JP2009161937A - Damping frame - Google Patents

Damping frame Download PDF

Info

Publication number
JP2009161937A
JP2009161937A JP2007340101A JP2007340101A JP2009161937A JP 2009161937 A JP2009161937 A JP 2009161937A JP 2007340101 A JP2007340101 A JP 2007340101A JP 2007340101 A JP2007340101 A JP 2007340101A JP 2009161937 A JP2009161937 A JP 2009161937A
Authority
JP
Japan
Prior art keywords
steel
seismic
joint
brace
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007340101A
Other languages
Japanese (ja)
Inventor
Tetsuya Hanzawa
徹也 半澤
Shinji Mase
伸治 真瀬
Original Assignee
Shimizu Corp
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp, 清水建設株式会社 filed Critical Shimizu Corp
Priority to JP2007340101A priority Critical patent/JP2009161937A/en
Publication of JP2009161937A publication Critical patent/JP2009161937A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damping frame of an effective and proper structure, which enables a steel column and a steel beam to be joined together by a simple structure, and which enables the rational installation of a damping element. <P>SOLUTION: The steel column 1 and the steel beam 2 are joined together by semirigid jointing. An earthquake-resisting brace 3 is joined to a joint between the steel column 1 and the steel beam 2. The earthquake-resisting brace 3 combines a damping element, which exerts an energy absorbing function by being plastically deformed when undergoing a predetermined axial force, with an earthquake-resistant element which exerts strength while remaining in an elastic deformation range even if the damping element is plastically deformed. The steel column is composed of H-shaped steel or box steel; the steel beam is composed of H-shaped steel; bolting makes a flange of the steel beam joined to the steel column via a joint member 4, composed of a split T or an angle, without the intermediary of a diaphragm; and bolting makes the earthquake-resisting brace joined to the joint via the joint member. A joint position of the earthquake-resisting brace is set so that a line of action of the axial force of the earthquake-resisting brace can pass through the center of the joint between the steel column and the steel beam. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は建物の架構に関わり、特に鉄骨柱と鉄骨梁と対震ブレースとによる制震架構に関する。   The present invention relates to a building frame, and more particularly, to a seismic control frame including steel columns, steel beams, and anti-seismic braces.
周知のように、鉄骨柱と鉄骨梁とを主体とする鉄骨造の建物における構造形式は純ラーメン構造とされることが最も一般的である。
その場合、鉄骨柱と鉄骨梁とによる架構はそれらを完全剛接合することで構成され、したがってそれらの接合は溶接により行うか、あるいは鉄骨梁としてのH形鋼の上下のフランジおよびウェブの全てを多数の高力ボルトによって鉄骨柱に対してボルト締結することにより行う必要がある。また、いずれにしても接合部の剛性を確保するために鉄骨柱にはダイヤフラムを設ける必要もある。したがって、従来一般の鉄骨造純ラーメン構造による架構の施工に際しては、鉄骨の製作とその接合作業の双方に多大のコストと手間を要することが不可避であった。
As is well known, the structure type in a steel structure mainly composed of steel columns and steel beams is generally a pure ramen structure.
In that case, the frame by the steel column and the steel beam is constructed by joining them completely rigidly. Therefore, they are joined by welding, or all the upper and lower flanges and webs of the H-shaped steel as a steel beam are connected. It is necessary to do this by fastening the steel column with a number of high strength bolts. In any case, it is necessary to provide a diaphragm on the steel column in order to ensure the rigidity of the joint. Therefore, it has been inevitable that much cost and labor are required for both the production of the steel frame and the joining work in the construction of the frame by the conventional general steel frame rigid frame structure.
そのため、たとえば特許文献1に示されているように、鉄骨造の架構内に高剛性のブレースを組み込むことによって架構全体を高剛性化し、それにより鉄骨柱と鉄骨梁との接合形式を簡略化して半剛接接合とすることを可能とし、かつ鉄骨柱におけるダイヤフラムも省略可能とする耐震構造が提案されている。
特開2002−146905号公報
Therefore, as shown in Patent Document 1, for example, the entire frame is made highly rigid by incorporating a high-rigidity brace into the steel frame, thereby simplifying the joint form between the steel column and the steel beam. A seismic structure has been proposed that can be semi-rigidly joined and that can omit the diaphragm in the steel column.
