations.
  • When the additional mass is connected to the optical element or to the mount component by means of an adhesive, this results in a very good damping of vibrations. In particular, a soft elastic adhesive such as, for example, a polyurethane elastomer adhesive, can be very well suited to fitting the additional mass on the optical element or the mount. Energy is dissipated inside the adhesive upon the occurrence of vibrations by the internal friction inside the adhesive as well as by viscous effects and effects of entropy elasticity.
  • Very good results are achieved, furthermore, with reference to the damping of vibrations when the additional mass is arranged on a fibrous medium or is surrounded by a fibrous medium. The fibrous medium can be, for example, a fleece, a felt or a loose tangle of fibers, or else a fiber-modified elastomer, for example.
  • Moreover, it can be provided that the additional mass is designed as a ring connected to the optical element or to the mount component. For reasons of space, when use takes place in a mount it is obvious to arrange the ring in an annular cutout in the mount component.
  • When it is provided in an advantageous development of the invention that the element which dissipates the vibrational energy of the mount component by friction is fitted on one or more of those points of the optical element or of the mount component at which the amplitude of the vibration is highest, this results in a particularly good damping of the vibrations of the optical element or of the mount component.
  • In order to avoid damage to the optical element and to achieve fitting the element which dissipates the vibrational energy of the optical element or of the mount component by friction in as simple a way as possible, it can be provided that the element which dissipates the vibrational energy of the optical element or of the mount component by friction is arranged on the outside of the optical element or of the mount component.
  • When the element which dissipates the vibrational energy of the optical element or of the mount component by friction has no mechanical contact with an element other than the optical element, or is connected to the mount component to be damped and has no contact with another element, influencing of the damping of vibrations is effectively prevented.
  • A particularly good damping of vibrations was observed in the case of an embodiment in which the element which dissipates the vibrational energy of the mount component by friction has a container filled with a pourable medium.
  • The pourable medium can be, for example, sand, a granular material or a powder.
  • Good results with regard to the damping of vibrations were also achieved with an embodiment in which the element which dissipates the vibrational energy of the optical element by friction has a wire cable having a number of individual wires and on the ends of which respective masses are arranged.
  • Moreover, in one refinement of the invention it can be provided that the element which dissipates the vibrational energy of the optical element by friction is designed as a tube filled with a pourable medium.
  • It is to be preferred thereby when the tube consists of a flexible material.
  • In a further, very advantageous development of the invention, it can be provided that the element which dissipates the vibrational energy of the optical element or of the mount component by friction is tuned to the natural frequency of the optical element or of the mount component. A substantially improved damping of the vibrations results from such a tuning of the element.
  • When, in a further refinement of the invention, the element which dissipates the vibrational energy of the mount component by friction is arranged in a cutout in the mount component, the result is a very slight space requirement therefor.
  • Claim 35 results in a mount for holding an optical element having at least one mount component as claimed in one of claims 19 to 34.
  • In accordance with claim 36, an alternative solution can consist in a mount having at least two mount components, one of the two mount components having a resilient element that is connected at a contact point to the other mount component and exerts a contact pressure on the latter, an element which dissipates the vibrational energy of the mount by friction being formed by the contact point and the two mount components.
  • A lithography objective having at least one optical element according to the invention is specified in claim 37.
  • A lithography objective having at least one mount according to the invention is specified in claim 38.
  • Claim 39 relates to a projection exposure machine having an illumination system and having a lithography objective as claimed in claim 37 or 38.
  • Claim 40 yields a method for producing semiconductor components by using such a projection exposure machine.
  • A number of exemplary embodiments of the invention are illustrated below in principle with the aid of the drawing, in which:
  • FIG. 1 shows a first embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction, on a mount component of an optical element;
  • FIG. 2 shows a second embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction, in the case of which the additional mass is arranged on the outside of the optical element;
  • FIG. 3 shows an alternative to the embodiment in accordance with FIG. 2;
  • FIG. 4 shows a further alternative to the embodiment in accordance with FIG. 2;
  • FIG. 5 shows a further alternative to the embodiment in accordance with FIG. 2;
  • FIG. 6 shows a further alternative to the embodiment in accordance with FIG. 2;
  • FIG. 7 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 8 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 9 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 10 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 11 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 12 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 13 shows a further embodiment of the inventive element which dissipates the vibrational energy of the optical element by friction;
  • FIG. 14 shows a further embodiment of the inventive element which dissipates vibrational energy of the optical element by friction, in the case of which the additional mass is the mount component coupled to the optical element via at least one resilient element;
  • FIG. 15 shows a projection exposure machine having a lithography objective;
  • FIG. 16 shows a graph for illustrating the inventive damping of vibrations in the case of weak damping; and
  • FIG. 17 shows a graph for illustrating the inventive damping of vibrations in the case of strong damping.
  • FIG. 1 shows an optical element 1, which is designed in this case as a lens and is held in a mount 2. The mount 2 has two mount components, specifically an inner ring 3, on which the optical element 1 is fitted, and an outer ring 5 connected to the inner ring 3 via an actuating element 4. So as to be able to vary the position of the optical element 1, the inner ring 3 can be moved within certain limits via the actuating element 4, which can be, for example, of the type described in detail in U.S. Pat. No. 6,191,898 B1, and can also be denoted as a manipulator. The inner ring 3 is, moreover, connected to the outer ring 5 via a spring element 6 whose function is likewise described in detail in U.S. Pat. No. 6,191,898 B1, for which reason it is not intended to go into more detail there on the ring. The disclosure content of U.S. Pat. No. 6,191,898 B1 is incorporated in full hereby as the subject matter of the present application. Instead of being designed as a lens, the optical element 1 could also be designed as a mirror or as a prism.
  • In order to damp vibrations occurring at the optical element 1 and/or the mount 2, provision is made of an element which dissipates the vibrational energy of the optical element by friction and which can also be denoted as a vibration-damping device or vibration damper and is assigned in the present case to the inner ring 3. The element 7 described below in detail and which dissipates the vibrational energy of the optical element 1 by friction has an additional mass 8 that can also be denoted as an inertial mass or as a seismic mass.
