JPS63204580A - Magnetic disk device - Google Patents

Magnetic disk device

Info

Publication number
JPS63204580A
JPS63204580A JP3676187A JP3676187A JPS63204580A JP S63204580 A JPS63204580 A JP S63204580A JP 3676187 A JP3676187 A JP 3676187A JP 3676187 A JP3676187 A JP 3676187A JP S63204580 A JPS63204580 A JP S63204580A
Authority
JP
Japan
Prior art keywords
spring constant
layer structure
magnetic disk
vibration
disk enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3676187A
Other languages
Japanese (ja)
Inventor
Haruyoshi Shimizu
清水 治好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3676187A priority Critical patent/JPS63204580A/en
Publication of JPS63204580A publication Critical patent/JPS63204580A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the transmissibility of vibration and to suppress the maximum value of displacement due to shock to an allowable limit or less by inserting a two-layer structure body consisting of an elastic member having a high spring constant and a high attenuation factor and an elastic material having a low spring constant and a high attenuation factor between a disk enclosure and a base. CONSTITUTION:Each two-layer structure body 10 is constituted by laminating the 1st and 2nd members 11, 12 and respective bodies 10 are distributed and inserted between the external bottom face of the disk enclosure 1 and the fitting face of the base 2. In the 1st member 11, the maximum displacement against shock is suppressed to an allowable limit or less by its high attenuation factor and the transmissivility of high frequency vibration can be reduced by its high spring constant. In the 2nd member 12, the transmissibility of especially low and medium frequency vibration is reduced by its low spring constant and high attenuation factor. Thereby, the transmissibility of low, medium and high frequency vibration can be reduced as a whole and the maximum displacement due to shock can be suppressed to the allowable limit or less.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、外部からの振動、衝撃が装置本体部に伝達
されるのを低減、緩和できるようにした磁気ディスク装
置に関する。
The present invention relates to a magnetic disk device that can reduce and alleviate the transmission of external vibrations and shocks to the main body of the device.

【従来の技術】[Conventional technology]

従来、磁気ディスク装置のディスク・エンクロージャと
、これを取り付ける基台との間に、防振ゴムが挿着され
た。例えば、防振ゴムは、直径=10 mm 、高さ:
 9 mm程度の円柱体で、その一方の端部に埋設され
た金属ねじがその端面から突出し、他方の端部に、ねじ
孔が設けられている。防振ゴムの金属ねじを基台側にね
じ込み、同じくねし孔にディスク・エンクロージャ側か
ら小ねじをねじ込んで固定する□というものである。
Conventionally, anti-vibration rubber has been inserted between the disk enclosure of a magnetic disk device and the base to which it is attached. For example, the anti-vibration rubber has a diameter of 10 mm and a height of:
It is a cylindrical body with a diameter of about 9 mm, and a metal screw embedded in one end thereof protrudes from the end surface, and a screw hole is provided in the other end. Screw the metal screw of the anti-vibration rubber into the base side, and screw the small screw into the screw hole from the disk enclosure side to secure it.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