JP 2002-146905 A
上記のように鉄骨造の架構に高剛性のブレースを組み込む耐震構造によれば、架構全体の剛性を確保しつつ柱梁接合部の簡略化を図ることが可能であるので施工上およびコスト上での利点は得られるものの、そのような構造では近年の建物に要求される制震機能は期待できず、その点では改善の余地が残されているものである。
なお、上記のように鉄骨造の架構にブレースを組み込んで高剛性化したうえで、さらに制震機能を持たせる目的で各種のダンパーを組み込むことも考えられるが、そのようにブレースとダンパーを二重に組み込むことは架構全体が徒に複雑化するばかりでなく、それらの設置スペースを確保しなければならず、当然にコスト的にも負担が大きく、現実的ではない。
勿論、単にダンパーのみを組み込んでブレースを省略することは、従前の構造と同様に鉄骨柱と鉄骨梁のみで架構全体の剛性を確保する必要があるからそれらを完全剛接合する必要があるし、鉄骨柱にダイヤフラムを設けることも不可欠であるから、制震効果は得られるにしたところで何ら問題の解決にならない。
As described above, according to the earthquake-resistant structure in which a high-strength brace is incorporated into a steel frame, it is possible to simplify the column beam joints while ensuring the rigidity of the entire frame. However, with such a structure, the seismic control function required for buildings in recent years cannot be expected, and there is still room for improvement in that respect.
In addition, it is conceivable to incorporate braces into the steel frame as described above to increase the rigidity, and to incorporate various dampers for the purpose of further providing a vibration control function. The heavy installation not only makes the entire structure complicated, but also requires a space for installing them, which is of course costly and unrealistic.
Of course, simply installing the damper and omitting the brace is necessary to ensure the rigidity of the entire frame with only steel columns and steel beams, as in the previous structure, so it is necessary to join them completely rigidly, Since it is indispensable to install a diaphragm on the steel column, it cannot solve the problem at all if the vibration control effect is obtained.
上記事情に鑑み、本発明は鉄骨柱と鉄骨梁とを簡易な構造で接合でき、しかも制震要素も合理的に設置し得る有効適切な構造の制震架構を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a seismic control frame having an effective and appropriate structure in which a steel column and a steel beam can be joined with a simple structure and a seismic control element can be reasonably installed.
本発明の制震架構は、鉄骨柱と鉄骨梁との接合形式が半剛接接合とされる架構に対して、所定軸力を受けると塑性変形してエネルギー吸収機能を発揮する制震要素と、該制震要素が塑性変形しても弾性変形範囲に留まって耐力を発揮する耐震要素とを併せ持つ対震ブレースを組み込んでなることを特徴とする。   The seismic control frame of the present invention includes a seismic control element that exhibits an energy absorbing function by plastic deformation when subjected to a predetermined axial force, with respect to a frame in which the joining type of the steel column and the steel beam is a semi-rigid joint. Further, the present invention is characterized in that an anti-seismic brace having a seismic element that remains in the elastic deformation range and exhibits proof strength even if the seismic control element is plastically deformed is incorporated.
本発明の制震架構においては、前記鉄骨柱をH形鋼もしくはボックス鋼からなるものとし、前記鉄骨梁をH形鋼からなるものとし、前記鉄骨柱に対して前記鉄骨梁のフランジをダイヤフラムを介することなくスプリットティまたはアングルからなる接合部材を介してボルト締結により接合し、該接合部に対して前記対震ブレースを接合部材を介してボルト締結により接合することが良い。
また、前記対震ブレースの軸力の作用線が前記鉄骨柱と前記鉄骨梁との接合部の中心を通るように、該接合部に対する前記対震ブレースの接合位置を設定することが好ましい。
In the seismic response control frame of the present invention, the steel column is made of H-shaped steel or box steel, the steel beam is made of H-shaped steel, and a flange of the steel beam is attached to the steel column with a diaphragm. It is good to join by bolt fastening via the joining member which consists of a split tee or an angle without going through, and join the anti-seismic brace to the joint by bolt fastening through the joining member.
Moreover, it is preferable to set the joint position of the seismic brace with respect to the joint so that the line of action of the axial force of the seismic brace passes through the center of the joint between the steel column and the steel beam.
