JP2013117256A - Vibration isolation material - Google Patents

Vibration isolation material Download PDF

Info

Publication number
JP2013117256A
JP2013117256A JP2011264715A JP2011264715A JP2013117256A JP 2013117256 A JP2013117256 A JP 2013117256A JP 2011264715 A JP2011264715 A JP 2011264715A JP 2011264715 A JP2011264715 A JP 2011264715A JP 2013117256 A JP2013117256 A JP 2013117256A
Authority
JP
Japan
Prior art keywords
coil spring
rubber
vibration
vibration isolator
rubber viscoelastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011264715A
Other languages
Japanese (ja)
Other versions
JP2013117256A5 (en
JP5861234B2 (en
Inventor
Kazuya Shimizu
一弥 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011264715A priority Critical patent/JP5861234B2/en
Publication of JP2013117256A publication Critical patent/JP2013117256A/en
Publication of JP2013117256A5 publication Critical patent/JP2013117256A5/ja
Application granted granted Critical
Publication of JP5861234B2 publication Critical patent/JP5861234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a small, inexpensive and simple vibration isolation material that isolates a floor vibration or causes no machine vibration or the like to be transferred to a floor.SOLUTION: In a vibration isolation device, a pair of rubber elastic bodies 1, 2 is provided which surrounds a region corresponding to an outer diameter of a coil spring 20 other than a connection part at both end sides of the coil spring in an axial direction, and on which a pair of slits facing each other is formed which forms an island part corresponding the region thereinside. Further, the rubber elastic bodies 1, 2 are integrally fixed by a screw nut 3a penetrating the rubber elastic bodies 1, 2 at the island parts thereof and outside the slits while compressing the coil spring 20 between the island parts.

Description

本発明は半導体製造検査装置、電子顕微鏡、空気圧縮機、真空ポンプ、プレス機械、ピアノ等の精密機器、産業機械、音響機器等を除振する除振材に関する。   The present invention relates to a vibration isolation material for isolating a semiconductor manufacturing inspection apparatus, an electron microscope, an air compressor, a vacuum pump, a press machine, a precision instrument such as a piano, an industrial machine, an acoustic instrument, and the like.

除振材として防振ゴム、コイルバネ、空気バネなどが使われている。防振ゴムは金具とゴムの2要素からなり、小型、安価で広く使われる除振材であるが、バネ作用が硬く、除振性能が劣る。   Anti-vibration rubber, coil springs, air springs, etc. are used as vibration isolation materials. Anti-vibration rubber consists of two elements, metal fittings and rubber, and is a vibration-damping material that is small, inexpensive, and widely used.

空気バネはバネ作用が柔らかく、除振性能が優れているが、構造が大型、複雑であり、高価でもあるので広くは使われていない。   Air springs have a soft spring action and excellent vibration isolation performance, but are not widely used because their structures are large, complex, and expensive.

コイルバネはバネ作用が柔らかく、空気バネと同様な優れた除振性能を有するが、減衰能が小さく共振点通過時の機械振幅が大きくなる。また機械操作の外力による機械揺れの収束が遅くなり使いにくくなる。例えば顕微鏡の手動操作や半導体製造検査装置のステージ稼働などによる機械揺れの収束が遅くなり、作業効率が低下するなどの問題が発生する。外力やステージ移動による機械揺れを衝撃応答振幅という。   The coil spring has a soft spring action and has excellent vibration isolation performance similar to that of an air spring, but has a small damping capacity and a large mechanical amplitude when passing through the resonance point. Also, the convergence of the machine shake due to the external force of the machine operation becomes slow and difficult to use. For example, the convergence of mechanical shake due to manual operation of a microscope or stage operation of a semiconductor manufacturing inspection apparatus becomes slow, and problems such as work efficiency decrease occur. Mechanical vibration due to external force or stage movement is called impact response amplitude.

図6の除振材で支持された系について、その振動伝達率、衝撃応答振幅を図7、8に示す。図7、図8は特徴的な減衰能をもつ除振材の減衰特性を示したグラフである。 a は小さい減衰能を持つ系、b は通常の広く使われる減衰能を持つ系、c は強い減衰能を持つ系である。バネ作用が柔らかく動バネ定数が小さい程、固有振動数が小さくなり、振動伝達率が小さく、除振性能が良くなる。振動伝達率は除振性能の尺度であり、この値が小さい程、振動は遮断される。ロスファクタが振動減衰を示すパラメータであり、この値が大きい程、共振点通過時の共振倍率が小さく、また、衝撃応答の収束が速い。   The vibration transmissibility and impact response amplitude of the system supported by the vibration isolator shown in FIG. 6 are shown in FIGS. 7 and 8 are graphs showing the damping characteristics of the vibration damping material having a characteristic damping ability. a is a system having a small damping ability, b is a system having a damping ability which is usually widely used, and c is a system having a strong damping ability. The softer the spring action and the smaller the dynamic spring constant, the lower the natural frequency, the lower the vibration transmissibility, and the better the vibration isolation performance. The vibration transmissibility is a measure of vibration isolation performance, and the smaller this value, the more the vibration is cut off. The loss factor is a parameter indicating vibration damping. The larger the value, the smaller the resonance magnification when passing through the resonance point, and the faster the impact response converges.

以下、図6に示した系について除振材の除振作用を説明する。図中のMaは支持する機械、Dは除振材、Floorは床を表している。支持する機械Maの振動周波数または床Floorの振動数をf (Hz)、除振材の動バネ定数をkd、静バネ定数をks(N/M)、除振材のロスファクタをη、支持質量をm(kg)、系の固有振動数fn(Hz)、動倍率α、振動伝達率Tr、共振倍率β、衝撃応答振幅の初期値をz(M)とすると、鉛直方向の衝撃応答振幅z(M)はそれぞれ式(1)、(2)、(3)、(4)、(5)で表される。ただし括弧内のMはメートルである。なお、初期値zoは衝撃の運動量が機械全体の運動量に保存される事により求められる。

Figure 2013117256
Figure 2013117256
Figure 2013117256
Figure 2013117256
Figure 2013117256
Hereinafter, the vibration isolation action of the vibration isolation material will be described for the system shown in FIG. In the figure, Ma represents a supporting machine, D represents a vibration isolator, and Floor represents a floor. The vibration frequency of the supporting machine Ma or the floor floor frequency is f (Hz), the dynamic spring constant of the vibration isolation material is k d , the static spring constant is k s (N / M), and the loss factor of the vibration isolation material is η , Assuming that the support mass is m (kg), the natural frequency f n (Hz) of the system, the dynamic magnification α, the vibration transmissibility Tr, the resonance magnification β, and the initial value of the impact response amplitude is z 0 (M). The shock response amplitude z (M) is expressed by equations (1), (2), (3), (4), and (5), respectively. However, M in parentheses is meter. The initial value zo is obtained by storing the momentum of impact in the momentum of the entire machine.
Figure 2013117256
Figure 2013117256
Figure 2013117256
Figure 2013117256
Figure 2013117256

