JP2004340301A - Seismic isolator - Google Patents

Seismic isolator Download PDF

Info

Publication number
JP2004340301A
JP2004340301A JP2003139178A JP2003139178A JP2004340301A JP 2004340301 A JP2004340301 A JP 2004340301A JP 2003139178 A JP2003139178 A JP 2003139178A JP 2003139178 A JP2003139178 A JP 2003139178A JP 2004340301 A JP2004340301 A JP 2004340301A
Authority
JP
Japan
Prior art keywords
curved
curved member
seismic isolation
isolation device
isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003139178A
Other languages
Japanese (ja)
Inventor
Eiichiro Saeki
英一郎 佐伯
Atsushi Watanabe
厚 渡辺
Kazusada Suzuki
一弁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003139178A priority Critical patent/JP2004340301A/en
Priority to TW92130312A priority patent/TWI280996B/en
Priority to CN 200310103132 priority patent/CN1259488C/en
Publication of JP2004340301A publication Critical patent/JP2004340301A/en
Priority to HK05100709A priority patent/HK1068663A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic isolator, improved in capability of absorbing the energy of an earthquake, and easily manufactured and constructed at a low price by disposing a damping mechanism formed of a curved member and an isolator between an upper structure and a lower structure. <P>SOLUTION: In this seismic isolator, the isolator 1 and both end parts 8, 9 of two or more curved members 7 formed of elasto-plastic material constituting a damping mechanism are disposed between an upper structure 2 and a lower structure 3, and fixed to the upper structure 2 and the lower structure 3. The curved member 7 is formed to draw a circle like a lantern by combination of two or more members or two or more sets of a pair of two curved members opposite to each other symmetrically, and disposed in the periphery of the isolator 1. Thus, the curved member 7 is plastically deformed to absorb the energy of an earthquake. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、上部構造と下部構造の間に配置し、地震時における上部構造の振動を減衰させ、地震エネルギーを吸収させる塑性履歴型の免震装置に関するものである。
【0002】
【従来の技術】
従来より、建築構造物とこの構造物を支える基礎のような、上部構造と下部構造との間に設置する塑性履歴型の免震装置として、部材の形状を変えて種々提案されている。
【0003】
【特許文献1】
特公平2−62671号公報
【特許文献2】
特公平2−59262号公報
【特許文献3】
特開平2−194233号公報
【特許文献4】
特開昭60−223576号公報
【0004】
例えば、特公平2−62671号公報(特許文献1)には、免震装置を直棒型に成形し、各端部を上下部構造に固定した装置が開示されている。また、特公平2−59262号公報(特許文献2)には、免震装置を環状型に成形した装置について開示されている。
【0005】
例えば、特開平2−194233号公報(特許文献3)には、免震装置を略U字状に形成し、ダンパーの両脇に振れ止め用の板状の補助部材を突設した装置が開発されている。
地震時の構造物の揺れは、水平方向に 360 度全方向に変形するため、免震装置もそれに伴い 360 度全方向に変形する。しかし、特開平2−194233号公報では、略U字状のダンパーをキャタピラー状に一方向のみに変形させることでエネルギー吸収を行い、その他の方向、例えばキャタピラー状と直角方向の変形に対しては、両脇に突設した振れ止めによって押さえてしまい、変形方向を一方向のみに限定しており、他方向に対しては配慮がされていない。
また、特開昭60−223576号公報(特許文献4)においても、U字状の免震装置との記載があるが、地震時の任意方向に水平変形した場合の免震装置の性状に関する方向性についての記載がない。
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、以下の9点である。
(1)免震装置の形状が直棒型である場合、地震時の水平変形によって、図1のように端部の固定が両端固定及び、一端ピン他端固定の場合は、歪みが部材の端部に集中する。よって、部材のある一部分に歪みが集中してしまう場合は、水平変形が小さい時点から歪みが集中し累積されるので、部材が降伏し塑性化するのが速く、部材の履歴特性における弾性範囲が狭くなる。塑性化後も水平変形の増加と共に歪みも集中して累積し増加するため、水平変形が小さいうちに破断してしまう。しかも、予想していなかった大地震による大きな変形を受けた場合は、部材が変形に追従できず、地震エネルギーを吸収できずに破断してしまう。また、部材中の一部分に歪みが集中し部材内の塑性化する範囲が狭くなると、地震のエネルギーを吸収する部分も小さくなり、部材全体のエネルギー吸収量が少なくなる。
(2)免震装置の形状が直棒型である場合、図2のように地震時の水平変形によって端部間の距離が長くなり、それに伴って部材も引張られ伸びる。よって、水平変形量が大きくなるにつれ、部材の伸びによる歪み,引張応力が増加すると共に、曲げ変形による曲げ応力,歪みも加わるため、総合的に部材に生じる歪み,応力が増大してしまう。
(3)免震装置の形状が直棒型である場合、部材の履歴特性における弾性範囲が狭いため、地震よりも発生頻度が高い風による水平変形によって部材が降伏し、風の振動によるエネルギーを吸収してしまうため、部材の目的である地震のエネルギーを吸収できる量が減少してしまう。また、風によるエネルギーも吸収してているため、部材が持っている総吸収エネルギー量に達してしまう期間が早く、部材を点検・交換する頻度が高くなり、維持費が高くなる。
(4)免震装置の形状が直棒型である場合、地震時の水平変形による部材の伸び,引張応力を補うためと、微小変形から部材が降伏することを避けるために、免震装置の端部を機械的に複雑な構造を取る。よって免震装置を構成する部品が多くなり、製造の手間もかかり、結果として製造コストも高価になる。
(5)環状型の免震装置は、3次元的に複雑な形状であるため、成形するために熱間成形や熱間鍛造を行う等の製造の手間がかかり、製造コストが高価になる。
(6)環状型の免震装置は、平面的に広がって配置するため、免震装置の占有面積が大きく場所を取る。
(7)アイソレータと免震装置を別々に並列配置したい場合、免震装置及びアイソレータが占有する面積が大きいので、構造物の平面計画上、配置が困難になる場合がある。
(8)アイソレータと免震装置を別々に並列配置したい場合、免震装置とアイソレータの各々で、上下部構造に取り付けるための取付部分や工事が必要となるため、施工工事費が高価になってしまう。
(9)免震装置をU字状に形成した場合、地震時の任意方向への水平変形に対して免震装置の変形方向を考慮しなければ、各変形方向による免震装置の耐力、剛性等の性状に対する方向性が生じてしまう。例えば、図26に部材の方向性を考慮せず、部材断面を等断面とした場合について示す。面内 0 度方向における降伏せん断力と面外 90 度方向における降伏せん断力とでは、面外 90 度方向の方が面内 0 度方向よりも 50%低くなり、地震時の変形方向によって、免震装置 の性状が変わってしまう問題があった。
本発明は、前記(1)〜(6),(9)の問題点を解決した免震装置および前記(7),(8)を含めた前記(1)〜(9)の問題点を解決した免震装置を提供することを目的とする。
【0007】
【問題を解決するための手段】
本発明の第1の特徴は、金属板と弾性体とを交互に積層してなるアイソレータと、弾塑性材料からなる複数の板厚よりも幅広の彎曲状部材の両端部とを上部構造と下部構造に夫々固定し、かつ前記彎曲状部材の両端部を除く中間部を上部構造と下部構造とは離した状態で設けてなる減衰機構を有する塑性履歴型の免震装置である。
【0008】
本発明の第2の特徴は、第1発明において、彎曲状部材における上部板および下部板ならびにこれらを接続する彎曲接続板は、これらの幅方向の中心軸線Cに対して対称な形状とされ、かつ彎曲状部材は彎曲接続板中央の横中心軸線に対して上下対称な形状とされている免震装置にある。
本発明の第3の特徴は、第1発明または第2発明において、彎曲状部材の幅が変化している免震装置にある。
【0009】
本発明の第4の特徴は、第1発明〜第3発明のいずれかの発明において、彎曲状部材の先端部幅W1と端部幅W2と板厚Tとの寸法関係が、W2>W1>Tである免震装置にある。
【0010】
本発明の第5の特徴は、第1発明〜第5発明のいずれかの発明において、すべての彎曲状部材の外形形状を同じ形状に変化させる場合に、相似則によって相似形となるように各彎曲状部材の外形形状が設定されている免震装置にある。
【0011】
本発明の第6の特徴は、第1発明〜第5発明のいずれかの発明において、少なくとも一つ以上の彎曲状部材により組をなす彎曲状部材ユニットが平面的に等角度間隔をおいて配置されている免震装置にある。
【0012】
本発明の第7の特徴は、第1発明〜第6発明のいずれかの発明において、彎曲状部材が以下の条件を満たす免震装置である。
なお、彎曲状部材の各部名称を図21に示す。
(1)彎曲状部材の端部幅W2は彎曲部先端幅W1に対し、
1.0<W2/W1<2.0になるように形成する。
(2)彎曲状部材の直線部長さL(接合部は除く)は、10cm〜70cmの長さにする。
(3)彎曲状部材の彎曲部Rは板厚Tに対し、2.5<R/Tになるように形成する。
【0013】
換言すると、本発明の第6の特徴は、第1発明〜第5発明のいずれかの発明において、彎曲状部材の端部幅の先端幅に対する比が1より大きく2より小さい範囲にあり、彎曲状部材の直線部長さが、10cm〜70cmであり、彎曲状部材の彎曲部長さの当該部材の板厚に対する比が2.5より大きい彎曲状部材を有する塑性履歴型の免震装置にある。
【0014】
本発明の第8の特徴は、第1発明〜第7発明のいずれかの発明において、上部構造と下部構造の間に配置されたアイソレータの外周部に、弾塑性材料からなる複数の彎曲状部材の両端部を、アイソレータと上部構造,下部構造に連結する連結板に固定し配設した塑性履歴型の免震装置にある。
【0015】
【作用】
本発明の作用は、以下の8点である。
(1)弾塑性材料を彎曲状の部材に成形することによって、塑性変形時に歪みが最大になる点を水平変形量の変化によって部材内で移動させ、部材の歪みを局部的に集中させず分散する。これによって部材の塑性化範囲が材軸方向の全域にわたるので、部材全体を効果的に使用して地震によるエネルギーを吸収させることができる。
図3の(a)に小地震時の彎曲状部材7の歪み分布、(b)に中地震での歪み分布、(c)に大地震での歪み分布を示す。彎曲状部材の彎曲部の歪みを受ける部分が、中地震では、地震力による変形δ1の1/2の分が部材7の材軸方向へ移動する。大地震では、変形δ2の1/2の分だけ歪みを受ける部分が移動する。このように、地震時の水平変形量に応じて、歪みを受ける部分を部材全域に移動させ、部材全体を塑性化させることで、部材が効果的に地震エネルギーを吸収する。
(2)地震時の水平変形が生じた場合、図5のように部材を彎曲に成形しているため、彎曲部が材軸方向に伸びることなく、直線状に変形することによって補うことができる。彎曲部が直線状に変形する部分が常に移動することによって、部材に生じる歪みを彎曲部の曲率程度の歪みに低減させる効果がある。
(3)彎曲状の部材を成形する弾塑性材料は、鋼材を使用する例が多い。本発明においても、彎曲状部材を成形する弾塑性材料を鋼材にした場合、彎曲状部材の形状は環状型等のように3次元的に複雑ではないため、彎曲状部材を熱間成形あるいは熱間鍛造する必要はなく、冷間成形によって精度良く彎曲部を加工し、彎曲状部材を製造することができる。これによって、彎曲状部材の製造工程が容易になり、製造単価を安くすることができる。
(4)免震装置とアイソレータを一体にした場合、免震装置とアイソレータの各々で占有していた面積を減少させることができる。また、免震装置とアイソレータの各々で必要であった上下部構造に取り付けるための取り付け部分や工事が、一体にすることにより減少するため、施工工事費を安くする事ができる。
(5)地震時には、彎曲状部材は任意方向に水平変形を受ける。本発明においては、あらゆる水平方向の変形に対しても、彎曲状部材の力学的性状が変化せず、方向性を少なくすることができる。
図26,図27に示すように、彎曲部幅を一定(W1=W2)にした場合、面内 0 度方向と面外 90 度方向の変形とでは、面外 90 度方向の降伏せん断力が 50%も低下してしまう。
これは、変形方向が面内方向に一致しない(変形方向角度が 0 度を越える)と彎曲部先端および直線部が捩りによる変形に変わり、面内 0 度方向の曲げ剛性と釣り合いが取れていないためである。
よって、面内0度方向から面外90度方向までの水平全方向の剛性や降伏せん断力を同等の性能にするためには、彎曲状部材の幅を変化させることによって、方向性を少なくすることが可能となる。
また特に彎曲状部材の捩り剛性を増加させるために、彎曲状部材の端部幅W2を彎曲部先端幅W1よりも太くすることで、耐力・剛性の低下を防ぎ、変形方向の方向性をより少なくすることができる。
図28に実験結果を示す。前述のW1:W2の比を1:1.34にした場合、降伏せん断力は、面内 0 度方向が29kN(3.0tonfに相当)に対し面外 90 度方向は27kN(ほぼ2.8tonfに相当)であり、7%しか低下しておらず、方向性による差があまり生じていない。同様に、1次剛性も、19kN〜12kN(ほぼ2.0tonf/cm〜1.2tonf/cmに相当)の範囲にあり、ほぼ同等の性能となっている。
このように、彎曲部先端幅W1の端部幅W2に対する比を1より大きくすることで、方向性を生じさせないようにすることができる。
この比を2よりも大きくした場合、彎曲状部材の先端部は、相対的に部材が細くなっている分弱くなっているため歪みが集中し、地震時の面内方向の変形に対して、図29(a)のように変形せず、図29(b)のように先端部に歪みが集中し部材の変形が激しくなってしまい、疲労特性に問題が生じる。
また、彎曲状部材を成形するときに、彎曲状部材の材料の歩留まりが悪くなり経済性に劣る。
(6)彎曲状部材の端部幅W2と彎曲部先端幅W1の比率を選択することにより、地震時に彎曲状部材が受ける任意方向への水平変形に対し、歪みが彎曲状部材の常に特定の部分に集中するのではなく、歪みを部材内で分散させ、彎曲状部材全体を効果的に利用し地震のエネルギーを吸収させることができる。
図30に実験結果を示す。加力方向によって破断位置が変化しており、面内 0度方向においては、振幅によっても破断位置が変化している。このことは、地震時の変形に対し、部材全体で効果的にエネルギー吸収していることを示している。
(7)地震時の彎曲状部材の変形は、彎曲状部材の曲げ変形と捩り変形によって追従するようにし、材軸方向への過剰な引張応力がかからないようにするためには、彎曲状部材の全長が地震時の変形量に対し十分な長さがなければならない。彎曲状部材の直線部の長さは、地震時の変形に追従できるための彎曲状部材の長さを確保するために必要である。
また、彎曲状部材の全体に歪みを分散させてエネルギーを吸収する場合、直線部の長さは、塑性変形させてエネルギーを吸収する長さである。地震時の変形量によって彎曲状部材の直線部を最適な長さにすることで、無駄なく効果的にエネルギーを吸収させることができる。
昨今の免震装置における地震時の最大変形(レベル2:建物の耐用年限中に一度遭遇するかもしれない程度の地震動)の調査結果として、日本建築センター発行のビルデイングレター1998年1月号から1998年5月号まで掲載された、免震建築物の日本建築センター評定完了分を、図31に示す。
結果として、10〜50cm位までが多く、免震建築物の変形量は、年々増加していることから、彎曲状部材の直線部長さを10cm〜70cmまで確保することで、十分に地震時の変形に対応することができる。
図32に、彎曲状部材の直線部長さをL=150mm(CASE1)とL=300mm(CASE2)にした場合の疲労実験結果を示す。同一の振幅において、L=150mm(CASE1)の方がL=300mm(CASE2)の破断回数より少ない。これは、彎曲状部材の長さを長くすることで、変形が大きくなっても追従できる長さに余裕があり、疲労特性も向上することを示している。
例えば、彎曲状部材に要求される性能として、20回で破断する振幅が20cmで良ければ、直線部長さL=150mm(CASE1)にする。20回で破断する振幅が30cmまで必要であれば、直線部長さL=300mm(CASE2)にする。このようにして、要求される性能によって無駄なく効果的に彎曲状部材を成形することができる。
(8) 地震時の部材の変形による歪みは、板厚が厚いほど大きくなり、とくに面内 0 度方向に関しては、彎曲部が直線的に変形するので、彎曲部Rと板厚Tの比率つまり彎曲部の曲率が大きいと疲労特性が悪くなる。よって彎曲部Rと板厚Tの比率を決めることで、彎曲状部材の疲労特性の低下を防ぐことができる。
例えば、0 度方向の振幅±20cm 繰り返し加力実験において、R/T=3.13のときの破断回数は 6 回、R/T=4.14のときの破断回数は 18 回であった。R/Tが約1.0変わるだけで彎曲状部材の疲労特性に大きく影響し、破断回数は3倍に増加する。
また、彎曲部Rと板厚Tの比率R/T=2.5よりも小さくなると、彎曲部の曲率は、1/4よりも大きくなり、面内方向の変形では、彎曲部が直線状になって板厚方向の表面の歪みが25%の歪みを受けることとなる。例えば、彎曲状部材が鋼材の場合は、彎曲状部材が地震時に最大25%の歪みを受けた場合、図27に示す鋼材の疲労特性から判断して、1回の地震で破断してしまう。よって、彎曲部Rと板厚Tの比率R/Tは2.5よりも大きくする必要がある。
【0016】
【発明の実施の形態】
[実施形態1]
本発明の実施形態を図6に示す。この実施形態は、アイソレータ1を介在させた上部構造2と下部構造3の間に、減衰機構6を配置したものである。減衰機構6は、弾塑性材料からなる彎曲状部材7を図7に示すような複数個用いて円を描くように提灯状に組み合わせたり、図8に示すような線対称のように2個の彎曲状部材を向き合わせた1組を複数組を用いて配置したものである。彎曲状部材7は、図9に示すように、例えば弾塑性材料で縦25mm×横50mmの長方形断面の鋼材を彎曲状に成形し、必要に応じて成形後に熱処理を行い残留歪みを除去する。各々の彎曲状部材7の一端の取り付け部8を上部構造2に、他端の取り付け部9を下部構造3に固定する。
また、本発明の減衰機構を実際に構造物に取り付け使用する場合は、直接上部構造2及び下部構造3に彎曲状部材の端部8及び9を取り付けるのではなく、図10のように上部構造2及び下部構造3に連結板10を取り付けておき、図11のように連結板10に加工しておいた取り付け孔(雌ねじ孔)11に、彎曲状部材7の端部8及び9に加工しておいた取り付け孔12とをボルト13にて固定する。このことによって、上部構造2及び下部構造3に彎曲状部材9を取り付ける場合、ボルト13を締め付ければ、容易に取り付ける事ができる。しかも、上部構造2及び下部構造3に連結するための装置が連結板10だけであり、端部を固定する装置が最小ですみ、製造コストを下げることができる。
また、地震エネルギーを吸収し疲労損傷が激しい場合や、使用中の事故による彎曲状部材7の破損によって彎曲状部材7の取り替えが必要となった場合、取り替えたい彎曲状部材7だけを単独に外す事ができ、しかも取り替え作業もボルト13の取り外し及び締め付けによって可能となり、作業が容易で、取り替え工事費を安く抑える事ができる。
【0017】
[変形形態]
本発明の減衰機構(免震ダンパー)6において使用する弾塑性材料からなる彎曲状部材7のさらに好ましい形態について、図17を参照して説明する。
この彎曲状部材7における上部板17および下部板19は平行とされ、また、この彎曲状部材7における上部板17および下部板19ならびにこれらを一体に接続する彎曲接続板19は、これらの幅方向の中心軸線Cに対して対称な形状とされ、かつ前記上部板17と下部板19およびこれらを接続する彎曲接続板19は、彎曲接続板7の中央の横中心軸線Bに対して上下対称な形状とされている。このような彎曲状部材7の形状とすることにより、地震時の彎曲状部材7および減衰機構(免震ダンパー)の変形が対称に変化し、残留変形が一方向に偏ることなく、同方向に受けた変形であっても、剛性や降伏せん断力エネルギー吸収量が当初の値から変化する恐れを排除することができる。
前記実施形態とは反対に、彎曲状部材7における上部板17および下部板18ならびにこれらを接続する彎曲接続板19を、これらの幅方向の中心軸線Cに対して非対称な形状とした場合には、地震時の彎曲状部材および減衰機構(免震ダンパー)の変形が対称に変化せずに残留変形が一方向に偏ってしまうので、好ましくない。また、前記本発明のように、中心軸線B,Cに対称な形状とすることにより、組立時に彎曲状部材7を反転配置しても正常な配置状態とされ、取付けの誤りがないように構成されている。なお、本発明の各実施形態において共通しているが、彎曲状部材7の取付け端部を除いた彎曲状部材7の中間部および先端部は変形を拘束されることのないように、連結板10(14)および上部構造物2および下部構造物3から離れた位置に配置されている。
【0018】
また、彎曲状部材7の先端部幅寸法W1は、彎曲状部材7における上部板17および下部板18の基端側の端部幅寸法W2より幅が狭くされ、かつ彎曲状部材7の先端部幅W1および端部幅W2は彎曲状部材7の板厚Tよりも大きい寸法とされている。このように、彎曲状部材7の先端部幅W1と端部幅W2と板厚Tとの寸法関係が、W2>W1>Tであると、上部板17および下部板18ならびにこれらを接続する彎曲接続板19が面外方向に変形を受けた場合でも、横座屈が生じにくく、塑性変形時に残留変形がたまる恐れがないため、捩れる恐れもなく、減衰機構(免震ダンパー)6の性能がかわる恐れが少ない。反対に、W2<Tで、かつW1<Tの寸法関係であると、上部板17および下部板18ならびにこれらを接続する彎曲接続板19に面外方向の変形を受けた場合、横座屈が生じやすくなり、塑性変形時に残留変形がたまって、捩れる恐れがあり、これによって減衰機構(ダンパー)の性能が変わり好ましくない。
【0019】
また、前記実施形態および後記の実施形態を実施する場合、すべての彎曲状部材7の外形形状を同じ形状に変化させて、新たな性能の彎曲状部材7とする場合に、相似則によって相似形となるように各彎曲状部材7の外形形状を設定すると、減衰機構(免震ダンパー)6の性能(減衰機構の降伏せん断力、変形性能、エネルギー吸収量、疲労特性等)も相似則に添って変化する。そのため、必要とされるある特定の減衰機構(免震ダンパー)6の性能が要求される場合、その性能を満たす減衰機構(免震ダンパー)6を構成する彎曲状部材7の寸法形状を相似則を利用して、容易に決めることができる。
【0020】
減衰機構6を構成する彎曲状部材7を複数配置する場合、図12に示すように、一つの彎曲状部材7を一組として、等角度間隔をおいて配置してもよく、例えば、図12(b)に示すように、連結板10の各辺に彎曲状部材7の中心軸線Cがほぼ平行になるように配置すると共に、連結板10の各コーナー部近傍に彎曲状部材7の取付け端部が位置するように、90度間隔で放射状に配置するようにしてもよく、図13(a)に示すように、連結板10の各コーナー部近傍に彎曲状部材7の端部を位置させると共に、彎曲状部材7の中心軸線Cが連結板10の中心に向くように放射状に配置してもよい。なお、図12(a)では、上部構造2および下部構造3がコンクリート構造である場合を想定して、連結板10にスタッドボルト22を溶接等により固定している状態が示されている。上部構造2および下部構造3が鋼製である場合には、適宜ボルトあるいは溶接等により固定される。
図12(a)に示す形態では、彎曲状部材7の両端部は、ボルト孔を備えたスキンプレート21が介在されて、それぞれ連結板10にボルト13により固定されている。前記のスキンプレート21は、ほぼ彎曲状部材7の取付け端部の形状と同様な鋼板が使用され、このスキンプレート21を介在させることにより、彎曲状部材7が多少変形しても、上部板17が上部構造2に接触したり、下部板18が下部構造3に接触して、彎曲状部材7の変形が拘束されないように構成されている。したがって、彎曲状部材7における上部板17と上部構造2との間、および彎曲状部材7における下部板18と下部構造3との間には、さらに大きな間隙Gが設けられている。この実施形態のように、連結板10または連結板10とスキンプレート21の板厚寸法より、上部構造2の下面または下部構造3の上面が平坦面である場合にも、前記の間隙Gを形成して、彎曲状部材7の横方向および上下方向の変形を拘束しないように構成されている点は、前記および後記のすべての実施形態において共通の構成である。
【0021】
また、図13(b),図14(a),(b)に示すように、5角形〜7角形の連結板10として、連結板10の各辺に直角に交差するように、彎曲状部材7の取付け端部を連結板10に取付けて放射状に配置してもよい。また、図15に示すように、8角形あるいは点線で示す4角形の連結板10として、連結板10の各辺に直角に交差するように彎曲状部材7を配置してもよく、あるいは点線で示す4角形の連結板10の形状でもよい。なお、図13〜図16に示す実施形態の正面図は、図13(a)と同様であるので、これらの正面図の図示を省略する。
【0022】