本発明の制震架構によれば、鉄骨柱に対して鉄骨梁を半剛接接合の形式で接合するので、それらを完全剛接合する場合に比べて柱梁接合部の構造を大幅に簡略化でき、かつ鉄骨柱にはダイヤフラムを省略できることから、鉄骨製作および接合作業の双方を大きく合理化することができることはもとより、その接合部に対して対震ブレースを接合することにより架構全体の剛性低下を補償して所望の剛性を支障なく確保することができる。
しかも、対震ブレースは耐震要素のみならず制震要素も併せ持つものであるから、この対震ブレースを設置することのみで他にダンパー等の格別の制震要素を設置することなく所望の制震効果を併せて得られるものであり、したがって当然に格別のダンパーを設置するための手間と費用、設置スペースを確保する必要もなく、優れた耐震効果と制震効果が得られて極めて有効であり合理的である。
According to the seismic control frame of the present invention, the steel beam is joined to the steel column in the form of semi-rigid joint, so the structure of the column beam joint is greatly simplified compared to the case of completely rigid joining them. Since the diaphragm can be omitted from the steel column, not only the steel fabrication and joining work can be greatly streamlined, but also the rigidity of the entire frame can be reduced by joining the anti-seismic brace to the joint. The desired rigidity can be secured without any problem by compensation.
Moreover, since the anti-seismic braces have not only seismic elements but also anti-seismic elements, it is only necessary to install the anti-seismic braces, and the desired seismic control without installing any other anti-seismic elements such as dampers. Therefore, there is no need to secure the effort and cost for installing a special damper, and there is no need to secure the installation space. Is reasonable.
図1〜図4を参照して本発明の制震架構の実施形態を説明する。
図1は本実施形態の制震架構の全体概略構成を示すもので、これは鉄骨柱1と鉄骨梁2とを主体とする鉄骨造の架構に対して対震ブレース3を組み込むことを主眼としている。
図示例では地上9階建ての3スパンからなる建物を対象として、その架構の中央スパンにのみ一対2本の対震ブレース3を「ハ」状に配置した場合の例を模式的に示したものであるが、建物全体の規模や架構の形態、対震ブレース3の配置位置や配置形態は、要求される耐震性能および制震性能に応じて設計すれば良い。
An embodiment of the vibration control frame of the present invention will be described with reference to FIGS.
FIG. 1 shows an overall schematic configuration of a seismic control frame according to the present embodiment, which is mainly intended to incorporate a seismic brace 3 into a steel frame mainly composed of a steel column 1 and a steel beam 2. Yes.
In the example shown in the figure, an example in which a pair of anti-seismic braces 3 are arranged in a “c” shape only in the center span of a frame for a building consisting of 9 spans and 3 spans. However, the scale of the entire building, the form of the frame, and the arrangement position and arrangement of the anti-seismic braces 3 may be designed according to the required seismic performance and damping performance.
本実施形態においては、図2に示すように鉄骨柱1および鉄骨梁2はいずれもH形鋼からなるものとされ、かつ鉄骨梁2は鉄骨柱1に対して半剛接接合の形式で接合されたものとなっている。
すなわち、鉄骨柱1のフランジおよびウェブには接合部材4としてのスプリットティがそれぞれ直接密着せしめられて高力ボルトによりボルト締結され、その接合部材4に対して、鉄骨梁2の上下のフランジが高力ボルトによりボルト締結されているに留められていて、通常の完全剛接合による場合のように鉄骨梁2のウェブは鉄骨柱1に対しては接合されておらず、また完全剛接合による場合には鉄骨柱1に設けることが不可欠とされるダイヤフラムも省略されたものとなっている。
In the present embodiment, as shown in FIG. 2, the steel column 1 and the steel beam 2 are both made of H-shaped steel, and the steel beam 2 is joined to the steel column 1 in a semi-rigid connection manner. It has been made.
That is, the split tee as the joining member 4 is directly brought into close contact with the flange and the web of the steel column 1 and fastened with a high-strength bolt. The upper and lower flanges of the steel beam 2 are higher than the joining member 4. The web of the steel beam 2 is not joined to the steel column 1 as in the case of the normal rigid connection, and is fastened by the force bolt. The diaphragm that is indispensable to be provided on the steel column 1 is also omitted.
その上で、本実施形態では上記の接合部に対して対震ブレース3(3A,3B)が接合部材5を介して接合され、半剛接接合とされることによる剛性低下をその対震ブレース3によって補償して架構全体に所望の剛性を確保し、かつその対震ブレース3により所望の制震効果が得られるものとなっている。   In addition, in the present embodiment, the anti-seismic brace 3 (3A, 3B) is joined to the above-described joint portion via the joint member 5 so as to be a semi-rigid joint. 3 to ensure the desired rigidity of the entire frame, and the anti-seismic brace 3 provides the desired seismic control effect.
本実施形態における対震ブレース3は、所定軸力を受けると塑性変形してエネルギー吸収機能を発揮する制震要素と、その制震要素が塑性変形しても弾性変形範囲に留まって耐力を発揮する耐震要素とを併せ持つものである。
なお、「対震」とは「耐震」および「制震」の双方を包括する概念であって、本実施形態における「対震ブレース」とは、容易に降伏せずに優れた耐力を発揮する「耐震ブレース」としての機能と、早期に降伏してダンパー効果を発揮する「制震ブレース(ブレースダンパー)」としての機能を併せ持つ構造要素であり、具体的には図3あるいは図4に示す構成のものが好適に採用可能である。
The anti-seismic brace 3 according to the present embodiment has a damping element that plastically deforms to exhibit an energy absorption function when subjected to a predetermined axial force, and exhibits an proof strength by staying within the elastic deformation range even if the damping element is plastically deformed. It has both seismic elements to do.
Note that “anti-seismic” is a concept that encompasses both “earthquake resistance” and “seismic control”, and the “anti-seismic brace” in this embodiment exhibits excellent strength without easily yielding. A structural element that has both a function as an “earthquake-resistant brace” and a function as a “seismic brace (brace damper)” that yields a damper effect by yielding at an early stage. Specifically, the structure shown in FIG. 3 or FIG. Can be suitably employed.
図3に示す対震ブレース3Aは特開2007−191987号公報に開示されているものであって、これは、帯板状の心材11と、それに外装されて心材11の面外座屈を拘束する拘束部材12からなるものである。
心材11は降伏変位が異なる複数の鋼板が積層されたものであり、図示例のものは耐震要素として機能する中央の1枚の第一の鋼板11aと、それよりも早期に降伏することによって制震要素として機能する両側2枚の第二の鋼板11bから構成されている。
具体的には、中央の1枚の第一の鋼板11aは中小地震時に受ける程度の軸力では降伏せずに弾性変形領域に留まって耐力を発揮するものとされ、これにより架構全体の剛性は充分に確保されるものとなっている。一方、第一の鋼板11aの両側に積層されている2枚の第二の鋼板11bは、中小地震時に受ける程度の軸力で降伏して塑性変形して鋼材ダンパーとして機能するものであり、これにより中小規模の地震においても架構全体の振動エネルギーが効果的に吸収されて優れた制震効果が得られるものとなっている。
The anti-seismic brace 3A shown in FIG. 3 is disclosed in Japanese Patent Application Laid-Open No. 2007-191987, which includes a strip-like core material 11 and an outer surface that restrains the out-of-plane buckling of the core material 11. It consists of the restraining member 12 which does.
The core material 11 is formed by laminating a plurality of steel plates having different yield displacements. The example shown in the figure is controlled by yielding at an earlier stage than the central first steel plate 11a functioning as an earthquake-resistant element. It is comprised from the 2nd steel plate 11b of 2 sheets of both sides which functions as a seismic element.
Specifically, the central first steel plate 11a is not yielded by the axial force received during a small and medium-sized earthquake, but remains in the elastic deformation region and exhibits proof stress. It is enough. On the other hand, the two second steel plates 11b laminated on both sides of the first steel plate 11a function as a steel damper by yielding and plastically deforming with an axial force received at the time of a small and medium earthquake. As a result, the vibration energy of the entire frame is effectively absorbed even in small and medium-sized earthquakes, and an excellent seismic control effect can be obtained.
図4に示す対震ブレース3Bは特開2007−191988号公報に開示されているものであって、これは耐震要素としての帯板状の芯材13と、その両面側に配置された制震要素としての粘弾性ダンパー14と、それらに外装された拘束部材12(上記の対震ブレース3Aにおける拘束部材12と同様のもの)からなる。
心材13は上記の対震ブレース3Aにおける第一の鋼板11aと同様に中小地震時に受ける程度の軸力では降伏せずに弾性変形領域に留まって耐力を発揮するものである。粘弾性ダンパー14は、心材13に一体に積層された鋼板14aと拘束部材12との間に介装された粘弾性体14bからなり、鋼材14aが心材13とともに変形した際に粘弾性体14bが塑性変形を受けてダンパー効果を発揮するものである。
An anti-seismic brace 3B shown in FIG. 4 is disclosed in Japanese Patent Application Laid-Open No. 2007-191988, which includes a strip-shaped core member 13 as an earthquake-resistant element and vibration control elements arranged on both sides thereof. It consists of a viscoelastic damper 14 as an element and a restraining member 12 (same as the restraining member 12 in the above-mentioned anti-seismic brace 3A).
Like the first steel plate 11a in the anti-seismic brace 3A, the core 13 stays in the elastic deformation region without yielding with an axial force that is received during a small and medium earthquake, and exhibits proof strength. The viscoelastic damper 14 includes a viscoelastic body 14b interposed between the steel plate 14a and the restraining member 12 integrally laminated on the core material 13, and the viscoelastic body 14b is deformed when the steel material 14a is deformed together with the core material 13. It exhibits a damper effect when subjected to plastic deformation.
なお、図3に示した対震ブレース3A、および図4に示した対震ブレース3Bのいずれにおいても、拘束部材12は背中合わせ状態で組み合わせられる対の溝形鋼21と、それら溝形鋼21のフランジどうしを連結する対のカバープレート22から構成されて、それらが全体としてH形に組み立てられるものであり、溝形鋼21の要所には補剛用のリブプレート23が溶接されたものとされている。
そして、図3に示した対震ブレース3Aにおいては、拘束部材12の内側に上記の心材11をゴムパッキン24を介して収納することによって心材11の軸方向変形を許容しつつその面外座屈を拘束可能とされ、図4に示した対震ブレース3Bも拘束部材12の内側に心材13および粘弾性ダンパー14を軸方向に変形可能に収納してそれら全体の面外座屈を防止可能とされている。
In both the anti-seismic brace 3A shown in FIG. 3 and the anti-seismic brace 3B shown in FIG. 4, the restraining member 12 is a pair of groove steels 21 combined in a back-to-back state, and the groove steel 21 It is composed of a pair of cover plates 22 connecting the flanges, and they are assembled into an H shape as a whole. A rib plate 23 for stiffening is welded to the key points of the grooved steel 21. Has been.
In the anti-seismic brace 3 </ b> A shown in FIG. 3, the core material 11 is accommodated inside the restraint member 12 via the rubber packing 24, thereby allowing axial deformation of the core material 11 and out-of-plane buckling. 4 and the anti-seismic brace 3B shown in FIG. 4 can accommodate the core material 13 and the viscoelastic damper 14 inside the restraining member 12 so as to be deformable in the axial direction, thereby preventing out-of-plane buckling. Has been.
また、対震ブレース3Aにおける制震要素としての第二の鋼板11b、および対震ブレース3Bにおける耐震要素としての心材13には、いずれも中央部に括れ部25が形成されることによってそれらの剛性と降伏変位が適切に調整可能とされている。さらに、対震ブレース3Aにおける耐震要素としての第一の鋼板11a、対震ブレース3Bにおける耐震要素としての心材13の両端部は、いずれもリブプレート26が溶接されて十字形断面とされており、そこにはこれら対震ブレース3(3A,3B)を架構に対してボルト締結により接合するための多数のボルト孔が形成されている。   Further, the second steel plate 11b as the vibration control element in the anti-seismic brace 3A and the core material 13 as the anti-seismic element in the anti-seismic brace 3B both have the rigidity due to the formation of the constricted part 25 at the center. And the yield displacement can be adjusted appropriately. Further, both ends of the first steel plate 11a as the seismic element in the anti-seismic brace 3A and the core material 13 as the anti-seismic element in the anti-seismic brace 3B are welded with the rib plates 26 to have a cross-shaped cross section. A large number of bolt holes for joining these anti-seismic braces 3 (3A, 3B) to the frame by bolt fastening are formed there.
既に述べたように、対震ブレース3は架構の要所に配置されてそれらの一端が鉄骨柱1と鉄骨梁2との接合部に対して接合部材5を介してボルト締結されるものであるが、その際、対震ブレース3の軸力の作用線が鉄骨柱1と鉄骨梁2との接合部の中心を通るように、つまり図2(a)に示すように鉄骨柱1と鉄骨梁2と対震ブレース3の中心軸線が1点で交わるように、柱梁接合部に対する対震ブレース3の接合位置を厳密に設定することが好ましい。
また、対震ブレース3を柱梁接合部に接合するための接合部材5は、鉄骨梁2を鉄骨柱1に対して接合するための接合部材4であるスプリットティに溶接された十字形断面のものであって、この接合部材5に対して対震ブレース3における耐震要素(すなわち対震ブレース3Aにおける第一の鋼板11a、あるいは対震ブレース3Bにおける心材13)がスプライスプレートを介して高力ボルトによりボルト締結すれば良い。
なお、本実施形態のように2本の対震ブレース3を架構内にハ状に配置するような場合においては、対震ブレース3の他端部を鉄骨梁2の中央部に対して適宜の接合部材を介してボルト締結すれば良いが、一般的には対震ブレース3の他端部も上記と同様の構造で柱梁接合部に対して接合すれば良い。
As already described, the anti-seismic brace 3 is arranged at the main point of the frame, and one end thereof is bolted to the joint portion between the steel column 1 and the steel beam 2 via the joint member 5. However, at that time, the acting line of the axial force of the anti-seismic brace 3 passes through the center of the joint between the steel column 1 and the steel beam 2, that is, as shown in FIG. 2 (a), the steel column 1 and the steel beam. It is preferable to strictly set the joint position of the anti-seismic brace 3 with respect to the column beam joint so that the center axis 2 of the anti-seismic brace 3 intersects at one point.
Further, the joining member 5 for joining the anti-seismic brace 3 to the column beam joint has a cross-shaped cross section welded to a split tee which is a joining member 4 for joining the steel beam 2 to the steel column 1. The seismic element in the anti-seismic brace 3 (that is, the first steel plate 11a in the anti-seismic brace 3A or the core material 13 in the anti-seismic brace 3B) is a high-strength bolt via the splice plate. The bolt may be fastened with
In the case where two anti-seismic braces 3 are arranged in a C shape in the frame as in this embodiment, the other end of the anti-seismic brace 3 is appropriately connected to the central portion of the steel beam 2. The bolts may be fastened via a joining member, but in general, the other end of the anti-seismic brace 3 may be joined to the column beam joint with the same structure as described above.
本実施形態の制震架構によれば、鉄骨柱1に対して鉄骨梁2のフランジのみをボルト締結することでそれらの接合形式を半剛接接合とするので、それらを完全剛接合する場合に比べて接合部の構造を大幅に簡略化でき、かつ鉄骨柱1にはダイヤフラムを省略できることから、鉄骨製作および接合作業の双方を大きく合理化することができる。
そして、その上で接合部に対して対震ブレース3を接合するので、接合部が半剛接接合とされることによる架構の剛性低下が対震ブレース3によって補償されて架構全体に所望の剛性を支障なく確保することができる。
しかも、その対震ブレース3は耐震要素のみならず制震要素も併せ持つものであるから、この対震ブレース3を設置することのみで所望の制震効果も併せて得られるものであり、他にダンパー等の格別の制震要素を設置することなく、したがってそのための手間と費用、設置スペースを確保する必要もなく、極めて合理的であって有効である。
その観点からは、本発明の制震架構は従来一般の単なる制震架構とも先行文献1に示されるような耐震架構とも異なるものであって、上述したように「制震」と「耐震」とを包括する概念である「対震」機能を有する対震架構というべきものであるといえる。
According to the seismic control frame of the present embodiment, only the flange of the steel beam 2 is bolted to the steel column 1 so that their joint type is semi-rigid joint. In comparison, the structure of the joint can be greatly simplified, and the diaphragm can be omitted from the steel column 1, so that both the steel frame manufacturing and the joining work can be greatly rationalized.
And since the anti-seismic brace 3 is joined with respect to a joining part on that, the rigidity fall of the frame by a junction part being made into semi-rigid junction is compensated by the anti-seismic brace 3, and desired rigidity is set to the whole frame. Can be secured without hindrance.
Moreover, since the anti-seismic brace 3 has not only an anti-seismic element but also an anti-seismic element, it is possible to obtain a desired anti-seismic effect only by installing this anti-seismic brace 3. It is extremely reasonable and effective without installing special damping elements such as dampers, and therefore without having to secure the labor, cost, and installation space.
From this point of view, the seismic control frame of the present invention is different from a conventional general seismic control frame and a seismic frame as shown in the prior document 1, and as described above, “seismic control” and “seismic resistance” It can be said that it should be an anti-seismic frame with a “anti-seismic” function, which is a concept that encompasses the above.
なお、上記実施形態では鉄骨柱1と鉄骨梁2とを半剛接接合するために接合部材4としてのスプリットティを使用して鉄骨梁2のフランジのみをボルト締結することとしたが、接合部材4としてはスプリットティに代えてアングルを使用することも可能であるし、要は、柱梁接合部に対して対震ブレース3を接合することを前提として鉄骨柱1と鉄骨梁2との接合形式を構造的に半剛接接合とすれば良いのであって、その限りにおいて半剛接接合の具体的な構造やそれに使用する接合部材4については任意であるし、鉄骨柱1をH形鋼に代えてボックス鋼とすることも勿論可能である。
また、上記実施形態では対震ブレース3として好適な2種の構成例を例示したが、対震ブレース3としては架構に要求される所望の耐震機能を発揮し得る耐震要素と、所望の制震機能を発揮し得る制震要素を併せ持つものであれば良く、その限りにおいて対震ブレース3の具体的な構成や形式は上記実施形態に例示したものに限定されることなく任意である。
In the embodiment described above, only the flange of the steel beam 2 is bolted using the split tee as the joining member 4 in order to semi-rigidly join the steel column 1 and the steel beam 2. It is possible to use an angle instead of the split tee, and the point is that the steel column 1 and the steel beam 2 are joined on the premise that the anti-seismic brace 3 is joined to the column beam joint. As long as the form is structurally semi-rigid joint, as long as the specific structure of semi-rigid joint and the joining member 4 used for it are arbitrary, the steel column 1 is made of H-section steel. Of course, box steel can be used instead.
In the above embodiment, two types of configuration examples suitable as the anti-seismic brace 3 are illustrated. However, as the anti-seismic brace 3, the seismic element capable of exhibiting a desired seismic function required for the frame and the desired seismic control What is necessary is just to have the damping element which can exhibit a function, and the specific structure and form of the anti-seismic brace 3 are arbitrary as long as it is not limited to what was illustrated to the said embodiment.
本発明の実施形態である制震架構の概要を示す図である。It is a figure which shows the outline | summary of the seismic control frame which is embodiment of this invention. 同、鉄骨柱と鉄骨梁との接合部の構造を示す図(図1におけるII部の詳細図)である。It is a figure (detail drawing of the II section in Drawing 1) which shows the structure of the joined part of a steel column and a steel beam. 同、対震ブレースの一例を示す図である。It is a figure which shows an example of an anti-seismic brace. 同、対震ブレースの他の例を示す図である。It is a figure which shows the other example of an anti-seismic brace.
符号の説明Explanation of symbols
1 鉄骨柱
2 鉄骨梁
3(3A,3B) 対震ブレース
4 接合部材(スプリットティ)
5 接合部材
11 心材
11a 第一の鋼板(耐震要素)
11b 第二の鋼板(制震要素)
12 拘束部材
13 心材(耐震要素)
14 粘弾性ダンパー(制震要素)
14a 鋼板
14b 粘弾性体
21 溝形鋼
22 カバープレート
23 リブプレート
24 ゴムパッキン
25 括れ部
26 リブプレート
1 Steel column 2 Steel beam 3 (3A, 3B) Anti-seismic brace 4 Joint member (split tee)
5 Joining member 11 Core material 11a First steel plate (seismic element)
11b Second steel plate (damping element)
12 Restraint member 13 Core material (seismic element)
14 Viscoelastic damper (damping element)
14a Steel plate 14b Viscoelastic body 21 Channel steel 22 Cover plate 23 Rib plate 24 Rubber packing 25 Constricted part 26 Rib plate

Claims (3)

  1. 鉄骨柱と鉄骨梁との接合形式が半剛接接合とされる架構に対して、所定軸力を受けると塑性変形してエネルギー吸収機能を発揮する制震要素と、該制震要素が塑性変形しても弾性変形範囲に留まって耐力を発揮する耐震要素とを併せ持つ対震ブレースを組み込んでなることを特徴とする制震架構。   A seismic element that exhibits a function of absorbing energy by plastic deformation when a predetermined axial force is applied to a frame in which the steel column and steel beam are joined semi-rigidly, and the seismic element is plastically deformed An anti-seismic frame that incorporates an anti-seismic brace that also has seismic elements that remain within the elastic deformation range and exhibit strength.
  2. 請求項1記載の制震架構であって、前記鉄骨柱はH形鋼もしくはボックス鋼からなるとともに前記鉄骨梁はH形鋼からなり、前記鉄骨柱に対して前記鉄骨梁のフランジをダイヤフラムを介することなくスプリットティまたはアングルからなる接合部材を介してボルト締結により接合し、該接合部に対して前記対震ブレースを接合部材を介してボルト締結により接合してなることを特徴とする制震架構。   2. The seismic response control frame according to claim 1, wherein the steel column is made of H-shaped steel or box steel and the steel beam is made of H-shaped steel, and a flange of the steel beam is connected to the steel column via a diaphragm. A seismic control frame characterized in that it is joined by bolt fastening through a joining member having a split tee or an angle, and the anti-seismic brace is joined to the joint by bolt fastening through a joining member. .
  3. 請求項1または2記載の制震架構であって、前記対震ブレースの軸力の作用線が前記鉄骨柱と前記鉄骨梁との接合部の中心を通るように、該接合部に対する前記対震ブレースの接合位置を設定してなることを特徴とする制震架構。   3. The vibration control frame according to claim 1, wherein the line of action of the axial force of the anti-seismic brace passes through the center of the joint between the steel column and the steel beam. A seismic control frame characterized by setting the joint position of braces.
JP2007340101A 2007-12-28 2007-12-28 Damping frame Pending JP2009161937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007340101A JP2009161937A (en) 2007-12-28 2007-12-28 Damping frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007340101A JP2009161937A (en) 2007-12-28 2007-12-28 Damping frame

Publications (1)

Publication Number Publication Date
JP2009161937A true JP2009161937A (en) 2009-07-23

Family

ID=40964859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007340101A Pending JP2009161937A (en) 2007-12-28 2007-12-28 Damping frame

Country Status (1)

Country Link
JP (1) JP2009161937A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669629A (en) * 2012-09-19 2014-03-26 上海宝冶集团有限公司 Double-web H-shaped steel type buckling restraint brace
CN103938717A (en) * 2014-04-11 2014-07-23 北京工业大学 Industrialized fabricated multi-layer and high-layer steel structure H-shaped steel prestress bending prevention herringbone supporting system
JP2015161148A (en) * 2014-02-28 2015-09-07 大和ハウス工業株式会社 Buckling restraining brace joint structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173977A (en) * 2000-12-08 2002-06-21 Takenaka Komuten Co Ltd Steel framed column-beam joint part equipped with earthquake control mechanism
JP2005350860A (en) * 2004-06-08 2005-12-22 Nippon Steel Corp Aseismatic frame structure
JP2007191987A (en) * 2006-01-23 2007-08-02 Shimizu Corp Earthquake resisting brace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173977A (en) * 2000-12-08 2002-06-21 Takenaka Komuten Co Ltd Steel framed column-beam joint part equipped with earthquake control mechanism
JP2005350860A (en) * 2004-06-08 2005-12-22 Nippon Steel Corp Aseismatic frame structure
JP2007191987A (en) * 2006-01-23 2007-08-02 Shimizu Corp Earthquake resisting brace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669629A (en) * 2012-09-19 2014-03-26 上海宝冶集团有限公司 Double-web H-shaped steel type buckling restraint brace
CN103669629B (en) * 2012-09-19 2015-12-23 上海宝冶集团有限公司 Two web H shaped steel buckling restrained brace
JP2015161148A (en) * 2014-02-28 2015-09-07 大和ハウス工業株式会社 Buckling restraining brace joint structure
CN103938717A (en) * 2014-04-11 2014-07-23 北京工业大学 Industrialized fabricated multi-layer and high-layer steel structure H-shaped steel prestress bending prevention herringbone supporting system

Similar Documents

Publication Publication Date Title
JP4861067B2 (en) Steel frame
KR100516332B1 (en) Steel structure equipped with connection damper
JP2003193699A (en) Elasto-plastic, visco-elastic brace
JP2001254436A (en) Joining structure of steel column and steel beam
JP2009161937A (en) Damping frame
JP4664997B2 (en) Buildings with joint hardware
JP3931944B2 (en) Damping damper and its installation structure
JP3616889B2 (en) Damping damper
JP6268998B2 (en) End structure of steel member
JPH10131543A (en) Vibration-mitigating structural member
JP4019302B2 (en) Damping damper
JP5251933B2 (en) Buildings with joint hardware
JP2008133662A (en) Earthquake resistant structure for building
JP5338382B2 (en) Vibration control panel
JP3463087B2 (en) Structure of damping building
JP3271239B2 (en) Steel shear wall
JPH11117569A (en) Steel-made vibration control damper
JP2006336336A (en) Earthquake resistant structure of building
JPH076567B2 (en) Elasto-plastic damper for structures
KR20000040240A (en) Steel frame forming damper joint
JP3279237B2 (en) Damping building structure frame
JPH09228473A (en) Mechanism for resisting horizontal force in structure
JP2008095467A (en) Aseismic stud
JP3215633U (en) Brace mounting structure
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911