コイルバネと減衰材を組み合わせた特性がa.小さい減衰能のもの、b.通常の広く使われる減衰能のもの、c.強い減衰能のもの、の3種類の代表特性で、a、b、cの場合について、具体的な数値を挙げて振動伝達率のデシベル表示した特性を図7に、衝撃応答振幅幅の相対値を図8に示す。
a.小さい減衰能の例(小さいロスファクタ)
=11.4 (N/mm)
=14.8 (N/mm) (動倍率α=1.3)
ロスファクタ η=0.03
b.通常の広く使われる減衰能の例(通常のロスファクタ)
=11.4 (N/mm)
=18.2 (N/mm) (動倍率α=1.6)
ロスファクタ η=0.16
c.強い減衰能の例(大きいロスファクタ)
=11.4 (N/mm)
=28.5 (N/mm) (動倍率α=2.5)
ロスファクタ η=0.33
The combined characteristics of coil spring and damping material are: a. Having a small damping capacity, b. Normal and widely used damping ability, c. Three types of representative characteristics of strong damping ability, with specific values for a, b, and c, and the characteristics expressed in decibels of vibration transmissibility are shown in FIG. Is shown in FIG.
a. Example of small damping capacity (small loss factor)
k s = 11.4 (N / mm)
k d = 14.8 (N / mm) (dynamic magnification α = 1.3)
Loss factor η = 0.03
b. Example of normal and widely used damping capacity (normal loss factor)
k s = 11.4 (N / mm)
k d = 18.2 (N / mm) (dynamic magnification α = 1.6)
Loss factor η = 0.16
c. Example of strong attenuation (large loss factor)
k s = 11.4 (N / mm)
k d = 28.5 (N / mm) (dynamic magnification α = 2.5)
Loss factor η = 0.33

図7、8のa、b、cの三種類の減衰能における特性と一般的用途は以下の通りである。
a.小さい減衰能の例(ロスファクタ : η=0.03)
天然ゴム系のゴム粘弾性体を用いる場合であり、分子間の摩擦、粘性抵抗が小さく、動倍率は1.3倍位である。ポンプなどのバランスの良い回転機械に使われる。固有振動数が小さく防振性能は良い。
b.通常の広く使われる高減衰能の例(ロスファクタ: η=0.16)
高減衰の合成ゴムが使われる。コンプレッサー、遠心分離機、振動コンベアーなど加振力の大きい機械で共振倍率βが問題になる場合に使われる。動倍率は1.6倍前後である。
c.強い減衰能の例(ロスファクタ : η=0.33)
ステージのある半導体製造検査設備、手動操作のある顕微鏡など、機械揺れの収束が問題となる場合に、減衰能を特に強化したゴム粘弾性体が使われる。動倍率は2倍以上に及ぶ。
The characteristics and general applications of the three types of attenuation capabilities a, b, and c in FIGS. 7 and 8 are as follows.
a. Example of small damping capacity (loss factor: η = 0.03)
This is a case where a natural rubber rubber viscoelastic body is used, and the friction and viscous resistance between molecules are small, and the dynamic magnification is about 1.3 times. Used for well-balanced rotating machines such as pumps. The natural frequency is small and the vibration-proof performance is good.
b. Example of normal and widely used high damping capacity (loss factor: η = 0.16)
High damping synthetic rubber is used. Used when the resonance magnification β is a problem in machines with large excitation force such as compressors, centrifuges, and vibratory conveyors. The dynamic magnification is around 1.6 times.
c. Example of strong damping ability (loss factor: η = 0.33)
A rubber viscoelastic body with a particularly strong damping capacity is used when convergence of mechanical shake becomes a problem, such as a semiconductor manufacturing inspection facility with a stage or a microscope with manual operation. The dynamic magnification is over 2 times.

コイルバネに減衰能を付加する方法は従来からいろいろ提案されている。ゴム粘弾性体を圧縮方向で使うと、ゴム粘弾性体が圧縮されてバネ作用が硬くなり、除振性能が損なわれる。また、上下金具の間にゴム円柱を挿入して摩擦で振動減衰を与える方法が多くみられるが、減衰能がバラツキつく不具合がある。特開2004−147528(特許文献1)は荷重によるバネ定数の増大を避けるため、変形をキャンセルさせる機構が必要であり、構造が複雑となる。また、寸法も大きくなる。特開2004−324654(特許文献2)では減衰材を曲げ変形で使用しているが、同じく構造が複雑で、外形寸法が大きくなる。   Various methods for adding a damping capability to a coil spring have been proposed. When the rubber viscoelastic body is used in the compression direction, the rubber viscoelastic body is compressed and the spring action becomes hard, and the vibration isolation performance is impaired. In addition, there are many methods in which a rubber cylinder is inserted between the upper and lower metal fittings to give vibration damping by friction, but there is a problem that the damping capacity varies. Japanese Patent Application Laid-Open No. 2004-147528 (Patent Document 1) requires a mechanism for canceling deformation in order to avoid an increase in spring constant due to a load, and the structure becomes complicated. Moreover, a dimension also becomes large. In Japanese Patent Application Laid-Open No. 2004-324654 (Patent Document 2), a damping material is used for bending deformation, but the structure is also complicated and the outer dimensions are increased.

特開2004−147528号公報JP 2004-147528 A 特開2004−324654号公報JP 2004-324654 A

本発明は、動倍率の増大が少なく、減衰能を付加する最小限の要素から成る除振材を得ることを課題とする。本発明の除振材によれば、板状のゴム粘弾性体がコイルバネ両端を嵌め込むと共に、そのビーム部分が主に曲げ変形して、動倍率が抑制され、固有振動数が増大せず、小さい振動伝達率が得られることが期待される。   An object of the present invention is to obtain a vibration isolating material having a minimum increase in dynamic magnification and consisting of minimum elements that add damping capability. According to the vibration isolator of the present invention, the plate-like rubber viscoelastic body is fitted into both ends of the coil spring, and the beam part is mainly bent and deformed, the dynamic magnification is suppressed, the natural frequency does not increase, A small vibration transmissibility is expected to be obtained.

上記目的を達成するため、本発明の実施態様の一つの除振材は、1組の対向配置したゴム状弾性板の間にコイルバネを圧縮状態で介在させ、前記1組のゴム状弾性板の縁部を互いに複数のビスナットで固定して前記圧縮状態のコイルバネを保持させてなる除振材であって、前記各ゴム状弾性板の前記コイルバネの両端と接する領域を含む外形と相似形の中央領域とその外周領域に沿って、互いに対向して対をなすスリットを形成するとともに、各スリットの中間点に対応する外周領域を、それぞれビスナットで固定して、前記ゴム状弾性板の各スリットの外側の外周領域により、前記中央領域を前記コイルバネの弾発力に抗して保持するビーム部を形成してなることを特徴としている。   In order to achieve the above object, one vibration isolator according to an embodiment of the present invention includes a coil spring interposed between a pair of opposed rubber elastic plates in a compressed state, and an edge portion of the set of rubber elastic plates. And a central region having a similar shape to the outer shape including a region in contact with both ends of the coil springs of each rubber-like elastic plate; Along the outer peripheral area, a pair of slits facing each other is formed, and the outer peripheral area corresponding to the middle point of each slit is fixed with a screw nut, and the outer side of each slit of the rubber-like elastic plate is fixed. A beam portion that holds the central region against the elastic force of the coil spring is formed by an outer peripheral region.