  • The element 7 which dissipates the vibrational energy of the optical element 1 by friction should be tuned as accurately as possible to a natural frequency f0 or to a natural frequency of the spectrum of natural frequencies of the optical element 1 or of the mount component 3 or 5, because the best damping of vibrations can be achieved in this way. Calculation methods known per se can be used to design and dimension the element 7. A large roll in the design of the element 7 which dissipates the vibrational energy of the optical element 1 is played in this case by the mass of said dissipating element, which is determined to a not inconsiderable extent by the additional mass 8. It holds here that the element 7 must be the more accurately tuned the less the mass of the same. Given a very high mass of the element 7, which reacts less sensitively to the exact adaptation to the desired natural frequency f0 of the optical element 1, it is therefore possible to perform a relatively coarse tuning, or a relatively large range of natural frequencies or a relatively large range of the spectrum of natural frequencies are covered. Thus, it should always be ensured that the mass, determined by the additional mass 8, if appropriate, of the element 7 which dissipates the vibrational energy of the optical element 1 by friction is sufficiently large, for example 1/10- 1/100 of the mass of the optical element 1, or of the mount 2 or of the mount component 3 or 5, to be damped.
  • However, it is not always possible to fit a large mass on the optical element 1, and for this reason it is necessary in the case of relatively low masses to perform a more accurate tuning of the element 7 which dissipates the vibrational energy of the optical element 1. A low mass of the element 7 has the advantage of a slight additional volume and a negligible additional load in the event of shock etc. The natural frequency f0 of the element 7 is calculated as follows:
  • f 0 = 1 2 π k m ,
  • k being the stiffness and m the mass of the element 7.
  • In the embodiment in accordance with FIG. 1, the additional mass 8 is arranged in a container 10 filled with a pourable medium 9 and which is located in a cutout 11 of the inner ring 3. Sand, a granular material or a powder, for example, can be used as the pourable medium 9 in which the mass 8 is arranged or which forms a part of the mass 8. For example, the mass 8 can be a weight consisting of a metal such as steel, for example and which is loosely embedded in the pourable medium 9. Together with the mass 8, the pourable medium 9 converts the vibrational energy of the optical element 1 and/or of the mount 2 into heat by friction. Of course, it is also conceivable to mix different types of the pourable medium 9. The friction takes place in this case both inside the pourable medium 9 and at the interfaces between the pourable medium 9 and the mass 8.
  • The damping effect of the element 7 which dissipates the vibrational energy of the optical element by friction can be influenced and optimized by varying the density and/or the grain size or, given different types of the pourable medium 9, by the differences in the densities and/or the grain sizes. The mass 8 is preferably fitted at those points of the mount 2 at which the amplitude of the vibration is highest, that is to say at an antinode, and this leads to optimum damping of vibrations. Instead of the pourable medium 9, it is also possible, if appropriate, to use very viscous liquids, pastes, fats, waxes, elastomers and, in particular, fibers or fibrous media, or mixtures of these components. When use is made of a fibrous medium, the additional mass 8 can be arranged thereon or be surrounded thereby. The pourable medium 9 or the other materials named above can be used to tune the element 7 which dissipates the vibrations of the optical element 1 to a multiplicity of natural frequencies of the optical element 1. Consequently, the above-named problems with regard to tuning the element 7 to the natural frequency of the optical element 1 are circumvented or at least eased. This results from the many different natural frequencies of the individual elements of the pourable medium 9.
  • FIG. 2 shows an embodiment of the element 7 which dissipates the vibrational energy of the optical element by friction, and in this case the mass 8 is likewise fitted in a container 10 filled with the pourable medium 9. However, the container 10 with the mass 8 is arranged on the outside of the optical element 1 and in this way damps the vibrations thereof. The connection of the container 10 to the optical element 1 can be performed, for example, by bonding. It is also to be preferred in this case that the mass 8 is fitted at those points of the optical element 1 at which the amplitude of the vibration is highest, that is to say at an antinode. Consequently, as illustrated in FIG. 2, it is also possible for a number of elements 7 which dissipate the vibrational energy of the optical element by friction to be provided around the periphery of the optical element 1.
  • In the case of the embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 by friction in accordance with FIG. 3, said element is once again fitted on the outside of the optical element 1, the mass 8 being formed by the pourable medium 9. The pourable medium 9 can take the form of individual particles consisting, for example, of lead or another material of a relatively high density, and be enclosed in the container 10. The container 10 is formed in this case by a foil sealed by means of laser welding, for example.
  • In the case of the embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 by friction in accordance with FIG. 4, two additional masses 8 are arranged at the ends of a wire cable 12, the element 7 being formed as a result. In order to convert the vibrations into heat by internal, dry friction, the wire cable 12 has a number of individual wires 13 that rub against one another in the event of vibrations and thus, together with the mass 8, absorb the vibrational energy of the optical element 1. An element 7 of such a design could also be fitted on one of the two mount components 3 or 5 of the mount 2, so that what is involved is an element 7 which dissipates the vibrational energy of the two mount components 3 or 5 of the mount 2 by friction. The same also holds for the embodiments of FIGS. 5 and 6 described below.
  • The element 7 in accordance with FIG. 5 has a tube 14 consisting of a flexible material, for example of an elastomer, and which is filled with the pourable medium 9. The tube 14 filled with the pourable medium 9 is already sufficient as the mass which dissipates the vibrations of the optical element 1, and can thus form the element 7. In addition, however, it is also possible here for there to be fitted at the two ends of the tube 14 additional masses 8 that are indicated by dashed lines.
  • A further embodiment of the element 7 is illustrated in FIG. 6. Here, a stiff rod 15 is provided at both its ends with respective masses 8 and fitted on the optical element 1 via an articulated joint 16, preferably consisting of an elastomer, and a connecting element 17. The elastomer in this case takes over a similar function to the pourable medium 9 described above.
  • A further embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction is illustrated in section in FIG. 7. Here, a ring 28 constituting the additional mass 8 rests on the inner ring 3 of the mount 2, and a flat component 29 is arranged between the two rings, for example a fibrous material such as, for example, an annular paper or a felt or an elastomer. Here, the additional mass 8 designed as a ring 28, and the flat component 29 together form the element 7, which dissipates the vibrational energy of the mount 2 or of the optical element 1 (not illustrated in this figure) by friction. The friction takes place in this case at the two interfaces between the flat component 29 and each of the two rings 3 and 28, as well as inside the flat component 29. Particularly when there is a fibrous material, the flat component 9 can also be used to tune the element 7 which dissipates the vibrations of the optical element 1 to the natural frequency of the optical element 1, since the element 7 designed in this way has a number of natural frequencies. Moreover, the ring 28 could also consist of a number of individual ring elements of which then one corresponds at least approximately to the natural frequency or one of the natural frequencies of the optical element 1, such that it is possible, if appropriate, to avoid a complicated design of the element 7.
  • In the case of the embodiment of the element 7 in accordance with FIG. 8 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction, the inner ring 3 of the mount 2 has a recess 30 in which there is arranged the flat component 29 designed in the form of a fleece-like medium such as, for example, a felt, a piece of paper, a fleece or a fiber mat. The flat component 29 is once again preferably of annular design. Located on the flat component 29 is the ring 28, which can consist, for example, of metal. Here, the ring 28 in turn forms the additional, inertial mass 8, and the flat component 29 forms the medium that ensures the friction which dissipates the vibrations. As a result of the recess 30, the element 7 which dissipates vibrations can be accommodated inside the mount 2 in a particularly space saving fashion.