以上説明したような従来の技術は、簡単な構造であり、
ある程度、外部からの振動、衝撃を低減。 緩和させることはできるメリットがある。 しかし、防振ゴムとして、当然ながら一つのばね定数、
一つの減衰係数をもつものに限定されるから、ばね定数
、′$i衰係数が理論と経験とに基づいて選択されると
はいえ、0周波数が広範囲にわたる振動に対し、すべて
の周波数についてその伝達を低減させることは不可能で
ある;言いかえれば、ある範囲の周波数に重点が置かれ
ると、他の範囲の周波数は多少おろそかになる、■防振
を重視すると、衝撃に対する緩和がおろそかになる、つ
まり、衝撃による最大変位が許容限度を超えることにな
り、防振と緩衝とを両立させることが非常に困難である
□という問題点がある。 なお、ばね定数は、弾性材料としてのゴムのばね性を表
す数値で、ゴムに単位の変位を与えるに要する力である
。感覚的には、ばね定数が大きいほど“かたい”ゴムを
表す。また、減衰係数は、ゴムの変形運動に伴う内部摩
擦力としての減衰力の程度を表す数値で、ゴムの場合に
は、速度に比例する粘性摩擦を主要素とし、これに速度
に無関係な一定摩擦(クーロン摩擦)の要素、速度の二
乗に比例する要素などの複合したものである。 この発明の目的は、従来の技術がもつ以上の問題点を解
消し、外部からの広範囲の周波数の振動と、衝撃とを受
けたとき、その振動の伝達率を低減させ、かつ衝撃によ
る変位の最大値を許容限度以下抑えることができるよう
な磁気ディスク装置を提供することにある。
The conventional technology as explained above has a simple structure,
Reduces external vibrations and shocks to some extent. There are benefits to being able to alleviate this. However, as a vibration-proof rubber, it naturally has one spring constant,
Although the spring constant, '$i damping coefficient, is selected based on theory and experience, the 0 frequency is limited to vibrations with a wide range of vibrations, and the damping coefficient is limited to one damping coefficient. It is impossible to reduce transmission; in other words, when emphasis is placed on one range of frequencies, other ranges of frequencies are somewhat neglected; ■ Emphasis on vibration isolation neglects shock mitigation. In other words, the maximum displacement due to impact exceeds the permissible limit, and there is a problem that it is extremely difficult to achieve both vibration isolation and damping. Note that the spring constant is a numerical value representing the springiness of rubber as an elastic material, and is the force required to give a unit displacement to the rubber. Intuitively, the larger the spring constant, the harder the rubber. In addition, the damping coefficient is a numerical value that represents the degree of damping force as an internal frictional force accompanying the deformation movement of rubber.In the case of rubber, the main element is viscous friction that is proportional to speed, and a constant It is a composite of elements such as friction (Coulomb friction) and an element proportional to the square of velocity. The purpose of this invention is to solve the problems of the conventional technology, to reduce the transmission rate of vibration when receiving external vibrations with a wide range of frequencies and shocks, and to reduce the displacement due to shocks. An object of the present invention is to provide a magnetic disk device that can suppress the maximum value to below an allowable limit.

【問題点を解決するための手段】[Means to solve the problem]

前記の目的を達成するために、この発明は、ディスク・
エンクロージャとこれを取り付ける基台との間に、高ば
ね定数と高減衰係数とをもつ弾性材料からなる第1の部
材と、低ばね定数と前記より高い減衰係数とをもつ弾性
材料からなる第2の材料とを積層してなる2層構造体を
挿着する、という構成にする。 実施態様として、2層構造体が、ディスク・エンクロー
ジャの外部底面と基台の取付面との間に分布、・挿着さ
れる柱状体であるように構成する。 また、別の実施態様として、2N構造体が、ディスク・
エンクロージャ外部底面の稜線を折り線として折り曲げ
挿着されるし形体であるように構成する。
In order to achieve the above object, the present invention provides a disk
A first member made of an elastic material having a high spring constant and a high damping coefficient, and a second member made of an elastic material having a low spring constant and a higher damping coefficient between the enclosure and the base to which the enclosure is attached. The structure is such that a two-layer structure made of laminated materials is inserted and attached. In one embodiment, the two-layer structure is a columnar body distributed between the outer bottom surface of the disk enclosure and the mounting surface of the base. In another embodiment, the 2N structure is
The enclosure is configured so that it can be inserted and inserted by bending the ridge line of the outer bottom surface of the enclosure as a fold line.