本発明の実施態様の他の一つは、長方形または正方形の金属板の片面にコイルバネの端部を嵌合する嵌合部を有する一組の金属板を前記嵌合部を対向させて配置し、それぞれの金属板にコイルバネの両端を嵌め込むと共に、上下に平坦部を有し側面に結合部を残してほぼ全長にわたるスリットの形成された短冊状のゴム粘弾性材を前記金属板の各辺に沿わせて配置し、前記上下の平坦部を、各金属板の対向する面に張付けて、前記コイルバネの弾発力によりスリット部分で拡開させ、前記ゴム粘弾性材の弾発力により前記ゴム粘弾性体に張力を作用させたことを特徴としている。   In another embodiment of the present invention, a pair of metal plates having a fitting portion for fitting an end portion of a coil spring on one side of a rectangular or square metal plate is arranged with the fitting portions facing each other. Each end of the metal plate is fitted with a strip-shaped rubber viscoelastic material in which both ends of the coil springs are fitted into the respective metal plates, and flat portions are formed on the upper and lower sides, and the slits are formed over the entire length leaving the coupling portions on the side surfaces. The upper and lower flat portions are attached to the opposing surfaces of each metal plate, and are expanded at the slit portion by the elastic force of the coil spring, and the elastic force of the rubber viscoelastic material It is characterized by applying tension to the rubber viscoelastic body.

本発明の除振材は、用途に応じた適度の振動減衰能をもって、防振ゴムでは除振が困難なおおむね15Hz以下の機械の除振ができる。特に支持荷重100kg以下において顕著である。また価格的に、スペース的に適用できない空気ばねに換わるものである。さらに除振材構造がシンプルであり価格的にも、スペース的にも使い易い。
また、除振材の除振性能、衝撃応答は、機械試運転後に調整されることがあるが、本実施形態においてはこの作業が防振ゴム、空気ばねに比べて容易である。
The vibration isolator of the present invention has a moderate vibration damping capability according to the application, and is capable of vibration isolation of a machine of approximately 15 Hz or less, which is difficult to be vibration-isolated with a vibration-proof rubber. This is particularly remarkable when the supporting load is 100 kg or less. Moreover, it replaces the air spring which cannot be applied in terms of cost and space. Furthermore, the vibration isolator structure is simple and easy to use in terms of price and space.
In addition, the vibration isolation performance and impact response of the vibration isolation material may be adjusted after the machine trial operation, but in this embodiment, this work is easier than the vibration isolation rubber and the air spring.

コイルバネの周辺に配置されたゴム粘弾性体により、コイルバネの座屈発生が抑制され、コイルバネ中心径に対して標準よりもより高いバネ高さが適用でき、バネ作用が柔らかい高性能のコイルバネが使用できる。   The rubber viscoelastic body placed around the coil spring suppresses the occurrence of buckling of the coil spring, and a higher spring height than the standard can be applied to the coil spring center diameter. it can.

本発明の実施形態1の構造を示す図である。It is a figure which shows the structure of Embodiment 1 of this invention. 本発明の実施形態1の変形である除振材のゴム粘弾性体を示す図である。It is a figure which shows the rubber viscoelastic body of the vibration isolator which is a deformation | transformation of Embodiment 1 of this invention. 実施形態2の構造を示す図である。6 is a diagram illustrating a structure of Embodiment 2. FIG. 実施形態2の変形例の構造を示す図である。It is a figure which shows the structure of the modification of Embodiment 2. FIG. 実施例1の鉛直方向の振動伝達率を示すグラフである。4 is a graph showing a vibration transmission rate in the vertical direction in Example 1; 除振材の系を示す図である。It is a figure which shows the system of a vibration isolator. 図6の除振材の系で鉛直方向の振動伝達率を示すグラフである。It is a graph which shows the vibration transmissibility of a perpendicular direction in the system of the vibration isolator of FIG. 図7の除振材の系で鉛直方向の衝撃応答を示すグラフである。It is a graph which shows the impact response of a perpendicular direction in the system of the vibration isolator of FIG. 本発明の除振材の基本となる構造を示す図である。It is a figure which shows the structure used as the foundation of the vibration isolator of this invention. 図9のゴム粘弾性体の鉛直バネ定数を求める方法を説明する図である。It is a figure explaining the method of calculating | requiring the vertical spring constant of the rubber viscoelastic body of FIG.