  • FIG. 9 illustrates a further embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction. Here, the ring 28, consisting of metal, for example, is connected to the optical element 1. This connection of the ring 28 to the optical element 1 can be implemented directly or via an additional component such as, for example, the flat component 29 or, as in the present case, an adhesive 31. This embodiment of the element 7 requires only a very small space, and can also be retrofitted on virtually any optical element 1.
  • With reference to the damping of vibrations, it has proven to be very well suited to use an adhesive 31, in particular a soft elastic adhesive such as, for example, a polyurethane elastomer adhesive, for fitting the ring 28, which forms the additional mass 8, on the optical element 1. The elastomeric properties of the adhesive 31 contribute substantially to the damping properties thereof. The same also holds for fitting the additional mass 8 on the mount component 2, as described above repeatedly, to which end it is thus likewise possible to use the adhesive 31. Upon the occurrence of vibrations, a dissipation of energy comes about inside the adhesive 31, and this can be explained by the internal friction inside the adhesive 31 as well as by viscous effects and effects of entropy elasticity. In this case, the thickness of the adhesive 31 substantially determines the dimensions of the spring constant.
  • Here, the adhesive 31 can either be provided unfilled, that is to say as a pure adhesive 31, or in a fashion filled with powder, fibers and/or another suitable material as filler, in order to increase the damping effect. Moreover, it is conceivable to introduce the adhesive 31 both over the entire area and in a punctiform fashion.
  • The adhesive 31 is also to be taken into account with reference to the above-described adaptation of the element 7 which dissipates the vibrational energy of the optical element 1 by friction, since both the material used and, in particular, the thickness of the adhesive 31, influence the natural frequency of the element 7, and thus the adaptation thereof to the natural frequency of the optical element 1. Particularly when the tolerances with regard to the thickness and to the material properties of the adhesive 31 which determine the stiffness of said optical element are relatively large, the mass of the element 7 should be as large as possible, especially as compared with the mass of the adhesive 31, in order to prevent excessively sharp deviations from the natural frequency of the optical element 1. The type of loading of the adhesive 31 also plays a role in this context, since a different adhesive 31 must be used in the case of a tensile load than in that of a sheer or compressive load.
  • The stiffness k of the adhesive 31 can be calculated using the following formula:
  • k = G · A a · t
  • where k=stiffness, G=sheer modulus, A=total adhesively bonded area, t=thickness of the adhesive 31, and α=sheer correction factor (specifies the ratio of total cross-sectional area to the cross-sectional area active for sheer). It holds for rectangular cross sections that:
  • α = 12 + 11 · υ 10 ( 1 + υ )
  • with ν being the transverse contraction coefficient of the adhesive 31.
  • By contrast with the design illustrated in FIG. 9, there is no need for the ring 28 fitted on the inner ring 3 of the mount 2 to have a constant cross section, nor need the latter be closed, either. As illustrated in FIG. 10, individual additional masses 8 can also be adhesively bonded on the optical element 1, their number being a function of the required damping effect of the element 7. These individual additional masses 8 can also be fitted on the inner ring 3 of the mount 2 in a similar way.
  • FIGS. 11, 12 and 13 show various ways of fitting the additional mass 8, which is represented in each case by the ring 28, on the optical element 1.
  • As explained briefly above, the adhesive 31 is located in FIG. 11 both between the upper surface and the lateral surface of the optical element 1 and the correspondingly designed ring 28, whereas the adhesive 31 is applied only to the cylindrical lateral surface in the case of the design in accordance with FIG. 12, and only to the upper surface of the optical element 1 in the case of FIG. 13, in order to connect the ring 28 to the optical element 1.
  • FIG. 14 shows a further embodiment of the element 7 which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction. Here, the mount 2 is coupled to the optical element 1 by two resilient elements 18 a and 18 b so as to produce between the two resilient elements 18 a and 18 b a locally restricted friction or contact point 19 at which the resilient elements 18 a and 18 b exert contact pressures on one another. In this way, the vibrational energy of the optical element 1 is converted into heat by dry friction, and thus the vibrations of the optical element 1 are damped, in the event of moving the two mount components 3 and 5 relative to one another or in the event of a relative movement between the optical element 1 and the resilient elements 18 a and 18 b or the mount 2. Here, the mount 2 or, in general, one of the mount components 3 or 5, forms the mass 8, and the element 7 is formed by the contact point 19 and the two mount components 3 and 5. It is advantageous that only very slight forces occur which influence the position of the optical element 1 only insubstantially. The resilient element 18 b can, for example, be a support for the optical element 1, as is, for example, known from U.S. Pat. No. 6,392,825 or U.S. Pat. No. 4,733,945.
  • A lithography objective 20 is illustrated extremely schematically in FIG. 15. It has a housing 21 in which a number of optical elements 1 are arranged and held, preferably by means of appropriate mounts 2. The lithography objective 20 is part of a projection exposure machine 22 that serves the purpose of producing semiconductor components and has an illumination system 23, fitted on the top side of the lithography objective 20, with a light source 24 that transmits a beam path 25 through the lithography objective 20 with the aid of which a reticle 26 is imaged in a manner known per se onto a wafer 27 located below the lithography objective 1. This projection exposure machine 22 can therefore be used to carry out a method for producing semiconductor components that is known per se and therefore not described in more detail below. Here, it is preferred for at least one of the optical elements 1 and/or at least one of the mounts 10 to be provided with an element 7, described above, which dissipates the vibrational energy of the optical element 1 or of the mount components 3 or 5 of the mount 2 by friction.
  • FIG. 16 shows a graph in which various amplitude profiles are plotted against frequency f. Here, the line denoted by “32” shows the vibration amplitude A of the optical element 1 in the region of its natural frequency f0 without the inventive element 7. It is to be seen here that there is a very high vibration amplitude in the case of the natural frequency f0 of the optical element 1 or of the mount 2 on which the optical element 7 can be fitted. However, an element 7 that is designed for this natural frequency f0 but which is very weakly damped, results in the curve denoted by “33” of the vibration amplitude of the optical element 1 or of the mount 2, measured at the optical element 1 or at the mount 2, in the case of which because of the design there is no longer any or at least only a very little vibration amplitude at the natural frequency f0, but there are two secondary maxima, which can also be very disturbing. The run of the vibration amplitude of the element 7 is illustrated by the reference “34”. The absolute value of the vibration amplitude of the element 7 does not have to be in conformity with the vibration amplitude of the optical element 1.
  • In principle, the same curves are illustrated in FIG. 17, there now being a strongly damped element 7 which dissipates the vibrations of the optical element 1. It is to be seen that the curve denoted by “32” is identical to that of FIG. 16, whereas in the case of a stronger damping by the element 7 there is still a relatively large amplitude at the natural frequency f0, although the two secondary maxima are substantially lower. It becomes plain from this that concerning the damping of the optical element 1 with a broadband stimulation a better effect is achieved given relatively strong damping of the element 7. As in FIG. 16, the curve 34 in FIG. 17 also shows the amplitude of the element 7.

