JP7017210B2 - Seismic isolation steel damper - Google Patents

Seismic isolation steel damper Download PDF

Info

Publication number
JP7017210B2
JP7017210B2 JP2019093631A JP2019093631A JP7017210B2 JP 7017210 B2 JP7017210 B2 JP 7017210B2 JP 2019093631 A JP2019093631 A JP 2019093631A JP 2019093631 A JP2019093631 A JP 2019093631A JP 7017210 B2 JP7017210 B2 JP 7017210B2
Authority
JP
Japan
Prior art keywords
seismic isolation
plate
steel damper
pair
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019093631A
Other languages
Japanese (ja)
Other versions
JP2020041691A (en
Inventor
進 桑原
祐紀 畑中
涼太 戸張
光寿 吉永
啓介 塩田
和明 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
JFE Civil Engineering and Construction Corp
Original Assignee
Osaka University NUC
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, JFE Civil Engineering and Construction Corp filed Critical Osaka University NUC
Publication of JP2020041691A publication Critical patent/JP2020041691A/en
Application granted granted Critical
Publication of JP7017210B2 publication Critical patent/JP7017210B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

特許法第30条第2項適用 桑原 進、畑中 祐紀、戸張 涼太、吉永 光寿、塩田 啓介、宮川 和明、玉村 典士、平山 達規、曲げ加工された鋼板を用いた免震構造用履歴型ダンパーの力学性状(その1-その3)、一般社団法人日本建築学会 2018年度大会(東北)学術講演梗概集 建築デザイン発表梗概集、一般社団法人日本建築学会発行、平成30年7月20日発行、第769-774ページにて公開。Application of Article 30, Paragraph 2 of the Patent Law Susumu Kuwahara, Yuki Hatanaka, Ryota Tohari, Mitsutoshi Yoshinaga, Keisuke Shioda, Kazuaki Miyakawa, Norishi Tamamura, Tatsunori Hirayama, History type damper for seismic isolation structure using bent steel plate Mechanical Properties (Part 1-Part 3), Architectural Institute of Japan 2018 Conference (Tohoku) Academic Lecture Abstracts, Architectural Design Presentation Abstracts, Architectural Institute of Japan, July 20, 2018, No. Published on pages 769-774.

本発明は免震用鋼材ダンパー、特に、建築構造物や土木構造物に設置されて地震や風等の外力によるエネルギを吸収する免震用鋼材ダンパーに関する。 The present invention relates to a seismic isolation steel damper, particularly a seismic isolation steel damper installed in a building structure or a civil engineering structure to absorb energy due to an external force such as an earthquake or wind.

従来、建築構造物や土木構造物を地震から保護する免震ダンパーとして、高さを低く抑え、大変形を繰り返しても形状が変化せず、容易・安価に製造する発明が提案されていた(例えば、特許文献1参照)。 Conventionally, as a seismic isolation damper that protects building structures and civil engineering structures from earthquakes, an invention has been proposed in which the height is kept low, the shape does not change even after repeated large deformations, and the manufacturing is easy and inexpensive. For example, see Patent Document 1).

特開2003-206987号公報(第3-4頁、図2)Japanese Patent Application Laid-Open No. 2003-206987 (Page 3-4, FIG. 2)

特許文献1に開示された発明(免震用ダンパー)は、一対のベースプレートの間に、U字状のダンパー本体を放射方向に複数配置したものである。すなわち、ダンパー本体は、一対の互いに平行な水平部分と、水平部分を連結する略円弧部分とを具備している。このため、地震力によってベースプレートの間に相対変位が生じた際、略円弧部分の一方の水平部分寄りの範囲が曲げられ、略円弧部分の他方の水平部部寄りの範囲が曲げ戻されるため、曲げ方向変形によってエネルギを吸収していた。
このとき、相対変位の方向に対して垂直方向に配置されたダンパー本体は、せん断方向変形するものの、せん断方向変形によるエネルギの吸収量が少ないという問題を発明者等は解析によって明らかにした。
In the invention disclosed in Patent Document 1 (seismic isolation damper), a plurality of U-shaped damper bodies are arranged in the radial direction between a pair of base plates. That is, the damper main body includes a pair of horizontal portions parallel to each other and a substantially arc portion connecting the horizontal portions. Therefore, when a relative displacement occurs between the base plates due to seismic force, the range of the substantially arc portion near the horizontal portion is bent, and the range of the substantially arc portion near the other horizontal portion is bent back. Energy was absorbed by the bending direction deformation.
At this time, the inventors have clarified by analysis that the damper body arranged in the direction perpendicular to the direction of the relative displacement deforms in the shear direction, but the amount of energy absorbed by the deformation in the shear direction is small.

本発明は、このような問題を解消するものであり、せん断方向変形によってもエネルギを吸収することができる免震用鋼材ダンパーを提供することにある。 The present invention solves such a problem, and an object of the present invention is to provide a seismic isolation steel damper capable of absorbing energy even by deformation in the shear direction.

本発明に係る免震用鋼材ダンパーは、一対の基板と前記一対の基板の間に設置された免震板とを有し、前記免震板は、前記基板のそれぞれに固定された互いに平行な一対の水平部分と、前記水平部分のそれぞれにつながって、前記水平部分から離れる程互いに近接する一対の傾斜部分と、前記傾斜部分のそれぞれに滑らかにつながった鉛直部分とを具備し、前記傾斜部分は側面視直線状をなし、前記免震板の板幅bと板厚tとの関係が、
板幅b/板厚t≧12.5であることを特徴とする。
また、本発明に係る免震用鋼材ダンパーは、一対の基板と前記一対の基板の間に設置された免震板とを有し、前記免震板は、前記基板のそれぞれに固定された互いに平行な一対の水平部分と、前記水平部分のそれぞれにつながって、前記水平部分から離れる程互いに近接する一対の傾斜部分と、前記傾斜部分のそれぞれをつなぐ略円弧部分とを具備し、前記傾斜部分は側面視直線状をなし、前記免震板の板幅bと板厚tとの関係が、
板幅b/板厚t≧12.5であることを特徴とする。
さらに、前記免震板は、曲げ加工された鋼板であることを特徴とする。
さらに、前記免震板は、十字状に設置されていることを特徴とする。
さらに、免震板の幅が、端部に向かって減少し、隣接する免震板との重なり幅b1と板幅bの間に、b1<bの関係をもつこともできる。
さらに、一対の前記免震板と、隣接する他の一対の前記免震板との重なり部分が平面視略矩形をなし、該重なり部分の隅部に位置する前記免震板同士は互いに縁を切ることもできる。
さらに、一対の前記免震板と、隣接する他の一対の前記免震板との重なり部分が平面視略矩形をなし、前記免振板の一方は、前記重なり部分の隅部近傍が、他方の前記免震板から離間するように折り曲げることもできる。
さらに、前記免震板の側面部の幅が他の部分に比べて小さくすることもできる。
さらに、前記免震板の側面部の幅が他の部分に比べて大きくすることもできる。
さらに、前記免震板の側面部に孔を開けることもできる。
さらに、前記免震板の側面部を増厚することもできる。
The seismic isolation steel damper according to the present invention has a pair of substrates and a seismic isolation plate installed between the pair of substrates, and the seismic isolation plates are fixed to each of the substrates and are parallel to each other. A pair of horizontal portions, a pair of inclined portions connected to each of the horizontal portions and close to each other as they are separated from the horizontal portion, and a vertical portion smoothly connected to each of the inclined portions are provided. Has a linear shape in the side view, and the relationship between the plate width b and the plate thickness t of the seismic isolation plate is
It is characterized in that the plate width b / plate thickness t ≧ 12.5 .
Further, the seismic isolation steel damper according to the present invention has a pair of substrates and a seismic isolation plate installed between the pair of substrates, and the seismic isolation plates are fixed to each other fixed to each other. A pair of parallel horizontal portions, a pair of inclined portions connected to each of the horizontal portions and close to each other as they are separated from the horizontal portion, and a substantially arc portion connecting each of the inclined portions are provided, and the inclined portion is provided. Has a linear side view , and the relationship between the plate width b and the plate thickness t of the seismic isolation plate is
It is characterized in that the plate width b / plate thickness t ≧ 12.5 .
Further, the seismic isolation plate is characterized by being a bent steel plate.
Further, the seismic isolation plate is characterized in that it is installed in a cross shape.
Further, the width of the seismic isolation plate decreases toward the end portion, and it is possible to have a relationship of b1 <b between the overlapping width b1 and the plate width b with the adjacent seismic isolation plate.
Further, the overlapping portion of the pair of the seismic isolation plates and the adjacent pair of the seismic isolation plates forms a substantially rectangular shape in a plan view, and the seismic isolation plates located at the corners of the overlapping portions have edges with each other. You can also cut it.
Further, the overlapping portion of the pair of the seismic isolation plates and the adjacent pair of the seismic isolation plates forms a substantially rectangular shape in a plan view, and one of the vibration isolation plates has the vicinity of the corner of the overlapping portion the other. It can also be bent so as to be separated from the seismic isolation plate.
Further, the width of the side surface portion of the seismic isolation plate can be made smaller than that of other portions.
Further, the width of the side surface portion of the seismic isolation plate can be made larger than that of other portions.
Further, a hole can be made in the side surface portion of the seismic isolation plate.
Further, the side surface portion of the seismic isolation plate can be thickened.

本発明に係る免震用鋼材ダンパーは、水平部分から離れる程互いに近接する一対の傾斜部分を具備するから、せん断方向変形によるエネルギの吸収量が多い(これについては、別途詳細に説明する)。また、免震板は曲げ加工された鋼板であるから、製造コストを抑えることができる。さらに、免震板は十字状に設置されているから、何れの方向に地震力が作用しても、せん断方向変形と曲げ方向変形との両方によってエネルギを吸収することができる。 Since the seismic isolation steel damper according to the present invention includes a pair of inclined portions that are closer to each other as the distance from the horizontal portion increases, a large amount of energy is absorbed due to deformation in the shear direction (this will be described in detail separately). Further, since the seismic isolation plate is a bent steel plate, the manufacturing cost can be suppressed. Furthermore, since the seismic isolation plate is installed in a cross shape, energy can be absorbed by both shearing direction deformation and bending direction deformation regardless of the direction in which the seismic force acts.

本発明の実施の形態1に係る免震用鋼材ダンパーを説明するものであって、図1の(a)は全体を示す斜視図、図1の(b)は部材を離して示す斜視図である。The seismic isolation steel damper according to the first embodiment of the present invention will be described. FIG. 1 (a) is a perspective view showing the whole, and FIG. 1 (b) is a perspective view showing members separated from each other. be. 本発明の実施の形態1に係る免震用鋼材ダンパーを説明する解析モデルを示す側面図である。It is a side view which shows the analysis model explaining the seismic isolation steel material damper which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る免震用鋼材ダンパーを説明するものであって、図3の(a)は解析に用い鋼材の材料特性を示す真応力-真塑性歪関係を示す線図、図3の(b)は解析における全塑性耐力の定義を説明する荷重-変位線図である。The seismic isolation steel damper according to the first embodiment of the present invention will be described, and FIG. 3 (a) is a diagram showing a true stress-true plastic strain relationship showing the material properties of the steel used for analysis. FIG. 3B is a load-displacement diagram illustrating the definition of total plastic strength in the analysis. 本発明の実施の形態1に係る免震用鋼材ダンパーを説明するものであって、図4の(a)はモデルA1を載荷した際の荷重-変形曲線、図4の(b)はモデルB0を載荷した際の荷重-変形曲線、図4の(c)はモデルA1およびモデルB0のせん断方向耐力Rsおよび曲げ方向耐力Rmを比較した耐力-幅厚比曲線である。The seismic isolation steel damper according to the first embodiment of the present invention will be described. FIG. 4 (a) is a load-deformation curve when model A1 is loaded, and FIG. 4 (b) is model B0. The load-deformation curve when loaded, and FIG. 4 (c) is a proof stress-width-thickness ratio curve comparing the shear strength Rs and the bending direction proof stress Rm of the models A1 and B0. 本発明の実施の形態1に係る免震用鋼材ダンパーを説明する相当塑性歪の分布を示すものであって、図5の(a)はモデルA1をせん断方向に載荷した際の分布図、図5の(b)はモデルA1を曲げ方向に載荷した際の分布図、図5の(c)はモデルB0をせん断方向に載荷した際の分布図、図5の(d)はモデルB0を曲げ方向に載荷した際の分布図である。The distribution of equivalent plastic strain for explaining the seismic isolation steel damper according to the first embodiment of the present invention is shown, and FIG. 5A shows a distribution diagram and a diagram when model A1 is loaded in the shear direction. 5 (b) is a distribution map when model A1 is loaded in the bending direction, FIG. 5 (c) is a distribution map when model B0 is loaded in the shear direction, and FIG. 5 (d) is a bending map of model B0. It is a distribution map when loaded in the direction. 本発明の実施の形態1に係る免震用鋼材ダンパーを説明する傾斜角の効果を示すせん断方向変形した際の相当塑性歪の分布を示す分布図であって、図6の(a)はモデルB1(θ=0°)、図6の(b)はモデルC1(θ=7.1°)、図6の(c)はモデルA1(θ=14.0°)、図6の(d)はモデルC2(θ=20.6°)である。It is a distribution map which shows the distribution of the equivalent plastic strain at the time of the shear direction deformation which shows the effect of the inclination angle explaining the seismic isolation steel material damper which concerns on Embodiment 1 of this invention, and (a) of FIG. 6 is a model. B1 (θ = 0 °), (b) in FIG. 6 is model C1 (θ = 7.1 °), (c) in FIG. 6 is model A1 (θ = 14.0 °), (d) in FIG. Is a model C2 (θ = 20.6 °). 本発明の実施の形態1に係る免震用鋼材ダンパーを説明する傾斜角の効果を示すものであって、図7の(a)はせん断方向変形した際の中央線11における相当塑性歪の分布を示す分布図、図7の(b)はせん断方向変形した際の荷重-変形曲線、図7の(c)は全塑性耐力-傾斜角の関係を示す関係図、図7の(d)相当塑性歪と傾斜角との関係を示す関係図である。The effect of the inclination angle for explaining the seismic isolation steel damper according to the first embodiment of the present invention is shown, and FIG. 7A shows the distribution of equivalent plastic strain at the center line 11 when deformed in the shear direction. FIG. 7 (b) is a load-deformation curve when deformed in the shear direction, FIG. 7 (c) is a relationship diagram showing the relationship between total plastic proof stress and tilt angle, and FIG. 7 (d) is equivalent. It is a relational diagram which shows the relationship between a plastic strain and an inclination angle. 本発明の実施の形態1に係る免震用鋼材ダンパーを説明する鉛直部分の長さの効果を示すせん断方向変形した際の相当塑性歪の分布を示す分布図であって、図8の(a)はモデルA0(f=0mm)、図8の(b)はモデルA1(f=150mm)、図8の(c)はモデルA2(f=250mm)、図8の(d)はモデルB0(f=0mm)、図8の(e)はモデルB1(f=150mm)、図8の(f)はモデルB2(f=250mm)である。It is a distribution map which shows the distribution of the equivalent plastic strain at the time of the shear direction deformation which shows the effect of the length of the vertical part explaining the seismic isolation steel material damper which concerns on Embodiment 1 of this invention, is (a) of FIG. ) Is model A0 (f = 0 mm), FIG. 8 (b) is model A1 (f = 150 mm), FIG. 8 (c) is model A2 (f = 250 mm), and FIG. 8 (d) is model B0 (). f = 0 mm), FIG. 8 (e) is model B1 (f = 150 mm), and FIG. 8 (f) is model B2 (f = 250 mm). 本発明の実施の形態1に係る免震用鋼材ダンパーを説明する鉛直部分の長さの効果を示すものであって、図9の(a)はせん断方向変形した際の中央線11における相当塑性歪の分布を示す分布図、図9の(b)はせん断方向変形した際の荷重-変形曲線、図9の(c)は全塑性耐力-傾斜角の関係を示す関係図、図9の(d)相当塑性歪と傾斜角との関係を示す関係図である。The effect of the length of the vertical portion for explaining the seismic isolation steel damper according to the first embodiment of the present invention is shown, and FIG. 9A shows the equivalent plasticity at the center line 11 when deformed in the shear direction. A distribution map showing the strain distribution, FIG. 9 (b) is a load-deformation curve when deformed in the shear direction, FIG. 9 (c) is a relationship diagram showing the relationship between total plastic proof stress and tilt angle, and FIG. 9 ( d) It is a relational figure which shows the relationship between the equivalent plastic strain and the inclination angle. 本発明の変形例に係る免震用鋼材ダンパーの平面図である。It is a top view of the seismic isolation steel damper which concerns on the modification of this invention. 本発明の変形例に係る免震用鋼材ダンパーの、上段から部分平面図、ヒステリシスループ図及び実験写真である。It is a partial plan view, a hysteresis loop diagram, and an experimental photograph from the upper part of the seismic isolation steel material damper which concerns on the modification of this invention. 本発明のその他の変形例に係る免震用鋼材ダンパーの平面図である。It is a top view of the seismic isolation steel damper which concerns on other modification of this invention. 図12に示す免震用鋼材ダンパーの斜視分解図である。It is a perspective exploded view of the seismic isolation steel damper shown in FIG. 本発明のその他の変形例に係る免震用鋼材ダンパーの側面図及び荷重-変位図である。It is a side view and the load-displacement figure of the seismic isolation steel damper which concerns on other modification of this invention. 本発明のその他の変形例に係る免震用鋼材ダンパーの側面図及び荷重-変位図である。It is a side view and the load-displacement figure of the seismic isolation steel damper which concerns on other modification of this invention.

以下、発明を実施するための形態(以下、「実施の形態」という)を、図面を参照しつつ説明する。なお、各図は模式的に描かれたものであって、本発明は図示された形態(部位の形状や個数等)に限定されるものではない。また、図面が煩雑になるのを避けるため、一部の部材や一部の符号の記載を省略する場合がある。 Hereinafter, embodiments for carrying out the invention (hereinafter referred to as “embodiments”) will be described with reference to the drawings. It should be noted that each figure is schematically drawn, and the present invention is not limited to the illustrated form (shape, number, etc. of parts). Further, in order to avoid complicating the drawings, some members and some reference numerals may be omitted.

[実施の形態1]
(免震用鋼材ダンパー)
図1は本発明の実施の形態1に係る免震用鋼材ダンパーを説明するものであって、図1の(a)は全体を示す斜視図、図1の(b)は部材を離して示す斜視図である。
図1の(a)および(b)において、免震用鋼材ダンパー100は面対称であって、建築構造物や土木構造物等の上部構造物(図示しない)側に固定される上基板20と地盤に設置された下部構造物(図示しない)側に固定される下基板30と、上基板20と下基板30との間に配置された免震板10a、10b、10c、10dとを有している。
上基板20および下基板30は円形板であって、荷重(変形)を受ける前は、上基板20の中心軸21と下基板30の中心軸31とは一致している。また、中心軸21の方向を「Z軸」または「Z方向」と称し、上基板20の方向を「上」または「上方」と、下基板30の方向を「下」または「下方」と称す。
免震板10a、10b、10c、10dは十字方向に配置され、何れも同じ構成であるから、以下、共通する内容の説明においては、符号に付した添え字「a、b、c、d」の記載を省略する。
[Embodiment 1]
(Seismic isolation steel damper)
1A and 1B explain the seismic isolation steel damper according to the first embodiment of the present invention, FIG. 1A is a perspective view showing the whole, and FIG. 1B is a member separated from each other. It is a perspective view.
In FIGS. 1A and 1B, the seismic isolation steel damper 100 is plane-symmetrical and has an upper substrate 20 fixed to a superstructure (not shown) such as a building structure or a civil engineering structure. It has a lower substrate 30 fixed to the side of a lower structure (not shown) installed on the ground, and seismic isolation plates 10a, 10b, 10c, and 10d arranged between the upper substrate 20 and the lower substrate 30. ing.
The upper substrate 20 and the lower substrate 30 are circular plates, and before receiving a load (deformation), the central axis 21 of the upper substrate 20 and the central axis 31 of the lower substrate 30 coincide with each other. Further, the direction of the central axis 21 is referred to as "Z axis" or "Z direction", the direction of the upper substrate 20 is referred to as "up" or "upper", and the direction of the lower substrate 30 is referred to as "down" or "downward". ..
Since the seismic isolation plates 10a, 10b, 10c, and 10d are arranged in the cross direction and all have the same configuration, the subscripts "a, b, c, d" attached to the reference numerals are given below in the description of the common contents. The description of is omitted.

(免震板)
免震板10(免震板10a等を総称している)は、所定の幅(b)である矩形状の鋼板を曲げ加工して形成されたものであって、Z軸に垂直な仮想面(以下「対称面」と称す)に対して面対称になっている。すなわち、上基板20に設置される上水平部分1と、上水平部分1に上端部12においてつながって上水平部1分から離れる程下方になる上傾斜部分2と、下基板30に設置される下水平部分7と、下水平部分7に下端部13においてつながって下水平部分7から離れる程上方になる下傾斜部分6と、上傾斜部分2に上円弧部分3を介しておよび下傾斜部分6に下円弧部分5を介して滑らかにつながり、Z軸に平行な鉛直部分4とを有している。すなわち、上傾斜部分2と下傾斜部分6とはZ軸から離れる程互いに近接している。そして、鉛直部分4の上下方向の中央、すなわち鉛直部分4と対称面とが交差する仮想線(一点鎖線にて示す)を「中央線11」とする。
(Seismic isolation plate)
The seismic isolation plate 10 (general term for the seismic isolation plate 10a and the like) is formed by bending a rectangular steel plate having a predetermined width (b), and is a virtual surface perpendicular to the Z axis. It is plane symmetric with respect to (hereinafter referred to as "symmetric plane"). That is, the upper horizontal portion 1 installed on the upper board 20, the upper inclined portion 2 connected to the upper horizontal portion 1 at the upper end portion 12 and lowered as the distance from the upper horizontal portion 1 minute, and the lower portion installed on the lower substrate 30. The horizontal portion 7 and the lower inclined portion 6 connected to the lower horizontal portion 7 at the lower end portion 13 and become upward as the distance from the lower horizontal portion 7 increases, and the upper inclined portion 2 via the upper arc portion 3 and the lower inclined portion 6 It has a vertical portion 4 that is smoothly connected via the lower arc portion 5 and is parallel to the Z axis. That is, the upwardly inclined portion 2 and the downwardly inclined portion 6 are closer to each other as they are farther from the Z axis. Then, the center of the vertical portion 4 in the vertical direction, that is, the virtual line (indicated by the alternate long and short dash line) at which the vertical portion 4 and the plane of symmetry intersect is referred to as the "center line 11."

以下の説明の便宜上、免震板10aについて、鉛直部分4aに垂直な方向を「X軸」または「X方向」と、X軸およびZ軸に垂直な方向を「Y軸」または「Y方向」と称すと、免震板10aにおける中央線11a、上端部12aおよび下端部13aは何れもY軸に平行で、鉛直部分4aは「Y-Z面」に位置している。このとき、免震板10bについては、鉛直部分4bが「X-Z面」に位置し、中央線11bがX方向である。
なお、本発明は、鋼板の幅(b)、上傾斜部分2と下傾斜部分6とがなす角度(2θ、図2参照)、鉛直部分4の長さ(f)、上円弧部分3および下円弧部分5の大きさを限定するものではなく、鉛直部分4については長さが0(ゼロ)であって、上円弧部分3および下円弧部分5によって大きな略円弧部分が形成されてもよい。
For convenience of the following description, for the seismic isolation plate 10a, the direction perpendicular to the vertical portion 4a is "X-axis" or "X-direction", and the direction perpendicular to the X-axis and Z-axis is "Y-axis" or "Y-direction". The central line 11a, the upper end portion 12a, and the lower end portion 13a of the seismic isolation plate 10a are all parallel to the Y axis, and the vertical portion 4a is located on the "YZ plane". At this time, with respect to the seismic isolation plate 10b, the vertical portion 4b is located on the "XX plane", and the center line 11b is in the X direction.
In the present invention, the width of the steel plate (b), the angle formed by the upward inclined portion 2 and the downward inclined portion 6 (2θ, see FIG. 2), the length of the vertical portion 4 (f), the upper arc portion 3 and the lower portion. The size of the arc portion 5 is not limited, and the length of the vertical portion 4 is 0 (zero), and a large substantially arc portion may be formed by the upper arc portion 3 and the lower arc portion 5.

(組み立て構造)
そして、互いに対向する免震板10aの上水平部分1aの端部と免震板10cの上水平部分1cの端部とが突き当てられ、互いに対向する免震板10bの上水平部分1b(図示しない)の端部と免震板10dの上水平部分1d(図示しない)の端部とが突き当てられ、前者の突き当て部と後者の突き当て部とは十字状になっている。そして、上水平部分1aは上水平部分1bの一部および上水平部分1dの一部に重なって、高力ボルト90によって上基板20に接合されている。また、上水平部分1cは上水平部分1bの一部および上水平部分1dの一部に重なって、高力ボルト90によって上基板20に接合されている。
同様に、下水平部分7a、下水平部分7b(図示しない)、下水平部分7cおよび下水平部分7d(図示しない)も高力ボルト90によって下基板30に接合されている。
(Assembled structure)
Then, the end of the upper horizontal portion 1a of the seismic isolation plate 10a facing each other and the end of the upper horizontal portion 1c of the seismic isolation plate 10c are abutted against each other, and the upper horizontal portion 1b of the seismic isolation plate 10b facing each other (not shown). The end of the seismic isolation plate 10d and the end of the upper horizontal portion 1d (not shown) are abutted against each other, and the abutment portion of the former and the abutment portion of the latter form a cross shape. The upper horizontal portion 1a overlaps a part of the upper horizontal portion 1b and a part of the upper horizontal portion 1d, and is joined to the upper substrate 20 by a high-strength bolt 90. Further, the upper horizontal portion 1c overlaps a part of the upper horizontal portion 1b and a part of the upper horizontal portion 1d, and is joined to the upper substrate 20 by a high-strength bolt 90.
Similarly, the lower horizontal portion 7a, the lower horizontal portion 7b (not shown), the lower horizontal portion 7c, and the lower horizontal portion 7d (not shown) are also joined to the lower substrate 30 by the high-strength bolt 90.

(解析モデル)
図2および図3は本発明の実施の形態1に係る免震用鋼材ダンパーを説明するものであって、図2は解析モデルを示す側面図、図3の(a)は解析に用い鋼材の材料特性を示す真応力-真塑性歪関係を示す線図、図3の(b)は解析における全塑性耐力の定義を説明する荷重-変位線図である。
図2に示す免震板10の解析モデルについて免震用鋼材ダンパー100の作用効果を、解析ソフトとして汎用非線形構造解析プログラム「MSC.Marc2016」を使用して確認した。すなわち、免震板10を示すモデルは、モデルA0、モデルA1およびモデルA2(以下「グループA」と称す)と、モデルC1およびモデルC2であり、比較材を示すモデルは、モデルB0、モデルB1およびモデルB2(以下「グループB」と称す)である。
このとき、上傾斜部分2(下傾斜部分6)の傾斜角度(θ)が、モデルC1は7.1°、グループA(モデルA0、モデルA1およびモデルA2)は14.0°、モデルC2は20.6°であり、一方、比較材であるグループB(モデルB0、モデルB1およびモデルB2)の傾斜角度(θ)は0°、すなわち上傾斜部分2と下傾斜部分6とが平行になっている。また、モデルB0は鉛直部分4の長さ(f)が0mmで、上円弧部分3と下円弧部分5とがつながって大円弧部分8(図5の(d)参照)を形成している。
(Analysis model)
2 and 3 explain the seismic isolation steel damper according to the first embodiment of the present invention, FIG. 2 is a side view showing an analysis model, and FIG. 3A is a steel material used for analysis. A diagram showing a true stress-true plastic strain relationship showing material properties, and FIG. 3 (b) is a load-displacement diagram explaining the definition of total plastic proof stress in analysis.
Regarding the analysis model of the seismic isolation plate 10 shown in FIG. 2, the action and effect of the seismic isolation steel damper 100 was confirmed using the general-purpose nonlinear structural analysis program "MSC.Mark2016" as analysis software. That is, the models showing the seismic isolation plate 10 are model A0, model A1 and model A2 (hereinafter referred to as "group A"), and the models C1 and C2, and the models showing the comparative materials are model B0 and model B1. And model B2 (hereinafter referred to as "group B").
At this time, the inclination angle (θ) of the upper inclined portion 2 (lower inclined portion 6) is 7.1 ° for the model C1, 14.0 ° for the group A (model A0, model A1 and model A2), and the model C2. On the other hand, the inclination angle (θ) of the comparative group B (model B0, model B1 and model B2) is 0 °, that is, the upward inclined portion 2 and the downward inclined portion 6 are parallel to each other. ing. Further, in the model B0, the length (f) of the vertical portion 4 is 0 mm, and the upper arc portion 3 and the lower arc portion 5 are connected to form a great circle portion 8 (see (d) in FIG. 5).

(材料特性および全塑性耐力)
図3の(a)において、鋼板としてSN490を使用した。材料特性は弾塑性体であって、弾性域(ヤング係数205KN/mm,ポアソン比03)を過ぎると降伏域を示した後、加工硬化するとしている。なお、横軸は解析モデルに設定した真「塑性」歪であるため,弾性歪も別途考慮している。
図3の(b)において、荷重と変位の関係を示す曲線における接線の傾きを「剛性」と称すると、変形が進み塑性変形域が拡大するに伴って剛性は低下する。このとき、変形当初の剛性(以下「初期剛性K」と称す)に対して、剛性が初期剛性Kの10%にまで低下した際の荷重(「aQp」にて示す)を「全塑性耐力」と定義する。
(Material properties and total plastic strength)
In (a) of FIG. 3, SN490 was used as the steel plate. The material property is an elasto-plastic body, and when it exceeds the elastic region (Young's modulus 205KN / mm 2 , Poisson's ratio 03), it shows a yield region and then work hardening. Since the horizontal axis is the true "plastic" strain set in the analysis model, elastic strain is also considered separately.
In FIG. 3B, when the slope of the tangent line in the curve showing the relationship between the load and the displacement is referred to as "rigidity", the rigidity decreases as the deformation progresses and the plastic deformation region expands. At this time, the load (indicated by "aQp") when the rigidity is reduced to 10% of the initial rigidity K with respect to the rigidity at the initial deformation (hereinafter referred to as "initial rigidity K") is "total plastic strength". Is defined as.

(載荷方法)
載荷方法は、免震板10aについて、下水平部分7a(下基板30a)を完全固定して、上水平部分1a(上基板20a)をY方向に移動させて免震板10aを変形させ、このときの変形および全塑性耐力をそれぞれ「せん断方向変形」および「せん断方向耐力」と定義し、一方、X方向に移動させて免震板10aを変形させ、このときの変形および全塑性耐力をそれぞれ「曲げ方向変形」および「曲げ方向耐力」と定義する。
(Loading method)
The loading method is to completely fix the lower horizontal portion 7a (lower substrate 30a) of the seismic isolation plate 10a and move the upper horizontal portion 1a (upper substrate 20a) in the Y direction to deform the seismic isolation plate 10a. Deformation and total plastic strength at this time are defined as "shear direction deformation" and "shear direction strength", respectively, while the deformation and total plastic strength at this time are defined by moving in the X direction to deform the seismic isolation plate 10a, respectively. It is defined as "bending direction deformation" and "bending direction strength".

(せん断方向耐力および曲げ方向耐力)
図4は本発明の実施の形態1に係る免震用鋼材ダンパーを説明するものであって、図4の(a)はモデルA1(b=300mm)を載荷した際の荷重-変形曲線、図4の(b)はモデルB0(b=300mm)を載荷した際の荷重-変形曲線、図4の(c)はモデルA1およびモデルB0のせん断方向耐力Rsおよび曲げ方向耐力Rmを比較した耐力-幅厚比曲線である。
(Shear direction proof stress and bending direction proof stress)
FIG. 4 illustrates the seismic isolation steel damper according to the first embodiment of the present invention, and FIG. 4A shows a load-deformation curve when model A1 (b = 300 mm) is loaded. (B) of 4 is the load when the model B0 (b = 300 mm) is loaded-deformation curve, and (c) of FIG. It is a width-thickness ratio curve.

Figure 0007017210000001
Figure 0007017210000001

表1および図4の(c)において、モデルA1およびモデルB0について、せん断方向耐力Rsと曲げ方向耐力Rmとを比較している。このとき、本来の板幅300mmに板幅100mmおよび板幅500mmを追加し、図4の(c)における横軸を、板幅bの板厚tに対する割合(b/t、以下「幅厚比」と称す)にしている。
表1および図4の(c)より、グループAおよびグループB共、せん断方向耐力Rsの方が曲げ方向耐力Rmよりも大きく、せん断方向耐力Rsの曲げ方向耐力Rmに対する割合は、グループAの方がグループBよりも大きくなっている。また、板幅が広くなるほど、せん断方向耐力Rsおよび曲げ方向耐力Rm共増加しているが、曲げ方向耐力Rmについては、グループAおよびグループBとも同様に増加しているのに対し、せん断方向耐力Rsは、グループAの方がグループBよりも増加傾向が顕著になっている。
In Table 1 and FIG. 4 (c), the shear strength strength Rs and the bending direction yield strength Rm are compared with respect to the model A1 and the model B0. At this time, a plate width of 100 mm and a plate width of 500 mm are added to the original plate width of 300 mm, and the horizontal axis in FIG. 4 (c) is the ratio of the plate width b to the plate thickness t (b / t, hereinafter "width-thickness ratio". It is called).
From Table 1 and FIG. 4 (c), the shear strength Rs is larger than the bending strength Rm in both Group A and Group B, and the ratio of the shear strength Rs to the bending strength Rm is higher in Group A. Is larger than group B. Further, as the plate width becomes wider, both the shearing direction proof stress Rs and the bending direction proof stress Rm increase, but the bending direction proof stress Rm also increases in both Group A and Group B, whereas the shearing direction proof stress increases. The increasing tendency of Rs is more remarkable in group A than in group B.

(せん断方向および曲げ方向に載荷した際の相当塑性歪分布)
図5は本発明の実施の形態1に係る免震用鋼材ダンパーを説明する相当塑性歪の分布を示すものであって、図5の(a)はモデルA1をせん断方向に載荷した際の分布図、図5の(b)はモデルA1を曲げ方向に載荷した際の分布図、図5の(c)はモデルB0をせん断方向に載荷した際の分布図、図5の(d)はモデルB0を曲げ方向に載荷した際の分布図である。そして、各地点におけるミーゼスの塑性歪みを「相当塑性歪」と定義し、相当塑性歪が大きな値の地点ほど、濃い色に塗りつぶしている。
(Equivalent plastic strain distribution when loaded in shear and bending directions)
FIG. 5 shows the distribution of equivalent plastic strain for explaining the seismic isolation steel damper according to the first embodiment of the present invention, and FIG. 5A shows the distribution when the model A1 is loaded in the shear direction. FIG. 5 (b) is a distribution map when model A1 is loaded in the bending direction, FIG. 5 (c) is a distribution map when model B0 is loaded in the shear direction, and FIG. 5 (d) is a model. It is a distribution map when B0 is loaded in the bending direction. Then, the Mises plastic strain at each point is defined as "equivalent plastic strain", and the point where the equivalent plastic strain is larger is painted in a darker color.

図5の(a)において、モデルA1をせん断方向(Y方向)に載荷した際の相当塑性歪の分布は、相当塑性歪が広い範囲、すなわち、上傾斜部分2においては幅方向(X方向)の一方側から他方側に向かって略対角線状に、上円弧部分3においては幅方向の一方側に、鉛直部分4においては一方側から他方側に向かって略対角線状に、下円弧部分5においては幅方向の他方側に、下傾斜部分6においては幅方向の一方側から他方側に向かって略対角線状に生じている(かかる傾向は、板幅500mmにおいて顕著になるが図示しない)。
一方、モデルA1の曲げ方向を示す図5の(b)、モデルB0のせん断方向を示す図5の(c)およびモデルB0の曲げ方向を示す図5の(d)において、相当塑性歪がZ軸に近い範囲(上端部12に近い範囲および下端部13に近い範囲)に集中し、鉛直部分4および鉛直部分4に対応する円弧部分にはほとんど生じていない。
以上のように、モデルA1ではせん断方向の相当塑性歪が鉛直部分4にも分布することから、前記のように高いせん断方向耐力Rsが得られたと考えられる。
In FIG. 5A, the distribution of the equivalent plastic strain when the model A1 is loaded in the shear direction (Y direction) is in a wide range of the equivalent plastic strain, that is, in the width direction (X direction) in the upward inclined portion 2. Approximately diagonally from one side to the other, approximately diagonally from one side to the other in the vertical portion 4, on one side in the width direction in the upper arc portion 3, and in the lower arc portion 5. Is formed substantially diagonally from one side in the width direction to the other side in the downwardly inclined portion 6 on the other side in the width direction (this tendency becomes remarkable at a plate width of 500 mm, but is not shown).
On the other hand, in FIG. 5B showing the bending direction of the model A1, FIG. 5C showing the shearing direction of the model B0, and FIG. 5D showing the bending direction of the model B0, the equivalent plastic strain is Z. It is concentrated in a range close to the axis (a range close to the upper end portion 12 and a range close to the lower end portion 13), and hardly occurs in the vertical portion 4 and the arc portion corresponding to the vertical portion 4.
As described above, in the model A1, the equivalent plastic strain in the shear direction is also distributed in the vertical portion 4, and it is considered that the high shear strength Rs in the shear direction is obtained as described above.

(傾斜角の効果)
図6は本発明の実施の形態1に係る免震用鋼材ダンパーを説明する傾斜角の効果を示すせん断方向変形した際の相当塑性歪の分布を示す分布図であって、図6の(a)はモデルB1(θ=0°)、図6の(b)はモデルC1(θ=7.1°)、図6の(c)はモデルA1(θ=14.0°)、図6の(d)はモデルC2(θ=20.6°)である。
図6の(a)~(d)において、傾斜角θが小さい程、相当塑性歪が上端部12および下端部13に近い範囲に集中して、鉛直部分4に生じない傾向にある。反対に、傾斜角θが大きい程、相当塑性歪が上傾斜部分2および下傾斜部分6の幅方向の両側方に集中しながら広い範囲に分布して、鉛直部分4にも集中する傾向にある。
(Effect of tilt angle)
FIG. 6 is a distribution diagram showing the distribution of equivalent plastic strain when deformed in the shear direction showing the effect of the inclination angle for explaining the seismic isolation steel damper according to the first embodiment of the present invention, and is the distribution diagram of FIG. 6 (a). ) Is model B1 (θ = 0 °), FIG. 6 (b) is model C1 (θ = 7.1 °), and FIG. 6 (c) is model A1 (θ = 14.0 °), FIG. (D) is a model C2 (θ = 20.6 °).
In FIGS. 6A to 6D, the smaller the inclination angle θ, the more the equivalent plastic strain tends to be concentrated in the range closer to the upper end portion 12 and the lower end portion 13 and not to occur in the vertical portion 4. On the contrary, as the inclination angle θ is larger, the equivalent plastic strain tends to be distributed over a wide range while being concentrated on both sides of the upper inclined portion 2 and the lower inclined portion 6 in the width direction, and is also concentrated on the vertical portion 4. ..

図7は本発明の実施の形態1に係る免震用鋼材ダンパーを説明する傾斜角の効果を示すものであって、図7の(a)はせん断方向変形した際の中央線11における相当塑性歪の分布を示す分布図、図7の(b)はせん断方向変形した際の荷重-変形曲線、図7の(c)は全塑性耐力-傾斜角の関係を示す関係図、図7の(d)相当塑性歪と傾斜角との関係を示す関係図である。
図7の(a)において、中央線11における相当塑性歪は、傾斜角θが大きくなる程大きくなり、幅方向中央への集中が顕著になっている。
図7の(b)において、傾斜角θが大きくなる程、荷重の値が大きくなっている。
図7の(c)において、全塑性耐力も傾斜角θが大きくなる程、大きくなっている。
なお、中央線11における相当塑性歪の最大値を「最大中央歪εc」とし、上端部12(下端部13に同じ)における相当塑性歪の最大値を「最大上下端歪εe」とすると、図7の(d)に示すように、最大中央歪εcおよび最大上下端歪εe共、傾斜角θが大きくなる程増加しているが、後者の方が増加の程度が顕著になっている。このことは、中央線11における相当塑性歪の増加だけでなく、上端部12および下端部13に近い範囲における相当塑性歪の増加が、荷重の増加に寄与することを示している。
FIG. 7 shows the effect of the inclination angle for explaining the seismic isolation steel damper according to the first embodiment of the present invention, and FIG. 7A shows the equivalent plasticity at the center line 11 when deformed in the shear direction. A distribution map showing the strain distribution, FIG. 7 (b) is a load-deformation curve when deformed in the shear direction, FIG. 7 (c) is a relationship diagram showing the relationship between total plastic proof stress and tilt angle, and FIG. 7 ( d) It is a relational figure which shows the relationship between the equivalent plastic strain and the inclination angle.
In FIG. 7A, the equivalent plastic strain at the center line 11 increases as the inclination angle θ increases, and the concentration in the center in the width direction becomes remarkable.
In FIG. 7B, the larger the inclination angle θ, the larger the load value.
In FIG. 7 (c), the total plastic proof stress also increases as the inclination angle θ increases.
It should be noted that the maximum value of the equivalent plastic strain at the center line 11 is "maximum central strain εc", and the maximum value of the equivalent plastic strain at the upper end portion 12 (same as the lower end portion 13) is "maximum upper and lower end strain εe". As shown in (d) of 7, both the maximum central strain εc and the maximum upper and lower end strains εe increase as the inclination angle θ increases, but the degree of increase is more remarkable in the latter case. This indicates that not only the increase in the equivalent plastic strain at the center line 11 but also the increase in the equivalent plastic strain in the range close to the upper end portion 12 and the lower end portion 13 contributes to the increase in the load.

(鉛直部分の長さの効果)
図8は本発明の実施の形態1に係る免震用鋼材ダンパーを説明する鉛直部分の長さの効果を示すせん断方向変形した際の相当塑性歪の分布を示す分布図であって、図8の(a)はモデルA0(f=0mm)、図8の(b)はモデルA1(f=150mm)、図8の(c)はモデルA2(f=250mm)、図8の(d)はモデルB0(f=0mm)、図8の(e)はモデルB1(f=150mm)、図8の(f)はモデルB2(f=250mm)である。
図8の(a)~(f)において、モデルB0において、上端部12および下端部13に近い範囲に相当塑性歪の顕著な集中が見られ、その他のモデルには上傾斜部分2および下傾斜部分6の幅方向の側縁に相当塑性歪の集中が見られる。また、鉛直部分4については、モデルA1およびモデルA2に相当塑性歪が生じているが、モデルA0、モデルB0、モデルB1およびモデルB2には相当塑性歪が生じていない。
(Effect of length of vertical part)
FIG. 8 is a distribution diagram showing the distribution of equivalent plastic strain when deformed in the shear direction, which shows the effect of the length of the vertical portion for explaining the seismic isolation steel damper according to the first embodiment of the present invention. (A) is model A0 (f = 0 mm), FIG. 8 (b) is model A1 (f = 150 mm), FIG. 8 (c) is model A2 (f = 250 mm), and FIG. 8 (d) is. Model B0 (f = 0 mm), FIG. 8 (e) is model B1 (f = 150 mm), and FIG. 8 (f) is model B2 (f = 250 mm).
In FIGS. 8A to 8F, in model B0, a remarkable concentration of equivalent plastic strain is observed in a range close to the upper end portion 12 and the lower end portion 13, and in the other models, the upward inclination portion 2 and the downward inclination portion 2 and the downward inclination are observed. Concentration of considerable plastic strain can be seen on the side edges of the portion 6 in the width direction. Further, regarding the vertical portion 4, the model A1 and the model A2 have equivalent plastic strain, but the model A0, the model B0, the model B1 and the model B2 do not have the equivalent plastic strain.

図9は本発明の実施の形態1に係る免震用鋼材ダンパーを説明する鉛直部分の長さの効果を示すものであって、図9の(a)はせん断方向変形した際の中央線11における相当塑性歪の分布を示す分布図、図9の(b)はせん断方向変形した際の荷重-変形曲線、図9の(c)は全塑性耐力-傾斜角の関係を示す関係図、図9の(d)相当塑性歪と傾斜角との関係を示す関係図である。
図9の(a)および(b)において、モデルA0、グループAとグループBとの間に大きな相違が認められる。
図9の(c)において、鉛直部分4の長さfの大小によらず全塑性耐力は略一定の値になっている。
なお、図9の(d)において、図8からも推定されるように、最大中央歪εcはグループBでは略0(ゼロ)であり、グループAでも小さい値である。一方、最大上下端歪εeはグループBおよびグループA共、大きな値で、鉛直部分4の長さfが大きくなると減少している。
かかる傾向は、鉛直部分4の長さfの効果というよりも傾斜角θの効果と解するものと考えられる。
FIG. 9 shows the effect of the length of the vertical portion for explaining the seismic isolation steel damper according to the first embodiment of the present invention, and FIG. 9A shows the center line 11 when deformed in the shear direction. 9 (b) is a load-deformation curve when deformed in the shear direction, and 9 (c) is a relationship diagram showing the relationship between total plastic proof stress and tilt angle. 9 is a relationship diagram showing the relationship between (d) equivalent plastic strain and tilt angle of 9.
In FIGS. 9 (a) and 9 (b), a large difference is observed between model A0, group A and group B.
In (c) of FIG. 9, the total plastic proof stress is a substantially constant value regardless of the magnitude of the length f of the vertical portion 4.
In (d) of FIG. 9, as estimated from FIG. 8, the maximum central strain εc is approximately 0 (zero) in group B and is a small value in group A as well. On the other hand, the maximum upper and lower end strain εe is a large value in both group B and group A, and decreases as the length f of the vertical portion 4 increases.
It is considered that such a tendency is understood to be the effect of the inclination angle θ rather than the effect of the length f of the vertical portion 4.

(作用効果)
以上の解析から明らかになったように、免震用鋼材ダンパー100を構成する免震板10は、上水平部分1および下水平部分7から離れる程互いに近接する上傾斜部分2および下傾斜部分6を具備する(傾斜角θを具備する)から、せん断方向変形によるエネルギの吸収量が多い。また、免震板10は曲げ加工された鋼板であるから、製造コストを抑えることができる。さらに、免震板10は十字状に設置されているから、何れの方向に地震力が作用しても、せん断方向変形と曲げ方向変形との両方によってエネルギを吸収することができる。
(Action effect)
As is clear from the above analysis, the seismic isolation plate 10 constituting the seismic isolation steel damper 100 has the upper inclined portion 2 and the lower inclined portion 6 which are closer to each other as they are separated from the upper horizontal portion 1 and the lower horizontal portion 7. (It has an inclination angle θ), so that the amount of energy absorbed by the deformation in the shear direction is large. Further, since the seismic isolation plate 10 is a bent steel plate, the manufacturing cost can be suppressed. Further, since the seismic isolation plate 10 is installed in a cross shape, energy can be absorbed by both the shear direction deformation and the bending direction deformation regardless of the direction in which the seismic force acts.

(その他の変形例)
図10(a)乃至(d)に示す免震用鋼材ダンパー101乃至104のごとく、免震板の幅が、端部に向かって減少し、隣接する免震板との重なり幅b1と板幅bの間に、 b1<bの関係をもたせることもできる。免震板の上水平部分および下水平部分の端部において、板幅を減少させたものである。
斯かる変形例では、隣り合う免震板の水平部分の重なり範囲が小さくなり、繰り返し荷重に対して、水平部分の初期の面外変形の影響が減少するとともに、亀裂の発生を防止でき、安定したエネルギー吸収能を発揮することができる。
図11(a)上段に示す免震用鋼材ダンパー105は、一対の免震板10eと、隣接する他の一対の免震板10fとの重なり部分が平面視略矩形をなし、この重なり部分の隅部に位置する免振板同士は互いに縁が切れている。すなわち、免震板10e,10f同士はボルト固定されていない。ボルト孔も穿孔されていない。図11(b)に示す免震用鋼材ダンパー106は、免震板10g,10h同士はボルト固定されている。図11中段に各ヒステリシスループを、下段に実験結果写真を示す。
重なり部分がボルト固定されていない免震用鋼材ダンパー105では、図11(a)中段に示すように正負交番の繰り返し変位dに対して、安定した紡錘状の曲線を描き、エネルギー吸収能が高くなっている。また、1サイクル目のピーク荷重に比べて2サイクル目以降のピーク荷重が低下している。これは重なり部の面外変形の影響によるものである。これに対し、重なり部分がボルト固定された免震用鋼材ダンパー106では、図11(b)中段に示すように正負交番の繰り返し変位dに対して、初期の荷重は、ボルト固定されていない場合より大きいが、その後、急速に荷重が低下し、不安定な曲線を描き、少ない繰り返し回数で耐力低下する。
重なり部分がボルト固定されていない免震用鋼材ダンパー105では、図11(a)下段に示すように、上水平部分の側部の拘束がなく、折れ曲がった形で変形している。 これに対し、重なり部分がボルト固定された免震用鋼材ダンパー106では、図11(b)中段に示すように上水平部分の側部の端部が拘束されているため、亀裂が生じ、耐力低下の要因になっている。 このように重なり範囲の拘束を減少させることが安定したエネルギー吸収能を発揮する上で有効である。
図12及び図13に示す免震用鋼材ダンパー107は、一対の免震板10i,10jと、隣接する他の一対の免震板10k,10lとの重なり部分が平面視略矩形をなし、免振板10i,10jの一方は、前記重なり部分の隅部近傍が、他方の前記免震板から離間するように折り曲げられている。 斯かる免震用鋼材ダンパー107によれば載荷途中で重なり部の拘束によって生じる、面外変形を縮小し、亀裂の進展を防止することにより、耐久性を向上することができる。
図14(b)上段に示す免震用鋼材ダンパー108は側面部の幅が他の部分に比べて小さくなっている。同中段に示す免震用鋼材ダンパー109は側面に孔が設けられている。その結果、図14(a)に示す免震用鋼材ダンパー110に比べて引張変形モードは保持しつつ、せん断変形モードの荷重を減少することができる。また、基礎と建物の間に免震ゴム装置と併用して使用する場合に、変位量が極めて大きくなった場合の変位制御の役割として用いる。変位量が少ない場合には、荷重増加の影響が少なく、免震ゴムによる免震効果を発揮させ、超大地震時の変形量が極めて大きくなるのを防止することができる。
図15(b)上段に示す免震用鋼材ダンパー111は側面部の幅が他の部分に比べて大きくなっている。同中段に示す免震用鋼材ダンパー112は側面の一部が増厚されている。その結果、図14(a)に示す免震用鋼材ダンパー110に比べて引張変形モードは保持しつつ、せん断変形モードの荷重を増大することができる。また、せん断変形モードによるエネルギー吸収量を増大させることができる。 以上、本発明を実施の形態1をもとに説明した。この実施の形態1は例示であり、それらの各構成要素及びその組合せにいろいろな変形例が可能なこと、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
(Other variants)
As shown in the seismic isolation steel dampers 101 to 104 shown in FIGS. 10A to 10D, the width of the seismic isolation plate decreases toward the end, and the overlap width b1 and the plate width with the adjacent seismic isolation plate. It is also possible to have a relationship of b1 <b between b. The width of the seismic isolation plate is reduced at the ends of the upper horizontal part and the lower horizontal part.
In such a modification, the overlapping range of the horizontal portions of the adjacent seismic isolation plates becomes smaller, the influence of the initial out-of-plane deformation of the horizontal portion on the repeated load is reduced, and the occurrence of cracks can be prevented and stable. It is possible to exert the energy absorption capacity.
In the seismic isolation steel damper 105 shown in the upper part of FIG. 11A, the overlapping portion between the pair of seismic isolation plates 10e and the other adjacent pair of seismic isolation plates 10f forms a substantially rectangular shape in a plan view, and the overlapping portion of the overlapping portion. The seismic isolation plates located at the corners are cut off from each other. That is, the seismic isolation plates 10e and 10f are not bolted to each other. Bolt holes are also not drilled. In the seismic isolation steel damper 106 shown in FIG. 11B, the seismic isolation plates 10g and 10h are bolted to each other. Each hysteresis loop is shown in the middle of FIG. 11, and a photograph of the experimental results is shown in the lower row.
In the seismic isolation steel damper 105 in which the overlapping portion is not bolted, a stable spindle-shaped curve is drawn with respect to the repeated displacement d of the positive and negative alternation as shown in the middle stage of FIG. 11 (a), and the energy absorption capacity is high. It has become. Further, the peak load after the second cycle is lower than the peak load in the first cycle. This is due to the effect of out-of-plane deformation of the overlapping portion. On the other hand, in the seismic isolation steel damper 106 in which the overlapping portion is bolted, the initial load is not bolted to the repeated displacement d of the positive and negative alternation as shown in the middle stage of FIG. 11 (b). Larger, but then the load drops rapidly, an unstable curve is drawn, and the yield strength drops with a small number of repetitions.
In the seismic isolation steel damper 105 in which the overlapping portion is not bolted, as shown in the lower part of FIG. 11A, the side portion of the upper horizontal portion is not restrained and is deformed in a bent shape. On the other hand, in the seismic isolation steel damper 106 in which the overlapping portion is bolted, the end portion of the side portion of the upper horizontal portion is restrained as shown in the middle stage of FIG. 11B, so that a crack occurs and the yield strength is increased. It is a factor of the decline. Reducing the constraint of the overlapping range in this way is effective in demonstrating stable energy absorption capacity.
In the seismic isolation steel damper 107 shown in FIGS. 12 and 13, the overlapping portion of the pair of seismic isolation plates 10i and 10j and the other adjacent pair of seismic isolation plates 10k and 10l forms a substantially rectangular shape in a plan view and is exempt. One of the shaking plates 10i and 10j is bent so that the vicinity of the corner of the overlapping portion is separated from the other seismic isolation plate. According to the seismic isolation steel damper 107, the durability can be improved by reducing the out-of-plane deformation caused by the restraint of the overlapping portion during loading and preventing the growth of cracks.
The width of the side surface portion of the seismic isolation steel damper 108 shown in the upper part of FIG. 14B is smaller than that of the other portions. The seismic isolation steel damper 109 shown in the middle stage is provided with a hole on the side surface. As a result, the load in the shear deformation mode can be reduced while maintaining the tensile deformation mode as compared with the seismic isolation steel damper 110 shown in FIG. 14 (a). It is also used as a displacement control role when the amount of displacement becomes extremely large when used in combination with a seismic isolation rubber device between the foundation and the building. When the displacement amount is small, the influence of the load increase is small, the seismic isolation effect of the seismic isolation rubber can be exerted, and the deformation amount at the time of a super-large earthquake can be prevented from becoming extremely large.
The width of the side surface portion of the seismic isolation steel damper 111 shown in the upper part of FIG. 15B is larger than that of the other portions. A part of the side surface of the seismic isolation steel damper 112 shown in the middle stage is thickened. As a result, the load in the shear deformation mode can be increased while maintaining the tensile deformation mode as compared with the seismic isolation steel damper 110 shown in FIG. 14 (a). In addition, the amount of energy absorbed by the shear deformation mode can be increased. The present invention has been described above based on the first embodiment. It is understood by those skilled in the art that the first embodiment is an example, and various modifications are possible for each of the components and combinations thereof, and such modifications are also within the scope of the present invention. ..

本発明は以上であるから、各種形態の建築構造物または土木構造物の耐震性を高めるための免震用鋼材ダンパーとして広く利用することができる。 As described above, the present invention can be widely used as a seismic isolation steel damper for enhancing the seismic resistance of various forms of building structures or civil engineering structures.

1:上水平部分
2:上傾斜部分
3:上円弧部分
4:鉛直部分
5:下円弧部分
6:下傾斜部分
7:下水平部分
8:大円弧部分
10:免震板
11:中央線
12:上端部
13:下端部
20:上基板
21:中心軸
30:下基板
31:中心軸
90:高力ボルト
100:免震用鋼材ダンパー
K :初期剛性
Rm:曲げ方向耐力
Rs:せん断方向耐力
εc:最大中央歪
εe:最大上下端歪
θ :傾斜角
b :板幅
f :鉛直部分の長さ
t :板厚
1: Upper horizontal part 2: Upper inclined part 3: Upper arc part 4: Vertical part 5: Lower arc part 6: Lower inclined part 7: Lower horizontal part 8: Large arc part 10: Seismic isolation plate 11: Center line 12: Upper end 13: Lower end 20: Upper board 21: Central shaft 30: Lower board 31: Central shaft 90: High-strength bolt 100: Seismic isolation steel damper K: Initial rigidity Rm: Bending direction strength Rs: Shear direction strength εc: Maximum center strain εe: Maximum top and bottom strain θ: Tilt angle b: Plate width f: Length of vertical part t: Plate thickness

Claims (11)

一対の基板と前記一対の基板の間に設置された免震板とを有し、
前記免震板は、前記基板のそれぞれに固定された互いに平行な一対の水平部分と、前記水平部分のそれぞれにつながって、前記水平部分から離れる程互いに近接する一対の傾斜部分と、前記傾斜部分のそれぞれに滑らかにつながった鉛直部分とを具備し、前記傾斜部分は側面視直線状をなし、前記免震板の板幅bと板厚tとの関係が、
板幅b/板厚t≧12.5
であることを特徴とする免震用鋼材ダンパー。
It has a pair of boards and a seismic isolation plate installed between the pair of boards.
The seismic isolation plate has a pair of horizontal portions parallel to each other fixed to each of the substrates, a pair of inclined portions connected to each of the horizontal portions and close to each other as the distance from the horizontal portion increases, and the inclined portion. Each of the above has a vertically connected vertical portion, and the inclined portion has a linear side view , and the relationship between the plate width b and the plate thickness t of the seismic isolation plate is as follows.
Plate width b / plate thickness t ≧ 12.5
A seismic isolation steel damper characterized by being .
一対の基板と前記一対の基板の間に設置された免震板とを有し、
前記免震板は、前記基板のそれぞれに固定された互いに平行な一対の水平部分と、前記水平部分のそれぞれにつながって、前記水平部分から離れる程互いに近接する一対の傾斜部分と、前記傾斜部分のそれぞれをつなぐ略円弧部分とを具備し、前記傾斜部分は側面視直線状をなし、前記免震板の板幅bと板厚tとの関係が、
板幅b/板厚t≧12.5
であることを特徴とする免震用鋼材ダンパー。
It has a pair of boards and a seismic isolation plate installed between the pair of boards.
The seismic isolation plate has a pair of horizontal portions parallel to each other fixed to each of the substrates, a pair of inclined portions connected to each of the horizontal portions and closer to each other as the distance from the horizontal portion increases, and the inclined portion. It is provided with a substantially arc portion connecting each of the above, and the inclined portion has a linear side view , and the relationship between the plate width b and the plate thickness t of the seismic isolation plate is as follows.
Plate width b / plate thickness t ≧ 12.5
A seismic isolation steel damper characterized by being .
前記免震板は、曲げ加工された鋼板であることを特徴とする請求項1または2記載の免震用鋼材ダンパー。 The seismic isolation steel damper according to claim 1 or 2, wherein the seismic isolation plate is a bent steel plate. 前記免震板は、十字状に設置されていることを特徴とする請求項1ないし3の何れか1項に記載の免震用鋼材ダンパー。 The seismic isolation steel damper according to any one of claims 1 to 3, wherein the seismic isolation plate is installed in a cross shape. 前記免震板の幅が、端部に向かって減少し、隣接する免震板との重なり幅b1と板幅bの間に、
b1<b
の関係をもつ、請求項1ないし4の何れか1項に記載の免震用鋼材ダンパー。
The width of the seismic isolation plate decreases toward the end, and between the overlapping width b1 and the plate width b with the adjacent seismic isolation plate,
b1 <b
The seismic isolation steel damper according to any one of claims 1 to 4, which has the above-mentioned relationship.
一対の前記免震板と、隣接する他の一対の前記免震板との重なり部分が平面視略矩形をなし、該重なり部分の隅部に位置する前記免震板同士は互いに縁が切れている、請求項1ないし5の何れか1項に記載の免震用鋼材ダンパー。 The overlapping portion of the pair of the seismic isolation plates and the adjacent pair of the seismic isolation plates forms a substantially rectangular shape in a plan view, and the seismic isolation plates located at the corners of the overlapping portions are cut off from each other. The seismic isolation steel damper according to any one of claims 1 to 5. 一対の前記免震板と、隣接する他の一対の前記免震板との重なり部分が平面視略矩形をなし、前記免振板の一方は、前記重なり部分の隅部近傍が、他方の前記免震板から離間するように折り曲げられている、請求項1ないし5の何れか1項に記載の免震用鋼材ダンパー。 The overlapping portion of the pair of the seismic isolation plates and the adjacent pair of the seismic isolation plates forms a substantially rectangular shape in a plan view, and one of the vibration isolation plates has the vicinity of the corner of the overlapping portion the other. The seismic isolation steel damper according to any one of claims 1 to 5, which is bent so as to be separated from the seismic isolation plate. 前記免震板の側面部の幅が他の部分に比べて小さい、請求項1ないし7の何れか1項に記載の免震用鋼材ダンパー。 The seismic isolation steel damper according to any one of claims 1 to 7, wherein the width of the side surface portion of the seismic isolation plate is smaller than that of the other portions. 前記免震板の側面部の幅が他の部分に比べて大きい、請求項1ないし7の何れか1項に記載の免震用鋼材ダンパー。 The seismic isolation steel damper according to any one of claims 1 to 7, wherein the width of the side surface portion of the seismic isolation plate is larger than that of the other portions. 前記免震板の側面部に孔が開けられている、請求項1ないし9の何れか1項に記載の免震用鋼材ダンパー。 The seismic isolation steel damper according to any one of claims 1 to 9, wherein a hole is formed in a side surface portion of the seismic isolation plate. 前記免震板の側面部が増厚されている、請求項1ないし9の何れか1項に記載の免震用鋼材ダンパー。 The seismic isolation steel damper according to any one of claims 1 to 9, wherein the side surface portion of the seismic isolation plate is thickened.
JP2019093631A 2018-09-06 2019-05-17 Seismic isolation steel damper Active JP7017210B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018166557 2018-09-06
JP2018166557 2018-09-06

Publications (2)

Publication Number Publication Date
JP2020041691A JP2020041691A (en) 2020-03-19
JP7017210B2 true JP7017210B2 (en) 2022-02-08

Family

ID=69797902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093631A Active JP7017210B2 (en) 2018-09-06 2019-05-17 Seismic isolation steel damper

Country Status (1)

Country Link
JP (1) JP7017210B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113567A1 (en) * 2020-11-27 2022-06-02 国立大学法人大阪大学 Steel material damper for base isolation and base isolation structure
CN112942608B (en) * 2021-01-27 2022-06-07 四川省建筑科学研究院有限公司 Building structure anti-seismic energy dissipater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206987A (en) 2002-01-16 2003-07-25 Sumitomo Metal Mining Co Ltd Damper for base-isolation
JP2004278205A (en) 2003-03-18 2004-10-07 Tomoe Corp Base isolating damper
JP2004340301A (en) 2003-05-16 2004-12-02 Nippon Steel Corp Seismic isolator
JP2006207723A (en) 2005-01-28 2006-08-10 Nabeya:Kk Vibration eliminating mount
JP2008002684A (en) 2007-07-17 2008-01-10 Tatsuji Ishimaru Vibration damper
JP2015006836A (en) 2013-06-25 2015-01-15 株式会社松田技術研究所 U-shaped suspension
JP2017061808A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Earthquake resistant wall structure
JP2017203485A (en) 2016-05-11 2017-11-16 ヘルツ株式会社 Vibration-proofing seismic isolator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE897066A (en) * 1983-06-16 1983-10-17 Staar Sa DEVICE FOR REMOVING A READING AND / OR RECORDING APPARATUS FROM THE INFLUENCE OF MECHANICAL STRESSES

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206987A (en) 2002-01-16 2003-07-25 Sumitomo Metal Mining Co Ltd Damper for base-isolation
JP2004278205A (en) 2003-03-18 2004-10-07 Tomoe Corp Base isolating damper
JP2004340301A (en) 2003-05-16 2004-12-02 Nippon Steel Corp Seismic isolator
JP2006207723A (en) 2005-01-28 2006-08-10 Nabeya:Kk Vibration eliminating mount
JP2008002684A (en) 2007-07-17 2008-01-10 Tatsuji Ishimaru Vibration damper
JP2015006836A (en) 2013-06-25 2015-01-15 株式会社松田技術研究所 U-shaped suspension
JP2017061808A (en) 2015-09-25 2017-03-30 新日鐵住金株式会社 Earthquake resistant wall structure
JP2017203485A (en) 2016-05-11 2017-11-16 ヘルツ株式会社 Vibration-proofing seismic isolator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
桑原 進、畑中 祐紀、戸張 涼太、吉永 光寿、塩田 啓介、宮川 和明、玉村 典士、平山 達規,曲げ加工された鋼板を用いた免震構造用履歴型ダンパーの力学性状(その1-その3),一般社団法人日本建築学会 2018年度大会(東北)学術講演梗概集 建築デザイン発表梗概集,日本,一般社団法人日本建築学会,2018年07月20日,第769-774ページ,新規性喪失例外規定の適用の論文

Also Published As

Publication number Publication date
JP2020041691A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
JP7017210B2 (en) Seismic isolation steel damper
CN102859097B (en) Vibration damping metal sheet and building construction
JP2014231728A (en) Elasto-plastic hysteretic damper
JP5451549B2 (en) Connecting bracket
US20120027985A1 (en) Anisotropic reinforcing metal plate
KR102034116B1 (en) Damage controlled coupling structure and reinforcement method for steel beam to column connection
CN113463755A (en) Concrete frame column anti-seismic structure and construction method thereof
JP2010216611A (en) Seismic response control metallic plate
JP6328430B2 (en) Buckling brace
JP5010261B2 (en) Building structure
JP5094631B2 (en) Shear panel type damper and bridge
JP6636747B2 (en) Building damping structure
JP3197734U (en) Steel frame reinforcement structure
JP2008075314A (en) Aseismic control structure of connected buildings
JP4660722B2 (en) Vibration control device
JP6265422B2 (en) Reinforcement structure and building
JP2021032015A (en) Vibration control device
JPH10280727A (en) Damping frame by composite type damper and damping method
JP5369626B2 (en) Composite vibration control frame
JP6397192B2 (en) Supplemental forced vibration device
JP4947357B2 (en) Vibration control pillar
JPH09328925A (en) Vibration control device having excellent impact load characteristic
JP7497762B2 (en) Wooden structure
JP6310434B2 (en) Solar panel support
JP6074773B2 (en) Reinforcement structure for wooden structures

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190625

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7017210

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150