以下、図面によって本発明の実施形態を説明する。
図9は本発明の除振材の基本となる構造モデルを示す図であり、図10は図1の実施形態のゴム粘弾性体の鉛直バネ定数を求める方法を説明する図である。図9、図10を用いて基本形の鉛直バネ定数を算出する。図9の(a)は2枚のゴム粘弾性体1、2の平面図であり、(b)は2枚のゴム粘弾性体1、2の側面図である。中央にコイルバネ20を嵌め込む円形の凹部を持つ板状のゴム粘弾性体1が2枚(1、2)、凹部を向かい合わせて配置され、ビスナット(3a、3b)で両端が締結されている。変位2aに従い曲げ、せん断変形する部分をビームと呼ぶ。図9では左右2本、上下の2段重ねで4本のビーム(11a、11b、12a、12b)がある。図10は図9のゴム粘弾性体の部分を取り出して示した。
図9、図10に示すように、鉛直荷重2pが作用して変位2aが発生している。従ってビーム1個に作用する荷重はpで、変位はaとなる。ビーム1個について変位と力の関係を求める。
p:除振材に作用する鉛直荷重2pの内、ビーム1個に作用する動荷重(N)
k:ビームの1個の動的鉛直バネ定数(N/mm)
a:ビームの動的たわみ(mm)
as:ビームの動的横方向たわみ(mm)
ac:ビームの動的縦方向たわみ(mm)
ps:ビーム1個に作用する動横方向の力(N)
pc : ビーム1個に作用する動縦方向の力(N)
ks:ビーム1個の横方向の動的バネ定数(N/mm)
kc:ビーム1個の縦方向の動的バネ定数(N/mm)
θ:ビームの角度
η:除振材のロスファクタ
η0:ゴム粘弾性体の材料自体のロスファクタ
k0:コイルバネの静ばね定数 (N/mm)
図10のようにたわみaはビームの横方向たわみasのcosθ成分と縦方向たわみac
sinθ成分の和である。
以下にビーム1個当たりのバネ定数kを求める手順を示す。
a=ascosθ+acsinθ
横方向たわみasは横方向荷重を横方向バネ定数で除した as=ps/ksであり、
横方向たわみは縦方向荷重を縦方向バネ定数で除したac=pc/kcである。
従って
a=(ps/ks)cosθ+ (pc/kc)sinθ
図10によればpsはpのcosθ成分であり、はpのsinθ成分である。
a=(p/ks)cos2θ+ (p/kc)sin2θ=p(cos2θ/ks + sin2θ/kc
よって、ビーム1個のバネ定数kは下式のように求まる。
k=p/a=kskc/(kc cos2θ+ks sin2θ)・・・・・・・(6)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 9 is a diagram showing a structural model that is the basis of the vibration damping material of the present invention, and FIG. 10 is a diagram for explaining a method for obtaining the vertical spring constant of the rubber viscoelastic body of the embodiment of FIG. The basic vertical spring constant is calculated using FIG. 9 and FIG. FIG. 9A is a plan view of the two rubber viscoelastic bodies 1 and 2, and FIG. 9B is a side view of the two rubber viscoelastic bodies 1 and 2. Two plate-like rubber viscoelastic bodies 1 having circular recesses into which the coil spring 20 is fitted in the center are arranged with the recesses facing each other, and both ends are fastened with screw nuts (3a, 3b). . A portion that is bent and sheared according to the displacement 2a is called a beam. In FIG. 9, there are four beams (11a, 11b, 12a, 12b) in two layers on the left and right and two layers on the upper and lower sides. FIG. 10 shows a portion of the rubber viscoelastic body shown in FIG.
As shown in FIGS. 9 and 10, a vertical load 2p acts to generate a displacement 2a. Therefore, the load acting on one beam is p, and the displacement is a. Find the relationship between displacement and force for one beam.
p: Dynamic load (N) acting on one beam out of the vertical load 2p acting on the vibration isolation material
k: Dynamic vertical spring constant of one beam (N / mm)
a: Dynamic deflection of the beam (mm)
a s : Dynamic lateral deflection of the beam (mm)
a c : Dynamic vertical deflection of the beam (mm)
p s : Dynamic lateral force acting on one beam (N)
p c : Dynamic longitudinal force acting on one beam (N)
k s : Dynamic spring constant in the transverse direction of one beam (N / mm)
k c : Longitudinal dynamic spring constant of one beam (N / mm)
θ: Beam angle η: Loss factor of vibration isolator η 0 : Loss factor of rubber viscoelastic material itself
k 0 : Static spring constant of coil spring (N / mm)
As shown in FIG. 10, the deflection a indicates the cos θ component of the beam horizontal deflection a s and the vertical deflection a c .
This is the sum of sin θ components.
The procedure for obtaining the spring constant k per beam is shown below.
a = a s cosθ + a c sinθ
The lateral deflection a s is a s = p s / k s obtained by dividing the lateral load by the lateral spring constant,
The lateral deflection is a c = p c / k c obtained by dividing the longitudinal load by the longitudinal spring constant.
Therefore
a = (p s / k s ) cosθ + (p c / k c ) sinθ
According to FIG. 10, p s is the cos θ component of p, and is the sin θ component of p.
a = (p / k s ) cos 2 θ + (p / k c ) sin 2 θ = p (cos 2 θ / k s + sin 2 θ / k c )
Therefore, the spring constant k of one beam is obtained as follows.
k = p / a = k s k c / (k c cos 2 θ + k s sin 2 θ) (6)

ビームの縦方向バネ定数kcはビーム断面積(ビームの幅をb、厚さをhとすると)bhと動縦弾性係数Eapに比例し、長さLに逆比例する。Eapはゴム粘弾性体自体のヤング率Eに形状係数を加味した見掛けの弾性係数である。但し、図10の場合はビームの断面積に比して長さが大きいためEapはゴム粘弾性体自体の材料としての動的縦弾性係数Eにほぼ等しい。
kc=Ebh/L ・・・・・・・・・・・・・(7)
ビームの横方向バネ定数は
ks=(Gbh/L)(1+L2/3h2)-1 ・・・・・・・(8)
図10において本発明の場合は、おおむねL2/3h2>7 であるので括弧内の1を省略して
ks = 3Gbh3/L3 ・・・・・・・・・・・・・(9)
式(9)はビームの横方向の変形は曲げ変形が主体でksは柔かい曲げ変形で決まることを示している。
但し、E:動縦弾性係数(N/mm2)、 G:動横弾性係数(N/mm2
h:ビームの厚さ(mm)、b:ビームの幅(mm)、 L:ビームの長さ(mm)
ここで、式(7)と(9)より比率ks/kcを求め、かつ、E=3Gがほぼ成立する事から下式を得る。
ks/kc =h2/L2 ・・・・・・・・・・・・・(10)
式(6)に式(10)を代入すると、ビーム1個のバネ常数kは
k = ks/(cos2θ+(h2L2)sin2θ)= ks/(cos2θ(1+(h2/L2)sin2θ/cos2θ))
図10では前述の様にL2/3h2>7であるので、h2/L2<1/21
また θ<35°であるから、
(h2/L2)sin2θ/cos2θ<<1 となる。
従って、

Figure 2013117256
The longitudinal spring constant k c of the beam is proportional to the beam cross-sectional area (where the beam width is b and the thickness is h) bh and the dynamic longitudinal elastic modulus E ap and inversely proportional to the length L. E ap is an apparent elastic coefficient obtained by adding a shape coefficient to the Young's modulus E of the rubber viscoelastic body itself. However, in the case of FIG. 10, since the length is larger than the cross-sectional area of the beam, E ap is substantially equal to the dynamic longitudinal elastic modulus E as the material of the rubber viscoelastic body itself.
k c = Ebh / L (7)
The lateral spring constant of the beam is
k s = (Gbh / L) (1 + L 2 / 3h 2 ) -1 (8)
In FIG. 10, in the case of the present invention, since L 2 / 3h 2 > 7, 1 in parentheses is omitted.
k s = 3Gbh 3 / L 3 (9)
Equation (9) indicates that the deformation in the transverse direction of the beam is mainly bending deformation, and k s is determined by the soft bending deformation.
However, E: Dynamic longitudinal elastic modulus (N / mm 2 ), G: Dynamic lateral elastic modulus (N / mm 2 )
h: beam thickness (mm), b: beam width (mm), L: beam length (mm)
Here, the ratio k s / k c is obtained from the equations (7) and (9), and the following equation is obtained because E = 3G is substantially satisfied.
k s / k c = h 2 / L 2 (10)
Substituting equation (10) into equation (6), the beam one spring constant k is k = k s / (cos 2 θ + (h 2 L 2) sin 2 θ) = k s / (cos 2 θ (1+ (h 2 / L 2 ) sin 2 θ / cos 2 θ))
In FIG. 10, since L 2 / 3h 2 > 7 as described above, h 2 / L 2 <1/21
And since θ <35 °,
(h 2 / L 2 ) sin 2 θ / cos 2 θ << 1.
Therefore,
Figure 2013117256