Claims (40)

1. An optical element having at least one additional element fitted thereon which dissipates the vibrational energy of the optical element by friction.
2. The optical element as claimed in claim 1, in which the element which dissipates the vibrational energy of the optical element by friction has an additional mass.
3. The optical element as claimed in claim 2, in which the additional mass is connected to the optical element by means of an adhesive.
4. The optical element as claimed in claim 2, in which the additional mass is arranged on a fibrous medium.
5. The optical element as claimed in claim 2, in which the additional mass is surrounded by a fibrous medium.
6. The optical element as claimed in one of claims 2 to 5, in which the additional mass is designed as a ring connected to the optical element.
7. The optical element as claimed in one of claims 1 to 6, in which the element which dissipates the vibrational energy of the optical element by friction is fitted on one or more of those points of the optical element at which the amplitude of the vibration is highest.
8. The optical element as claimed in one of claims 1 to 7, in which the element which dissipates the vibrational energy of the optical element by friction is arranged on the outside of the optical element.
9. The optical element as claimed in one of claims 1 to 8, in which the element which dissipates the vibrational energy of the optical element by friction has no mechanical contact with an element other than the optical element.
10. The optical element as claimed in one of claims 1 to 9, in which the element which dissipates the vibrational energy of the optical element by friction has a container filled with a pourable medium.
11. The optical element as claimed in claims 2 and 10, in which the mass is arranged in the container filled with the pourable medium.
12. The optical element as claimed in claim 10, in which the pourable medium is sand.
13. The optical element as claimed in claim 10, in which the pourable medium is a granular material.
14. The optical element as claimed in claim 10, in which the pourable medium is a powder.
15. The optical element as claimed in one of claims 1 to 14, in which the element which dissipates the vibrational energy of the optical element by friction has a wire cable having a number of individual wires and on the ends of which respective masses are arranged.
16. The optical element as claimed in one of claims 1 to 15, in which the element which dissipates the vibrational energy of the optical element by friction is designed as a tube filled with a pourable medium.
17. The optical element as claimed in claim 16, in which the tube consists of a flexible material.
18. The optical element as claimed in one of claims 1 to 17, in which the element which dissipates the vibrational energy of the optical element by friction is tuned to the natural frequency of the optical element.
19. A mount component for an optical element having at least one additional element fitted thereon which dissipates the vibrational energy of the mount component by friction.
20. The mount component as claimed in claim 19, in which the element which dissipates the vibrational energy of the mount component by friction has an additional mass.
21. The mount component as claimed in claim 20, in which the additional mass is connected to the mount component by means of an adhesive.
22. The mount component as claimed in claim 20, in which the additional mass is arranged on a fibrous medium.
23. The mount component as claimed in claim 20, in which the additional mass is surrounded by a fibrous medium.
24. The mount component as claimed in one of claims 19 to 23, in which the additional mass is designed as a ring connected to the mount component.
25. The mount component as claimed in claim 22, in which the ring is arranged in an annular cutout in the mount component.
26. The mount component as claimed in one of claims 19 to 25, in which the element which dissipates the vibrational energy of the mount component by friction is fitted on one or more of those points of the mount component at which the amplitude of the vibration is highest.
27. The mount component as claimed in one of claims 19 to 26, in which the element which dissipates the vibrational energy of the mount component by friction is connected exclusively to the mount component to be damped and has no contact with another element.
28. The mount component as claimed in one of claims 19 to 27, in which the element which dissipates the vibrational energy of the mount component by friction is arranged in a cutout in the mount component.
29. The mount component as claimed in one of claims 19 to 28, in which the element which dissipates the vibrational energy of the mount component by friction has a container filled with a pourable medium.
30. The mount component as claimed in claims 19 and 29, in which the mass is arranged in the container filled with the pourable medium.
31. The mount component as claimed in claim 29, in which the pourable medium is sand.
32. The mount component as claimed in claim 29, in which the pourable medium is a granular material.
33. The mount component as claimed in claim 29, in which the pourable medium is a powder.
34. The mount component as claimed in one of claims 19 to 33, in which the element which dissipates the vibrational energy of the mount component by friction is tuned to the natural frequency of the mount component.
35. A mount for holding an optical element having at least one mount component as claimed in one of claims 19 to 34.
36. The mount having at least two mount components, one of the two mount components having a resilient element that is connected at a contact point to the other mount component and exerts a contact pressure on the latter, an element which dissipates the vibrational energy of the mount by friction being formed by the contact point and the two mount components.
37. A lithography objective having at least one optical element as claimed in one of claims 1 to 19.
38. A lithography objective having at least one mount as claimed in one of claims 35 or 36.
39. A projection exposure machine having an illumination system and having a lithography objective as claimed in claim 37 or 38 for producing semiconductor components.
40. A method for producing semiconductor components by using a projection exposure machine as claimed in claim 39.
US11/994,482 2005-07-14 2006-07-13 Optical Element Abandoned US20080278828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/994,482 US20080278828A1 (en) 2005-07-14 2006-07-13 Optical Element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US69931105P 2005-07-14 2005-07-14
PCT/EP2006/006874 WO2007006577A1 (en) 2005-07-14 2006-07-13 Optical element
US11/994,482 US20080278828A1 (en) 2005-07-14 2006-07-13 Optical Element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/006874 A-371-Of-International WO2007006577A1 (en) 2005-07-14 2006-07-13 Optical element

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/431,378 Continuation US8705185B2 (en) 2005-07-14 2012-03-27 Optical element

Publications (1)

Publication Number Publication Date
US20080278828A1 true US20080278828A1 (en) 2008-11-13

Family

ID=36936881

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/994,482 Abandoned US20080278828A1 (en) 2005-07-14 2006-07-13 Optical Element
US13/431,378 Active US8705185B2 (en) 2005-07-14 2012-03-27 Optical element

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/431,378 Active US8705185B2 (en) 2005-07-14 2012-03-27 Optical element

Country Status (5)

Country Link
US (2) US20080278828A1 (en)
JP (2) JP2009501350A (en)
KR (1) KR101428817B1 (en)
TW (1) TWI451148B (en)
WO (1) WO2007006577A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080259469A1 (en) * 2007-04-23 2008-10-23 Nikon Corporation Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
US20090147356A1 (en) * 2007-12-06 2009-06-11 Olympus Corporation Microscope system
US20090180091A1 (en) * 2007-11-15 2009-07-16 Asml Holding N.V. Lithographic Apparatus, Projection System And Damper for Use in a Lithographic Apparatus and Device Manufacturing Method
WO2010083965A1 (en) * 2009-01-20 2010-07-29 Carl Zeiss Smt Ag Damping device
WO2012110406A1 (en) 2011-02-17 2012-08-23 Carl Zeiss Smt Gmbh Optical mount and euv exposure apparatus
DE102011004299A1 (en) 2011-02-17 2012-08-23 Carl Zeiss Smt Gmbh Arrangement for supporting mirror in extreme UV projection exposure system for use during manufacture of micro-structured component for e.g. LCD, has damping element attenuating pin arranged between actuator and mirror in lateral direction
DE102011082994A1 (en) 2011-09-20 2013-03-21 Carl Zeiss Smt Gmbh Arrangement for mounting an optical element such as extreme ultraviolet (EUV) projection exposure apparatus has damping element which brings about damping of natural vibration form of pin in a lateral direction
WO2014031284A1 (en) * 2012-08-21 2014-02-27 Visual Intelligence, LP Infrastructure mapping system and method
DE102013212367A1 (en) * 2013-06-27 2014-08-14 Carl Zeiss Smt Gmbh Optical module i.e. facet mirror, for optical imaging device for microlithography, has damping device attenuating second relative movement between damping elements of damping device with respect to attenuation of first movement
US8896695B2 (en) 2002-08-28 2014-11-25 Visual Intelligence Lp Retinal concave array compound camera system
US8994822B2 (en) 2002-08-28 2015-03-31 Visual Intelligence Lp Infrastructure mapping system and method
US20160027973A1 (en) * 2013-03-28 2016-01-28 Toshiba Hokuto Electronics Corporation Light-emitting device, production method therefor, and device using light-emitting device
US9389298B2 (en) 2002-09-20 2016-07-12 Visual Intelligence Lp Self-calibrated, remote imaging and data processing system
DE102015223621A1 (en) 2015-11-30 2016-10-27 Carl Zeiss Smt Gmbh Damping arrangement in a system, in particular in a microlithographic projection exposure apparatus
US9897926B2 (en) 2014-01-31 2018-02-20 Asml Netherlands B.V. Stage positioning system and lithographic apparatus
US20180341081A1 (en) * 2015-04-21 2018-11-29 Qioptiq Limited Low stress mounting configuration for optical component
US20200381208A1 (en) * 2019-05-29 2020-12-03 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, objective lens module, electrode device, and method of inspecting a specimen
USRE49105E1 (en) 2002-09-20 2022-06-14 Vi Technologies, Llc Self-calibrated, remote imaging and data processing system
DE102022202116A1 (en) 2022-03-02 2023-02-23 Carl Zeiss Smt Gmbh SYSTEM AND PROJECTION EXPOSURE EQUIPMENT

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8044373B2 (en) * 2007-06-14 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL2005701A (en) * 2009-12-22 2011-06-23 Asml Netherlands Bv Active mount, lithographic apparatus comprising such active mount and method for tuning such active mount.
DE102011007917A1 (en) 2011-04-21 2012-10-25 Asml Netherlands B.V. Arrangement for the actuation of an element in a microlithographic projection exposure apparatus
DE102011080318A1 (en) 2011-08-03 2013-02-07 Carl Zeiss Smt Gmbh Damping arrangement for the dissipation of vibration energy of an element in a system, in particular in a microlithographic projection exposure apparatus
JP2014033074A (en) * 2012-08-03 2014-02-20 Nuflare Technology Inc Electric charge particle beam lithography device and pattern inspection device
DE102012220925A1 (en) 2012-11-15 2013-11-14 Carl Zeiss Smt Gmbh Damping arrangement for dissipating vibrational energy of e.g. mirror, in microlithographic projection exposure apparatus, has flux guide producing magnetic circuit between two components by gap
US9891445B1 (en) 2014-09-05 2018-02-13 Apple Inc. Passive damping solution to optical image stabilization for voice coil motors
US9869881B2 (en) * 2014-09-05 2018-01-16 Apple Inc. Passive damping solution to optical image stabilization for voice control motors
JP5848470B2 (en) * 2015-02-05 2016-01-27 カール・ツァイス・エスエムティー・ゲーエムベーハー Parasitic load minimizing optical element module
DE102015210484A1 (en) 2015-06-09 2016-06-23 Carl Zeiss Smt Gmbh Damping arrangement for damping oscillatory movements of an element in a system
DE102015223980A1 (en) 2015-12-02 2016-10-20 Carl Zeiss Smt Gmbh Optical assembly
DE102015224743A1 (en) 2015-12-09 2016-10-20 Carl Zeiss Smt Gmbh Projection exposure apparatus for semiconductor lithography with a pseudoelastic damping element
DE102016201316A1 (en) 2016-01-29 2017-01-12 Carl Zeiss Smt Gmbh Projection exposure apparatus for semiconductor lithography with a damping element containing a solid porous structure
DE102016202127A1 (en) 2016-02-12 2017-01-19 Carl Zeiss Smt Gmbh Damping arrangement and projection exposure system
JP7313808B2 (en) * 2018-10-04 2023-07-25 キヤノン株式会社 Lens device, imaging device and camera system
DE102020206591A1 (en) * 2020-05-27 2021-12-02 Carl Zeiss Smt Gmbh Vibration absorber and method for designing a vibration absorber and projection exposure system for semiconductor lithography
CN114370474B (en) * 2021-12-31 2023-12-05 中国舰船研究设计中心 Variable-frequency phonon crystal vibration suppression device for structure

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805015A (en) * 1971-02-25 1974-04-16 Inst Angewandte Physik Laser apparatus supported by an optical bench
US4028732A (en) * 1973-03-02 1977-06-07 Lucien Salter Apparatus and method for display of images
US4336868A (en) * 1978-05-10 1982-06-29 Textron, Inc. Composite fibrous tube energy absorber
US4416349A (en) * 1981-09-30 1983-11-22 The Boeing Company Viscoelastically damped reinforced skin structures
US4615590A (en) * 1984-07-17 1986-10-07 Schwem Instruments Optically stabilized camera lens system
US4630668A (en) * 1984-05-23 1986-12-23 Stoping Aktiengesellschaft Integral casting apparatus for use in continuous casting of molten metal
US4657361A (en) * 1985-03-14 1987-04-14 United Technologies Corporation Mirror mounting arrangement
US4733945A (en) * 1986-01-15 1988-03-29 The Perkin-Elmer Corporation Precision lens mounting
US5159484A (en) * 1991-02-12 1992-10-27 Fuji Xerox Co., Ltd. Reflection mirror support structure of raster scanner
US5182738A (en) * 1989-11-10 1993-01-26 Canon Kabushiki Kaisha Objective lens actuator using a balance weight therein
US5327733A (en) * 1993-03-08 1994-07-12 University Of Cincinnati Substantially vibration-free shroud and mounting system for sample cooling and low temperature spectroscopy
US5798863A (en) * 1994-05-10 1998-08-25 Fuji Photo Optical Co., Ltd. Image stabilized optical system
US5942871A (en) * 1994-04-01 1999-08-24 Nikon Corporation Double flexure support for stage drive coil
US6191898B1 (en) * 1999-01-15 2001-02-20 Carl-Zeiss-Stiftung Optical imaging device, particularly an objective, with at least one optical element
US6392825B1 (en) * 1999-02-03 2002-05-21 Carl-Zeiss-Stiftung Assembly comprising an optical element and a mount
US6498211B2 (en) * 2000-08-31 2002-12-24 Dow Corning Toray Silicone Co., Ltd. Vibration damping silicone composition
US6700715B2 (en) * 2000-12-15 2004-03-02 Carl Zeiss Smt Ag Oscillation damping system
US6750947B1 (en) * 1999-06-16 2004-06-15 Canon Kabushiki Kaisha Driving device and exposure apparatus
US20040128679A1 (en) * 2002-10-02 2004-07-01 Tatsuki Wade Optical head device
US7012270B2 (en) * 2002-03-15 2006-03-14 Tsinghua University Photolithography system having multiple adjustable light sources
US7145270B2 (en) * 2003-04-25 2006-12-05 Canon Kabushiki Kaisha Driving unit, exposure apparatus using the same, and device fabrication method

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4815669B1 (en) * 1969-10-24 1973-05-16
JPS58111454U (en) * 1982-01-26 1983-07-29 三菱重工業株式会社 Structural material for vibration damping
JPS58186729U (en) * 1982-06-03 1983-12-12 古河電気工業株式会社 Vibration isolator for electric wires
DE8417760U1 (en) 1984-06-12 1985-06-27 Audi AG, 8070 Ingolstadt Vibration absorber that can be attached to a unit
US4706788A (en) * 1985-04-15 1987-11-17 Melles Griot, Irvine Company Vibration damped apparatus
US4807840A (en) * 1985-10-18 1989-02-28 Baker George S Tuned mass damping system and method
JP2677586B2 (en) * 1988-02-25 1997-11-17 株式会社東芝 Positioning device
JPH0257717A (en) * 1988-08-23 1990-02-27 Canon Inc Direct-acting stage guide bar damping mechanism
JPH02265034A (en) * 1989-04-04 1990-10-29 Mitsubishi Electric Corp Optical information recording and reproducing device
JP2855907B2 (en) * 1991-09-03 1999-02-10 松下電器産業株式会社 Multi-axis damper for vibration isolation and recording / reproducing device
JP3403748B2 (en) * 1992-02-27 2003-05-06 株式会社東芝 Positioning device and table device using the same
JP3672330B2 (en) * 1993-04-05 2005-07-20 トヨタ自動車株式会社 Damping structure
JPH08170990A (en) * 1994-12-19 1996-07-02 Nikon Corp Stage apparatus
US5919013A (en) * 1995-11-21 1999-07-06 Micro Optics Design Corporation Opthalmic lens generating apparatus having vibration dampening structure
JP3445105B2 (en) * 1997-07-25 2003-09-08 キヤノン株式会社 Optical element moving device
JPH11233425A (en) * 1998-02-09 1999-08-27 Nikon Corp Aligner
JPH11233426A (en) 1998-02-10 1999-08-27 Canon Inc Gas purity control method and gas purity control system, and semiconductor aligner and manufacture of device using the gas purity control system
JPH11233039A (en) * 1998-02-12 1999-08-27 Sony Corp Multiple dynamic vibration absorber for cathode ray tube and color selecting electrode using it
JP2000046106A (en) * 1998-07-31 2000-02-18 Matsushita Electric Works Ltd Damping panel
KR20000026066A (en) * 1998-10-17 2000-05-06 윤종용 Rotation reflective mirror and printing device using thereof
JP3726207B2 (en) * 1999-07-14 2005-12-14 株式会社日立製作所 Active vibration isolator
JP4663072B2 (en) * 2000-07-31 2011-03-30 Sriスポーツ株式会社 Tennis racket with a dynamic damper
US6567212B1 (en) * 2000-08-16 2003-05-20 Leica Microsystems Heidelberg Gmbh Vibration damping device for microscopes and microscope with a vibration damping device
DE10041993C1 (en) 2000-08-26 2002-05-23 Draebing Kg Wegu Shock absorber comprises absorption mass, elastomer spring, base and bolt, and also has stop buffer formed by elastomer body
JP3863358B2 (en) * 2000-08-29 2006-12-27 株式会社日立製作所 Railway vehicle
JP2002160584A (en) * 2000-11-27 2002-06-04 Honda Motor Co Ltd Damper of mirror part member
JP4050049B2 (en) * 2001-02-05 2008-02-20 カルソニックコンプレッサー株式会社 Vane rotary type gas compressor
DE10134387A1 (en) 2001-07-14 2003-01-23 Zeiss Carl Optical system with several optical elements
JP3937784B2 (en) * 2001-10-01 2007-06-27 松下電器産業株式会社 Soundproof structure
US20030168248A1 (en) * 2002-01-14 2003-09-11 Savoy Marc R. Protective sleeving with support ribs
JP3975435B2 (en) * 2002-01-18 2007-09-12 日立金属株式会社 Cast-in member with excellent damping capacity
JP2003214486A (en) * 2002-01-22 2003-07-30 Canon Inc Vibration isolating device and pressure control device
KR20040097352A (en) * 2002-04-15 2004-11-17 코닌클리케 필립스 일렉트로닉스 엔.브이. Read/write head for optical disk drive and optical disk drive comprising such a read/write head
JP3963805B2 (en) * 2002-09-12 2007-08-22 シーケーディ株式会社 Fine movement device
JP2005098325A (en) * 2003-09-22 2005-04-14 Sendai Nikon:Kk Damping device and exposure device
JP2005191150A (en) * 2003-12-24 2005-07-14 Nikon Corp Stage device and exposure apparatus, and method of manufacturing device

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3805015A (en) * 1971-02-25 1974-04-16 Inst Angewandte Physik Laser apparatus supported by an optical bench
US4028732A (en) * 1973-03-02 1977-06-07 Lucien Salter Apparatus and method for display of images
US4336868A (en) * 1978-05-10 1982-06-29 Textron, Inc. Composite fibrous tube energy absorber
US4416349A (en) * 1981-09-30 1983-11-22 The Boeing Company Viscoelastically damped reinforced skin structures
US4630668A (en) * 1984-05-23 1986-12-23 Stoping Aktiengesellschaft Integral casting apparatus for use in continuous casting of molten metal
US4615590A (en) * 1984-07-17 1986-10-07 Schwem Instruments Optically stabilized camera lens system
US4657361A (en) * 1985-03-14 1987-04-14 United Technologies Corporation Mirror mounting arrangement
US4733945A (en) * 1986-01-15 1988-03-29 The Perkin-Elmer Corporation Precision lens mounting
US5182738A (en) * 1989-11-10 1993-01-26 Canon Kabushiki Kaisha Objective lens actuator using a balance weight therein
US5159484A (en) * 1991-02-12 1992-10-27 Fuji Xerox Co., Ltd. Reflection mirror support structure of raster scanner
US5327733A (en) * 1993-03-08 1994-07-12 University Of Cincinnati Substantially vibration-free shroud and mounting system for sample cooling and low temperature spectroscopy
US5942871A (en) * 1994-04-01 1999-08-24 Nikon Corporation Double flexure support for stage drive coil
US5798863A (en) * 1994-05-10 1998-08-25 Fuji Photo Optical Co., Ltd. Image stabilized optical system
US6191898B1 (en) * 1999-01-15 2001-02-20 Carl-Zeiss-Stiftung Optical imaging device, particularly an objective, with at least one optical element
US6392825B1 (en) * 1999-02-03 2002-05-21 Carl-Zeiss-Stiftung Assembly comprising an optical element and a mount
US6750947B1 (en) * 1999-06-16 2004-06-15 Canon Kabushiki Kaisha Driving device and exposure apparatus
US6498211B2 (en) * 2000-08-31 2002-12-24 Dow Corning Toray Silicone Co., Ltd. Vibration damping silicone composition
US6700715B2 (en) * 2000-12-15 2004-03-02 Carl Zeiss Smt Ag Oscillation damping system
US7012270B2 (en) * 2002-03-15 2006-03-14 Tsinghua University Photolithography system having multiple adjustable light sources
US20040128679A1 (en) * 2002-10-02 2004-07-01 Tatsuki Wade Optical head device
US7225453B2 (en) * 2002-10-02 2007-05-29 Nidec Sankyo Corporation Optical head device for absorbing vibrations in an objective lens
US7145270B2 (en) * 2003-04-25 2006-12-05 Canon Kabushiki Kaisha Driving unit, exposure apparatus using the same, and device fabrication method

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8896695B2 (en) 2002-08-28 2014-11-25 Visual Intelligence Lp Retinal concave array compound camera system
US8994822B2 (en) 2002-08-28 2015-03-31 Visual Intelligence Lp Infrastructure mapping system and method
US9797980B2 (en) 2002-09-20 2017-10-24 Visual Intelligence Lp Self-calibrated, remote imaging and data processing system
USRE49105E1 (en) 2002-09-20 2022-06-14 Vi Technologies, Llc Self-calibrated, remote imaging and data processing system
US9389298B2 (en) 2002-09-20 2016-07-12 Visual Intelligence Lp Self-calibrated, remote imaging and data processing system
US20110235014A1 (en) * 2007-04-23 2011-09-29 Youichi Arai Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
US20080259469A1 (en) * 2007-04-23 2008-10-23 Nikon Corporation Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
US8363340B2 (en) * 2007-04-23 2013-01-29 Nikon Corporation Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
US8498067B2 (en) * 2007-04-23 2013-07-30 Nikon Corporation Optical element holding apparatus, barrel, exposure apparatus, and manufacturing method for device
US8625070B2 (en) 2007-11-15 2014-01-07 Asml Holding N.V. Lithographic apparatus, projection system and damper for use in a lithographic apparatus and device manufacturing method
US20090180091A1 (en) * 2007-11-15 2009-07-16 Asml Holding N.V. Lithographic Apparatus, Projection System And Damper for Use in a Lithographic Apparatus and Device Manufacturing Method
US20090147356A1 (en) * 2007-12-06 2009-06-11 Olympus Corporation Microscope system
US7903328B2 (en) 2007-12-06 2011-03-08 Olympus Corporation Microscope system having vibration dampening mechanism
US9513452B2 (en) 2009-01-20 2016-12-06 Carl Zeiss Smt Gmbh Damping device
WO2010083965A1 (en) * 2009-01-20 2010-07-29 Carl Zeiss Smt Ag Damping device
WO2012110406A1 (en) 2011-02-17 2012-08-23 Carl Zeiss Smt Gmbh Optical mount and euv exposure apparatus
US9410662B2 (en) 2011-02-17 2016-08-09 Carl Zeiss Smt Gmbh Arrangement for mounting an optical element, in particular in an EUV projection exposure apparatus
DE102011004299A1 (en) 2011-02-17 2012-08-23 Carl Zeiss Smt Gmbh Arrangement for supporting mirror in extreme UV projection exposure system for use during manufacture of micro-structured component for e.g. LCD, has damping element attenuating pin arranged between actuator and mirror in lateral direction
DE102011082994A1 (en) 2011-09-20 2013-03-21 Carl Zeiss Smt Gmbh Arrangement for mounting an optical element such as extreme ultraviolet (EUV) projection exposure apparatus has damping element which brings about damping of natural vibration form of pin in a lateral direction
WO2014031284A1 (en) * 2012-08-21 2014-02-27 Visual Intelligence, LP Infrastructure mapping system and method
US11784290B2 (en) 2013-03-28 2023-10-10 Nichia Corporation Light-emitting device with improved flexural resistance and electrical connection between layers, production method therefor, and device using light-emitting device
US9837587B2 (en) * 2013-03-28 2017-12-05 Toshiba Hokuto Electronics Corporation Light-emitting device with improved flexural resistance and electrical connection between layers, production method therefor, and device using light-emitting device
US20160027973A1 (en) * 2013-03-28 2016-01-28 Toshiba Hokuto Electronics Corporation Light-emitting device, production method therefor, and device using light-emitting device
DE102013212367A1 (en) * 2013-06-27 2014-08-14 Carl Zeiss Smt Gmbh Optical module i.e. facet mirror, for optical imaging device for microlithography, has damping device attenuating second relative movement between damping elements of damping device with respect to attenuation of first movement
US9897926B2 (en) 2014-01-31 2018-02-20 Asml Netherlands B.V. Stage positioning system and lithographic apparatus
US10481361B2 (en) * 2015-04-21 2019-11-19 Qioptiq Limited Low stress mounting configuration for optical component
US20180341081A1 (en) * 2015-04-21 2018-11-29 Qioptiq Limited Low stress mounting configuration for optical component
DE102015223621A1 (en) 2015-11-30 2016-10-27 Carl Zeiss Smt Gmbh Damping arrangement in a system, in particular in a microlithographic projection exposure apparatus
US20200381208A1 (en) * 2019-05-29 2020-12-03 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, objective lens module, electrode device, and method of inspecting a specimen
US10991544B2 (en) * 2019-05-29 2021-04-27 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, objective lens module, electrode device, and method of inspecting a specimen
DE102022202116A1 (en) 2022-03-02 2023-02-23 Carl Zeiss Smt Gmbh SYSTEM AND PROJECTION EXPOSURE EQUIPMENT

Also Published As

Publication number Publication date
US8705185B2 (en) 2014-04-22
KR20080032178A (en) 2008-04-14
US20120194795A1 (en) 2012-08-02
TWI451148B (en) 2014-09-01
KR101428817B1 (en) 2014-08-08
JP2009501350A (en) 2009-01-15
JP6055252B2 (en) 2016-12-27
JP2013050722A (en) 2013-03-14
WO2007006577A1 (en) 2007-01-18
TW200712589A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
US8705185B2 (en) Optical element
US20090020666A1 (en) Stand arrangement and stand for a medico-optical instrument
US20060225980A1 (en) Tunable adjustable multi-element hybrid particle damper
US6991077B2 (en) Vibration damping device
JP2009243539A (en) Vibration damping device
JP2007510865A (en) Test platform for vibration sensitive equipment
Du et al. Effects of isolators internal resonances on force transmissibility and radiated noise
US20070221460A1 (en) Vibration damping device for internal combustion engine
JP2006207723A (en) Vibration eliminating mount
JP2010031953A (en) Vibration damping-vibration control device by compression coil spring
WO2014160976A1 (en) Hybrid vibration isolation systems for metrology platforms
JP6871645B1 (en) Anti-vibration device for mounting precision equipment
KR100941809B1 (en) Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus
KR100952784B1 (en) Apparatus for Testing Dynamic Vibration Damping Type Active Vibration-Proof Apparatus
JP2010255717A (en) Vibration insulating device
JP2005351366A (en) Plate spring type dynamic vibration damper
JP4716222B2 (en) Anti-vibration mount
JP2007064353A (en) Swing damping device
JPH04297656A (en) Vibration-proof device of floor
JP2009127653A (en) Mount device
KR20230159951A (en) Dual mass type dynamic damper
JP2021131157A (en) Anti-vibration device for precision apparatus
JPH0623498B2 (en) Floor seismic isolation device
KR20200123677A (en) A dynamic absorber
KR20040016306A (en) Dynamic damper

Legal Events

Date Code Title Description
AS Assignment

Owner name: CARL ZEISS SMT AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RAU, JOHANNES;SCHOEPPACH, ARMIN;GEUPPERT, BERNHARD;REEL/FRAME:020546/0303;SIGNING DATES FROM 20080121 TO 20080218

AS Assignment

Owner name: CARL ZEISS SMT GMBH, GERMANY

Free format text: A MODIFYING CONVERSION;ASSIGNOR:CARL ZEISS SMT AG;REEL/FRAME:025763/0367

Effective date: 20101014

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION