JP2006207723A - Vibration eliminating mount - Google Patents

Vibration eliminating mount Download PDF

Info

Publication number
JP2006207723A
JP2006207723A JP2005021752A JP2005021752A JP2006207723A JP 2006207723 A JP2006207723 A JP 2006207723A JP 2005021752 A JP2005021752 A JP 2005021752A JP 2005021752 A JP2005021752 A JP 2005021752A JP 2006207723 A JP2006207723 A JP 2006207723A
Authority
JP
Japan
Prior art keywords
coil spring
vibration
damping material
vibration isolation
isolation mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005021752A
Other languages
Japanese (ja)
Inventor
Satoshi Watakari
佐登志 渡苅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabeya Iron and Tool Works Ltd
Nabeya Co Ltd
Original Assignee
Nabeya Iron and Tool Works Ltd
Nabeya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabeya Iron and Tool Works Ltd, Nabeya Co Ltd filed Critical Nabeya Iron and Tool Works Ltd
Priority to JP2005021752A priority Critical patent/JP2006207723A/en
Publication of JP2006207723A publication Critical patent/JP2006207723A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration eliminating mount using a flexible vibration control material for maintaining vibration eliminating and controlling performance. <P>SOLUTION: The vibration eliminating mount comprises a combination of a pair of flanges 1a, 1b, a coil spring 2 and the vibration control material 3. The pair of flanges 1a, 1b serve as an installation base for the vibration eliminating mount 11 and a supporting base for a structure. The coil spring 2 is an elastic support for the structure whose vibration is eliminated. The vibration control material 3 has certain-thickness plate mounting seats 4 at both ends, both mounting seats 4, 4 being joined to each other with a viscoelastic band portion 5. To the coil spring 2, a function is imparted which supports the weight of the structure whose vibration is eliminated. To the vibration control material 3 combined with the coil spring 2, a function is imparted which solely converts vibration energy propagating from one end to the other end of the coil spring to heat energy with only bending and stretching motion following the flexion of the coil spring 2 to decrease the vibration energy. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、本発明は、テーブルに搭載された精密な機器類への外来の振動の影響を阻止する除振マウントに関する。   The present invention relates to a vibration isolation mount that prevents the influence of extraneous vibrations on precision devices mounted on a table.

床を通して伝達されてくる外来の振動を精密な機器類に伝えたくない場合には、機器類の設置に除振機構(除振マウント)が用いられる。コンピュータや通信機器に用いる電子デバイスの回路パターンを形成するIC露光機や回路パターンを読み取る3次元測定器のように1μm以下の精度が問題となる機器類では自励振動や外来の振動の影響を阻止する必要性が高く、床から機器類に伝えられる振動を減衰する除振機構の性能が機械の性能を左右する重要な要素となる。   When it is not desired to transmit the extraneous vibration transmitted through the floor to precise equipment, a vibration isolation mechanism (vibration isolation mount) is used to install the equipment. In devices where accuracy of 1 μm or less is a problem, such as IC exposure machines that form circuit patterns for electronic devices used in computers and communication equipment, and three-dimensional measuring instruments that read circuit patterns, the effects of self-excited vibrations and external vibrations There is a high need for prevention, and the performance of the vibration isolation mechanism that attenuates vibration transmitted from the floor to the equipment is an important factor that affects the performance of the machine.

一般に除振機構には、従来より空気ばねを組み込んだ構造のものが用いられてきた。特に、固有振動数が1〜2kHzのダイアフラム形空気ばねを用いることによって、除振機構の機能は、空気ばねと、空気ばねに支持される機器類の質量との系によって実現される。   Generally, a vibration isolation mechanism having a structure incorporating an air spring has been used. In particular, by using a diaphragm type air spring having a natural frequency of 1 to 2 kHz, the function of the vibration isolation mechanism is realized by a system of the air spring and the mass of devices supported by the air spring.

空気ばねを用いることによる利点は、補助タンクを付設し、空気ばねと、タンクとの間にオリフィスを入れることで、空気の粘性抵抗による減衰を得ることができ、固有振動数における共振ピークを低く抑えることが可能となり、外乱による支持荷重の揺れを速やかに吸収することができる点である。   The advantage of using an air spring is that an auxiliary tank is attached and an orifice is placed between the air spring and the tank, so that attenuation due to the viscous resistance of air can be obtained, and the resonance peak at the natural frequency is lowered. This makes it possible to suppress the vibration of the support load due to disturbance.

一方、高価な空気ばねを用いずに垂直方向と、水平方向との除振機能を得る除振機構として、コイルばねと、制振材との組み合わせによる装置(除振マウント)が知られている。この装置は、例えば図13に示すように、コイルばね31と、制振材32として円柱状の粘弾性体(エポキシ樹脂)との組み合わせを用い、制振材32をコイルばね31の空間内に配置し、制振材32の両端と、コイルばね31の両端とにフランジ33を取り付け、コイルばね31と粘弾性体32との複合体に作用する荷重方向の弾性中心を制振材側に包蔵させて両者を一体にネジで緊締したものである。   On the other hand, as an anti-vibration mechanism that obtains an anti-vibration function in the vertical and horizontal directions without using an expensive air spring, an apparatus (vibration mount) using a combination of a coil spring and a damping material is known. . For example, as shown in FIG. 13, this device uses a combination of a coil spring 31 and a columnar viscoelastic body (epoxy resin) as the damping material 32, and the damping material 32 is placed in the space of the coil spring 31. The flange 33 is attached to both ends of the damping material 32 and both ends of the coil spring 31, and the elastic center in the load direction acting on the composite of the coil spring 31 and the viscoelastic body 32 is included in the damping material side. The two are tightened together with screws.

この装置を機械器具の除振支持に用いれば、水平方向(横方向)と垂直方向(縦方向)に加えられる外力に対して大きな制振効果を得ることができる(特許文献1参照)。   If this apparatus is used for vibration isolation support of a machine instrument, a great vibration damping effect can be obtained with respect to an external force applied in the horizontal direction (lateral direction) and the vertical direction (longitudinal direction) (see Patent Document 1).

ところで、図12に示す除振マウントの構造によるときには、除振マウントに加わる荷重はコイルばねによって支えられるが、制振材からの抵抗を無視することができない。コイルばねの撓みのストロークが大きければ大きいほど、制振材の抵抗が大きくなって、実質的に弾性体となり、その荷重は、コイルばねと粘弾性体とによって支えられる結果となり、制振材に対する重力の作用が変化して制振効果が変動する。このため、特に軽荷重を支える除振マウントの場合には、荷重を分担する比率が高くなって制振性能が大きく変化するという問題が生じるのである。   By the way, in the structure of the vibration isolation mount shown in FIG. 12, the load applied to the vibration isolation mount is supported by the coil spring, but the resistance from the vibration damping material cannot be ignored. The greater the deflection stroke of the coil spring, the greater the resistance of the damping material, resulting in a substantially elastic body, and the load is supported by the coil spring and the viscoelastic body. The action of gravity changes and the damping effect changes. For this reason, particularly in the case of a vibration isolation mount that supports a light load, there arises a problem that the ratio of sharing the load increases and the vibration damping performance greatly changes.

特開昭63−30628号公報JP 63-30628 A

解決しようとする問題点は、コイルばねと、制振材との組み合せによる除振マウントの制振材に円柱状の粘弾性体を用い、しかも粘弾性体をコイルばねの空間内に設置して両者を組み合わせた構造では、所定の支持荷重を超えてコイルばねの撓みが大きくなるほど、粘弾性体が負担する支持荷重の割合が大きくなって除振マウントに期待される制振性能が大きく低下してしまうという点である。   The problem to be solved is that a cylindrical viscoelastic body is used for the vibration damping material of the vibration isolation mount by combining the coil spring and the vibration damping material, and the viscoelastic body is installed in the space of the coil spring. In the combined structure, the greater the deflection of the coil spring beyond the predetermined support load, the greater the proportion of the support load borne by the viscoelastic body and the greater the vibration damping performance expected of the vibration isolation mount. It is a point.

本発明は、特に軽荷重用に好適な除振マウントを提供するもので、制振材に柔軟な粘弾性体を用い、制振材には、専ら構造体の振動に伴ってコイルばねの一端から他端に伝播する振動エネルギーを熱エネルギーに変換して振動エネルギーを減衰させる機能を受け持たせてコイルばねの圧縮方向には粘弾性体の抵抗の影響を殆ど受けないようにして除振マウントの除振・制振性能を維持することを最も主要な特徴とする。   The present invention provides an anti-vibration mount that is particularly suitable for light loads, and uses a flexible viscoelastic body as a damping material, and the damping material has one end of a coil spring mainly due to vibration of the structure. The vibration isolation mount has the function of damping the vibration energy by converting the vibration energy propagating from one end to the other into thermal energy so that it is hardly affected by the resistance of the viscoelastic body in the compression direction of the coil spring. The main feature is maintaining the vibration isolation and vibration control performance.

本発明の除振マウントによれば、除振マウントに作用する荷重が変化してコイルばねの撓みに大きなストローク変位が生じたとしても、除振マウントは制振材の抵抗の影響を受けずに初期の制振性能を発揮することができる。また、制振材には、帯状、らせん状、あるいは中空の蛇腹状などの粘弾性体を用いることができ、除振マウントの除振・制振性能は、制振材に用いた帯状の粘弾性体の幅、厚さ、硬さを変えることにより、また、らせん状の粘弾性体を用いたときにはらせん断面の形状、断面積、らせんの長さ、粘弾性特性をかえることにより、さらには蛇腹状の中空の粘弾性体を用いたときには、蛇腹の形状、膜厚、襞の数、粘弾性特性をかえることによって容易に調整できる。   According to the vibration isolation mount of the present invention, even if the load acting on the vibration isolation mount changes and a large stroke displacement occurs in the deflection of the coil spring, the vibration isolation mount is not affected by the resistance of the vibration damping material. The initial damping performance can be demonstrated. The vibration damping material may be a viscoelastic body such as a band, a spiral, or a hollow bellows, and the vibration isolation / vibration performance of the vibration isolation mount is the same as the band-like viscosity used for the vibration damper. By changing the width, thickness, and hardness of the elastic body, and by changing the shape of the shear surface, the cross-sectional area, the length of the helix, and the viscoelastic properties when using a helical viscoelastic body, When a bellows-like hollow viscoelastic body is used, it can be easily adjusted by changing the bellows shape, film thickness, number of wrinkles, and viscoelastic properties.

コイルばねの撓み変形のストロークの大小に左右されずに制振材の制振・除振性能を発揮させるという目的を、柔軟な制振材を用いてその抵抗の影響をコイルばねに作用させることがないようにコイルばねに制振材を組み合わせることで実現した。   The purpose of exerting the damping / vibration performance of the damping material regardless of the magnitude of the deflection deformation stroke of the coil spring is to use the flexible damping material to affect the resistance of the coil spring. This is achieved by combining a damping material with a coil spring so that there is no problem.

以下に本発明の実施例を図によって説明する。図1(a)、(b)において、本発明による除振マウント9は、対のフランジ1a,1bと、コイルばね2と、制振材3との組み合せからなるものである。対のフランジ1a,1bは、コイルばね2の上下に配置されたものであり、上段のフランジ1aは構造体の支持台となり、下段のフランジ1bは、除振マウントの床或いは卓への設置台となるものである。   Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B, a vibration isolation mount 9 according to the present invention is a combination of a pair of flanges 1a and 1b, a coil spring 2, and a damping material 3. The pair of flanges 1a and 1b are arranged above and below the coil spring 2, the upper flange 1a is a support for the structure, and the lower flange 1b is a base for mounting the vibration isolation mount on the floor or table. It will be.

コイルばね2は、除振すべき構造体の弾性支持体であり、両フランジ1a,1bの対向面間に設置される。制振材3は、コイルばね2に作用する荷重、振動に対して支持体としての抵抗にはならず、専ら構造体の振動に伴ってコイルばねの一端から他端に伝播する振動エネルギーを熱エネルギーに変換して振動エネルギーを減衰させる機能を受け持たせるものである。本発明において、粘弾性体には、粘弾性体には、応力の大きさのみならず、その増加速度も歪の増加速度に大きな影響を与える物質( 科学大辞典 P.1059 丸善株式会社発行 )を用いている。このような性質を有する材料として例えばネオプレンゴムなどがある。本発明で用いる粘弾性体は、板状、膜状の形態で組み込まれる。この実施例では、図2(a)、(b)に示すように、両端に取付座4,4を有する帯状の部分5を用いている。   The coil spring 2 is an elastic support body of a structure to be isolated, and is installed between the opposing surfaces of both flanges 1a and 1b. The damping material 3 does not become a resistance as a support against the load and vibration acting on the coil spring 2, but exclusively absorbs vibration energy propagating from one end of the coil spring to the other end with the vibration of the structure. It has a function to convert vibration energy and attenuate vibration energy. In the present invention, the viscoelastic body includes a substance that not only affects the magnitude of stress but also the increase speed of the viscoelastic body (published by the University of Science P.1059 Maruzen Co., Ltd.) Is used. An example of a material having such properties is neoprene rubber. The viscoelastic body used in the present invention is incorporated in the form of a plate or film. In this embodiment, as shown in FIGS. 2 (a) and 2 (b), a band-shaped portion 5 having mounting seats 4 and 4 at both ends is used.

取付座4には、ばね穴6を有している。ばね穴6は、コイルばね2の上端部分又は下端部分を受け入れる開口である。図1において、制振材3の帯状の部分5をC型に弯曲させて両端の取付座4,4を上下平行の姿勢に保持し、ばね穴6内にコイルばね2の上下端を嵌めむとともに、制振材3の取付座4,4をそれぞれフランジ1a,1bの対向面に取り付け、両フランジ1a,1b間をコイルばね2の高さよりやや短いチェーン8で連結し、コイルばね2をやや圧縮した状態で両フランジ1a,1bにコイルばね2と制振材3とを一体に組み付ける。これによって、制振材3は、コイルばね2の上端と下端とにつながれたことになる。   The mounting seat 4 has a spring hole 6. The spring hole 6 is an opening that receives the upper end portion or the lower end portion of the coil spring 2. In FIG. 1, the belt-like portion 5 of the damping material 3 is bent into a C shape to hold the mounting seats 4 and 4 at both ends in a vertically parallel posture, and the upper and lower ends of the coil spring 2 are fitted in the spring holes 6. The mounting seats 4 and 4 of the damping material 3 are attached to the opposing surfaces of the flanges 1a and 1b, respectively, the two flanges 1a and 1b are connected by a chain 8 slightly shorter than the height of the coil spring 2, and the coil spring 2 is slightly compressed. In this state, the coil spring 2 and the damping material 3 are assembled together on the flanges 1a and 1b. Thereby, the damping material 3 is connected to the upper end and the lower end of the coil spring 2.

図3(a)、(b)は、構造体7の四隅を実施例1による除振マウント9によって、除振支持させた状態を示す図である。一方のフランジ1aを設置台として床(又は卓)上に置き、他方のフランジ1bを支持台としてその上に構造体7を支える。図3の例は、底面が長方形の構造体7への設置例である。実施例においては、それぞれ制振材3が各辺のコーナーに外側に向く姿勢で除振マウント9の対角線上の位置に配置している。   FIGS. 3A and 3B are views showing a state where the four corners of the structure 7 are supported by vibration isolation by the vibration isolation mount 9 according to the first embodiment. One flange 1a is placed on the floor (or table) as an installation stand, and the structure 7 is supported thereon using the other flange 1b as a support stand. The example of FIG. 3 is an example of installation on the structure 7 having a rectangular bottom surface. In the embodiment, the vibration damping material 3 is arranged at a position on the diagonal line of the vibration isolation mount 9 in such a posture that the vibration damping material 3 faces outward at the corners of each side.

また、除振マウント9を構造体の対角線上の位置に配置することで、水平方向の除振特性のバランスが確保される。また制振材3を各辺のコーナーに向けることで、制振材3の帯状の部分の幅、厚みを変えるときにその調整が容易となる。構造体7の重量は除振マウント9に加わり、コイルばね2は、重量の支持体として受けた重量の大きさに応じて撓み、その高さを減じるが、除振材3は、コイルばねの伸縮変位に対し、屈伸することによってその変化に追従するだけで、重量の支持には大きく関わらない。   Further, by arranging the vibration isolation mount 9 at a position on the diagonal line of the structure, a balance of the vibration isolation characteristics in the horizontal direction is ensured. Further, by directing the damping material 3 to the corners on each side, the adjustment becomes easy when changing the width and thickness of the band-like portion of the damping material 3. The weight of the structure 7 is applied to the vibration isolation mount 9, and the coil spring 2 bends according to the size of the weight received as a weight support and reduces its height. It only follows the change by bending and stretching with respect to the expansion / contraction displacement, and it does not greatly affect the weight support.

以上図1〜3においては、除振マウント9の両フランジ1a、1b間の片側に張出させて帯状の制振材3でつないだ例を示したが、必ずしも制振材の張出し箇所は、1個所に限るものではなく、図4に示すように両フランジ1a,1bの両側2個所に張出した帯状の制振材3a、3bにてコイルばね2の上下端につなぐこともできる。   In the above FIGS. 1-3, although the example which made it project on one side between both flanges 1a and 1b of the vibration isolation mount 9 and was connected with the strip | belt-shaped damping material 3 was shown, It is not restricted to one place, but can be connected to the upper and lower ends of the coil spring 2 by strip-shaped damping materials 3a and 3b projecting at two places on both sides of both flanges 1a and 1b as shown in FIG.

この場合にフランジの両側に張出す帯状の制振材3a、3bには必ずしも2本の粘弾性体を用いる必要はなく、環状の1本の粘弾性体を用い、その一部をフランジ1a、1bに取り付けることによってフランジ1a、1bの両側に制振材を張出させることができる。この場合でも除振マウントに組みつけられた状態では、各制振材3a、3bの帯状の部分は、C型に屈曲してその両端がコイルばねの上端と下端とにつながれることになる点は、図1の例と全く同じである。制振材を2以上張出させることは自由である。   In this case, it is not always necessary to use two viscoelastic bodies for the strip-shaped damping materials 3a and 3b projecting on both sides of the flange, and one annular viscoelastic body is used, and a part of the viscoelastic body is used as the flange 1a, By attaching to 1b, the damping material can be extended on both sides of the flanges 1a and 1b. Even in this case, the band-shaped portions of the vibration damping materials 3a and 3b are bent in a C shape and both ends thereof are connected to the upper end and the lower end of the coil spring when assembled in the vibration isolation mount. Is exactly the same as the example of FIG. It is free to project two or more damping materials.

実施例2の除振マウント11を図5に示す。この実施例は、制振材12にらせん状の粘弾性体を用いたものである。この実施例では、図5(b)に示すように粘弾性体の円筒13の一部をらせん状に切り込むことによって、円筒13の上端から下方に向けた一定の範囲にらせん状の部分14を有する粘弾性体を用いている。   A vibration isolation mount 11 of Example 2 is shown in FIG. In this embodiment, a helical viscoelastic body is used for the damping material 12. In this embodiment, as shown in FIG. 5B, a part of the cylinder 13 of the viscoelastic body is cut into a spiral shape, whereby the spiral portion 14 is formed in a certain range from the upper end of the cylinder 13 downward. The viscoelastic body which has is used.

図5に示すようにらせん状の部分14を有する粘弾性体の円筒13をコイルばね15の外周に配置して内外同心上に組み合わせ、その組み合せをフランジを兼ねた上キャップ16と下キャップ17間に介在させ、制振材12の上下端を上キャップ16および下キャップ17にそれぞれ取り付け、コイルばね15をやや圧縮させた上、下キャップ16,17間を例えばボールチェーン18などで連結し、らせん状の部分14のピッチ間に隙間を確保して上キャップ16と下キャップ間17に、コイルばね15と制振材12との組み合せを保持させる。   As shown in FIG. 5, a cylinder 13 of a viscoelastic body having a spiral portion 14 is arranged on the outer periphery of a coil spring 15 and combined concentrically inside and outside, and the combination is between an upper cap 16 and a lower cap 17 that also serve as a flange. The upper and lower ends of the damping material 12 are attached to the upper cap 16 and the lower cap 17, respectively, the coil spring 15 is slightly compressed, and the lower caps 16 and 17 are connected with, for example, a ball chain 18 to form a spiral. A gap is secured between the pitches of the shaped portions 14, and the combination of the coil spring 15 and the damping material 12 is held between the upper cap 16 and the lower cap 17.

制振材12にらせん状の粘弾性体を用いたときでも、構造体の支持体として機能させずに、専ら構造体の振動に伴ってコイルばねの一端から他端に伝播する振動エネルギーを熱エネルギーに変換して振動エネルギーを減衰させるためには、柔軟性を有し、コイルばねの上端と下端とにつながれていることが必要である。   Even when a helical viscoelastic body is used for the damping material 12, the vibration energy propagating from one end of the coil spring to the other end is mainly generated by the vibration of the structure without functioning as a support for the structure. In order to attenuate vibration energy by converting it to energy, it is necessary to have flexibility and to be connected to the upper end and the lower end of the coil spring.

この実施例においては、制振材はコイルばねの伸縮変位に追従して屈伸し、らせんのピッチが変化してコイルばねに作用する荷重、振動に対して抵抗とならず、専ら構造体の振動に伴って生じるコイルばねの振動エネルギーを減衰させる点は帯状の粘弾性体を用いた実施例1の場合と同じである。なお、図5においては、円筒の一部にらせん状の部分を形成した粘弾性体を用いた例を示しているが、全長に渡ってらせん状の部分を有する粘弾性体を用いてもよい。らせん状の部分の長さによって除振マウントの制振性能・除振性能が決定される。   In this embodiment, the damping material bends and stretches following the expansion and contraction of the coil spring, and the pitch of the helix changes and does not resist the load and vibration acting on the coil spring. The point of attenuating the vibration energy of the coil spring that accompanies this is the same as in the case of Example 1 using a band-like viscoelastic body. In addition, in FIG. 5, although the example using the viscoelastic body which formed the helical part in a part of cylinder is shown, you may use the viscoelastic body which has a helical part over the full length. . The vibration control performance and vibration isolation performance of the vibration isolation mount are determined by the length of the spiral portion.

実施例3の除振マウント21を図6に示す。この実施例は、制振材に蛇腹状の粘弾性体を用いた例である。図6(a)は、制振材23aの蛇腹の中空内にコイルばね2を組み込んで内外同心状に組み合せた例、図6(b)は、制振材23bの外周にコイルばね2を配置して内外同心状に組み合せた例である。いずれもコイルばね2と、制振材23a、23bの蛇腹の筒の上下端をコイルばねとともに上下のフランジ1a、1bにそれぞれ固定され、さらに上下の1a、1b間をコイルばね2の高さよりやや短いチェーン8で連結し、コイルばね2をやや圧縮した状態で両フランジ1a,1bにコイルばねと制振材とを一体に組み付けている点は前実施例と同じである。この実施例において、コイルばねの外径、制振材23a、23bの材質、蛇腹の膜厚が同じならば、制振材23aは制振材23bより当然柔軟性は高い。その硬さをどの程度に設定するかは、除振マウントの設計上定められるべきであり、コイルばねの圧縮方向には、抵抗の影響を与えないような硬さで蛇腹を伸縮変位させることによって所期の除振・制振性能が得られる。
(実験例)
以下に本発明の実験例を示す。実験は、帯状の制振材とコイルばねとを組み合わせた実施例1の除振マウント9にて図7に示すように除振台の四隅4箇所を支え、その上に重錘を兼ねた試料20を置き、除振マウント9に掛かる荷重を調整し、振動センサー21を用いて試料20に作用する水平方向及び鉛直方向の振動特性を測定した。また比較例として帯状の制振材を用いず、コイルばねのみの除振マウントを用いて同じ測定を行った。
A vibration isolation mount 21 of Example 3 is shown in FIG. This embodiment is an example in which a bellows-like viscoelastic body is used as a damping material. FIG. 6A shows an example in which the coil spring 2 is incorporated into the bellows hollow of the damping material 23a and combined concentrically inside and outside, and FIG. 6B shows the coil spring 2 arranged on the outer periphery of the damping material 23b. In this example, the inner and outer concentric shapes are combined. In both cases, the upper and lower ends of the coil spring 2 and the bellows cylinders of the damping members 23a and 23b are fixed to the upper and lower flanges 1a and 1b together with the coil spring, respectively, and the distance between the upper and lower 1a and 1b is slightly higher than the height of the coil spring 2. It is the same as the previous embodiment in that the coil spring and the damping material are integrally assembled to both flanges 1a and 1b with the short chain 8 connected and the coil spring 2 slightly compressed. In this embodiment, if the outer diameter of the coil spring, the material of the damping materials 23a and 23b, and the thickness of the bellows are the same, the damping material 23a is naturally more flexible than the damping material 23b. The degree to which the hardness is set should be determined by the design of the vibration isolation mount, and in the compression direction of the coil spring, the bellows is expanded and displaced with a hardness that does not affect the resistance. The desired vibration isolation and vibration control performance can be obtained.
(Experimental example)
Experimental examples of the present invention are shown below. In the experiment, a sample which supported four corners of a vibration isolation table as shown in FIG. 7 by a vibration isolation mount 9 of Example 1 in which a band-shaped vibration damping material and a coil spring were combined and also served as a weight on it. 20, the load applied to the vibration isolation mount 9 was adjusted, and the vibration characteristics in the horizontal direction and the vertical direction acting on the sample 20 were measured using the vibration sensor 21. Further, as a comparative example, the same measurement was performed using a vibration isolation mount with only a coil spring without using a band-shaped damping material.

図8は、比較例1(除振マウントの高さ:18mm、荷重3.36kg)の振動特性を示すグラフ、図9は、実験例1(荷重3.36kg)の振動特性を示すグラフである。いずれも(a)は、水平方向の振動特性、(b)は垂直方向の振動特性である。図8と図9とを比較して明らかなとおり、実験例1によれば、比較例1に比べて、水平方向、垂直方向のいずれにおいても、共振点の振動倍率が抑えられ、特に水平方向についてサージングが著しく改善されていることが分かる。なお、比較例1には、帯状の制振材を用いないため、荷重3.36kgのもとで除振マウントの高さは18mmであったが、実験例1では、C型に屈曲させて組み合せた制振材がばね性能を有するため、比較例1と同じ荷重の元でも少し高くなる。   FIG. 8 is a graph showing the vibration characteristics of Comparative Example 1 (vibration mount height: 18 mm, load 3.36 kg), and FIG. 9 is a graph showing the vibration characteristics of Experimental Example 1 (load 3.36 kg). . In both cases, (a) shows the vibration characteristics in the horizontal direction, and (b) shows the vibration characteristics in the vertical direction. As is clear from comparison between FIG. 8 and FIG. 9, according to Experimental Example 1, compared with Comparative Example 1, the vibration magnification at the resonance point can be suppressed both in the horizontal direction and in the vertical direction. It can be seen that surging is significantly improved. In Comparative Example 1, since a band-shaped damping material was not used, the height of the vibration isolation mount was 18 mm under a load of 3.36 kg. However, in Experimental Example 1, it was bent into a C shape. Since the combined damping material has spring performance, it becomes slightly higher even under the same load as in Comparative Example 1.

次に除振マウントに加わる荷重が3.36kgのままで制振材の厚さを厚く変えていったとき、すなわち、制振材のばね性を高めたときの振動特性についての実験例2を図10に示し、実験例3を図11に示す。実験例2は相対的に制振材の厚さが薄い場合、実験例3は相対的に制振材の厚さが厚い場合である。ちなみに、その違いを除振マウントの高さの違いで言えば、実験例2の除振マウントの高さは21mm、実験例3の除振マウントの高さは23mmであった。図10、図11の各図を比較して明らかなように制振材の厚さを厚くするほど、水平方向、垂直方向のいずれの方向についても振動倍率は低下し、サージング特性が改善され、また、共振点が高周波側に変化してゆく傾向が見られた。また波形については、制振材の厚さが厚いほど、低周波から高周波にむけてなだらかになる傾向も見られた。   Next, when the load applied to the vibration isolation mount is still 3.36 kg and the thickness of the vibration damping material is changed thickly, that is, Experiment Example 2 regarding the vibration characteristics when the spring property of the vibration damping material is increased. 10 and Experimental Example 3 is shown in FIG. Experimental Example 2 is a case where the thickness of the damping material is relatively thin, and Experimental Example 3 is a case where the thickness of the damping material is relatively thick. Incidentally, in terms of the difference in the height of the vibration isolation mount, the height of the vibration isolation mount in Experimental Example 2 was 21 mm, and the height of the vibration isolation mount in Experimental Example 3 was 23 mm. As is clear from comparison between FIGS. 10 and 11, as the thickness of the damping material is increased, the vibration magnification is reduced in both the horizontal direction and the vertical direction, and the surging characteristics are improved. There was also a tendency for the resonance point to change to the high frequency side. As for the waveform, there was a tendency that the thicker the damping material, the gentler the frequency from low to high.

(実験の考察)
本発明は、コイルばね2に、専ら除振、制振すべき構造体の重量を支持する機能を受け持たせ、コイルばね2に組み合わされた制振材3に、コイルばね2の撓みに追従して屈伸するのみで、専らコイルばねの一端から他端に伝播する振動エネルギーを熱エネルギーに変換して振動エネルギーを減衰させる機能を受け持たせるものである。
(Experimental considerations)
In the present invention, the coil spring 2 is exclusively given the function of supporting the weight of the structure to be damped and damped, and the damping material 3 combined with the coil spring 2 follows the bending of the coil spring 2. Therefore, the vibration energy propagating from one end of the coil spring to the other end is converted into heat energy only, and the function of damping the vibration energy is provided.

したがって、本発明によれば、構造体7の重量の殆どはコイルばね2が受けることになる。一方、制振材3には構造体7の荷重は殆ど作用しないので、構造体の重量が予測の範囲を超えて大きく、コイルばねの撓み変形が大きくても制振材3の抵抗を受けることが少なく、設計時に狙った所期の性能(共振周波数、共振倍率、特に共振倍率)を期待できる。   Therefore, according to the present invention, most of the weight of the structure 7 is received by the coil spring 2. On the other hand, since the load of the structural body 7 hardly acts on the vibration damping material 3, the weight of the structural body is larger than the predicted range, and the resistance of the vibration damping material 3 is received even if the coil spring is greatly deformed. The expected performance (resonance frequency, resonance magnification, especially resonance magnification) targeted at the time of design can be expected.

図12に除振メカニズムを示す。図12において、除振マウントにコイルばねのみを用いたときに、その鉛直方向の共振周波数f0は、近似的に式(1)であらわされる。
f0=5/√たわみ量(cm)・・・・(1)
また、コイルばねと、制振材との組み合わせにおける除振マウントの性能を表す振動伝達率(単位dB)は、除振マウントの上端をU、下端をDとして、式(2)のとおりである。
dB=20logUの振動/Dの振動・・・(2)
FIG. 12 shows the vibration isolation mechanism. In FIG. 12, when only the coil spring is used for the vibration isolation mount, the resonance frequency f0 in the vertical direction is approximately expressed by Expression (1).
f0 = 5 / √ Deflection (cm) (1)
Further, the vibration transmissibility (unit dB) representing the performance of the vibration isolation mount in the combination of the coil spring and the vibration damping material is expressed by the equation (2), where U is the upper end of the vibration isolation mount and D is the lower end. .
dB = 20 log U vibration / D vibration (2)

曲線Xは、コイルばねの共振周波数がf0のときのコイルばねの振動伝達特性を示している。コイルばねの減衰特性は、共振周波数f0で鋭く立ち上がり、以後、振動周波数Hzが増大するにしたがってサージングの波形を伴いながら増幅領域AZから減衰領域DZに変化して行く。曲線Xに示すようにコイルばねだけを用いた除振マウントでは、減衰領域の周波数特性にサージング波形が現れるだけでなく、共振倍率が高いという致命的な欠陥がある。   A curve X represents the vibration transfer characteristic of the coil spring when the resonance frequency of the coil spring is f0. The damping characteristic of the coil spring rises sharply at the resonance frequency f0, and thereafter changes from the amplification region AZ to the attenuation region DZ with a surging waveform as the vibration frequency Hz increases. As shown by the curve X, the vibration isolation mount using only the coil spring has a fatal defect that not only the surging waveform appears in the frequency characteristic of the attenuation region but also the resonance magnification is high.

曲線Yは、コイルばねに制振材を組み合せて望ましい除振性能に調整した除振マウントの特性を示している。図に示すようにコイルばねに制振材を組み合わせた除振マウントの減衰曲線Yは、コイルばねだけの除振マウントに比べると共振周波数f0′が増大するものの、サージング波形がなくなり、共振倍率が低下して優れた制振性能の振動伝達特性が得られる。   A curve Y indicates the characteristics of the vibration isolation mount that is adjusted to a desirable vibration isolation performance by combining a damping material with a coil spring. As shown in the figure, the damping curve Y of the vibration isolation mount in which the damping material is combined with the coil spring increases the resonance frequency f0 'as compared to the vibration isolation mount with only the coil spring, but the surging waveform disappears and the resonance magnification is increased. The vibration transmission characteristics with excellent vibration control performance can be obtained.

共振倍率に関しては、制振材の制振性を高めることで共振倍率をさらに低下させることは可能であるが、共振倍率が低すぎると、Δf=f0′−f0が増大する結果、振動周波数の減衰領域が浅くなり(減衰の絶対値が小さくなり)、制振性能が低下するという問題を生じる。   Regarding the resonance magnification, it is possible to further reduce the resonance magnification by improving the damping performance of the damping material. However, if the resonance magnification is too low, Δf = f0′−f0 increases, and as a result, the vibration frequency The damping region becomes shallow (the absolute value of the damping becomes small), resulting in a problem that the damping performance is lowered.

本発明は、制振材に板状の粘弾性体を用い、特に軽荷重の除振マウントに適用して図11の曲線Yの制振特性に近づけようとするものである。本発明において、制振材は、上下のフランジ間に取り付かれてはいるものの、上フランジに加えられる荷重の殆どはコイルばねによって支えられ、制振材は、構造体の荷重変化に影響されることが極めて少ないので、実験例も意図したとおりの除振性能を維持することができることを示している。   The present invention uses a plate-like viscoelastic body as a damping material, and is applied to a vibration isolating mount with a light load in particular to approximate the damping characteristic of the curve Y in FIG. In the present invention, although the damping material is attached between the upper and lower flanges, most of the load applied to the upper flange is supported by the coil spring, and the damping material is affected by the load change of the structure. Therefore, the experiment example shows that the vibration isolation performance as intended can be maintained.

なお、本発明において、除振マウントの制振特性は、制振材の制振性能によって調整できる。すなわち、制振材の制振性能は、制振材の帯状部分の幅、厚さ、硬さ(粘性)によって決定される。制振材の帯状部分の幅、厚さ、硬さ(粘性)を除振マウントで支えるべき構造体の重量や、加振の大きさにあわせて予め決定しておくことができるが、制振材の帯状部分の幅、厚さは現場施工時に調整することもできる。 In the present invention, the damping characteristics of the vibration damping mount can be adjusted by the damping performance of the damping material. That is, the damping performance of the damping material is determined by the width, thickness, and hardness (viscosity) of the band-like portion of the damping material. The width, thickness, and hardness (viscosity) of the band-like portion of the damping material can be determined in advance according to the weight of the structure to be supported by the vibration isolation mount and the magnitude of the vibration. The width and thickness of the strip-shaped portion of the material can be adjusted at the time of construction on site.

本発明によれば、コイルばねだけの除振マウントに比べて共振周波数が小さく、制振特性の減衰領域の範囲、大きさを殆ど低下させず、したがって制振性能を低下させずに除振、防振効果が得られ、特に比較的軽量の構造体、例えば重量の小さい精密機器類の除振、防振に用いて優れた効果が得られる。   According to the present invention, the resonance frequency is smaller than that of the vibration isolation mount with only the coil spring, and the range and size of the damping region of the vibration suppression characteristics are hardly reduced, and therefore vibration isolation without reducing the vibration damping performance. An anti-vibration effect can be obtained, and an excellent effect can be obtained particularly when used for vibration isolation and anti-vibration of a relatively lightweight structure, for example, a precision instrument having a small weight.

(a)は本発明による除振マウントの一部断面側面図、(b)は(a)のA−A線断面図である。(A) is a partial cross-sectional side view of the vibration isolation mount according to the present invention, and (b) is a cross-sectional view taken along line AA of (a). (a)は本発明の除振マウントに用いる制振材の平面図、(b)は(a)のB−B線断面図である。(A) is a top view of the damping material used for the vibration isolation mount of this invention, (b) is the BB sectional drawing of (a). (a)は本発明による除振マウントにて構造体を支持した例を示す側面図、(b)は構造体を支持する様子を構造体の底面側から見た図である。(A) is the side view which shows the example which supported the structure with the vibration isolating mount by this invention, (b) is the figure which looked at a mode that the structure was supported from the bottom face side of the structure. 実施例1の他の例を示す図である。6 is a diagram illustrating another example of the first embodiment. FIG. (a)は、実施例2の除振マウントの構造を示す図、(b)は実施例2の除振マウントの除振材に用いる円筒にらせん状の部分を設けた粘弾性体を示す図である。(A) is a figure which shows the structure of the vibration isolation mount of Example 2, (b) is a figure which shows the viscoelastic body which provided the helical part in the cylinder used for the vibration isolator of the vibration isolation mount of Example 2. It is. 実施例3の除振マウントの構造を示す図で(a)はコイルばねの外側に蛇腹状の粘弾性体を組み合わせた例、(b)はコイルばねの外側に蛇腹状の粘弾性体を組み合せた例を示している。FIGS. 5A and 5B are diagrams showing the structure of a vibration isolation mount of Example 3, wherein FIG. 5A shows an example in which a bellows-like viscoelastic body is combined on the outside of the coil spring, and FIG. An example is shown. 実験の要領を示す図である。It is a figure which shows the point of experiment. (a)は、比較例1の水平方向の振動特性、(b)は垂直方向の振動特性のグラフである。(A) is a graph of the vibration characteristics in the horizontal direction of Comparative Example 1, and (b) is a graph of the vibration characteristics in the vertical direction. (a)は、実験例1の水平方向の振動特性、(b)は垂直方向の振動特性のグラフである。(A) is a graph of the vibration characteristics in the horizontal direction of Experimental Example 1, and (b) is a graph of the vibration characteristics in the vertical direction. (a)は、実験例2の水平方向の振動特性、(b)は垂直方向の振動特性のグラフである。(A) is a graph of the vibration characteristics in the horizontal direction of Experimental Example 2, and (b) is a graph of the vibration characteristics in the vertical direction. (a)は、実験例3の水平方向の振動特性、(b)は垂直方向の振動特性のグラフである。(A) is a graph of the vibration characteristic in the horizontal direction of Experimental Example 3, and (b) is a graph of the vibration characteristic in the vertical direction. 除振マウントの制振特性を示す図である。It is a figure which shows the damping characteristic of an anti-vibration mount. 特許文献1に記載された除振マウントの構造を示す図である。It is a figure which shows the structure of the anti-vibration mount described in patent document 1. FIG.

符号の説明Explanation of symbols

1a,1b フランジ
2 コイルばね
3 実施例1の制振材
4 取付座
5 帯状の部分
6 ばね穴
7 構造体
8 チェーン
9 除振マウント
11 除振マウント
12 実施例2の制振材
13 円筒
14 らせん状の部分
15 コイルばね
16 上キャップ
17 下キャップ
18 チェーン
19 除振台
20 試料
21 振動センサー
23a、23b 実施例3の制振材
1a, 1b Flange 2 Coil spring 3 Damping material 4 of Example 1 Mounting seat 5 Band-shaped portion 6 Spring hole 7 Structure 8 Chain 9 Vibration isolating mount 11 Vibration isolating mount 12 Damping material 13 of Example 2 Cylinder 14 Spiral Shaped part 15 Coil spring 16 Upper cap 17 Lower cap 18 Chain 19 Anti-vibration table 20 Sample 21 Vibration sensors 23a and 23b Damping material of Example 3

Claims (10)

コイルばねと、制振材との組み合せを有する除振マウントであって、
コイルばねは、専ら除振、制振すべき構造体の荷重を支持する機能を受け持たせるものであり、
制振材は、コイルばねに作用する荷重に対して抵抗とならず、専ら構造体の振動に伴ってコイルばねの一端から他端に伝播する振動エネルギーを熱エネルギーに変換して振動エネルギーを減衰させる機能を受け持たせるものであることを特徴とする除振マウント。
A vibration isolation mount having a combination of a coil spring and a damping material,
The coil spring has the function of supporting the load of the structure to be exclusively isolated and damped.
The damping material is not resistant to the load acting on the coil spring, but exclusively attenuates the vibration energy by converting the vibration energy propagating from one end of the coil spring to the other with the vibration of the structure into thermal energy. Anti-vibration mount characterized by having the function of
制振材は、柔軟性を有し、コイルばねの上端と下端とにつながれているものであることを特徴とする請求項1に記載の除振マウント。   2. The vibration damping mount according to claim 1, wherein the vibration damping material has flexibility and is connected to an upper end and a lower end of the coil spring. 制振材は、コイルばねの伸縮変位に対し、屈伸することによって追従するものであることを特徴とする請求項1に記載の除振マウント。   The vibration damping mount according to claim 1, wherein the damping material follows the expansion and contraction of the coil spring by bending and stretching. 制振材は帯状の部分を有する粘弾性体であり、帯状の部分をC型に屈曲させてその両端をコイルばねの上下端につないだものであることを特徴とする請求項1に記載の除振マウント。   The damping material is a viscoelastic body having a belt-like portion, wherein the belt-like portion is bent into a C shape and both ends thereof are connected to the upper and lower ends of a coil spring. Anti-vibration mount. 制振材は少なくとも一部にらせん状の部分を有する粘弾性体であり、らせん状の部分をコイルばねと同心上に組み合わされ、その両端はコイルばねの上下端につながれているものであることを特徴とする請求項1に記載の除振マウント。   The damping material is a viscoelastic body having at least a part of a spiral, and the spiral part is concentrically combined with the coil spring, and both ends thereof are connected to the upper and lower ends of the coil spring. The vibration isolation mount according to claim 1. 制振材は、蛇腹状の粘弾性体であり、蛇腹の筒の内部または外部に設置されたコイルばねと同心上に組み合わされ、蛇腹の筒の両端は、コイルばねの上下端につながれているものであることを特徴とする請求項1に記載の除振マウント。   The damping material is a bellows-like viscoelastic body and is concentrically combined with a coil spring installed inside or outside the bellows tube, and both ends of the bellows tube are connected to the upper and lower ends of the coil spring. The vibration isolation mount according to claim 1, wherein the vibration isolation mount is one. 対のフランジと、コイルばねと、制振材との組み合せからなる除振マウントであって、
対のフランジは、除振マウントの設置台および構造体の支持台となるものであり、上下に組み合わされ、
コイルばねは、除振すべき構造体の弾性支持体であり、両フランジの対向面間に設置され、
制振材は、帯状の部分を有し、
制振材の帯状の部分は、C型に屈曲して両端をコイルばねとともに上下のフランジにそれぞれ固定されているものであることを特徴とする請求項1に記載の除振マウント。
A vibration isolation mount comprising a combination of a pair of flanges, a coil spring, and a damping material,
The pair of flanges will be the installation base for the vibration isolation mount and the support base for the structure.
The coil spring is an elastic support for the structure to be isolated, and is installed between the opposing surfaces of both flanges.
The damping material has a band-shaped part,
2. The vibration isolation mount according to claim 1, wherein the band-shaped portion of the damping material is bent into a C shape and both ends thereof are fixed to the upper and lower flanges together with the coil spring.
対のフランジと、コイルばねと、制振材との組み合せからなる除振マウントであって、
対のフランジは、除振マウントの設置台および構造体の支持台となるものであり、上下に組み合わされ、
コイルばねは、除振すべき構造体の弾性支持体であり、両フランジの対向面間に設置され、
制振材は、少なくとも一部にらせん部分を有する一定厚みの円筒であり、コイルばねと同心上に組み合わされ、両端をコイルばねとともに上下のフランジにそれぞれ固定されているものであることを特徴とする請求項1に記載の除振マウント。
A vibration isolation mount comprising a combination of a pair of flanges, a coil spring, and a damping material,
The pair of flanges will be the installation base for the vibration isolation mount and the support base for the structure.
The coil spring is an elastic support for the structure to be isolated, and is installed between the opposing surfaces of both flanges.
The damping material is a cylinder with a constant thickness having at least a part of a spiral, combined concentrically with a coil spring, and fixed to both upper and lower flanges together with the coil spring. The vibration isolation mount according to claim 1.
対のフランジと、コイルばねと、制振材との組み合せからなる除振マウントであって、
対のフランジは、除振マウントの設置台および構造体の支持台となるものであり、上下に組み合わされ、
コイルばねは、除振すべき構造体の弾性支持体であり、両フランジの対向面間に設置され、
制振材は、蛇腹状の粘弾性体であり、蛇腹の筒の内部または外部に設置されたコイルばねと同心上に組み合わされ、蛇腹の筒の両端は、コイルばねとともに上下のフランジにそれぞれ固定されているものであることを特徴とする請求項1に記載の除振マウント。
A vibration isolation mount comprising a combination of a pair of flanges, a coil spring, and a damping material,
The pair of flanges will be the installation base for the vibration isolation mount and the support base for the structure.
The coil spring is an elastic support for the structure to be isolated, and is installed between the opposing surfaces of both flanges.
The damping material is a bellows-like viscoelastic body, concentrically combined with a coil spring installed inside or outside the bellows tube, and both ends of the bellows tube are fixed to the upper and lower flanges together with the coil spring. The vibration isolation mount according to claim 1, wherein the vibration isolation mount is provided.
制振材の制振性能は、制振材の帯状部分の幅、厚さ、硬さによって決定され、制振材の幅、厚さは現場施工時に調整されるものであることを特徴とする請求項1に記載の除振マウント。   The damping performance of the damping material is determined by the width, thickness, and hardness of the band-like portion of the damping material, and the width and thickness of the damping material are adjusted at the time of construction on site. The vibration isolation mount according to claim 1.
JP2005021752A 2005-01-28 2005-01-28 Vibration eliminating mount Pending JP2006207723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021752A JP2006207723A (en) 2005-01-28 2005-01-28 Vibration eliminating mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021752A JP2006207723A (en) 2005-01-28 2005-01-28 Vibration eliminating mount

Publications (1)

Publication Number Publication Date
JP2006207723A true JP2006207723A (en) 2006-08-10

Family

ID=36964813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021752A Pending JP2006207723A (en) 2005-01-28 2005-01-28 Vibration eliminating mount

Country Status (1)

Country Link
JP (1) JP2006207723A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031953A (en) * 2008-07-28 2010-02-12 Herz Co Ltd Vibration damping-vibration control device by compression coil spring
JP2013117256A (en) * 2011-12-02 2013-06-13 Kazuya Shimizu Vibration isolation material
CN103727171A (en) * 2012-10-16 2014-04-16 义乌市黑白矿山机械有限公司 Shock absorption machine base
CN105889410A (en) * 2016-06-07 2016-08-24 中国船舶重工集团公司第七〇九研究所 Variable-rigidity box limiting stopper
CN109853747A (en) * 2018-12-20 2019-06-07 中国人民解放军军事科学院国防工程研究院 A kind of antiknock energy dissipating combined isolator
JP2020041691A (en) * 2018-09-06 2020-03-19 国立大学法人大阪大学 Steel damper for aseismic base isolation
CN112670003A (en) * 2020-12-21 2021-04-16 华南理工大学 Bromine salt cooling small molten salt reactor for providing nuclear power for deep sea space station

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031953A (en) * 2008-07-28 2010-02-12 Herz Co Ltd Vibration damping-vibration control device by compression coil spring
JP2013117256A (en) * 2011-12-02 2013-06-13 Kazuya Shimizu Vibration isolation material
CN103727171A (en) * 2012-10-16 2014-04-16 义乌市黑白矿山机械有限公司 Shock absorption machine base
CN105889410A (en) * 2016-06-07 2016-08-24 中国船舶重工集团公司第七〇九研究所 Variable-rigidity box limiting stopper
JP2020041691A (en) * 2018-09-06 2020-03-19 国立大学法人大阪大学 Steel damper for aseismic base isolation
JP7017210B2 (en) 2018-09-06 2022-02-08 国立大学法人大阪大学 Seismic isolation steel damper
CN109853747A (en) * 2018-12-20 2019-06-07 中国人民解放军军事科学院国防工程研究院 A kind of antiknock energy dissipating combined isolator
CN112670003A (en) * 2020-12-21 2021-04-16 华南理工大学 Bromine salt cooling small molten salt reactor for providing nuclear power for deep sea space station
CN112670003B (en) * 2020-12-21 2024-01-30 华南理工大学 Bromine salt cooling small molten salt reactor for providing nuclear power for deep sea space station

Similar Documents

Publication Publication Date Title
JP3614755B2 (en) Omnidirectional vibration isolation system
KR100269034B1 (en) Self tuning type vibration damper
US8705185B2 (en) Optical element
JP2006207723A (en) Vibration eliminating mount
JP2007120744A (en) Vibration suppression device
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
JP2010031953A (en) Vibration damping-vibration control device by compression coil spring
JP3543758B2 (en) Anti-vibration mount
JP2012042016A (en) Three-dimensional base isolation device
JP4716222B2 (en) Anti-vibration mount
JP2007205543A (en) Vibration cancellation device
JP2007333128A (en) Coil spring and vibration isolator using the same
US9376807B2 (en) Passive structures with high stiffness and high damping properties
JP2009250269A (en) Vibration-proof plate
KR20070028233A (en) Vibration isolation device
JP2006316953A (en) Vibration eliminating mount
JP2004068914A (en) Vibration proof mechanism
JP2021131157A (en) Anti-vibration device for precision apparatus
JP2004360784A (en) Compact damping device and compact damping table
JP2014237972A (en) Ceiling constituting member and building having the same
JP2009263864A (en) Vibration control device for floor vibration and floor impact sound
JP5276548B2 (en) Active vibration isolation method and vibration isolation device used therefor
JP2009243537A (en) Vibration damping device for fork
JP2023000525A (en) Dynamic absorber
JP2001131915A (en) Impact buffering member for connection type bridge collapse preventing device and connection type bridge collapse preventing device