また、図16(a)に示すように、2つ以上の彎曲状部材7を間隔をおいてあるいは接近して平行に配置して一組の彎曲状部材ユニット20とし、複数の彎曲状部材ユニット20を、等角度間隔をおいて前記各実施形態のように配置してもよい。このように2つ以上の彎曲状部材7を平行に接近して配置して一組の彎曲状部材ユニットとすると、一つの彎曲状部材7ごとに放射状に配置する場合に比べて、多数の彎曲状部材7を効率よく設置することができ、減衰機構(免震ダンパー)6の性能を向上させることができる。
【0023】
また、図16(b)に示すように、上部構造(上部構造物)2の下部隅部あるいは下部構造(下部構造物)3の上部隅部の平面輪郭形状から彎曲状部材7が突出しないようにするため、一つの彎曲状部材7または2つ以上の彎曲状部材7を一組とする彎曲状部材ユニット20を連結板10に適宜の数(あるいは組数)適当な間隔を置いて配置してもよい。
【0024】
このように、彎曲状部材7を配置する場合、少なくとも一つ以上の彎曲状部材7により組をなす彎曲状部材ユニット20が平面的に等角度間隔をおいて配置されていてもよい。
前記のように、彎曲状部材7を等角度間隔をおいて配置されていると、地震時に減衰機構(ダンパー)6は水平方向の360度全方向から変形を受けるため、彎曲状部材7を、水平方向の特定の方向性がないように、水平方向のどの方向からでも地震時の水平力を受けた場合、一定の減衰機構6の前記した性能(減衰機構の降伏せん断力、変形性能、エネルギー吸収量、疲労特性等)を保持できる。
図12〜図16に示す形態の復元特性ならびに疲労特性の特徴が表われる履歴曲線の代表形態として、図12に示す形態の減衰機構6について、図38(a)に示す矢印A方向およびB方向についての漸増加力試験結果をそれぞれ、図38(b)(c)に示す。また、図17に示す彎曲状部材7について繰り返し振幅と破断回数による疲労曲線について図39に示す。図38(b)(c)について同様なほぼ同様な曲線を示していることから、復元特性について、方向性がないことがわかる。また、高い破断回数を示すことが分かる。
【0025】
[実施形態2]
本発明の実施形態を図18に示す。この実施形態は、上部構造2と下部構造3の間に間在したアイソレータ1の外周に、減衰機構6を構成する彎曲状部材7を配置し、アイソレータ1と彎曲状部材7を一体にして配置した免震装置である。図19に示すように、アイソレータ1と上部構造2及び下部構造3を連結するアイソレータの連結板14の外周に、弾塑性材料を彎曲状に成形した彎曲状部材7を、2個以上の複数個を用いて図20及び図21に示すような円を描くように等角度間隔をおいて配置して提灯状に組み合わたり、図22及び図23に示すように2個の彎曲状部材7を線対称の向き合わせを1組として複数組を、アイソレータ1の外周に配置したりする。彎曲状部材の端部の連結板14への取り付けは、連結板14に加工しておいた取り付け孔15に、当該彎曲状部材7の端部8及び9に加工しておいた取り付け孔12をボルト13にて固定する。
【0026】
このことによって、上部構造2と下部構造3の間に広がる空間において、アイソレータ1及び減衰機構6とを別々で並列に配置している場合は、各々でその空間の面積を占有し免震装置が占める面積が大きくなってしまったが、アイソレータ1及び減衰機構6と一体にすることによって、上部構造2と下部構造3の間に広がる空間の占有面積を減少させる事ができる。
また、アイソレータ1及び減衰機構6を一体にすることによって、上部構造2及び下部構造3に取り付ける部分の個数が減るため、取り付け部分の工事や取り付けるための装置例えば連結板10が減少し、施工工事費を減少させる事ができる。
【0027】
さらに、図24及び図25に示すような建築物の柱16の途中に空間を設け、アイソレータ1を挿入し免震化する中間層免震において、そのアイソレータ1の外周に彎曲状部材7を図20及び図21,図22及び図23のように配置し、アイソレータ1と減衰機構6を一体にして配置する。このことは、建築物の柱の本数が決まっていて、アイソレータ1の取り付け個数及び場所も必然的に決まっている限定された場合においても、アイソレータ1及び減衰機構6を一体にして取り付ける事ができる。また、中間層免震において柱16の外周よりも外側へ免震装置が出て配置してはならない場合でも、図25のように彎曲状部材7を配置することによって、限られた空間の中にアイソレータ1及び減衰機構6を配置する事ができる。
【0028】
[変形形態]
図34〜図37は、アイソレータ1の外周に、減衰機構6を構成する彎曲状部材7を配置し、アイソレータ1と彎曲状部材7を備えた減衰機構6を一体にして配置した免震装置の変形形態を示すものであって、図34の実施形態では、矩形状の連結板14のコーナー部をカットして短辺とすると共に、全体としてほぼ矩形状の連結板14とし、彎曲状部材7の端部を前記コーナー部短辺に直角に配置して放射状に配置した形態である。図35(a)〜図36(b)は、ほぼ5角形〜8角形の板体からなる連結板14に放射状に彎曲状部材7を配置すると共に、その端部をカットしたコーナー部短辺に直角に配置して放射状に配置した形態である。なお、これら図35〜図37に示す実施形態の正面図は、図34(a)と同様であるので、図示を省略する。
また、彎曲状部材7の両端部が、ボルト孔を備えたスキンプレート21が介在されてそれぞれ連結板14にボルト13により固定されている構成とされ、図12(a)に示す形態と同様、彎曲状部材7の取付け端部の形状とほぼ同様な鋼板が使用されたスキンプレート21を介在させることにより、彎曲状部材7が多少変形しても、上部板17が上部構造2に接触したり、下部板18が下部構造3に接触して、彎曲状部材7の変形が拘束されないように構成されている。
【0029】
図37は、2つ以上の彎曲状部材7を平行に配置すると共にこれを一組とした彎曲状部材ユニット20とし、これを等角度間隔をおいて複数配置してもよいことを示す代表形態を示すものである。
【0030】
なお、図37に示す形態では、2つの彎曲状部材7を平行に配置した一組の彎曲状部材ユニット20として、90度の等角度間隔をおいて8角形状の連結板14の一つ置きの辺に、彎曲状部材ユニット20を4組配置した形態である。このように2つ以上の彎曲状部材7を間隔をおいて又は接近して平行に配置して一組の彎曲状部材ユニットとすると、図16に示した形態と同様比較的狭い連結板14でも、彎曲状部材7を効率よく配置することができるため、減衰機構(免震ダンパー)6の性能を向上させることができる。
【0031】
図17に示す形態の彎曲状部材7を使用し図34〜図37に示す免震装置の復元特性の特徴が表われる履歴曲線の代表形態として、図34に示す形態の免震装置について、図40(a)に示す矢印A方向およびB方向についての漸増加力試験結果をそれぞれ、図40(b)(c)に示す。図40(b)(c)について同様なほぼ同様な曲線を示していることから、復元特性について、方向性がないことがわかる。
【0032】
【発明の効果】
本発明の免震装置によれば、従来の免震装置に比べると次のような利点を有している。
(1)本発明は、弾塑性材料からなる部材を彎曲状に成形することによって、地震時の水平変形による彎曲状部材の曲げ応力が最大になる点を、水平変形量の変化によって部材内で移動させることができる。また彎曲状部材の断面形状及び部材形状を変化させることによって、地震時の水平変形によって彎曲状部材に生じる応力,歪みを部材内のある一部分に集中し累積しないようにするができる。
これによって、部材の歪みを受ける部分を部材全体に分散することができ、塑性化範囲を広げることによって、部材全体を効果的に使用して地震によるエネルギーを吸収させることができる。
(2)地震時の水平変形によって生じる部材の端部間距離の伸長は引張応力及び歪みを生じさせるが、彎曲部が直線状に伸びる事によって低減することができる。また、水平変形による部材の伸長,引張応力を部材の形状自体で吸収しているため、端部を固定条件によって機械的に複雑な構造にする必要がなく、装置の製造が容易になり、経済的な効果もある。
(3)彎曲状部材を成形する弾塑性材料を鋼材にした場合、彎曲状の形状は3次元的に複雑ではないため、冷間成形によって精度良く彎曲部を加工し、彎曲状部材を製造することができる。これによって、彎曲状部材の製造工程が容易になり、経済的な効果がある。
(4)彎曲状部材における上部板および下部板ならびにこれらを接続する彎曲接続板は、これらの幅方向の中心軸線Cに対して対称な形状とされ、かつ彎曲状部材は彎曲接続板中央の横中心軸線に対して上下対称な形状とされているので、地震時の彎曲状部材および減衰機構(ダンパー)の変形が対称に変化し、残留変形が一方向に偏ることなく、同方向に受けた変形であっても、剛性や降伏せん断力エネルギー吸収量が当初の値から変化する恐れを排除することができる。
(5)彎曲状部材の先端部幅W1と端部幅W2と板厚Tとの寸法関係が、W2>W1>Tであるので、上部板および下部板ならびにこれらを接続する彎曲接続板に面外方向に変形を受けた場合でも、横座屈が生じにくく、塑性変形時に残留変形がたまる恐れがないため、捩れる恐れもなく、減衰機構(ダンパー)の性能がかわる恐れが少ない。
(6)すべての彎曲状部材の外形形状を同じ形状に変化させて、新たな性能の彎曲状部材とする場合に、相似則によって相似形となるように各彎曲状部材の外形形状が設定されているので、減衰機構(ダンパー)の性能(減衰機構の降伏せん断力、変形性能、エネルギー吸収量、疲労特性等)も相似則に添って変化する。そのため、必要とされるある特定のダンパーの性能が要求される場合、その性能を満たす減衰機構(ダンパー)を構成する彎曲状部材7の寸法形状を相似則を利用して、容易に決めることができる。
(7)少なくとも一つ以上の彎曲状部材により組をなす彎曲状部材ユニットが平面的に等角度間隔をおいて配置されているので、地震時に減衰機構(ダンパー)は水平方向の360度全方向から変形を受けるため、彎曲状部材7を等角度間隔をおいて配置することで、水平方向の特定の方向性がないように、水平方向のどの方向からでも地震時の水平力を受けた場合、一定の減衰機構の前記した性能(減衰機構の降伏せん断力、変形性能、エネルギー吸収量、疲労特性等)を保持でき、また、2つ以上の彎曲状部材を平行に近接して配置した彎曲状部材ユニットを等角度間隔で配置する形態にすると、多数の彎曲状部材を効率よく配置することができる。
(8)免震装置とアイソレータを一体にすることにより、免震装置とアイソレータの占有面積を減少させる事ができる。また、免震装置とアイソレータの各々で必要であった上下部構造に取り付けるための取り付け部分や工事が減るため、施工工事費を減少させ経済的な効果もある。
(9)本発明は、彎曲状部材の先端幅の端部幅に対する比が1より大きく2より小さい範囲にあり、彎曲状部材の直線部長さが10cm〜70cmであり、彎曲状部材の彎曲部長さの当該部材の板厚に対する比が2.5より大きい彎曲状部材を成形することで、これまで知られている彎曲状部材が地震時に任意方向への水平変形した場合の性状における方向性の差を改善し、どの方向に対しても安定した復元力特性を得ることができる。また、彎曲状部材全体を効果的に塑性変形させて、設計要求に対して無駄なく効率に彎曲状部材を形成することができる。
【図面の簡単な説明】
【図1】減衰機構を構成する部材が直棒型の場合に、地震時の水平変形によって部材に生じる曲げモーメント図及び変形図である。
【図2】減衰機構を構成する部材が直棒型の場合に、地震時の水平変形によって部材に生じる部材長手方向の伸び変形図である。
【図3】減衰機構を構成する部材が彎曲状の場合に、地震時の水平変形によって部材に生じる曲げモーメント図の一例である。
【図4】減衰機構を構成する彎曲状部材形状の一例の図である。
【図5】減衰機構を構成する部材が彎曲状の場合に、地震時の水平変形によって部材に生じる部材長手方向の伸び変形図である。
【図6】上部構造と下部構造の間に配置した減衰機構とアイソレータを示す図である。
【図7】減衰機構を構成する彎曲状部材を組み合わせ図である。
【図8】減衰機構を構成する彎曲状部材を組み合わせ図である。
【図9】彎曲状部材を示す図である。
【図10】上部構造及び下部構造と彎曲状部材とを連結する連結板の取り付け図である。
【図11】彎曲状部材と連結板との取り付け図である。
【図12】減衰機構(ダンパー)の他の形態を示すものであって、(a)は縦断正面図、(b)は平面図である。
【図13】減衰機構(ダンパー)の他の形態を示すものであって、(a)は4角形の連結板に彎曲状部材を放射状に配置した状態を示す平面図、(b)は5角形の連結板に彎曲状部材を放射状に配置した状態を示す平面図である。
【図14】減衰機構(ダンパー)の他の形態を示すものであって、(a)は6角形の連結板に彎曲状部材を放射状に配置した状態を示す平面図、(b)は7角形の連結板に彎曲状部材を放射状に配置した状態を示す平面図である。
【図15】減衰機構(ダンパー)の他の形態を示すものであって、8角形の連結板に彎曲状部材を放射状に配置した状態を示す平面図である。
【図16】減衰機構(ダンパー)の他の形態を示すものであって、(a)は2つ以上の彎曲状部材を平行に配置して1組の彎曲状部材ユニットを構成し、複数組の彎曲状部材ユニットを等角度間隔に配置する形態の一形態を示す平面図、(b)は、上部構造物または下部構造物から彎曲状部材が突出しないようにする一形態を示す平面図である。
【図17】彎曲状部材の好ましい形態を示すものであって、(a)は斜視図、(b)は平面図、(c)は正面図である。
【図18】アイソレータの外周に配置した減衰機構の彎曲状部材を示す図である。
【図19】アイソレータの上部構造及び下部構造との連結板と彎曲状部材の取り付け図である。
【図20】アイソレータの連結板に取り付けた彎曲状部材を示す図である。
【図21】アイソレータの連結板に配置した彎曲状部材の組み合わせ図である。
【図22】アイソレータの連結板に配置した彎曲状部材の組み合わせ図である。
【図23】アイソレータの連結板に配置した彎曲状部材の組み合わせ図である。
【図24】中間層免震において柱の途中に一体に配置したアイソレータと減衰機構の図である
【図25】中間層免震において柱の途中に一体に配置しアイソレータと減衰機構の図である。
【図26】彎曲状部材の図および、これの変形時の復元特性を示す図である。
【図27】彎曲状部材を側面図と平面図で示し、各部に名称を付して示す図である。
【図28】本発明に係る彎曲状部材を用いた復元特性、加力方向と降伏せん断力および剛性に関する実験結果を示す図である。
【図29】疲労特性に影響する彎曲状部材の変形の諸状態を示す説明図である。
【図30】本発明の彎曲状部材における加力方向および振幅と破断位置との関係の実験結果を示す図である。
【図31】免震建築物の地震時の最大相対変形の調査結果を示す図である。
【図32】彎曲状部材の直線変形と疲労特性との関係の実験結果を示す図である。
【図33】図32の疲労実験結果における歪み振動と破断回数との関係を示す図である。
【図34】本発明の免震装置の変形形態を示すものであって、(a)は前面側の彎曲状部材を取り外して示す正面図、(b)は平面図である。
【図35】本発明の免震装置の変形形態を示すものであって、(a)はほぼ5角形の連結板を使用して、彎曲状部材を平面放射状に配置した形態を示す平面図、(b)はほぼ6角形の連結板を使用して、彎曲状部材を平面放射状に配置した形態を示す平面図である。
【図36】本発明の免震装置の変形形態を示すものであって、(a)はほぼ7角形の連結板を使用して、彎曲状部材を平面放射状に配置した形態を示す平面図、(b)はほぼ8角形の連結板を使用して、彎曲状部材を平面放射状に配置した形態を示す平面図である。
【図37】本発明の免震装置の変形形態を示すものであって、2つ以上の彎曲状部材を平行に配置して1組の彎曲状部材ユニットを構成し、複数の彎曲状部材を等角度間隔をおいて配置する形態を示す平面図である。
【図38】(a)は試験体の概略平面図、(b)および(c)は、それぞれA方向およびB方向の漸増加力試験による減衰機構(免震ダンパー)の疲労特性を示す履歴曲線である。
【図39】彎曲状部材7について繰り返し振幅と破断回数による疲労曲線を示す線図である。
【図40】(a)は試験体の概略平面図、(b)および(c)は、それぞれA方向およびB方向の漸増加力試験による免震装置の疲労特性を示す履歴曲線である。
【符号の説明】
1 アイソレータ
2 上部構造
3 下部構造
4 金属板
5 弾性板
6 減衰機構
7 減衰機構を構成する彎曲状部材
8 彎曲状部材の一端の取り付け部
9 彎曲状部材の他端の取り付け部
10 上下部構造との連結板
11 連結板と彎曲状部材端部を連結する連結板の取り付け孔
12 連結板と彎曲状部材端部を連結する彎曲状部材の取り付け孔
13 連結板と彎曲状部材を連結するボルト
14 アイソレータの上下部構造との連結板
15 アイソレータの上下部構造との連結板と彎曲状部材端部を連結する取り付
け孔
16 建築物の柱
17 上部板
18 下部板
19 彎曲部連結板
20 彎曲状部材ユニット
21 スキンプレート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plastic hysteretic seismic isolation device that is disposed between an upper structure and a lower structure, attenuates vibration of the upper structure during an earthquake, and absorbs seismic energy.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various types of plastic hysteretic seismic isolation devices installed between an upper structure and a lower structure such as a building structure and a foundation supporting the structure have been proposed by changing the shape of members.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 2-62671
[Patent Document 2]
Japanese Patent Publication No. 2-59262
[Patent Document 3]
JP-A-2-194233
[Patent Document 4]
JP-A-60-223576
[0004]
For example, Japanese Patent Publication No. 2-62671 (Patent Literature 1) discloses a device in which a seismic isolation device is formed into a straight rod shape and each end is fixed to an upper and lower structure. In addition, Japanese Patent Publication No. 2-59262 (Patent Document 2) discloses a device in which a seismic isolation device is formed into an annular shape.
[0005]
For example, Japanese Patent Application Laid-Open No. 2-194233 (Patent Document 3) has developed a device in which a seismic isolation device is formed in a substantially U-shape and plate-shaped auxiliary members for preventing vibration are provided on both sides of a damper. Have been.
The shaking of the structure during an earthquake is deformed 360 degrees in all directions in the horizontal direction, so the seismic isolation device is also deformed 360 degrees in all directions. However, in Japanese Patent Application Laid-Open No. 2-194233, energy absorption is performed by deforming a substantially U-shaped damper in a caterpillar shape in only one direction, and in other directions, for example, deformation in a direction perpendicular to the caterpillar shape. However, it is held down by the steady rests protruding on both sides, and the deformation direction is limited to only one direction, and no consideration is given to the other direction.
Also, Japanese Unexamined Patent Publication No. 60-223576 (Patent Document 4) describes a U-shaped seismic isolation device, but a direction relating to the properties of the seismic isolation device when horizontally deformed in an arbitrary direction during an earthquake. There is no description about gender.
[0006]
[Problems to be solved by the invention]
The problems to be solved by the present invention are the following nine points.
(1) When the shape of the seismic isolation device is a straight rod, horizontal deformation during an earthquake causes the end to be fixed at both ends as shown in FIG. Focus on the edges. Therefore, when strain concentrates on a certain part of the member, since the strain is concentrated and accumulated from the time when the horizontal deformation is small, the member yields and plasticizes quickly, and the elastic range in the hysteresis characteristic of the member is reduced. Narrows. Even after the plasticization, the strain is concentrated and accumulated with the increase of the horizontal deformation, so that the fracture occurs while the horizontal deformation is small. In addition, when the member undergoes a large deformation due to an unexpected large earthquake, the member cannot follow the deformation and breaks without absorbing the seismic energy. Further, when strain is concentrated on a part of the member and the range of plasticization in the member is narrowed, the part of the member that absorbs the energy of the earthquake also becomes small, and the energy absorption amount of the entire member decreases.
(2) When the shape of the seismic isolation device is a straight rod type, as shown in FIG. 2, the horizontal deformation at the time of the earthquake increases the distance between the ends, and accordingly, the members are also stretched. Therefore, as the amount of horizontal deformation increases, distortion and tensile stress due to elongation of the member increase, and bending stress and distortion due to bending deformation are also applied.
(3) When the shape of the seismic isolation device is a straight bar, the elastic range in the hysteresis characteristics of the member is narrow, so the member yields due to horizontal deformation due to the wind that occurs more frequently than an earthquake, and energy due to wind vibration Because of the absorption, the amount of the energy of the member, which can absorb the energy of the earthquake, is reduced. In addition, since energy due to wind is also absorbed, the period during which the total absorbed energy amount of the member is reached is earlier, the frequency of inspection and replacement of the member is increased, and the maintenance cost is increased.
(4) When the shape of the seismic isolation device is a straight rod type, the seismic isolation device is designed to compensate for the elongation and tensile stress of the member due to horizontal deformation during an earthquake and to prevent the member from yielding from minute deformation. The end has a mechanically complex structure. Therefore, the number of parts constituting the seismic isolation device is increased, and the production is troublesome, and as a result, the production cost is increased.
(5) Since the annular type seismic isolation device has a three-dimensionally complicated shape, it takes time and effort to manufacture such as hot forming and hot forging, and the manufacturing cost becomes high.
(6) Since the ring-shaped seismic isolation device is arranged so as to spread out in a plane, the occupied area of the seismic isolation device is large and takes up space.
(7) When it is desired to separately arrange the isolator and the seismic isolation device in parallel, since the area occupied by the seismic isolation device and the isolator is large, it may be difficult to arrange the structure on the plan of the structure.
(8) When it is desired to separately arrange the isolator and the seismic isolation device in parallel, each of the seismic isolation device and the isolator requires a mounting portion and work for mounting on the upper and lower structures, which increases the construction work cost. I will.
(9) When the seismic isolation device is formed in a U-shape, the strength and rigidity of the seismic isolation device in each deformation direction are considered unless the deformation direction of the seismic isolation device is taken into account for horizontal deformation in an arbitrary direction during an earthquake. Directionality occurs for such properties. For example, FIG. 26 shows a case where the member cross sections are equal cross sections without considering the directionality of the members. The yield shear force in the 0-degree direction in the plane and the yield shear force in the 90-degree direction outside the plane are 50% lower in the 90-degree out-of-plane direction than in the 0-degree direction in the plane. There was a problem that the properties of the seismic device changed.
The present invention solves the problems of (1) to (6) and (9) and the problems of (1) to (9) including (7) and (8). The purpose is to provide a seismic isolation device.
[0007]
[Means to solve the problem]
A first feature of the present invention is that an isolator formed by alternately stacking a metal plate and an elastic body, and both ends of a curved member wider than a plurality of plate thicknesses made of an elasto-plastic material include an upper structure and a lower portion. A plastic history type seismic isolation device having a damping mechanism fixed to a structure and provided with an intermediate portion excluding both ends of the curved member separated from an upper structure and a lower structure.
[0008]
A second feature of the present invention is that, in the first invention, the upper plate and the lower plate of the curved member and the curved connecting plate connecting them are symmetrical with respect to the central axis C in the width direction thereof. The curved member is in the seismic isolation device which is vertically symmetrical with respect to the horizontal center axis at the center of the curved connecting plate.
A third feature of the present invention is the seismic isolation device according to the first or second invention, wherein the width of the curved member is changed.
[0009]
A fourth feature of the present invention is that, in any one of the first to third inventions, the dimensional relationship among the tip width W1, the end width W2, and the plate thickness T of the curved member is W2>W1>. T is in the seismic isolation device.
[0010]
A fifth feature of the present invention is that, in any one of the first to fifth inventions, when changing the outer shapes of all the curved members to the same shape, each of the curved members has a similar shape according to a similarity rule. In the seismic isolation device in which the outer shape of the curved member is set.
[0011]
According to a sixth feature of the present invention, in any one of the first to fifth aspects of the present invention, the curved member units formed by at least one or more curved members are arranged at equal angular intervals in a plane. There is a seismic isolation device.
[0012]
A seventh feature of the present invention is the seismic isolation device according to any one of the first to sixth inventions, wherein the curved member satisfies the following conditions.
FIG. 21 shows the names of each part of the curved member.
(1) The width W2 of the end of the curved member is larger than the width W1 of the tip of the curved portion.
It is formed so that 1.0 <W2 / W1 <2.0.
(2) The length L (excluding the joint) of the straight portion of the curved member is set to a length of 10 cm to 70 cm.
(3) The curved portion R of the curved member is formed such that 2.5 <R / T with respect to the plate thickness T.
[0013]
In other words, the sixth feature of the present invention is that, in any one of the first to fifth inventions, the ratio of the end width of the curved member to the tip width is in a range larger than 1 and smaller than 2; A plastic hysteretic seismic isolator having a curved member having a linear portion length of 10 cm to 70 cm and a ratio of a curved portion length of the curved member to a plate thickness of the member is greater than 2.5.
[0014]
According to an eighth aspect of the present invention, in any one of the first to seventh inventions, a plurality of curved members made of an elasto-plastic material are provided on an outer peripheral portion of an isolator disposed between the upper structure and the lower structure. Is a plastic hysteresis type seismic isolation device that is fixed to both ends of the isolator and a connecting plate that connects it to the upper and lower structures.
[0015]
[Action]
The operation of the present invention has the following eight points.
(1) By forming the elasto-plastic material into a curved member, the point where the distortion becomes maximum at the time of plastic deformation is moved within the member by changing the amount of horizontal deformation, and the distortion of the member is dispersed without being locally concentrated. I do. As a result, the plasticization range of the member extends over the entire region in the axial direction of the member, so that the entire member can be effectively used to absorb energy due to the earthquake.
3A shows a strain distribution of the curved member 7 at the time of a small earthquake, FIG. 3B shows a strain distribution at a medium earthquake, and FIG. 3C shows a strain distribution at a large earthquake. In a moderate earthquake, the portion of the curved member that receives the distortion of the curved portion moves in the axial direction of the member 7 by half of the deformation δ1 due to the seismic force. In the case of a large earthquake, the portion that receives the distortion by half of the deformation δ2 moves. In this way, the part that receives strain is moved to the entire area of the member according to the amount of horizontal deformation during the earthquake, and the entire member is plasticized, so that the member effectively absorbs the seismic energy.
(2) When horizontal deformation occurs during an earthquake, since the member is formed in a curved shape as shown in FIG. 5, the curved portion can be compensated for by being deformed linearly without extending in the axial direction of the material. . Since the portion where the curved portion is deformed linearly moves constantly, there is an effect of reducing the distortion generated in the member to the distortion of approximately the curvature of the curved portion.
(3) In many cases, steel is used as the elasto-plastic material for forming the curved member. Also in the present invention, when the elasto-plastic material for forming the curved member is a steel material, the shape of the curved member is not three-dimensionally complicated such as an annular shape, and therefore, the curved member is formed by hot forming or hot forming. There is no need for cold forging, and the curved portion can be accurately processed by cold forming to produce a curved member. Thereby, the manufacturing process of the curved member is facilitated, and the manufacturing cost can be reduced.
(4) When the seismic isolation device and the isolator are integrated, the area occupied by each of the seismic isolation device and the isolator can be reduced. In addition, since the mounting parts and the work required for mounting the upper and lower structures required for each of the seismic isolation device and the isolator are reduced by integrating them, the construction cost can be reduced.
(5) During an earthquake, the curved member undergoes horizontal deformation in an arbitrary direction. In the present invention, the mechanical properties of the curved member do not change even in any horizontal deformation, and the directionality can be reduced.
As shown in FIGS. 26 and 27, when the width of the curved portion is constant (W1 = W2), the yield shearing force in the out-of-plane 90 ° direction becomes smaller in the in-plane 0 ° direction and the out-of-plane 90 ° direction deformation. It is reduced by 50%.
This is because if the deformation direction does not match the in-plane direction (the deformation direction angle exceeds 0 °), the tip of the curved portion and the straight line portion will be deformed by torsion, and the bending rigidity in the 0 ° direction in the plane will not be balanced. That's why.
Therefore, in order to make the rigidity and the yield shear force in all horizontal directions from the in-plane 0 ° direction to the out-of-plane 90 ° direction the same performance, the directionality is reduced by changing the width of the curved member. It becomes possible.
Further, in particular, in order to increase the torsional rigidity of the curved member, the end width W2 of the curved member is made larger than the distal end width W1 of the curved portion, thereby preventing a decrease in proof strength and rigidity and improving the directionality of the deformation direction. Can be reduced.
FIG. 28 shows the experimental results. When the ratio of W1: W2 is 1: 1.34, the yield shear force is 29 kN (corresponding to 3.0 tonf) in the in-plane 0 degree direction and 27 kN (approximately 2.8 tonf) in the 90 degree out-of-plane direction. ), Which is only a 7% decrease, and there is little difference due to directionality. Similarly, the primary stiffness is in the range of 19 kN to 12 kN (equivalent to approximately 2.0 tonf / cm to 1.2 tonf / cm), and has almost the same performance.
In this way, by making the ratio of the width W1 of the curved portion front end to the width W2 of the end portion larger than 1, it is possible to prevent directivity from being generated.
If this ratio is greater than 2, the distal end of the curved member is weaker due to the relatively thinner member, so the strain is concentrated, and the deformation in the in-plane direction during an earthquake, The deformation does not occur as shown in FIG. 29 (a), but the strain concentrates on the distal end portion as shown in FIG. 29 (b), and the deformation of the member becomes severe, causing a problem in the fatigue characteristics.
Further, when the curved member is formed, the yield of the material of the curved member is deteriorated, and the economy is inferior.
(6) By selecting the ratio of the end width W2 of the curved member to the tip width W1 of the curved portion, distortion is always given to the curved member in response to horizontal deformation in any direction which the curved member undergoes during an earthquake. Rather than concentrating on portions, the strain can be distributed within the member, effectively utilizing the entire curved member to absorb the energy of the earthquake.
FIG. 30 shows the experimental results. The breaking position changes depending on the direction of the applied force, and in the 0-degree direction in the plane, the breaking position also changes depending on the amplitude. This indicates that the entire member is effectively absorbing energy with respect to deformation during the earthquake.
(7) The deformation of the curved member at the time of the earthquake is to be followed by the bending deformation and the torsional deformation of the curved member. The total length must be long enough for the amount of deformation during an earthquake. The length of the straight portion of the curved member is necessary to secure the length of the curved member so that it can follow the deformation during an earthquake.
In the case where energy is absorbed by dispersing strain throughout the curved member, the length of the straight portion is a length that allows plastic deformation to absorb energy. By making the straight portion of the curved member an optimal length depending on the deformation amount during an earthquake, energy can be effectively absorbed without waste.
As a result of recent investigation on the maximum deformation of seismic isolation devices during earthquakes (Level 2: Earthquake motion that may be encountered once during the useful life of the building), the building letter issued by the Building Center of Japan from January 1998 to 1998 Figure 31 shows the results of the evaluation of the Japan Building Center for seismically isolated buildings published until the May issue.
As a result, there are many cases up to about 10 to 50 cm, and the amount of deformation of the base-isolated building is increasing year by year. Deformation can be accommodated.
FIG. 32 shows fatigue test results when the length of the straight portion of the curved member is L = 150 mm (CASE1) and L = 300 mm (CASE2). At the same amplitude, the number of breaks for L = 150 mm (CASE1) is smaller than the number of breaks for L = 300 mm (CASE2). This indicates that by increasing the length of the curved member, there is room for the length that can be followed even when the deformation increases, and the fatigue characteristics are also improved.
For example, as the performance required for the curved member, if the amplitude of breaking at 20 times is 20 cm, the length of the linear portion is set to L = 150 mm (CASE 1). If the amplitude of breaking at 20 times is required up to 30 cm, the length of the straight portion L is set to 300 mm (CASE 2). In this manner, the curved member can be formed effectively without waste depending on the required performance.
(8) The distortion due to the deformation of the member during an earthquake increases as the plate thickness increases, and particularly in the 0-degree direction, the curved portion is linearly deformed. If the curvature of the curved portion is large, the fatigue characteristics deteriorate. Therefore, by determining the ratio between the curved portion R and the plate thickness T, it is possible to prevent the fatigue characteristics of the curved member from being lowered.
For example, in a repetitive loading test with an amplitude of ± 20 cm in the direction of 0 degrees, the number of breaks when R / T = 3.13 was 6 and the number of breaks when R / T = 4.14 was 18 times. A change of R / T by about 1.0 greatly affects the fatigue characteristics of the curved member, and the number of breaks increases three times.
When the ratio R / T of the curved portion R to the plate thickness T becomes smaller than 2.5, the curvature of the curved portion becomes larger than 1/4, and the curved portion becomes linear when deformed in the in-plane direction. As a result, the surface distortion in the thickness direction receives 25% distortion. For example, when the curved member is a steel material, if the curved member is subjected to a maximum of 25% strain during an earthquake, the member is broken by one earthquake, judging from the fatigue characteristics of the steel material shown in FIG. Therefore, the ratio R / T between the curved portion R and the plate thickness T needs to be larger than 2.5.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
[Embodiment 1]
FIG. 6 shows an embodiment of the present invention. In this embodiment, a damping mechanism 6 is arranged between an upper structure 2 and a lower structure 3 with an isolator 1 interposed therebetween. The damping mechanism 6 uses a plurality of curved members 7 made of an elastic-plastic material and combines them in a lantern shape so as to draw a circle as shown in FIG. 7, or two symmetrical members as shown in FIG. One set of curved members facing each other is arranged using a plurality of sets. As shown in FIG. 9, the curved member 7 is formed by, for example, forming a steel material having a rectangular cross section of 25 mm long × 50 mm wide from an elastic-plastic material into a curved shape. The mounting portion 8 at one end of each curved member 7 is fixed to the upper structure 2, and the mounting portion 9 at the other end is fixed to the lower structure 3.
When the damping mechanism of the present invention is actually mounted on a structure and used, the ends 8 and 9 of the curved member are not directly mounted on the upper structure 2 and the lower structure 3, but as shown in FIG. The connecting plate 10 is attached to the lower structure 2 and the lower structure 3, and is processed into the mounting holes (female screw holes) 11 formed in the connecting plate 10 as shown in FIG. 11 and the ends 8 and 9 of the curved member 7. The attached mounting holes 12 are fixed with bolts 13. Thus, when the curved member 9 is attached to the upper structure 2 and the lower structure 3, it can be easily attached by tightening the bolt 13. Moreover, the only device for connecting to the upper structure 2 and the lower structure 3 is the connecting plate 10, and the device for fixing the ends is minimized, so that the manufacturing cost can be reduced.
In addition, when the seismic energy is absorbed and the fatigue damage is severe, or when the curved member 7 needs to be replaced due to damage of the curved member 7 due to an accident during use, only the curved member 7 to be replaced is detached alone. In addition, the replacement work can be performed by removing and tightening the bolt 13, so that the work is easy and the replacement construction cost can be reduced.
[0017]
[Modification]
A further preferred embodiment of the curved member 7 made of an elastic-plastic material used in the damping mechanism (seismic isolation damper) 6 of the present invention will be described with reference to FIG.
The upper plate 17 and the lower plate 19 of the curved member 7 are parallel to each other, and the upper plate 17 and the lower plate 19 of the curved member 7 and the curved connection plate 19 that integrally connects the upper plate 17 and the lower plate 19 are in their width directions. The upper plate 17 and the lower plate 19 and the curved connecting plate 19 connecting them are vertically symmetrical with respect to the central horizontal central axis B of the curved connecting plate 7. It is shaped. By adopting such a shape of the curved member 7, the deformation of the curved member 7 and the damping mechanism (seismic isolation damper) at the time of the earthquake changes symmetrically, and the residual deformation is not deviated in one direction, but in the same direction. Even if the deformation is received, it is possible to eliminate the possibility that the rigidity and the yielding shear energy absorption amount change from the initial values.
Contrary to the above-described embodiment, when the upper plate 17 and the lower plate 18 in the curved member 7 and the curved connecting plate 19 for connecting them are asymmetric with respect to the central axis C in the width direction. This is not preferable because the deformation of the curved member and the damping mechanism (seismic isolation damper) during an earthquake does not change symmetrically, and the residual deformation is biased in one direction. In addition, as in the present invention, by making the shape symmetrical with respect to the center axes B and C, even if the curved member 7 is arranged upside down at the time of assembling, a normal arrangement state is obtained, and there is no mounting error. Have been. In addition, although it is common in each embodiment of this invention, the intermediate part and the front-end | tip part of the curved member 7 except the attachment end part of the curved member 7 are connected so that a deformation | transformation may not be restrained. 10 (14) and the upper structure 2 and the lower structure 3.
[0018]
Further, the width W1 of the distal end of the curved member 7 is smaller than the width W2 of the proximal end of the upper plate 17 and the lower plate 18 in the curved member 7, and the distal end of the curved member 7 has a smaller width. The width W1 and the end width W2 are larger than the plate thickness T of the curved member 7. As described above, when the dimensional relationship among the tip end width W1, the end width W2, and the plate thickness T of the curved member 7 is W2>W1> T, the upper plate 17 and the lower plate 18 and the curves connecting them are connected. Even when the connecting plate 19 is deformed in the out-of-plane direction, lateral buckling is unlikely to occur, and there is no possibility of residual deformation during plastic deformation. Therefore, there is no possibility of twisting and the performance of the damping mechanism (seismic isolation damper) 6 is improved. Less likely to change. Conversely, if W2 <T and W1 <T, lateral buckling occurs when the upper plate 17 and the lower plate 18 and the curved connecting plate 19 connecting them are deformed in the out-of-plane direction. This tends to cause residual deformation during plastic deformation and torsion, which undesirably changes the performance of the damping mechanism (damper).
[0019]
Further, when implementing the above-described embodiment and the embodiment described later, when changing the outer shape of all the curved members 7 to the same shape to obtain a curved member 7 having a new performance, the similar shape is formed by the similarity rule. When the outer shape of each curved member 7 is set so as to be as follows, the performance of the damping mechanism (seismic isolation damper) 6 (yield shear force, deformation performance, energy absorption, fatigue characteristics, etc. of the damping mechanism) also follows the similarity rule. Change. Therefore, when the required performance of a specific damping mechanism (seismic isolation damper) 6 is required, the dimensional shape of the curved member 7 constituting the damping mechanism (seismic isolation damper) 6 that satisfies the performance is determined by the similarity rule. Can be easily determined.
[0020]
In the case where a plurality of curved members 7 constituting the damping mechanism 6 are arranged, as shown in FIG. 12, one curved member 7 may be arranged as a set and arranged at equal angular intervals. As shown in (b), the curved plate 7 is arranged on each side of the connecting plate 10 so that the central axis C of the curved member 7 is substantially parallel, and the mounting end of the curved member 7 is located near each corner of the connecting plate 10. The parts may be radially arranged at 90 degree intervals so that the ends of the curved member 7 are located near the corners of the connecting plate 10 as shown in FIG. At the same time, the curved members 7 may be arranged radially so that the central axis C of the curved members 7 faces the center of the connecting plate 10. FIG. 12A shows a state in which the stud bolt 22 is fixed to the connecting plate 10 by welding or the like, assuming that the upper structure 2 and the lower structure 3 are concrete structures. When the upper structure 2 and the lower structure 3 are made of steel, they are appropriately fixed by bolts or welding.
In the embodiment shown in FIG. 12A, both ends of the curved member 7 are fixed to the connecting plate 10 by bolts 13 with skin plates 21 having bolt holes interposed therebetween. The skin plate 21 is made of a steel plate having substantially the same shape as the mounting end of the curved member 7. With the skin plate 21 interposed, even if the curved member 7 is slightly deformed, the upper plate 17 can be used. The lower plate 18 contacts the lower structure 3 so that the deformation of the curved member 7 is not restricted. Accordingly, a larger gap G is provided between the upper plate 17 and the upper structure 2 in the curved member 7 and between the lower plate 18 and the lower structure 3 in the curved member 7. As in this embodiment, the gap G is formed even when the lower surface of the upper structure 2 or the upper surface of the lower structure 3 is flat due to the thickness of the connecting plate 10 or the connecting plate 10 and the skin plate 21. In addition, the point that the bending member 7 is configured so as not to restrict the deformation in the horizontal direction and the vertical direction is a common configuration in all of the above-described and later-described embodiments.
[0021]
As shown in FIGS. 13 (b), 14 (a), and (b), the pentagonal to heptagonal connecting plate 10 is a curved member so as to intersect each side of the connecting plate 10 at right angles. 7 may be mounted on the connecting plate 10 and arranged radially. Further, as shown in FIG. 15, as an octagonal or quadrilateral connecting plate 10 shown by a dotted line, the curved member 7 may be arranged so as to intersect each side of the connecting plate 10 at right angles, or by a dotted line. The shape of the rectangular connecting plate 10 shown may be used. Note that the front views of the embodiment shown in FIGS. 13 to 16 are the same as those in FIG. 13A, and the illustration of these front views is omitted.
[0022]
Further, as shown in FIG. 16A, two or more curved members 7 are arranged in parallel at a distance or close to each other to form a set of curved member units 20, and a plurality of curved member units 20 are formed. 20 may be arranged at equal angular intervals as in the above embodiments. As described above, when two or more curved members 7 are arranged close to each other in parallel to form a set of curved member units, a large number of curved members are required as compared with a case where each curved member 7 is radially arranged. The shape member 7 can be installed efficiently, and the performance of the damping mechanism (seismic isolation damper) 6 can be improved.
[0023]
In addition, as shown in FIG. 16B, the curved member 7 does not project from the planar contour of the lower corner of the upper structure (upper structure) 2 or the upper corner of the lower structure (lower structure) 3. In order to achieve this, one curved member 7 or two or more curved member units 20 each having a set of two or more curved members 7 are arranged on the connecting plate 10 at an appropriate number (or the number of sets) at an appropriate interval. You may.
[0024]
As described above, when the curved members 7 are arranged, the curved member units 20 formed by at least one or more curved members 7 may be arranged at equal angular intervals in a plane.
As described above, if the curved members 7 are arranged at equal angular intervals, the damping mechanism (damper) 6 undergoes deformation from all directions of 360 degrees in the horizontal direction during an earthquake. In order to avoid a specific horizontal direction, when receiving a horizontal force during an earthquake from any direction in the horizontal direction, the above-described performance of the constant damping mechanism 6 (yield shear force, deformation performance, energy Absorption amount, fatigue characteristics, etc.).
As representative forms of the hysteresis curves showing the characteristics of the restoration characteristics and the fatigue characteristics of the forms shown in FIGS. 12 to 16, regarding the damping mechanism 6 of the form shown in FIG. 12, the directions of arrows A and B shown in FIG. (B) and (c) of FIG. FIG. 39 shows a fatigue curve according to the repetition amplitude and the number of breaks for the curved member 7 shown in FIG. Since substantially similar curves are shown for FIGS. 38 (b) and (c), it can be seen that there is no directionality in the restoration characteristics. Further, it can be seen that a high number of breaks is exhibited.
[0025]
[Embodiment 2]
FIG. 18 shows an embodiment of the present invention. In this embodiment, a curved member 7 constituting a damping mechanism 6 is arranged on an outer periphery of an isolator 1 interposed between an upper structure 2 and a lower structure 3, and the isolator 1 and the curved member 7 are integrally arranged. This is a seismic isolation device. As shown in FIG. 19, on the outer periphery of a connecting plate 14 of the isolator that connects the isolator 1 to the upper structure 2 and the lower structure 3, two or more curved members 7 formed by bending an elastic-plastic material into a curved shape are provided. 20 and 21 are arranged at equal angular intervals so as to draw a circle as shown in FIGS. 20 and 21 and assembled in a lantern shape, or as shown in FIGS. 22 and 23, two curved members 7 are A plurality of sets are arranged on the outer periphery of the isolator 1 with one set of symmetrical orientation. Attachment of the end of the curved member to the connection plate 14 is performed by attaching the attachment hole 12 machined to the end 8 and 9 of the curved member 7 to the attachment hole 15 machined to the connection plate 14. Fix with bolts 13.
[0026]
Accordingly, when the isolator 1 and the damping mechanism 6 are separately arranged in parallel in a space extending between the upper structure 2 and the lower structure 3, each occupies the area of the space and the seismic isolation device is used. Although the occupied area has increased, the area occupied by the space extending between the upper structure 2 and the lower structure 3 can be reduced by integrating the isolator 1 and the damping mechanism 6 with each other.
In addition, since the isolator 1 and the damping mechanism 6 are integrated, the number of parts to be attached to the upper structure 2 and the lower structure 3 is reduced. Costs can be reduced.
[0027]
Further, a space is provided in the middle of the pillar 16 of the building as shown in FIGS. 24 and 25, and the curved member 7 is shown on the outer periphery of the isolator 1 in the middle-rise seismic isolation in which the isolator 1 is inserted and seismically isolated. 20 and FIG. 21, FIG. 22, and FIG. 23, and the isolator 1 and the damping mechanism 6 are integrally disposed. This means that the isolator 1 and the damping mechanism 6 can be integrally mounted even in a limited case where the number of pillars of the building is fixed and the number and location of the isolators 1 are necessarily determined. . Further, even when the seismic isolation device should not be disposed outside the outer periphery of the column 16 in the middle-rise seismic isolation, the curved member 7 is arranged as shown in FIG. , The isolator 1 and the damping mechanism 6 can be arranged.
[0028]
[Modification]
FIGS. 34 to 37 show a seismic isolation device in which a curved member 7 constituting the damping mechanism 6 is arranged on the outer periphery of the isolator 1 and the damping mechanism 6 including the isolator 1 and the curved member 7 is integrally arranged. FIG. 34 shows a modified embodiment. In the embodiment shown in FIG. 34, the corners of the rectangular connecting plate 14 are cut into shorter sides, and the connecting member 14 is made substantially rectangular as a whole. Are arranged radially at right angles to the short sides of the corners. FIGS. 35 (a) to 36 (b) show that the curved members 7 are radially arranged on the connecting plate 14 formed of a substantially pentagonal to octagonal plate body, and the ends thereof are cut at the short sides of the corners. This is a form in which they are arranged at right angles and arranged radially. The front views of the embodiment shown in FIGS. 35 to 37 are the same as those in FIG.
Further, both ends of the curved member 7 are fixed to the connecting plate 14 by bolts 13 with a skin plate 21 having bolt holes interposed therebetween, similar to the embodiment shown in FIG. By interposing the skin plate 21 made of a steel plate having substantially the same shape as the mounting end of the curved member 7, even if the curved member 7 is slightly deformed, the upper plate 17 may contact the upper structure 2. The lower plate 18 is configured to be in contact with the lower structure 3 so that the deformation of the curved member 7 is not restricted.
[0029]
FIG. 37 shows a representative embodiment in which two or more curved members 7 are arranged in parallel and a plurality of curved member units 20 are arranged as a set, and a plurality of curved member units 20 may be arranged at equal angular intervals. It is shown.
[0030]
In the embodiment shown in FIG. 37, every other octagonal connection plate 14 is provided at equal angular intervals of 90 degrees as a set of curved member units 20 in which two curved members 7 are arranged in parallel. Is a form in which four sets of curved member units 20 are arranged on the side of. As described above, when two or more curved members 7 are arranged at intervals or close to each other in parallel to form a set of curved member units, a relatively narrow connecting plate 14 can be formed similarly to the embodiment shown in FIG. Since the curved member 7 can be efficiently arranged, the performance of the damping mechanism (seismic isolation damper) 6 can be improved.
[0031]
As a representative example of the hysteresis curve using the curved member 7 in the form shown in FIG. 17 and showing the characteristics of the restoration characteristics of the seismic isolation device shown in FIGS. 34 to 37, FIG. FIGS. 40 (b) and 40 (c) show the results of the gradually increasing force test in the directions of arrows A and B shown in FIG. Since substantially similar curves are shown for FIGS. 40 (b) and (c), it can be seen that there is no directionality in the restoration characteristics.
[0032]
【The invention's effect】
The seismic isolation device of the present invention has the following advantages as compared with the conventional seismic isolation device.
(1) According to the present invention, by forming a member made of an elasto-plastic material into a curved shape, a point at which the bending stress of the curved member due to horizontal deformation during an earthquake is maximized is determined within the member by changing the amount of horizontal deformation. Can be moved. Further, by changing the cross-sectional shape and the shape of the curved member, stress and strain generated in the curved member due to horizontal deformation during an earthquake can be concentrated on a certain part of the member so as not to be accumulated.
Thereby, the part of the member that receives the strain can be dispersed throughout the member, and by expanding the plasticization range, the energy of the earthquake can be absorbed by effectively using the entire member.
(2) The extension of the distance between the ends of the member caused by the horizontal deformation at the time of the earthquake causes tensile stress and strain, but it can be reduced by the curved portion extending linearly. In addition, since the elongation and tensile stress of the member due to horizontal deformation are absorbed by the shape of the member itself, it is not necessary to make the end mechanically complicated depending on the fixing conditions, so that the manufacture of the device becomes easy and economical. There is also a positive effect.
(3) When the elasto-plastic material for forming the curved member is a steel material, the curved shape is not three-dimensionally complicated, so the curved portion is accurately processed by cold forming to manufacture the curved member. be able to. This facilitates the manufacturing process of the curved member, and has an economic effect.
(4) The upper plate and the lower plate of the curved member and the curved connecting plate connecting them are symmetrical with respect to the central axis C in the width direction thereof, and the curved member is located at the side of the center of the curved connecting plate. Since the shape is vertically symmetrical with respect to the center axis, the deformation of the curved member and damping mechanism (damper) during an earthquake changes symmetrically, and the residual deformation is received in the same direction without being biased in one direction Even in the case of deformation, it is possible to eliminate the possibility that the rigidity and the amount of yielding shear force energy absorption change from the initial values.
(5) Since the dimensional relationship among the tip width W1, the end width W2, and the plate thickness T of the curved member is W2>W1> T, the upper plate, the lower plate, and the curved connection plate connecting these are faced. Even when it is deformed in the outward direction, lateral buckling hardly occurs, and there is no possibility that residual deformation will accumulate during plastic deformation. Therefore, there is no possibility of twisting and there is little possibility that the performance of the damping mechanism (damper) will change.
(6) When changing the outer shapes of all the curved members to the same shape to obtain a curved member having a new performance, the outer shapes of the respective curved members are set so as to be similar according to the similarity rule. Therefore, the performance of the damping mechanism (damper) (yield shear force, deformation performance, energy absorption, fatigue characteristics, etc. of the damping mechanism) also changes according to the similarity rule. Therefore, when required performance of a specific damper is required, it is possible to easily determine the size and shape of the curved member 7 constituting the damping mechanism (damper) satisfying the performance by using the similarity rule. it can.
(7) Since the curved member units that are formed by at least one or more curved members are arranged at equal angular intervals in a plane, the damping mechanism (damper) during the earthquake is 360 ° in all directions in the horizontal direction. In order to receive the horizontal force at the time of the earthquake from any direction in the horizontal direction so that there is no specific direction in the horizontal direction by arranging the curved members 7 at equal angular intervals to receive the deformation from The above-mentioned performance of the damping mechanism (yield shear force, deformation performance, energy absorption, fatigue characteristics, etc.) of the damping mechanism can be maintained, and two or more curved members are arranged in parallel and close to each other. When the shape member units are arranged at equal angular intervals, a large number of curved members can be efficiently arranged.
(8) By integrating the seismic isolation device and the isolator, the area occupied by the seismic isolation device and the isolator can be reduced. In addition, the number of installation parts and work required for the seismic isolation device and the isolator required for the upper and lower structures is reduced, so that construction work costs are reduced and there is an economic effect.
(9) In the present invention, the ratio of the tip width to the end width of the curved member is in a range from more than 1 to less than 2, the length of the linear portion of the curved member is 10 cm to 70 cm, and the length of the curved portion of the curved member. By forming a curved member having a ratio of the thickness of the member to the plate thickness of greater than 2.5, the directionality in the properties when the conventionally known curved member is horizontally deformed in an arbitrary direction during an earthquake. The difference can be improved, and a stable restoring force characteristic can be obtained in any direction. Further, the entire curved member can be effectively plastically deformed, so that the curved member can be efficiently formed without waste according to design requirements.
[Brief description of the drawings]
FIG. 1 shows a bending moment diagram and a deformation diagram generated in a member due to horizontal deformation during an earthquake when a member constituting a damping mechanism is a straight rod type.
FIG. 2 is an elongation deformation diagram in a member longitudinal direction generated in a member due to horizontal deformation during an earthquake when a member constituting a damping mechanism is a straight rod type.
FIG. 3 is an example of a bending moment diagram generated by a member constituting a damping mechanism due to horizontal deformation during an earthquake when the member has a curved shape.
FIG. 4 is a diagram illustrating an example of a curved member shape forming a damping mechanism;
FIG. 5 is an elongation deformation diagram in the longitudinal direction of the member caused by horizontal deformation at the time of an earthquake when the member constituting the damping mechanism is curved.
FIG. 6 is a diagram showing a damping mechanism and an isolator arranged between an upper structure and a lower structure.
FIG. 7 is a view showing a combination of curved members constituting a damping mechanism.
FIG. 8 is a diagram showing a combination of curved members constituting a damping mechanism.
FIG. 9 is a view showing a curved member.
FIG. 10 is a mounting view of a connecting plate for connecting the upper structure and the lower structure to the curved member.
FIG. 11 is a view showing how a curved member and a connecting plate are attached.
FIGS. 12A and 12B show another form of the damping mechanism (damper), wherein FIG. 12A is a longitudinal sectional front view and FIG. 12B is a plan view.
13A and 13B show another form of the damping mechanism (damper), in which FIG. 13A is a plan view showing a state in which curved members are radially arranged on a square connection plate, and FIG. 13B is a pentagon. FIG. 6 is a plan view showing a state in which curved members are radially arranged on the connection plate of FIG.
14A and 14B show another form of the damping mechanism (damper), wherein FIG. 14A is a plan view showing a state in which curved members are radially arranged on a hexagonal connecting plate, and FIG. FIG. 6 is a plan view showing a state in which curved members are radially arranged on the connection plate of FIG.
FIG. 15 is a plan view showing another form of the damping mechanism (damper), showing a state in which curved members are radially arranged on an octagonal connecting plate.
16A and 16B show another form of a damping mechanism (damper), wherein FIG. 16A shows a configuration in which two or more curved members are arranged in parallel to constitute one set of curved member units, and a plurality of sets are provided. FIG. 4B is a plan view showing an embodiment in which the curved member units are arranged at equal angular intervals, and FIG. 4B is a plan view showing an embodiment in which the curved members are not projected from the upper structure or the lower structure. is there.
17A and 17B show a preferred form of the curved member, wherein FIG. 17A is a perspective view, FIG. 17B is a plan view, and FIG. 17C is a front view.
FIG. 18 is a view showing a curved member of a damping mechanism arranged on the outer periphery of the isolator.
FIG. 19 is a view illustrating how a connecting plate and a curved member are attached to the upper and lower structures of the isolator.
FIG. 20 is a view showing a curved member attached to a connecting plate of the isolator.
FIG. 21 is a combination diagram of a curved member arranged on a connecting plate of an isolator.
FIG. 22 is a combination diagram of a curved member arranged on a connecting plate of an isolator.
FIG. 23 is a combination diagram of a curved member arranged on a connecting plate of an isolator.
FIG. 24 is a diagram of an isolator and a damping mechanism that are integrally disposed in the middle of a column in a middle-rise seismic isolation system.
FIG. 25 is a diagram of an isolator and a damping mechanism that are integrally disposed in the middle of a pillar in the middle-rise seismic isolation.
FIG. 26 is a diagram of a curved member and a diagram showing a restoration characteristic when the member is deformed.
FIG. 27 is a diagram showing a curved member in a side view and a plan view, and names each part.
FIG. 28 is a view showing an experimental result on a restoring characteristic, a force direction, a yield shear force, and a rigidity using the curved member according to the present invention.
FIG. 29 is an explanatory view showing various states of deformation of the curved member affecting the fatigue characteristics.
FIG. 30 is a diagram showing an experimental result of a relationship between a force direction and an amplitude and a breaking position in the curved member of the present invention.
FIG. 31 is a diagram showing the results of an investigation on the maximum relative deformation of a base-isolated building during an earthquake.
FIG. 32 is a view showing an experimental result of a relationship between linear deformation of a curved member and fatigue characteristics.
FIG. 33 is a diagram showing the relationship between strain vibration and the number of breaks in the fatigue test results of FIG. 32.
34 (a) and 34 (b) show a modified form of the seismic isolation device of the present invention, wherein (a) is a front view showing a front-side curved member removed, and (b) is a plan view.
FIG. 35 is a plan view showing a modified form of the seismic isolation device of the present invention, in which (a) shows a form in which curved members are arranged in a plane radial pattern using a substantially pentagonal connecting plate; (B) is a plan view showing a form in which curved members are arranged in a plane radial pattern using a substantially hexagonal connecting plate.
FIG. 36 is a plan view showing a modified form of the seismic isolation device of the present invention, in which (a) shows a form in which curved members are arranged in a plane radial pattern using a substantially heptagonal connecting plate; (B) is a plan view showing a form in which curved members are arranged in a plane radial pattern using a substantially octagonal connecting plate.
FIG. 37 shows a modification of the seismic isolation device of the present invention, in which two or more curved members are arranged in parallel to form a set of curved member units, and a plurality of curved members are formed. It is a top view which shows the form arrange | positioned at equal angle intervals.
38 (a) is a schematic plan view of a test specimen, and FIGS. 38 (b) and (c) are hysteresis curves showing fatigue characteristics of a damping mechanism (seismic isolation damper) by a gradual increasing force test in A and B directions, respectively. It is.
FIG. 39 is a diagram showing a fatigue curve according to the repetition amplitude and the number of breaks for the curved member 7.
FIG. 40 (a) is a schematic plan view of a test piece, and FIGS. 40 (b) and (c) are hysteresis curves showing fatigue characteristics of the seismic isolation device by a gradual increasing force test in A and B directions, respectively.
[Explanation of symbols]
1 Isolator
2 Superstructure
3 Substructure
4 Metal plate
5 Elastic plate
6 damping mechanism
7. Curved member constituting damping mechanism
8 Attachment part at one end of curved member
9 Attachment part at the other end of curved member
10 Connecting plate with upper and lower structure
11 Mounting hole for connecting plate connecting connecting plate and end of curved member
12 Mounting holes for curved members connecting the connecting plate and the ends of the curved members
13 Bolt for connecting the connecting plate and the curved member
14 Connecting plate with upper and lower structure of isolator
15 Attachment to connect the connecting plate to the upper and lower structure of the isolator and the end of the curved member
Borehole
16 Building Pillars
17 Upper plate
18 Lower plate
19 Bending part connecting plate
20 Curved member unit
21 Skin Plate

Claims (8)

金属板と弾性体とを交互に積層してなるアイソレータと、弾塑性材料からなる複数の板厚よりも幅広の彎曲状部材の両端部とを上部構造と下部構造に夫々固定し、かつ前記彎曲状部材の両端部を除く中間部を上部構造と下部構造とは離した状態で設けてなる減衰機構を有する塑性履歴型の免震装置。An isolator in which metal plates and elastic bodies are alternately laminated, and both ends of a curved member wider than a plurality of plate thicknesses made of an elasto-plastic material are fixed to the upper structure and the lower structure, respectively, and A plastic hysteretic seismic isolation device having a damping mechanism in which an intermediate portion excluding both ends of a shaped member is provided with an upper structure and a lower structure separated from each other. 彎曲状部材における上部板および下部板ならびにこれらを接続する彎曲接続板は、これらの幅方向の中心軸線に対して対称な形状とされ、かつ彎曲状部材は彎曲接続板中央の横中心軸線に対して上下対称な形状とされていることを特徴とする請求項1に記載の免震装置。The upper plate and the lower plate in the curved member and the curved connecting plate connecting them are symmetrical with respect to the central axis in the width direction thereof, and the curved member is aligned with the horizontal central axis in the center of the curved connecting plate. The seismic isolation device according to claim 1, wherein the seismic isolation device has a vertically symmetric shape. 彎曲状部材の幅が変化していることを特徴とする請求項1または2に記載の免震装置。The seismic isolation device according to claim 1, wherein the width of the curved member changes. 彎曲状部材の先端部幅W1と端部幅W2と板厚Tとの寸法関係が、W2>W1>Tであることを特徴とする請求項1〜3のいずれかに記載の免震装置。The seismic isolation device according to any one of claims 1 to 3, wherein the dimensional relationship among the tip width W1, the end width W2, and the plate thickness T of the curved member is W2> W1> T. すべての彎曲状部材の外形形状を同じ形状に変化させて、新たな性能の彎曲状部材とする場合に、相似則によって相似形となるように各彎曲状部材の外形形状が設定されていることを特徴とする請求項1〜4のいずれかに記載の免震装置。When changing the outer shape of all the curved members to the same shape to obtain a curved member having a new performance, the outer shape of each curved member is set so as to be similar according to the similarity rule. The seismic isolation device according to any one of claims 1 to 4, wherein: 少なくとも一つ以上の彎曲状部材により組をなす彎曲状部材ユニットが平面的に等角度間隔をおいて配置されていることを特徴とする請求項1〜5のいずれかに記載の免震装置。The seismic isolation device according to any one of claims 1 to 5, wherein the curved member units formed by at least one or more curved members are arranged at equal angular intervals in a plane. 彎曲状部材の端部幅の先端幅に対する比が1より大きく2より小さい範囲にあり、彎曲状部材の直線部長さが、10cm〜70cmであり、彎曲状部材の彎曲部長さの当該部材の板厚に対する比が2.5より大きい彎曲状部材を有することを特徴とする請求項1〜6のいずれかに記載の塑性履歴型の免震装置。The ratio of the end width of the curved member to the tip width is in the range of greater than 1 and less than 2; the length of the straight portion of the curved member is 10 cm to 70 cm; The seismic isolation device of the plastic hysteresis type according to any one of claims 1 to 6, further comprising a curved member having a ratio to thickness greater than 2.5. 上部構造と下部構造の間に配置されたアイソレータの外周部に、弾塑性材料からなる複数の彎曲状部材の両端部を、アイソレータと上部構造,下部構造に連結する連結板に固定し配設したことを特徴とする請求項1〜7のいずれかに記載の塑性履歴型の免震装置。At the outer periphery of the isolator disposed between the upper structure and the lower structure, both ends of a plurality of curved members made of an elasto-plastic material are fixed and arranged on a connecting plate connecting the isolator and the upper structure and the lower structure. The plastic hysteresis type seismic isolation device according to claim 1, wherein:
JP2003139178A 2003-05-16 2003-05-16 Seismic isolator Pending JP2004340301A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003139178A JP2004340301A (en) 2003-05-16 2003-05-16 Seismic isolator
TW92130312A TWI280996B (en) 2003-05-16 2003-10-30 Device for insulating a building from earthquake
CN 200310103132 CN1259488C (en) 2003-05-16 2003-10-31 Anti-shock device
HK05100709A HK1068663A1 (en) 2003-05-16 2005-01-27 Antishock device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139178A JP2004340301A (en) 2003-05-16 2003-05-16 Seismic isolator

Publications (1)

Publication Number Publication Date
JP2004340301A true JP2004340301A (en) 2004-12-02

Family

ID=33528343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139178A Pending JP2004340301A (en) 2003-05-16 2003-05-16 Seismic isolator

Country Status (4)

Country Link
JP (1) JP2004340301A (en)
CN (1) CN1259488C (en)
HK (1) HK1068663A1 (en)
TW (1) TWI280996B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002658A (en) * 2006-06-26 2008-01-10 Kajima Corp Member holding device and member holding method
JP2008184254A (en) * 2007-01-29 2008-08-14 Ishikawajima Transport Machinery Co Ltd Base isolation support device for crane
JP2008223778A (en) * 2007-03-08 2008-09-25 Hitachi Metals Techno Ltd Hysteretic damper
WO2009054532A1 (en) * 2007-10-26 2009-04-30 Nippon Steel Engineering Co., Ltd. Seismic isolation apparatus for structures, method for installing apparatus thereof, and seismic isolation member
CN102281951A (en) * 2009-01-14 2011-12-14 斐乐公司 Shredder with shock absorbing element
US20120038091A1 (en) * 2009-03-30 2012-02-16 National University Corporation Nagoya University Vibration control device for beam-and-column frame
CN102433934A (en) * 2011-10-19 2012-05-02 沈阳建筑大学 Automatic-resetting multidirectional earthquake isolating bearing with C-type steel plates combined in form of Chinese character 'Mi'
US20120304587A1 (en) * 2010-02-16 2012-12-06 Okura Kenho Fastening device
CN102912885A (en) * 2012-11-07 2013-02-06 沈阳建筑大学 Sleeve *-shaped anti-buckling damping support
CN102912855A (en) * 2012-11-06 2013-02-06 沈阳建筑大学 Self-resetting sliding seismic isolation bearing of cross-shaped multi-layer friction plates
CN103276828A (en) * 2013-05-22 2013-09-04 太原理工大学 Curve-pull-rod-type anti-pulling device reinforced in short connection mode
US8752780B2 (en) 2009-01-14 2014-06-17 Fellowes, Inc. Vibration reduction isolation method for shredders
KR101409400B1 (en) 2013-07-04 2014-06-20 (주)광원아이앤디 Laminated rubber bearing having hat-shaped steel damper
WO2015069120A1 (en) * 2013-11-08 2015-05-14 Iso Systems Limited A resilient bearing
CN104975663A (en) * 2014-04-01 2015-10-14 东华理工大学 Multi-plane quasi linear energy dissipating damper
CN106704761A (en) * 2017-01-24 2017-05-24 东南大学 Multi-dimensional viscoelastic vibration isolation and reduction device for pipeline structure
CN107700913A (en) * 2017-10-18 2018-02-16 天津大学 A kind of multidimensional High Damping Performance device
JP2020041691A (en) * 2018-09-06 2020-03-19 国立大学法人大阪大学 Steel damper for aseismic base isolation
CN112112303A (en) * 2020-09-09 2020-12-22 五邑大学 Damper
WO2022113567A1 (en) * 2020-11-27 2022-06-02 国立大学法人大阪大学 Steel material damper for base isolation and base isolation structure
JP7529611B2 (en) 2021-04-16 2024-08-06 清水建設株式会社 Seismic isolation mechanism

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101155966B (en) * 2005-04-11 2014-04-02 里德尤拉克公司 Storage rack vibration isolators and related storage rack systems
CN101949129A (en) * 2010-09-29 2011-01-19 清华大学 Crawler-type metal energy-dissipation damper
JP5970818B2 (en) * 2012-01-10 2016-08-17 オイレス工業株式会社 Seismic isolation mechanism
CN103216568A (en) * 2012-01-19 2013-07-24 昆山思拓机器有限公司 U-shaped buffer device for laser device
CN103290942A (en) * 2012-03-02 2013-09-11 南京丹普科技工程有限公司 Metal energy consumption damper
CN103991502A (en) * 2013-02-20 2014-08-20 林威廷 Buffering shock absorber of bicycle
CN103243637B (en) * 2013-05-28 2015-09-23 招商局重庆交通科研设计院有限公司 For anti-seismic damper and the Antivibration block thereof of bridge
CN103397595B (en) * 2013-08-05 2015-06-10 清华大学 Metal damper and design method thereof
CN103993677B (en) * 2014-05-13 2016-04-20 同济大学 Two benches mixed type energy-consuming shock absorber
CN104313998B (en) * 2014-11-12 2016-04-13 南京工业大学 Transverse damping device suitable for large-span bridge
CN105696454B (en) * 2015-12-16 2018-04-06 北京工业大学 A kind of lead for retractable pencil steel pipe U-shaped damper
CN107587886A (en) * 2017-10-24 2018-01-16 仇文革 Utilize the big stroke template damper of performance behind material peak
CN108385850B (en) * 2017-12-27 2023-06-20 陈云 Design and manufacturing method of large-deformation damping energy dissipater
CN108253056A (en) * 2018-02-11 2018-07-06 杨尚中 A kind of anti-vibration attachment device
CN108867913A (en) * 2018-07-19 2018-11-23 北京工业大学 U-shaped variable cross-section mild steel damper and combination unit with pseudo-linear Hysteretic Type Damping feature
CN114809344A (en) * 2022-04-07 2022-07-29 中建二局第一建筑工程有限公司 Multi-section simultaneous yield metal damping device
CN114961037B (en) * 2022-05-20 2023-09-22 江苏科技大学 Vertical bearing-horizontal side-resistant separable cold-formed thin-wall steel combined wall and installation method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002658A (en) * 2006-06-26 2008-01-10 Kajima Corp Member holding device and member holding method
JP2008184254A (en) * 2007-01-29 2008-08-14 Ishikawajima Transport Machinery Co Ltd Base isolation support device for crane
JP2008223778A (en) * 2007-03-08 2008-09-25 Hitachi Metals Techno Ltd Hysteretic damper
WO2009054532A1 (en) * 2007-10-26 2009-04-30 Nippon Steel Engineering Co., Ltd. Seismic isolation apparatus for structures, method for installing apparatus thereof, and seismic isolation member
JP2011501049A (en) * 2007-10-26 2011-01-06 新日鉄エンジニアリング株式会社 Seismic isolation device for structure, construction method of the device, and seismic isolation member
CN102281951B (en) * 2009-01-14 2014-04-09 斐乐公司 Shredder with shock absorbing element
CN102281951A (en) * 2009-01-14 2011-12-14 斐乐公司 Shredder with shock absorbing element
US8789783B2 (en) 2009-01-14 2014-07-29 Fellowes, Inc. Shredder with shock absorbing element
US8752780B2 (en) 2009-01-14 2014-06-17 Fellowes, Inc. Vibration reduction isolation method for shredders
US8677699B2 (en) * 2009-03-30 2014-03-25 National University Corporation Nagoya University Vibration control device for beam-and-column frame
US20120038091A1 (en) * 2009-03-30 2012-02-16 National University Corporation Nagoya University Vibration control device for beam-and-column frame
US20140115979A1 (en) * 2010-02-16 2014-05-01 Okura Kenho Fastening device
US20120304587A1 (en) * 2010-02-16 2012-12-06 Okura Kenho Fastening device
CN102433934A (en) * 2011-10-19 2012-05-02 沈阳建筑大学 Automatic-resetting multidirectional earthquake isolating bearing with C-type steel plates combined in form of Chinese character 'Mi'
CN102912855A (en) * 2012-11-06 2013-02-06 沈阳建筑大学 Self-resetting sliding seismic isolation bearing of cross-shaped multi-layer friction plates
CN102912855B (en) * 2012-11-06 2014-10-15 沈阳建筑大学 Self-resetting sliding seismic isolation bearing of cross-shaped multi-layer friction plates
CN102912885A (en) * 2012-11-07 2013-02-06 沈阳建筑大学 Sleeve *-shaped anti-buckling damping support
CN102912885B (en) * 2012-11-07 2014-10-15 沈阳建筑大学 Sleeve *-shaped anti-buckling damping support
CN103276828A (en) * 2013-05-22 2013-09-04 太原理工大学 Curve-pull-rod-type anti-pulling device reinforced in short connection mode
KR101409400B1 (en) 2013-07-04 2014-06-20 (주)광원아이앤디 Laminated rubber bearing having hat-shaped steel damper
US10267032B2 (en) 2013-11-08 2019-04-23 Iso Systems Limited Resilient bearing
US9879415B2 (en) 2013-11-08 2018-01-30 Iso Systems Limited Resilient bearing
WO2015069120A1 (en) * 2013-11-08 2015-05-14 Iso Systems Limited A resilient bearing
CN104975663A (en) * 2014-04-01 2015-10-14 东华理工大学 Multi-plane quasi linear energy dissipating damper
CN104975663B (en) * 2014-04-01 2018-03-13 东华理工大学 A kind of more plane line of collimation energy-dissipating and shock-absorbing devices
CN106704761A (en) * 2017-01-24 2017-05-24 东南大学 Multi-dimensional viscoelastic vibration isolation and reduction device for pipeline structure
CN107700913A (en) * 2017-10-18 2018-02-16 天津大学 A kind of multidimensional High Damping Performance device
CN107700913B (en) * 2017-10-18 2024-03-29 天津大学 Multidimensional high-performance damper
JP2020041691A (en) * 2018-09-06 2020-03-19 国立大学法人大阪大学 Steel damper for aseismic base isolation
JP7017210B2 (en) 2018-09-06 2022-02-08 国立大学法人大阪大学 Seismic isolation steel damper
CN112112303A (en) * 2020-09-09 2020-12-22 五邑大学 Damper
WO2022113567A1 (en) * 2020-11-27 2022-06-02 国立大学法人大阪大学 Steel material damper for base isolation and base isolation structure
JP7529611B2 (en) 2021-04-16 2024-08-06 清水建設株式会社 Seismic isolation mechanism

Also Published As

Publication number Publication date
HK1068663A1 (en) 2005-04-29
CN1259488C (en) 2006-06-14
TW200426282A (en) 2004-12-01
CN1550619A (en) 2004-12-01
TWI280996B (en) 2007-05-11

Similar Documents

Publication Publication Date Title
JP2004340301A (en) Seismic isolator
US8590220B2 (en) Metal joint, damping structure, and architectural construction
JP2003193699A (en) Elasto-plastic, visco-elastic brace
JP2017133282A (en) Steel device and load bearing wall
JP2003034984A (en) Vibration control brace
JP3286611B2 (en) Elasto-plastic energy absorber
JP4414833B2 (en) Seismic walls using corrugated steel
JP3533110B2 (en) Seismic isolation device
JP4395419B2 (en) Vibration control pillar
JP4019302B2 (en) Damping damper
JP5654060B2 (en) Damper brace and damping structure
JP4870483B2 (en) Member holding device and member holding method
JP2602888Y2 (en) Elasto-plastic damper
JP2009161937A (en) Damping frame
JP5551652B2 (en) Bending-yield elastic-plastic damper
JP3197734U (en) Steel frame reinforcement structure
JP3543004B2 (en) Seismic isolation device
JP2000120299A (en) Vibration control device for structure
JPH10227061A (en) Eccentric type tensile brace structure
JP2016156135A (en) Damper structure
JP7336787B2 (en) Damping member for wooden structure and damping structure for wooden structure
JP2002303351A (en) Energy absorbing body
JP7262518B2 (en) Stud type steel damper
JP7368849B2 (en) Vibration damper
JP2001115599A (en) Steel structural member and frame member

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050913

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Effective date: 20060822

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20070112

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Effective date: 20070607

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A02