【作 用】[For use]

以上説明したような構成であるから、この発明の作用は
次のようになる。 (1)第1部材は、その高ばね定数によって、衝撃に対
する最大変位を許容限度以下に抑えることができ、かつ
、その高減衰係数によって、特に高周波数の振動の伝達
率を軽減させることができる。 (2)第2部材は、゛・その低ばね定数と、さらに高い
減衰係数とによって、とくに低・中周波数の振動の伝達
率を軽減させることができる。 (3)シたがって全体として、低・中・高周波数の振動
に対し、その振動の伝達率を低減させると同時に、衝撃
に対し、これによる最大変位を許容限度以下に抑えるこ
とができる。 実施態様によれば、柱状体の軸線方向には、主として引
張、圧縮ばね定数をもち、互いに直角で、かつ軸線と直
角な2方向には、主として剪断ばね定数をもつから、引
張、圧縮、剪断ばね定数比には方向性がある。 また、別の実施態様によれば、L形体の互いに直角な3
方向には、いずれも主として引張、圧縮。 ばね定数をもつから、引張、圧縮、剪断ばね定数比には
方向性が少ない。
Since the configuration is as explained above, the operation of the present invention is as follows. (1) Due to its high spring constant, the first member can suppress the maximum displacement due to impact to below the allowable limit, and its high damping coefficient can reduce the transmission rate of vibrations, especially at high frequencies. . (2) The second member can reduce the transmission rate of vibrations, especially at low and medium frequencies, due to its low spring constant and higher damping coefficient. (3) Therefore, as a whole, it is possible to reduce the transmission rate of low, medium, and high frequency vibrations, and at the same time, suppress the maximum displacement due to shocks to below the permissible limit. According to the embodiment, the columnar body mainly has a tensile and compressive spring constant in the axial direction, and mainly has a shearing spring constant in two directions perpendicular to each other and perpendicular to the axis. The spring constant ratio has directionality. According to another embodiment, three mutually perpendicular parts of the L-shape
Both directions are mainly tension and compression. Since it has a spring constant, there is little directionality in the ratio of tension, compression, and shear spring constants.

【実施例】【Example】

この発明の一実施例を、以下に図を参照しながら説明す
る。 第1図はこの第1実施例の要部の斜視図で、二点鎖線表
示の1はディスク・エンクロージャ、同じく2はこれを
取り付ける基台である。10は円柱状に形成された2層
構造体で、ディスク・エンクロージャlと基台2との間
の4隅に挿入、接着される。この2N構造体10は、第
1部材11および第2部材12を積層して構成される。 第1部材11.第1部材11は、ともにゴムで、ばね作
用と内部摩擦による減衰作用とをもつ。なお、この減衰
作用は主として振動速度に比例する減衰力による、いわ
ゆる粘性減衰に基づく。ただし、第1部材11は、高ば
ね定数と高減衰係数とをもち、第2部材12は、低ばね
定数と第1部材11よりさらに高い減衰係数とをもつ、
互いに性質2機能を異にする材料からなる。 第1部材11は、外部から衝撃を受けたとき、ディスク
・エンクロージャ1の最大変位を許容限度以下に抑える
ために、ある程度、ばね定数を大きくする必要がある。 また、外部からの振動のディスク・エンクロージャ1へ
の伝達率は、1以下に低く抑えられ、振動絶縁の効果を
発渾することができる。なぜなら、この伝達率は、ばね
の振動理論によれば、一方でばばね定数に比例して大き
くなるが、他方ではその振動の周波数の二乗に反比例し
て減少し、加えて第1部材11の減衰係数が高いため振
動吸収がおこるからである。なお、この振動吸収は、ゴ
ム分子間およびゴム分子−充填剤間の相互作用によるも
のである。 第2部材12は、ばね定数が小さいから、外部からの振
動のディスク・エンクロージャ1への伝達率は、低・中
周波数の振動でも、低く抑えられる傾向にあり、加えて
減衰係数がさらに大きいためより大きい振動吸収がおこ
り、さらにその傾向を支援する。しかし、衝撃に対して
は、ばね定数が小さいため、第2部材12として最大変
位が太き(なるのは止むを得ない。 第1部材11と第2部材12とを2層に積層すると、各
部材の振動、衝撃に対する特性が組み合わされる結果、
広範囲の周波数の振動に対して、その伝達率を減少させ
、同時に衝撃に対してもこの影響を緩和し、最大変位を
許容限度以下に抑えることができる。 以上のことをエネルギー面からみると次のようになる。 2層構造体10に外部から振動、衝撃が加えられると、
そのエネルギーは2層構造体10の変形に伴って、いっ
たんその内部に吸収される。このエネルギーは、弾性エ
ネルギーと消散エネルギーとに分けられる。前者の弾性
エネルギーは可逆的であって、一方では外部に戻され、
他方ではディスク・エンクロージャ1に伝達される。後
者の消散エネルギーは非可逆的で、内部摩擦に抗する仕
事をして熱となって消散される。 防振、緩衝効果にとって重要な問題は、■弾性エネルギ
ーのうち、外部に戻されるのに比べ、ディスク・エンク
ロージャ1に伝達される割合が小さいこと、■消散エネ
ルギーの全体に対する割合が大きいこと□である。■の
割合は、第1.第2部材11.12の主としてばね定数
によって決まり、■の割合は、第1.第2部材lL12
の主として減衰係数によって決まることになる。 ところで、第1.第2部材11.12の直径、厚さは、
ばね定数、減衰係数とともに、想定される環境に応じて
適宜、設計される。 第1図において、2層構造体10は、Z方向については
、引張、圧縮、剪断のすべてのばね定数をもち、X、Y
方向については、主として剪断のばね定数をもつ。した
がって、この2層構造体10の防振、緩衝効果には方向
性があり、その主方向はZ方向であると言える。 第2実施例について、第2図を参照しながら説明する。 この実施例では、2層構造体20が断面り形の短い部材
である。 第2図において、第1部材21.第2部材22ともL形
断面をもち、材料的にはそれぞれ第1実施例の第1部材
11.第2部材12と全く同じである。23は取付枠で
、2層構造体20をその両端部の内側に固着する。この
位置は、ディスク・エンクロージャ1の、対向する2辺
の両端部に当たる。 この場合、Z、X方向については、主として引張、圧縮
のばね定数をもち、Y方向については、主として剪断の
ばね定数をもつ。したがって、この2層構造体20の防
振、緩衝効果には若干方向性があり、その主方向はZ、
X方向である。 第3実施例について、第3図を参照しながら説明する。 この実施例では、2層構造体30が断面L形の隅部材で
ある。 第3図において、第1部材31.第2部材32ともL形
断面をもつ隅部材で、材料的にはそれぞれ第1実施例の
第1部材11.第2部材12と全く同じである。33は
板状部材を方形に折り曲げ形成した取付枠で、2層構造
体30をその4隅部に固着する。 この位置は、ディスク・エンクロージャ1の各隅部に相
当する。 この場合、x、y、z方向について、主として引張、圧
縮のばね定数をもつ。したがって、この2層構造体30
の防振、緩衝効果には方向性が少ない。 第4実施例について、第4図を参照しながら説明する。 この実施例では、2層構造体40が断面り形の長尺部材
である。 第4図において、第1部材41.第2部材42ともL形
断面の、方形に閉鎖形成された長尺部材で、材料的には
それぞれ第1実施例の第1部材11.第2部材12と全
く同じである。43は板状部材を方形に折り曲げ形成し
た取付枠で、2層構造体40をその内周面に固着する。 この位置は、ディスク・エンクロージャ1の底面の外周
部に相当する。 この場合、X、Y、Z方向について、主として引張、圧
縮のばね定数をもつ。したがって、この2層構造体30
の防振、緩衝効果には方向性が少なく、同時にその防振
、緩衝機能は第3実施例よりさらに向上している。
An embodiment of the invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the main parts of this first embodiment, in which numeral 1 indicated by two-dot chain lines indicates a disk enclosure, and numeral 2 indicates a base to which this is attached. Reference numeral 10 denotes a two-layer structure formed in a cylindrical shape, which is inserted and adhered to the four corners between the disk enclosure l and the base 2. This 2N structure 10 is constructed by laminating a first member 11 and a second member 12. First member 11. The first member 11 is both made of rubber and has a spring action and a damping action due to internal friction. Note that this damping effect is mainly based on so-called viscous damping, which is based on a damping force proportional to the vibration speed. However, the first member 11 has a high spring constant and a high damping coefficient, and the second member 12 has a low spring constant and a higher damping coefficient than the first member 11.
It is made of materials that have different properties and functions. The first member 11 needs to have a somewhat large spring constant in order to suppress the maximum displacement of the disk enclosure 1 to below an allowable limit when subjected to an external impact. Furthermore, the transmission rate of external vibrations to the disk enclosure 1 is suppressed to 1 or less, and the effect of vibration isolation can be enhanced. This is because, according to the theory of spring vibration, on the one hand, this transmissibility increases in proportion to the spring constant, but on the other hand, it decreases in inverse proportion to the square of the frequency of the vibration. This is because vibration absorption occurs due to the high damping coefficient. Note that this vibration absorption is due to interactions between rubber molecules and between rubber molecules and fillers. Since the second member 12 has a small spring constant, the transmission rate of external vibrations to the disk enclosure 1 tends to be kept low, even at low and medium frequency vibrations, and in addition, the damping coefficient is even larger. Greater vibration absorption occurs, further supporting the trend. However, since the spring constant is small against impact, the maximum displacement of the second member 12 is large (unavoidable). When the first member 11 and the second member 12 are laminated in two layers, As a result of combining the vibration and impact characteristics of each member,
It is possible to reduce the transmissibility of vibrations over a wide range of frequencies, and at the same time to alleviate the effects of shocks, thereby suppressing the maximum displacement below the permissible limit. Looking at the above from an energy perspective, it is as follows. When vibration or shock is applied to the two-layer structure 10 from the outside,
The energy is once absorbed inside the two-layer structure 10 as it deforms. This energy is divided into elastic energy and dissipated energy. The former elastic energy is reversible; on the one hand, it is returned to the outside;
On the other hand, it is transmitted to disk enclosure 1. The latter dissipated energy is irreversible and is dissipated as heat by doing work against internal friction. The important issues for vibration isolation and buffering effects are: ■ The proportion of elastic energy that is transmitted to the disk enclosure 1 is small compared to that returned to the outside, ■ The proportion of dissipated energy to the total is large □ be. ■The ratio of 1. It is determined mainly by the spring constant of the second member 11.12, and the ratio of ■ is determined by the spring constant of the second member 11.12. Second member LL12
is determined mainly by the damping coefficient. By the way, No. 1. The diameter and thickness of the second member 11.12 are:
The spring constant and damping coefficient are appropriately designed depending on the envisaged environment. In FIG. 1, the two-layer structure 10 has all spring constants for tension, compression, and shear in the Z direction, and
Regarding direction, it mainly has a shear spring constant. Therefore, it can be said that the vibration isolation and buffering effects of this two-layer structure 10 have directionality, and the main direction thereof is the Z direction. A second embodiment will be described with reference to FIG. In this embodiment, the two-layer structure 20 is a short member with a cross-sectional shape. In FIG. 2, first member 21. The second member 22 also has an L-shaped cross section, and is made of materials similar to the first member 11 of the first embodiment. It is exactly the same as the second member 12. 23 is a mounting frame, and the two-layer structure 20 is fixed to the inside of both ends thereof. This position corresponds to both ends of two opposing sides of the disk enclosure 1. In this case, the spring constants are mainly tensile and compressive in the Z and X directions, and the spring constants are mainly shear in the Y direction. Therefore, the vibration isolation and buffering effects of this two-layer structure 20 have some directionality, and the main directions are Z,
This is the X direction. A third embodiment will be described with reference to FIG. In this embodiment, the two-layer structure 30 is a corner member having an L-shaped cross section. In FIG. 3, first member 31. The second member 32 is also a corner member with an L-shaped cross section, and is made of materials similar to the first member 11 of the first embodiment. It is exactly the same as the second member 12. Reference numeral 33 denotes a mounting frame formed by bending a plate-like member into a rectangular shape, and the two-layer structure 30 is fixed to the four corners of the mounting frame. This position corresponds to each corner of the disk enclosure 1. In this case, the spring constants are mainly tensile and compressive in the x, y, and z directions. Therefore, this two-layer structure 30
There is little directionality in the anti-vibration and buffering effects. A fourth embodiment will be described with reference to FIG. In this embodiment, the two-layer structure 40 is an elongated member with a cross-sectional shape. In FIG. 4, first member 41. The second member 42 is a rectangular closed elongated member with an L-shaped cross section, and is made of materials similar to the first member 11 of the first embodiment. It is exactly the same as the second member 12. Reference numeral 43 denotes a mounting frame formed by bending a plate-like member into a rectangular shape, and the two-layer structure 40 is fixed to the inner peripheral surface of the mounting frame. This position corresponds to the outer periphery of the bottom surface of the disk enclosure 1. In this case, the spring constants are mainly tensile and compressive in the X, Y, and Z directions. Therefore, this two-layer structure 30
The anti-vibration and buffering effects have little directionality, and at the same time, the anti-vibration and buffering functions are further improved than in the third embodiment.

【発明の効果】【Effect of the invention】

以上説明したように、この発明においては、第1部材は
、その高ばね定数によって、衝撃に対する最大変位を許
容限度以下に抑えることができ、その高減衰係数によっ
て、特に高周波数の振動の伝達率を軽減させることがで
きる;第2部材は、その低ばね定数と、さらに高い減衰
係数とによって、とくに低・中周波数の振動の伝達率を
軽減させることができる;したがって全体として、低・
中・高周波数の振動に対し、その振動の伝達率を低減さ
せると同時に、衝撃に対し、これによる最大変位を許容
限度以下に抑えることができる。 したがって、この発明によれば、従来の技術に比べ次の
ようなすぐれた効果がある。 (1)外部からの振動の、磁気ディスク装置の本体部へ
の伝達率を低減させ、かつ衝撃の影響緩和、つまり衝撃
による最大変位を許容限度以下に抑えることができる。 その結果、磁気ディスク装置の動作信顧性を維持させ、
寿命を延ばす。 (2)手段が比較的簡単であるから、構造体の取付作業
も含めてコスト増分は少なくてすむ。 (3)実施態様によれば、引張、圧縮、剪断ばね定数比
に、つまり防振、緩衝効果に方向性をもたせたり、また
、逆に方向性を少なくしたりすることができるから、想
定される環境に適合した手段を講じうる。 (4)別の実施態様によれば、使用弾性材料がゴムであ
るから、■充填剤の種類と量との調整で希望のばね定数
と減衰係数とが得られやすく、■形状を比較的容易に選
べるから、3方向のばね定数比を適切に選ぶことができ
、■金属面と容易にかつ丈夫に接着できるから装置全体
が簡素にまとまる□などの特長がある。
As explained above, in the present invention, the first member has a high spring constant that can suppress the maximum displacement in response to an impact to below an allowable limit, and a high damping coefficient that allows the first member to reduce the transmission rate of vibrations, especially at high frequencies. Due to its low spring constant and even higher damping coefficient, the second member can reduce the transmission rate of vibrations, especially at low and medium frequencies;
It is possible to reduce the transmission rate of medium- and high-frequency vibrations, and at the same time to suppress the maximum displacement caused by shocks to below the permissible limit. Therefore, the present invention has the following superior effects compared to the conventional technology. (1) The transmission rate of external vibrations to the main body of the magnetic disk drive can be reduced, and the impact of impact can be reduced, that is, the maximum displacement due to impact can be suppressed to below the permissible limit. As a result, the operational reliability of the magnetic disk device is maintained,
Extend lifespan. (2) Since the means are relatively simple, the cost increase, including the work for attaching the structure, is small. (3) According to the embodiment, it is possible to give directionality to the tension, compression, and shear spring constant ratios, that is, to the vibration isolation and cushioning effects, or conversely, to reduce the directionality. Measures suitable for the environment can be taken. (4) According to another embodiment, since the elastic material used is rubber, ■ it is easy to obtain the desired spring constant and damping coefficient by adjusting the type and amount of filler, and ■ it is relatively easy to shape. The spring constant ratio in three directions can be selected appropriately, and the device can be easily and firmly bonded to metal surfaces, making the entire device simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る第1実施例の要部の斜視図、 第2図はこの第2実施例の要部の斜視図、第3図はこの
第3実施例の要部の斜視図、第4図はこの第4実施例の
要部の斜視図である。 符号説明 1:ディスク・エンクロージャ、2:基台、10.20
,30,40  : 2層構造体、11.21,31,
41  :第1部材、12.22,32,42  :第
2部材、23,33,43 :取付枠。 −1¥12目 2.%請書体 晃3肥 第4閾
Fig. 1 is a perspective view of the main parts of the first embodiment of the present invention, Fig. 2 is a perspective view of the main parts of the second embodiment, and Fig. 3 is a perspective view of the main parts of the third embodiment. , FIG. 4 is a perspective view of the main parts of this fourth embodiment. Code explanation 1: Disk enclosure, 2: Base, 10.20
,30,40: Two-layer structure, 11.21,31,
41: First member, 12.22, 32, 42: Second member, 23, 33, 43: Mounting frame. -1¥12 eyes 2. %Chosho Tai Ko 3 Hi 4th Threshold

Claims (1)

【特許請求の範囲】 1)ディスク・エンクロージャとこれを取り付ける基台
との間に、高ばね定数と高減衰係数とをもつ弾性材料か
らなる第1の部材と、低ばね定数と前記より高い減衰係
数とをもつ弾性材料からなる第2の材料とを積層してな
る2層構造体を挿着することを特徴とする磁気ディスク
装置。 2)特許請求の範囲第1項記載の装置において、2層構
造体が、ディスク・エンクロージャの外部底面と基台の
取付面との間に分布、挿着される柱状体であることを特
徴とする磁気ディスク装置。 3)特許請求の範囲第1項記載の装置において、2層構
造体が、ディスク・エンクロージャ外部底面の稜線を折
り線として折り曲げ挿着されるL形体であることを特徴
とする磁気ディスク装置。 4)特許請求の範囲第3項記載の装置において、L形体
が、前記稜線にそって分布、配置されることを特徴とす
る磁気ディスク装置。 5)特許請求の範囲第3項記載の装置において、L形体
が、前記稜線にそって連続的に配置されることを特徴と
する磁気ディスク装置。 6)特許請求の範囲第1項ないし第5項のいずれかの項
に記載の装置において、弾性材料が、ゴムであることを
特徴とする磁気ディスク装置。
[Claims] 1) A first member made of an elastic material having a high spring constant and a high damping coefficient, and a first member made of an elastic material having a low spring constant and a higher damping coefficient than the first member, between the disk enclosure and the base to which the disk enclosure is attached. A magnetic disk device characterized in that a two-layer structure formed by laminating a second material made of an elastic material having a coefficient of elasticity is inserted. 2) The device according to claim 1, characterized in that the two-layer structure is a columnar body distributed and inserted between the external bottom surface of the disk enclosure and the mounting surface of the base. magnetic disk device. 3) A magnetic disk drive according to claim 1, wherein the two-layer structure is an L-shaped structure that is inserted by being bent along the ridge line of the outer bottom surface of the disk enclosure. 4) A magnetic disk drive according to claim 3, wherein the L-shaped bodies are distributed and arranged along the ridgeline. 5) A magnetic disk drive according to claim 3, wherein the L-shaped bodies are arranged continuously along the ridgeline. 6) A magnetic disk device according to any one of claims 1 to 5, wherein the elastic material is rubber.
JP3676187A 1987-02-19 1987-02-19 Magnetic disk device Pending JPS63204580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3676187A JPS63204580A (en) 1987-02-19 1987-02-19 Magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3676187A JPS63204580A (en) 1987-02-19 1987-02-19 Magnetic disk device

Publications (1)

Publication Number Publication Date
JPS63204580A true JPS63204580A (en) 1988-08-24

Family

ID=12478733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3676187A Pending JPS63204580A (en) 1987-02-19 1987-02-19 Magnetic disk device

Country Status (1)

Country Link
JP (1) JPS63204580A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666239A (en) * 1995-12-14 1997-09-09 Seagate Technology, Inc. Laminated base deck for a disc drive
US5673158A (en) * 1994-07-20 1997-09-30 Nec Corportion Shock absorbing device for a magnetic disk drive
US5703734A (en) * 1994-10-12 1997-12-30 International Business Machines Corporation Disc drive having an integral gasket and continuous outer perimeter shock bumper
US5721457A (en) * 1995-04-28 1998-02-24 International Business Machines Corporation Shock isolation system with write inhibit
KR100594288B1 (en) 2004-07-14 2006-06-30 삼성전자주식회사 Shock-absorbing member and hard disc drive therewith
KR100665025B1 (en) 2005-07-18 2007-01-09 삼성전자주식회사 Assembly for installing a disc drive device and damper
US7312949B2 (en) 2003-10-22 2007-12-25 Seagate Technology Llc Base deck with overmolded elastomeric and rigid structural components

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673158A (en) * 1994-07-20 1997-09-30 Nec Corportion Shock absorbing device for a magnetic disk drive
US5703734A (en) * 1994-10-12 1997-12-30 International Business Machines Corporation Disc drive having an integral gasket and continuous outer perimeter shock bumper
US5760998A (en) * 1994-10-12 1998-06-02 International Business Machines Corporation Disk drive with rotatable bumper blocks
US5721457A (en) * 1995-04-28 1998-02-24 International Business Machines Corporation Shock isolation system with write inhibit
US5666239A (en) * 1995-12-14 1997-09-09 Seagate Technology, Inc. Laminated base deck for a disc drive
US7312949B2 (en) 2003-10-22 2007-12-25 Seagate Technology Llc Base deck with overmolded elastomeric and rigid structural components
KR100594288B1 (en) 2004-07-14 2006-06-30 삼성전자주식회사 Shock-absorbing member and hard disc drive therewith
KR100665025B1 (en) 2005-07-18 2007-01-09 삼성전자주식회사 Assembly for installing a disc drive device and damper

Similar Documents

Publication Publication Date Title
JP5172672B2 (en) Seismic isolation device
US4923057A (en) Electrorheological fluid composite structures
TWI471490B (en) Damper equipment
JPH0571566A (en) Isolator-installed assembly
JP4810646B2 (en) Vibration suppression device
JP2000291712A (en) Damping structure for bolt junction part
JPS59110929A (en) Shock absorber
JPS63204580A (en) Magnetic disk device
WO2018183400A1 (en) A continuous framework for shock, vibration and thermal isolation and motion accommodation
JPH1130279A (en) Base isolator
JP2007078122A (en) Vibration damper
JP2021095925A (en) Anti-vibration device for mounting precision instrument
JP5105875B2 (en) Method and apparatus for vibration filtering and damping
Renninger Understanding damping techniques for noise and vibration control
JPH03209033A (en) Damping device
JP2584097B2 (en) Recording / reproducing apparatus, coulomb damper, and vibration isolation method
JPS62220734A (en) Vibrational energy absorbing device
KR970005011B1 (en) Vibration-proof structure
JP4299695B2 (en) Vibration reduction device
JP2007247833A (en) Base isolation device
KR102480668B1 (en) System for damping seismic energy
JP2014222095A (en) Friction damper
JPH0768801B2 (en) Surrounding seismic isolation device
JP2000314448A (en) Base isolation device
JP2014149027A (en) Spring device and vibration insulation device