除振材のバネ定数K、動倍率α、ロスファクタηは以下のように求められる。
K:除振材の動バネ定数
η:除振材のロスファクタ
η0:粘弾性体自体のロスファクタ
α:除振材のバネ定数動倍率
k0:前出、コイルバネの静ばね定数(動バネ定数にほぼ等しい)
kst:ビーム1個の静ばね定数
n:片側1段のビームの個数
1/2:ビームの上下2段重ねで1/2となる。
K=k×n×1/2+k0 ・・・・・・・・・・・・・(12)
η=(k×n×1/2)η0(k×n×1/2+k0)・・・・(13)
α=(k×n×1/2+k0)/(kst×n×1/2+k0
ここでkstは式(11)の動的横弾性係数Gを静的横弾性係数Gstに置き換えて求められる。本発明の高減衰材料に於いてGst<<Gより、kst<<kとなる。
本発明ではビームの動バネ定数はコイルバネのバネ定数k0と大差ない。よってkst<<k0となる。
kst×n×1/2 <<k0は実測においても確認されている。よって
α=1+(k×n×1/2)/k0 ・・・・・・・・・・(14)
ゴム粘弾性体として望まれる特性は、コイルバネを嵌め込むことのできる静弾性を有し、静動比が小さく、かつ、減衰能が大きい事である。減衰能が大きくなると静動比も大きくなり、動バネ定数が増大し除振性能が低下する傾向がある。
The spring constant K, dynamic magnification α, and loss factor η of the vibration isolator are obtained as follows.
K: Dynamic spring constant of vibration isolator
η: Loss factor of vibration isolation material η 0 : Loss factor of viscoelastic body itself α: Spring constant dynamic magnification of vibration isolation material
k 0 : As described above, static spring constant of coil spring (almost equal to dynamic spring constant)
k st : Static spring constant of one beam
n: Number of beams on one stage on each side
1/2: 1/2 when the upper and lower beams overlap.
K = k × n × 1/2 + k 0 (12)
η = (k × n × 1/2) η 0 (k × n × 1/2 + k 0 ) (13)
α = (k × n × 1/2 + k 0 ) / (k st × n × 1/2 + k 0 )
Here, k st is obtained by replacing the dynamic lateral elastic modulus G of the equation (11) with the static lateral elastic modulus G st . In the high damping material of the present invention, k st << k from G st << G.
In the present invention, the dynamic spring constant of the beam is not significantly different from the spring constant k 0 of the coil spring. Therefore, k st << k 0 .
k st × n × 1/2 << k 0 has also been confirmed in actual measurement. Therefore α = 1 + (k × n × 1/2) / k 0 (14)
The properties desired as a rubber viscoelastic body are that it has static elasticity capable of fitting a coil spring, has a small static motion ratio, and has a large damping capacity. As the damping capacity increases, the static / dynamic ratio also increases, the dynamic spring constant increases, and the vibration isolation performance tends to decrease.

式(11)に依ればビーム1個のバネ定数kは比率h/Lと幅b、角度θによって決定され、除振材のロスファクタηは式(13)に依って決定されるが、ビームの容積が小さいと粘弾性体内の分子間摩擦、粘性力の絶対値が小さく、減衰能が不足する。
従ってビームの容積2bLhとコイルバネのバネ定数k0の比率(2bLh)×n/k0 (mm4/N) は、ある値以上が必要である。実施例の測定によれば、平均的に(2bLh×n)/k0 >1000が必要である。
According to the equation (11), the spring constant k of one beam is determined by the ratio h / L, the width b, and the angle θ, and the loss factor η of the vibration isolation material is determined by the equation (13). If the volume of the beam is small, the absolute value of intermolecular friction and viscous force in the viscoelastic body is small and the damping capacity is insufficient.
Therefore, the ratio (2bLh) × n / k 0 (mm 4 / N) between the beam volume 2bLh and the spring constant k 0 of the coil spring needs to be a certain value or more. According to the measurement of the example, on average, (2bLh × n) / k 0 > 1000 is required.

高減衰で共振倍率βを15dB以下にする場合は、ロスファクタが大きくなるが、動倍率αも大きくなりがちであるが、この倍率が小さい材料が望ましい。また減衰能を大きくするあまり、粘性が過大となると成型加工が難しくなる。必要な弾性を維持しつつ粘性を上げてロスファクタを大きくするゴム粘弾性体が必要である。
共振倍率βが20dB以上でよい除振材では、天然ゴム系の粘弾性体が使われる。この場合、動倍率αは1.3倍以下が得られる。
When the resonance magnification β is set to 15 dB or less with high attenuation, the loss factor increases, but the dynamic magnification α also tends to increase. However, a material with a small magnification is desirable. Further, if the viscosity is excessively increased so as to increase the damping capacity, the molding process becomes difficult. There is a need for a rubber viscoelastic body that increases the viscosity and increases the loss factor while maintaining the necessary elasticity.
For vibration damping materials that require a resonance magnification β of 20 dB or more, natural rubber-based viscoelastic bodies are used. In this case, the dynamic magnification α is 1.3 times or less.

(実施形態1)
以上のビームの解析を踏まえて、本発明の実施形態1は図1に示すように、方形の除振材のゴム粘弾性体1、2を上下2枚重ね合わせ、両端の中央部をビスナット3a、3bで結束した状態を示している。図1(a)がその平面図、(b)が側面図、図1(c)はコイルバネの両端を嵌め込んだ状態の斜視図である。
ゴム粘弾性体1、2の中央部の凹部5、6はコイルバネの両端を嵌め込む凹部である。上部の凹部5と下部の凹部6が合わさった形となり、コイルバネの両端を嵌み込む。ゴム粘弾性体の凹部5、6の外側に4本のコの字状のスリット8a、8b、9a、9bを設け、ビーム11a、11b、12a、12bを形成している。2枚のゴム粘弾性体1、2の合わせ目を開き、所定のコイルバネを予圧縮力をもって、空間7に挿入する。
除振材の外形寸法の小さい割にはコイルバネ挿入前のビームの長さをコの字状に設けることにより実質的なビーム長さを稼ぐことができ、ビームに捩じり曲げ変形を加え動倍率αの小さい除振材の動バネ定数kdを得ることができる。
(Embodiment 1)
Based on the above analysis of the beam, the first embodiment of the present invention, as shown in FIG. 1, has two rubber viscoelastic bodies 1 and 2 of a rectangular vibration isolator stacked on top and bottom, and the center portions of both ends are screw nuts 3a. 3b shows a bundled state. FIG. 1A is a plan view, FIG. 1B is a side view, and FIG. 1C is a perspective view in a state where both ends of a coil spring are fitted.
The recesses 5 and 6 at the center of the rubber viscoelastic bodies 1 and 2 are recesses into which both ends of the coil spring are fitted. The upper concave portion 5 and the lower concave portion 6 are combined to fit both ends of the coil spring. Four U-shaped slits 8a, 8b, 9a, 9b are provided outside the concave portions 5, 6 of the rubber viscoelastic body to form beams 11a, 11b, 12a, 12b. The joint of the two rubber viscoelastic bodies 1 and 2 is opened, and a predetermined coil spring is inserted into the space 7 with a precompression force.
For the small size of the vibration isolator, the beam length before insertion of the coil spring is provided in a U shape, so that the substantial beam length can be gained. The dynamic spring constant k d of the vibration isolator having a small magnification α can be obtained.

(実施形態1の変形例)
図2は図1の変形例で、(a)はゴム粘弾性体の平面図、(b)が側面図である。ゴム粘弾性体1、2の形状が円板状となっている。図1ではスリットがコの字状であるのに対して、図2では円弧状となっているが、ビームの長さを稼ぐ意味では変わらない。いずれの場合も小さい外形寸法で、支持荷重をうけたとき、ビームの角度θが小さくなり柔らかいバネ定数が得られる。
(Modification of Embodiment 1)
FIG. 2 is a modification of FIG. 1, (a) is a plan view of a rubber viscoelastic body, and (b) is a side view. The shape of the rubber viscoelastic bodies 1 and 2 is a disk shape. In FIG. 1, the slit has a U-shape, whereas in FIG. 2, it has an arc shape, but it does not change in the sense of increasing the beam length. In any case, with a small external dimension, when a supporting load is applied, the beam angle θ decreases and a soft spring constant can be obtained.

図1、図2の除振材においては、座屈発生がない荷重支持の安定性を得るため、また、荷重支持時においてビームの傾斜角が40°を上まわり、式(6)によりcosθが小さくならないように、コイルバネの中心径Dと高さのH比率、H/Dは2以下に設定することが望ましい。
θ=40°の時、kは式(11)に示される様にks の1.7倍となり、硬くなる。またコイルバネ挿入の際に必要な予圧縮力が大きくなり、除振材の組立時のコイルバネ挿入に手間を要する。
In the vibration isolator shown in FIGS. 1 and 2, in order to obtain stability of load support without buckling, the tilt angle of the beam exceeds 40 ° at the time of load support, and cos θ is It is desirable to set the H ratio of the center diameter D and the height of the coil spring, H / D, to 2 or less so as not to make it smaller.
When θ = 40 °, k becomes 1.7 times k s as shown in the equation (11) and becomes hard. Further, the pre-compression force required when inserting the coil spring increases, and it takes time to insert the coil spring when assembling the vibration isolator.

(実施形態2)
図3は本発明の実施形態2の例を示す図で、図3の(a)は平面図、図3の(b)は側面図、図3(c)はコイルバネの両端を嵌め込んだ状態の斜視図である。
ゴム粘弾性体と一体成型された、4本のコイルバネ(20a〜20d)を嵌め込む凹部(5a〜5d、6a〜6d)を設けた十字状の金具が1組(31、32)、互いにコイルバネを挟んで配置され、四隅にはビスナット4本(3a、3b、3c、3d)で締結されている。
四隅のビスナットの内側にはこの場合は鉤状のスリットが上下のゴム粘弾性体にそれぞれ4本、合計8本(8a〜8d、9a〜9d)が、中央部に嵌め込んだ4本のコイルバネ(20a〜20d)を囲むように設けられている。
鉤状のスリットによって形成されたゴム粘弾性体のビームは上部に8本(11a〜11h)、下部に8本(12a〜12h)、合計16本形成されている。図3のb1~b16はビームを示す。
図3の場合、中央部に嵌め込んだコイルバネは4本であるが、1本でも3本でもよい。1本の場合、コイルバネの高さHと中心径Dとの比率H/Dは座屈を避けるため、2以下にする必要があるが、ビームの個数が16本と多いとビームの水平方向の拘束力が大きくなり、座屈発生が抑制される。その結果、コイルバネの高さHと中心径Dとの比率H/Dは3.5まで広げることができる。
(Embodiment 2)
FIG. 3 is a diagram showing an example of Embodiment 2 of the present invention. FIG. 3 (a) is a plan view, FIG. 3 (b) is a side view, and FIG. 3 (c) is a state where both ends of a coil spring are fitted. FIG.
One set of cross-shaped fittings (31, 32) provided with recesses (5a-5d, 6a-6d) into which four coil springs (20a-20d) are integrally molded with a rubber viscoelastic body are mutually coil springs. The four corners are fastened with four screw nuts (3a, 3b, 3c, 3d).
In this case, four coil springs are fitted in the center of the four corner screw screws, with four slits in the upper and lower rubber viscoelastic bodies, a total of eight (8a-8d, 9a-9d). It is provided so as to surround (20a to 20d).
A total of 16 beams of rubber viscoelastic bodies formed by hook-shaped slits are formed, with 8 (11a to 11h) in the upper part and 8 (12a to 12h) in the lower part. In FIG. 3, b1 to b16 indicate beams.
In the case of FIG. 3, the number of coil springs fitted in the center is four, but may be one or three. In the case of one, the ratio H / D between the height H of the coil spring and the center diameter D needs to be 2 or less in order to avoid buckling, but if the number of beams is as large as 16, the horizontal direction of the beam The restraining force is increased and the occurrence of buckling is suppressed. As a result, the ratio H / D between the height H of the coil spring and the center diameter D can be increased to 3.5.

図3の上下のゴム粘弾性体1、2を締結するビスナット3を省き、ゴム粘弾性体を図4のように一体成型することもできる。この場合、ビスナットが無い分だけ除振材の寸法を小さくできる。図4は本発明の実施形態3の例を示す図で、図4の(a)は平面図、(b)は側面図である。   It is also possible to omit the screw nut 3 for fastening the upper and lower rubber viscoelastic bodies 1 and 2 in FIG. 3 and to integrally mold the rubber viscoelastic body as shown in FIG. In this case, the size of the vibration isolator can be reduced by the amount that there is no screw nut. 4A and 4B are diagrams showing an example of Embodiment 3 of the present invention. FIG. 4A is a plan view and FIG. 4B is a side view.

(実施形態3)
それぞれのスリット部にコイルバネの両端を嵌め込む凹部(5a〜5b、6a〜6b)を有する金属板一組(31、32)を対向して配置し、4本のコイルバネ(20a〜20d)を嵌め込み、ゴム粘弾性体の厚さ方向に2分するスリット部を設けて上下に2分するゴム粘弾性体のそれぞれの中央部を4本のビスナット(3a、3b、3c、3d)により対応する金属板に固定する。
スリット部はコイルバネにより広げられて2分され、2分されたゴム粘弾性体のそれぞれが上下2本のビームが形成される。図4では4個のゴム粘弾性体(2a〜2d)が金属板(31、32)の4辺に沿った形で配置されているが、2個のゴム粘弾性体を対向する2辺に沿って配置する構造としてもよい。
本実施形態でもこれにより、コイルバネには予圧力、前記スリットにより形成された上下のゴムのビームには予張力が加わるような構造とした除振材となっている。
(Embodiment 3)
A pair of metal plates (31, 32) having recesses (5a to 5b, 6a to 6b) for fitting both ends of the coil springs to the respective slit portions are arranged facing each other, and the four coil springs (20a to 20d) are fitted. A metal part corresponding to the center part of each rubber viscoelastic body divided into two parts by providing a slit part that bisects in the thickness direction of the rubber viscoelastic body by four screw nuts (3a, 3b, 3c, 3d) Secure to the board.
The slit portion is spread by a coil spring and divided into two, and each of the two divided rubber viscoelastic bodies forms two upper and lower beams. In FIG. 4, four rubber viscoelastic bodies (2a to 2d) are arranged along the four sides of the metal plates (31, 32), but the two rubber viscoelastic bodies are arranged on two opposite sides. It is good also as a structure arrange | positioned along.
In this embodiment as well, this provides a vibration isolator having a structure in which a preload is applied to the coil spring and a pretension is applied to the upper and lower rubber beams formed by the slits.

(実施例1)
構造を図1に示すゴム粘弾性体で、収納されるコイルバネの最大常用荷重10 kgの除振材を作成評価した。
ビームの厚さh = 6 mm、幅b = 8mm、長さL = 33 mmである。外径寸法は50×50mm、ゴム粘弾性体の材料特性は、動横弾性係数G=10.9(N/mm)で、ロスファクタは0.8である。
式(11)、(12)により除振材のバネ定数Kとロスファクタを、式(1)と(4)により固有振動数、共振倍率を求め、表1に示す。
ビーム8個の容積とコイルバネのバネ定数の比率は2,539 (mm4/N)である。
また、支持荷重10kgに於ける除振材の振動伝達率(鉛直方向)の測定グラフを図5に示す。

Figure 2013117256
Example 1
A vibration isolator having a maximum normal load of 10 kg of the coil spring to be housed was made and evaluated using the rubber viscoelastic body shown in FIG.
Beam thickness h = 6 mm, width b = 8 mm, length L = 33 mm. The outer diameter is 50 × 50 mm, the material properties of the rubber viscoelastic body are the dynamic and transverse elastic coefficient G = 10.9 (N / mm 2 ), and the loss factor is 0.8.
Table 1 shows the spring constant K and loss factor of the vibration isolation material obtained from the equations (11) and (12), and the natural frequency and resonance magnification obtained from the equations (1) and (4).
The ratio of the volume of 8 beams to the spring constant of the coil spring is 2,539 (mm 4 / N).
FIG. 5 shows a measurement graph of the vibration transmissibility (vertical direction) of the vibration isolator at a supporting load of 10 kg.
Figure 2013117256

(実施例2)
実施例1と同様に図1の構造で外径寸法50×50mm、コイルバネの最大常用荷重20kgについて、ビームな厚さをh=7.5mmとし、幅、長さは実施例1と同様として製作評価した。ゴム粘弾性体材料は実施例1と同じである。
表2に特性値を示す。ビーム8個の容積とコイルバネのバネ定数の比率は1,389 mm4/N)である。

Figure 2013117256
(Example 2)
As in Example 1, with the structure shown in FIG. 1 and an outer diameter of 50 × 50 mm, the maximum normal load of the coil spring is 20 kg, the beam thickness is h = 7.5 mm, and the width and length are the same as in Example 1, and production evaluation is performed. did. The rubber viscoelastic material is the same as in Example 1.
Table 2 shows the characteristic values. The ratio of the volume of 8 beams to the spring constant of the coil spring is 1,389 mm 4 / N).
Figure 2013117256

(実施例3)
共振倍率の抑制がそれ程必要ではない送風機などの使用を想定して図3に示すような除振材を製作評価した。ゴム粘弾性体の材料は天然ゴム系である。
形状寸法:基本形 100×100×70 h
動的横弾性係数:2.0(N/mm2
ビーム寸法:b=12 mm、h=10 mm、L =27 mm
コイルバネの静的ばね定数:18.68(N/mm) コイルバネ4個にて。
傾斜角:除振材1個の37.5kg負荷にて40°
ビーム16個の容積とコイルバネのバネ定数比率は、2,775 (mm4/N)である。
除振材:最大常用荷重50kgのものに37.5kgを負荷した特性を表3に示す。

Figure 2013117256
ゴム粘弾性体として天然ゴム系を使用した。引張強さなどの機械的強度は大きく、除振材の構成材としての機能に優れている。ロスファクタが小さく共振倍率は高いが、送風機、ポンプなどの回転機械は不平衡力が小さく、共振点通過時の振幅は小さい。
ゴム粘弾性体の水平方向のバネ作用により、コイルバネの座屈が抑制された結果、コイルバネの中心径16mmに対して高さ50mmのコイルバネが使用できた。柔らかいバネ定数が得られている。通常の設計標準であれば40mmが最大値である。製作評価の結果中心径に対して3.5倍までのコイルバネ高さが得られる。 (Example 3)
A vibration isolator as shown in FIG. 3 was manufactured and evaluated assuming the use of a blower or the like that does not require much suppression of the resonance magnification. The material of the rubber viscoelastic body is a natural rubber system.
Shape: Basic type 100 × 100 × 70 h
Dynamic transverse elastic modulus: 2.0 (N / mm 2 )
Beam dimensions: b = 12 mm, h = 10 mm, L = 27 mm
Static spring constant of coil spring: 18.68 (N / mm) With 4 coil springs.
Inclination angle: 40 ° at 37.5kg load of one vibration isolator
The spring constant ratio between the volume of 16 beams and the coil spring is 2,775 (mm 4 / N).
Table 3 shows the characteristics of the vibration isolator: 37.5 kg applied to the one with the maximum normal load of 50 kg.
Figure 2013117256
A natural rubber system was used as the rubber viscoelastic body. The mechanical strength such as tensile strength is large, and the function as a component of the vibration isolator is excellent. Although the loss factor is small and the resonance magnification is high, rotating machines such as blowers and pumps have a small unbalanced force and a small amplitude when passing through the resonance point.
As a result of suppressing the buckling of the coil spring by the horizontal spring action of the rubber viscoelastic body, a coil spring having a height of 50 mm could be used with respect to the center diameter of the coil spring of 16 mm. A soft spring constant is obtained. For normal design standards, 40mm is the maximum value. As a result of production evaluation, coil spring heights up to 3.5 times the center diameter can be obtained.

1、2・・・ゴム粘弾性体 3、4・・・ビスナット
5、6・・・凹部 7・・・コイルバネ両端の嵌め込み用空間
8、9・・・スリット 11、12・・・ビーム
20・・・コイルバネ
DESCRIPTION OF SYMBOLS 1, 2 ... Rubber viscoelastic body 3, 4 ... Screw nut 5, 6 ... Concave 7 ... Space 8 for fitting in both ends of a coil spring 8, 9 ... Slit 11, 12 ... Beam 20 ..Coil spring

Claims (6)

1組の対向配置したゴム粘弾性板の間にコイルバネを圧縮状態で介在させ、前記1組のゴム状弾性板の縁部を互いに複数のビスナットで固定して前記圧縮状態のコイルバネを保持させてなる除振材であって、
前記各ゴム状弾性板の前記コイルバネの両端と接する領域を含む外形と相似形の中央領域とその外周領域に沿って、互いに対向して対をなすスリットを形成するとともに、各スリットの中間点に対応する外周領域を、それぞれビスナットで固定して、前記ゴム状弾性板の各スリットの外側の外周領域により、前記中央領域を前記コイルバネの弾発力に抗して保持するビーム部を形成してなることを特徴とする除振材。
A coil spring is interposed in a compressed state between a pair of opposed rubber viscoelastic plates, and the edges of the rubber elastic plate are fixed to each other with a plurality of screw nuts to hold the coil spring in the compressed state. A vibration material,
A pair of slits are formed facing each other along the central region and the outer peripheral region of the rubber-like elastic plate including the regions in contact with both ends of the coil springs, and at the midpoint of each slit. Corresponding outer peripheral regions are each fixed with a screw nut, and a beam portion is formed by the outer peripheral region outside each slit of the rubber-like elastic plate to hold the central region against the elastic force of the coil spring. An anti-vibration material characterized by
コイルバネに振動減衰を与えるスリットの外側のビーム部分が矩形、正方形、円形などをなし、外形寸法を抑制しつつビームの長さを大きくする構造である請求項1記載の除振材。   2. The vibration isolator according to claim 1, wherein the beam portion outside the slit that imparts vibration damping to the coil spring is rectangular, square, circular, or the like, and has a structure that increases the length of the beam while suppressing external dimensions. ゴム粘弾性体が一体成型されている請求項1または請求項2記載の除振材。   The vibration isolator according to claim 1 or 2, wherein the rubber viscoelastic body is integrally molded. 長方形または正方形の金属板の片面にコイルバネの端部を嵌合する嵌合部を有する一組の金属板を前記嵌合部を対向させて配置し、それぞれの金属板にコイルバネの両端を嵌め込むと共に、
上下に平坦部を有し側面に結合部を残してほぼ全長にわたるスリットの形成された短冊状のゴム粘弾性材を前記金属板の各辺に沿わせて配置し、前記上下の平坦部を、各金属板の対向する面に張付けて、前記コイルバネの弾発力によりスリット部分で拡開させ、前記ゴム粘弾性材の弾発力により前記ゴム粘弾性体に張力を作用させたことを特徴とする除振材。
A pair of metal plates having a fitting portion for fitting the end portion of the coil spring on one side of a rectangular or square metal plate is arranged with the fitting portions facing each other, and both ends of the coil spring are fitted into each metal plate. With
A strip-shaped rubber viscoelastic material having slits extending substantially along its entire length leaving flat joints on the sides and leaving the joints on the sides is disposed along each side of the metal plate, and the upper and lower flat parts are It is attached to the opposing surface of each metal plate, is expanded at the slit portion by the elastic force of the coil spring, and tension is applied to the rubber viscoelastic body by the elastic force of the rubber viscoelastic material. Anti-vibration material.
各ビームの幅b、高さh、長さLとしたとき、各ビームの容積bhL、全ビームの本数2n本の全容積に対するコイルバネのバネ定数(k0)の比率{(bhL×2n)/k0}が 1,000 mm4/N以上である請求項1〜4のいずれか1項記載の除振材。 When the width b, height h, and length L of each beam are set, the ratio of the spring constant (k 0 ) of the coil spring to the volume bhL of each beam and the total volume of 2n of all beams {(bhL × 2n) / The vibration isolator according to any one of claims 1 to 4, wherein k 0 } is 1,000 mm 4 / N or more. 請求項1〜5のいずれか1項記載の除振材に於いてコイルバネの中心径に対して高さが2.5倍以上3.5倍以下である除振材。   The vibration isolator according to any one of claims 1 to 5, wherein the height is 2.5 times to 3.5 times the center diameter of the coil spring.
JP2011264715A 2011-12-02 2011-12-02 Vibration isolator Expired - Fee Related JP5861234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264715A JP5861234B2 (en) 2011-12-02 2011-12-02 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264715A JP5861234B2 (en) 2011-12-02 2011-12-02 Vibration isolator

Publications (3)

Publication Number Publication Date
JP2013117256A true JP2013117256A (en) 2013-06-13
JP2013117256A5 JP2013117256A5 (en) 2015-03-12
JP5861234B2 JP5861234B2 (en) 2016-02-16

Family

ID=48711960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264715A Expired - Fee Related JP5861234B2 (en) 2011-12-02 2011-12-02 Vibration isolator

Country Status (1)

Country Link
JP (1) JP5861234B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126431A (en) * 1992-10-19 1994-05-10 Shinko Electric Co Ltd Vibrating drum
JP2006207723A (en) * 2005-01-28 2006-08-10 Nabeya:Kk Vibration eliminating mount

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126431A (en) * 1992-10-19 1994-05-10 Shinko Electric Co Ltd Vibrating drum
JP2006207723A (en) * 2005-01-28 2006-08-10 Nabeya:Kk Vibration eliminating mount

Also Published As

Publication number Publication date
JP5861234B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
KR101777319B1 (en) Self-tuned mass damper and system comprising the same
EP2392836B1 (en) A device for isolating an object from external motions
JPH0571566A (en) Isolator-installed assembly
JP5208288B1 (en) Anti-vibration rubber for compressor and compressor using the same
CN108240415B (en) Large-load high-damping vibration absorber of composite bending beam/plate negative-stiffness dynamic vibration absorber
CN105257778A (en) Multi-degree-of-freedom low-frequency vibration-isolation gasket
US20120160598A1 (en) Acoustic diaphragm suspending
US9261155B2 (en) Compact vertical-motion isolator
JP2018096513A (en) Vibration-isolating mechanism
JP5861234B2 (en) Vibration isolator
JP4902330B2 (en) Seismic isolation devices and seismic isolation structures
CN113366239B (en) Support and vehicle suspension device comprising such a support
CN113565922B (en) Integrated quasi-zero stiffness vibration isolation buffering element and vibration isolation buffering assembly
US11754141B2 (en) Spring element
US20070052143A1 (en) Vibration isolation device
WO2005111345A1 (en) Base isolation structure
JP2012062982A (en) Devibration device
WO2011129207A1 (en) Spring
JPS63204580A (en) Magnetic disk device
JP2014001767A (en) Damper device, base isolation apparatus with the same and vibration isolation mount
JP2011247313A (en) Vibration isolation device
JP2005330799A (en) Base isolation structure
JP2022001791A (en) Vibration isolator
JPS63140136A (en) Rubber vibration isolator having quadratic surface
JP2778654B2 (en) Design method of anti-vibration rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5861234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees