JP5551652B2 - Bending-yield elastic-plastic damper - Google Patents

Bending-yield elastic-plastic damper Download PDF

Info

Publication number
JP5551652B2
JP5551652B2 JP2011110080A JP2011110080A JP5551652B2 JP 5551652 B2 JP5551652 B2 JP 5551652B2 JP 2011110080 A JP2011110080 A JP 2011110080A JP 2011110080 A JP2011110080 A JP 2011110080A JP 5551652 B2 JP5551652 B2 JP 5551652B2
Authority
JP
Japan
Prior art keywords
plastic deformation
damper
shearing force
joint
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011110080A
Other languages
Japanese (ja)
Other versions
JP2012241747A (en
Inventor
俊一 山田
信幸 宮川
幹 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2011110080A priority Critical patent/JP5551652B2/en
Publication of JP2012241747A publication Critical patent/JP2012241747A/en
Application granted granted Critical
Publication of JP5551652B2 publication Critical patent/JP5551652B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

本発明は構造物の内部、あるいは外部において地震や風荷重等により水平力を負担するときに、相対変形を生じ得る分離した構造部材間に跨る形で設置され、外力として主にせん断力を受けることで曲げ降伏する曲げ降伏型弾塑性ダンパーに関するものである。   The present invention is installed in such a manner as to straddle between separated structural members that can cause relative deformation when a horizontal force is borne by an earthquake, wind load, etc. inside or outside the structure, and mainly receives a shearing force as an external force. The present invention relates to a bending yield type elasto-plastic damper.

板状の本体が面内方向にせん断力を受けて変形し、せん断力の作用方向に垂直な方向の中間部が曲げ降伏する形式の弾塑性ダンパーはせん断力作用方向に垂直な方向の両側部分に位置する接合部において互いに分離している構造部材に接合されることで、構造部材間に跨って設置される。弾塑性ダンパーはこの設置状態で構造部材間の相対変形(相対変位)に伴って面内方向の水平力をせん断力として受けることで、せん断力作用方向に垂直な方向の中間部に位置する塑性変形部がせん断変形し、あるいは曲げ変形を伴いながらせん断変形し、せん断降伏、もしくは曲げ降伏することにより振動エネルギを吸収する(特許文献1〜3参照)。   An elastic-plastic damper of the type in which the plate-shaped main body is deformed by receiving a shearing force in the in-plane direction, and the middle part in the direction perpendicular to the direction of the shearing force is bent and yielded. It is installed across the structural members by being joined to the structural members that are separated from each other at the joint located at the position. In this installed state, the elasto-plastic damper receives a horizontal force in the in-plane direction as a shearing force in accordance with the relative deformation (relative displacement) between the structural members. The deformed portion undergoes shear deformation or shear deformation with bending deformation, and absorbs vibration energy by shear yield or bending yield (see Patent Documents 1 to 3).

特許文献1、2の弾塑性ダンパーはせん断変形、あるいは曲げ変形する領域である塑性変形部に六角形状、もしくはそれに近似した形状の孔(開口)が形成されていることで、孔以外の領域がせん断力を受けたときの曲げモーメント分布に対応した形状になるため、せん断力の作用方向に垂直な方向の全高に亘り、曲げモーメントによって一様に降伏することができる利点を持っている。いずれのダンパーも降伏領域に孔が形成されていることで、せん断力より曲げモーメントで曲げ降伏する傾向が強い。   The elastoplastic dampers of Patent Documents 1 and 2 are formed with hexagonal holes or openings (openings) having a shape similar to the hexagonal shape in the plastic deformation portion, which is an area where shear deformation or bending deformation occurs. Since it has a shape corresponding to the bending moment distribution when subjected to a shearing force, it has the advantage that it can yield uniformly by the bending moment over the entire height in the direction perpendicular to the direction of the shearing force. Since any damper has a hole formed in the yield region, it tends to bend and yield with a bending moment rather than a shearing force.

但し、降伏領域に孔を形成した場合には、孔の形成がない場合より降伏強度が低下していることから、孔がない場合より小さい力で塑性化し易い状態にあり、降伏後の変形能力を期待することができる。このため、ダンパーに比較的大きい降伏強度が要求されるような場合には、強度を高める上で、接合部を含めて使用鋼材量を増加させることが必要になるため、製作コストが上昇する。   However, when a hole is formed in the yield region, the yield strength is lower than when there is no hole, so it is easy to plasticize with a smaller force than when there is no hole, and the deformability after yielding Can be expected. For this reason, when a relatively large yield strength is required for the damper, it is necessary to increase the amount of steel used including the joint portion in order to increase the strength, which increases the manufacturing cost.

一方、特許文献3のように曲げモーメントよりせん断力で降伏する傾向の強いせん断降伏型のダンパーは曲げ降伏型のダンパーより例えば開口がない分、降伏強度を高くすることができるため、接合部を除くダンパー部のみに着目すれば、使用鋼材量を増すことなく、比較的大きい変形能力を持たせることが可能である。   On the other hand, the yield strength of the shear yield type damper, which has a strong tendency to yield with a shearing force rather than the bending moment as in Patent Document 3, is higher than that of the bending yield type damper. If attention is paid only to the damper portion, it is possible to give a relatively large deformation capacity without increasing the amount of steel used.

特開平1−190880号公報(第1図〜第6図)Japanese Unexamined Patent Publication No. 1-190880 (FIGS. 1 to 6) 特開平1−203543号公報(第1図、第6図、第9図、第10図)JP-A-1-203543 (FIG. 1, FIG. 6, FIG. 9, FIG. 10) 特開2000−73495公報(段落0009〜0011、図1、図6)Japanese Unexamined Patent Publication No. 2000-73495 (paragraphs 0009 to 0011, FIGS. 1 and 6)

しかしながら、特許文献1、2のダンパーを簡略化した図2−(a)に示すダンパーのように、塑性変形部のせん断力作用方向(X方向)に垂直な方向(Y方向)の両側に接合部があるダンパーでは、せん断力作用方向に垂直な方向(Y方向)に接合部と塑性変形部が直列に配列することで、接合部に生ずる曲げモーメントMaが塑性変形部に生ずる曲げモーメントMbより大きくなる。この結果、塑性変形部が降伏する以前に接合部が曲げモーメントを受けることによって構造部材への曲げモーメントMbの伝達能力を損なう可能性があり得るため、接合部の面積を広くする等により、曲げモーメントの伝達能力を高めるための対策が必要になることがある。   However, like the damper shown in FIG. 2- (a) in which the dampers of Patent Documents 1 and 2 are simplified, they are joined to both sides in the direction (Y direction) perpendicular to the shearing force acting direction (X direction) of the plastic deformation portion. In a damper having a portion, the bending moment Ma generated in the joint portion is more than the bending moment Mb generated in the plastic deformation portion by arranging the joint portion and the plastic deformation portion in series in the direction perpendicular to the shearing force acting direction (Y direction). growing. As a result, there is a possibility that the transmission capacity of the bending moment Mb to the structural member may be impaired by receiving the bending moment before the plastic deformation portion yields. Measures may be required to increase moment transmission capacity.

図2−(a)に示す、塑性変形部のY方向両側に接合部が位置するダンパーでは、せん断力の作用時に塑性変形部に対し、(b)に示すように曲げモーメントがせん断力作用方向(X方向)に垂直な方向(Y方向)を向く軸に関して対称に、三角形状に分布する。以下では便宜的に「せん断力作用方向に垂直な方向(Y方向)」を「塑性変形部の軸方向」と言うこともある。   In the damper shown in FIG. 2- (a) where the joints are located on both sides in the Y direction of the plastic deformation portion, the bending moment is applied to the plastic deformation portion when the shear force is applied, as shown in FIG. They are distributed in a triangular shape symmetrically with respect to an axis that faces a direction (Y direction) perpendicular to the (X direction). Hereinafter, for convenience, the “direction perpendicular to the shearing force acting direction (Y direction)” may be referred to as the “axial direction of the plastic deformation portion”.

図2−(a)に示すダンパーにX方向にせん断力が作用するとき、曲げモーメントはせん断力作用方向に垂直な方向(Y方向:塑性変形部の軸方向)の中心から両側の接合部へかけて中心からの距離に比例して増加するため、塑性変形部より接合部の曲げモーメントが大きくなり、この曲げモーメントに抵抗し得る強度と剛性を接合部に持たせる必要がある。図2−(b)に示すようにダンパーに生ずる曲げモーメントの最大値Maは塑性変形部の軸方向(Y方向)の接合部の端部に表れ、塑性変形部の端部に生ずる曲げモーメントの最大値Mbより大きい。図2−(b)中のMaは接合部におけるY方向中間部(中心)位置の曲げモーメントを示している。   When a shearing force acts in the X direction on the damper shown in FIG. 2- (a), the bending moment is from the center in the direction perpendicular to the shearing force acting direction (Y direction: axial direction of the plastic deformation portion) to the joints on both sides. Therefore, the bending moment of the joint becomes larger than the plastic deformation portion, and it is necessary to give the joint a strength and rigidity that can resist this bending moment. As shown in FIG. 2B, the maximum value of the bending moment Ma generated in the damper appears at the end of the joint in the axial direction (Y direction) of the plastic deformation portion, and the bending moment generated at the end of the plastic deformation portion. Greater than maximum value Mb. Ma in FIG. 2- (b) indicates the bending moment at the Y direction intermediate part (center) position in the joint.

また図2−(a)に示すようにせん断力作用方向(X方向)に垂直な方向(塑性変形部の軸方向:Y方向)に塑性変形部と接合部が直列に配列する立面形状のダンパーを例えば1枚の方形状の鋼材(鋼板)から製作する場合、塑性変形部と接合部を残すために、塑性変形部の幅方向両側から不要な部分(領域)を切断し、除去することになる。この場合、不要な部分は五角形状の領域になるが、この領域は原形である1枚の鋼材の面積に占める割合が大きく、原料の鋼材に対する、1枚のダンパーの製作に要する鋼材量の比率が小さいため、製作効率が低い。   Further, as shown in FIG. 2A, an elevational shape in which the plastic deformation portion and the joint portion are arranged in series in a direction perpendicular to the shearing force acting direction (X direction) (axial direction of the plastic deformation portion: Y direction). When the damper is manufactured from, for example, one rectangular steel material (steel plate), unnecessary portions (regions) are cut and removed from both sides in the width direction of the plastic deformation portion in order to leave the plastic deformation portion and the joint portion. become. In this case, the unnecessary portion becomes a pentagonal region, but this region accounts for a large proportion of the area of the original steel material, and the ratio of the amount of steel material required to manufacture one damper to the raw steel material Manufacturing efficiency is low.

本発明は上記背景より、従来のダンパーの塑性変形部と同一の変形能力を持たせながらも、接合部に作用する曲げモーメントの大きさを低減し、接合部を含めたダンパー自体の規模の縮小化を可能にする形態の曲げ降伏型弾塑性ダンパーを提案するものである。   From the above background, the present invention reduces the magnitude of the bending moment acting on the joint while reducing the scale of the damper itself including the joint while having the same deformation capacity as the plastic deformation part of the conventional damper. A bending yield type elasto-plastic damper is proposed.

請求項1に記載の発明の曲げ降伏型弾塑性ダンパーは、互いに分離した構造部材間に跨って設置され、面内方向のせん断力を受けて変形し、曲げ降伏する板状の弾塑性ダンパーであり、
板状の本体の中心部、もしくはその付近に位置し、前記せん断力を負担して曲げ降伏し得る塑性変形部と、前記塑性変形部に関して前記せん断力作用方向に垂直な方向の両側寄りに位置し、前記各構造部材に接続される接続部の3部分を備え、
前記各接続部は前記塑性変形部の前記せん断力作用方向両側に分散して位置する接合部を有し、この両接合部は前記塑性変形部の前記せん断力作用方向に垂直な方向の中心寄りに位置していることを構成要件とする。
The bending yield type elasto-plastic damper of the invention according to claim 1 is a plate-like elasto-plastic damper that is installed straddling between structural members separated from each other, deforms by receiving a shearing force in the in-plane direction, and bends and yields. Yes,
A plastic deformation part that is located at or near the center of the plate-like main body and can be bent and yielded by bearing the shearing force, and located on both sides of the plastic deformation part in a direction perpendicular to the shearing force acting direction. And three portions of a connecting portion connected to each structural member,
Each of the connecting portions has joints that are distributed and located on both sides of the shearing force acting direction of the plastic deformation part. It is assumed that it is located in

「本体の中心部」とは、図1−(a)に示すように弾塑性ダンパー(以下、ダンパー)1の本体1A全体(立面)をせん断力作用方向(X方向)とそれに垂直な方向(Y方向)の二方向に見たとき、せん断力作用方向(X方向)の中間部の区間と、せん断力作用方向に垂直な方向(Y方向)の中間部の区間の二方向に区画された、ある面積を持った領域を指す。図1−(a)では図2−(a)と同様、本体1A中、2個の概略台形をX方向の線に関してY方向に線対称形に組み合わせた鼓形のような形状の領域が「本体1Aの中心部」である「塑性変形部2」を示している。   As shown in FIG. 1- (a), the “central part of the main body” means that the whole main body 1A (elevated surface) of the elastic-plastic damper (hereinafter referred to as a damper) 1 is in the direction of shearing force (X direction) and the direction perpendicular thereto. When viewed in two directions (Y direction), it is divided into two directions: an intermediate section in the shearing force acting direction (X direction) and an intermediate section in the direction perpendicular to the shearing force acting direction (Y direction). A region with a certain area. In FIG. 1- (a), as in FIG. 2- (a), in the main body 1A, a region like a drum shape in which two approximate trapezoids are combined symmetrically in the Y direction with respect to a line in the X direction is “ “Plastic deformation part 2” which is “the central part of the main body 1A” is shown.

ダンパー1本体1A全体を二方向に見たときの中心部の領域が「塑性変形部2」であり、図1−(a)では(b)に示す曲げモーメント分布に対応した立面形状に「塑性変形部2」を形成している(請求項3)。せん断力作用方向(X方向)は図7、図8に示すようにダンパー1が跨設される、分離した構造部材6、6が対向する方向に直交する方向を言う。この方向が、ダンパー1が分離した構造部材6、6間に跨設された状態で、構造部材6、6間に相対変形が生じたときに、ダンパー1に本体1A面内のせん断力が作用する方向(X方向)であり、「塑性変形部2」が変形を生ずる方向(変形方向)、あるいは幅方向でもある。   The central region when the entire damper 1 body 1A is viewed in two directions is the “plastic deformation portion 2”. In FIG. 1- (a), the elevational shape corresponding to the bending moment distribution shown in FIG. The plastic deformation portion 2 ”is formed (claim 3). The shearing force acting direction (X direction) means a direction orthogonal to the direction in which the separated structural members 6 and 6 are opposed, on which the damper 1 is straddled as shown in FIGS. When the relative deformation occurs between the structural members 6 and 6 with this direction straddling between the structural members 6 and 6 where the damper 1 is separated, a shearing force in the surface of the main body 1A acts on the damper 1. Direction (X direction), which is a direction in which the “plastic deformation portion 2” is deformed (deformation direction), or a width direction.

「塑性変形部2」はせん断力作用方向に垂直な方向(Y方向)の両側寄りに位置する「接続部3、3」間に作用するX方向のせん断力を受けることで、図1−(b)に示すように「塑性変形部2」の中心軸であるY方向を向く軸に関してX方向両側に三角形状に交互に分布する曲げモーメントを負担する。このことから、「塑性変形部2」はY方向を向く軸方向に均等に曲げ降伏が生ずるよう、曲げモーメント分布に対応した立面形状に形成されることが合理的である(請求項3)。「軸方向に均等に曲げ降伏が生ずる」とは、軸方向の各部における曲げ応力(σ=M/Z)が軸方向に均等になることを意味する。   The “plastic deformation part 2” receives the shearing force in the X direction acting between the “connecting parts 3 and 3” located on both sides in the direction perpendicular to the shearing force acting direction (Y direction). As shown in b), a bending moment distributed alternately in a triangular shape on both sides in the X direction with respect to the axis facing the Y direction, which is the central axis of the “plastic deformation portion 2”, is borne. From this, it is reasonable that the “plastic deformation portion 2” is formed in an elevational shape corresponding to the bending moment distribution so that bending yield occurs evenly in the axial direction facing the Y direction. . “The bending yield occurs evenly in the axial direction” means that the bending stress (σ = M / Z) in each part in the axial direction becomes equal in the axial direction.

「塑性変形部2」に生ずる曲げモーメント分布は図1−(b)に示すように「塑性変形部2」の軸方向(Y方向)の中心が最小で、軸方向(Y方向)の端部が最大になる直線状の分布を言う。この曲げモーメント分布に対応した立面形状は図1−(a)に示すように「塑性変形部2」の軸方向(Y方向)中心位置におけるX方向の幅が最小で、このX方向の幅が軸方向(Y方向)端部側へかけて次第に増大する、2個の概略台形を連ねた鼓形のような形状になる。   As shown in FIG. 1B, the bending moment distribution generated in the “plastic deformation portion 2” has the minimum center in the axial direction (Y direction) of the “plastic deformation portion 2” and the end portion in the axial direction (Y direction). A linear distribution that maximizes. As shown in FIG. 1- (a), the elevation shape corresponding to this bending moment distribution has a minimum width in the X direction at the axial center position (Y direction) of the “plastic deformation portion 2”. Becomes a shape like a drum shape in which two roughly trapezoidal shapes are gradually increased toward the end in the axial direction (Y direction).

「塑性変形部2」が曲げモーメント分布に対応した立面形状に形成される場合(請求項3)、「塑性変形部2」の軸方向(Y方向)の各断面に均等に曲げ降伏が生じ、「塑性変形部2」の全長に亘ってエネルギ吸収能力を発揮することができるため、エネルギ吸収効率とエネルギ吸収能力が高い利点がある。   When the “plastic deformation part 2” is formed in an elevational shape corresponding to the bending moment distribution (Claim 3), bending yielding occurs evenly in each cross section in the axial direction (Y direction) of the “plastic deformation part 2”. Since the energy absorption capability can be exhibited over the entire length of the “plastic deformation portion 2”, there is an advantage that the energy absorption efficiency and the energy absorption capability are high.

「塑性変形部2」がその軸方向(Y方向)の両側寄りに位置する「接続部3、3」間に作用するX方向のせん断力を受け、両構造部材6、6が対向する方向(Y方向)に直交する方向(X方向)の相対変形が生じたときには、ダンパー1は図5−(b)に示すように塑性変形部2がせん断変形する、あるいは曲げ変形を伴ってせん断変形することにより構造部材6、6間の相対変形に追従しようとする。   The direction in which both structural members 6, 6 face each other when the “plastic deformation portion 2” receives a shearing force in the X direction acting between “connecting portions 3, 3” located on both sides in the axial direction (Y direction). When relative deformation in the direction (X direction) perpendicular to (Y direction) occurs, the damper 1 undergoes shear deformation as shown in FIG. 5B, or undergoes shear deformation with bending deformation. This tries to follow the relative deformation between the structural members 6 and 6.

「接続部3、3が塑性変形部2に関してせん断力作用方向に垂直な方向の両側寄りに位置する」とは、せん断力作用方向(X方向)に垂直な方向(Y方向)の中心、すなわち「塑性変形部2」の「軸方向(Y方向)中心」に関して軸方向両側寄りに「接続部3、3」が位置することである。「両側寄り」とは、「接続部3、3」が「塑性変形部2の軸方向(Y方向)中心」に関して「軸方向両側」に分散していることの意味であり、必ずしも軸方向の両端部寄りに偏っていることの意味ではない。   “The connecting portions 3 and 3 are positioned on both sides of the direction perpendicular to the shear force acting direction with respect to the plastic deformation portion 2” means that the center in the direction (Y direction) perpendicular to the shear force acting direction (X direction), “Connecting portions 3, 3” are located on both sides in the axial direction with respect to the “axial direction (Y direction) center” of the “plastic deformation portion 2”. The term “near both sides” means that the “connecting portions 3 and 3” are distributed “on both sides in the axial direction” with respect to the “axial direction (Y direction) center of the plastic deformation portion 2”. It does not mean that it is biased toward both ends.

また「接続部3、3が塑性変形部2のせん断力作用方向(塑性変形部2の変形方向、あるいは幅方向:X方向)に垂直な方向(Y方向)の両側寄りに位置し、」における「接続部3、3」は1枚のダンパー1に付き、「塑性変形部2」の軸方向(Y方向)両側寄りに位置する2箇所の接続部3、3を指す。1枚(1個)のダンパー1を「塑性変形部2」と「接続部3、3」に大きく区分すれば、「接続部3、3」は1枚のダンパー1内において「塑性変形部2」の「軸方向(Y方向)」の両側に位置する。「塑性変形部2」の「軸方向(Y方向)」両側のそれぞれに「接続部3、3」が位置することで、ダンパー1は大きく「塑性変形部2」とその軸方向両側に位置する二箇所(二つ)の「接続部3、3」の3部分から構成される。   Further, in “the connecting portions 3 and 3 are located on both sides in the direction (Y direction) perpendicular to the shearing force acting direction of the plastic deformation portion 2 (the deformation direction of the plastic deformation portion 2 or the width direction: X direction)” “Connecting portions 3, 3” refers to two connecting portions 3, 3 that are attached to one damper 1 and are located closer to both sides in the axial direction (Y direction) of “plastic deformation portion 2”. If one (1) damper 1 is roughly divided into “plastic deformation portion 2” and “connection portions 3 and 3”, “connection portions 3 and 3” are “plastic deformation portion 2” in one damper 1. "Is located on both sides of the" axial direction (Y direction) ". Since the “connecting portions 3 and 3” are positioned on both sides of the “plastic deformation portion 2” in the “axial direction (Y direction)”, the damper 1 is largely positioned on both sides of the “plastic deformation portion 2” and its axial direction. It consists of three parts of two (two) "connection parts 3, 3".

更に「各接続部3が塑性変形部2のせん断力作用方向(X方向)両側に分散して位置する接合部31、31を有し、」とは、「塑性変形部2」の軸方向(Y方向)両側寄りに位置する各「接続部3」のそれぞれが「塑性変形部2」の変形方向(幅方向:X方向)両側の二箇所に分散して位置する「接合部31、31」を有することを言う。「塑性変形部2」の変形方向両側に位置する部分で、図1−(a)中、ハッチングを入れた領域が「接合部31、31」の一部に該当する。「接合部31、31」は「接続部3」の一部として「塑性変形部2」の軸方向(Y方向)両側に位置しながら、「塑性変形部2」の幅方向(X方向)両側に分散するから、各「接続部3」を細分化して見れば、「接続部3」は「塑性変形部2」の幅方向両側に位置する二箇所(二つ)の「接合部31、31」から構成されることになる。   Furthermore, “each connecting portion 3 has joint portions 31, 31 that are distributed and located on both sides of the shearing force acting direction (X direction) of the plastic deformation portion 2” means “the plastic deformation portion 2” in the axial direction ( (Y direction) Each of the “connecting portions 3” located closer to both sides is distributed in two places on both sides of the deformation direction (width direction: X direction) of the “plastic deformation portion 2”. Say that you have. In the portions located on both sides of the “plastic deformation portion 2” in the deformation direction, hatched regions in FIG. 1- (a) correspond to a part of the “joining portions 31, 31”. “Junctions 31, 31” are located on both sides of the “plastic deformation part 2” in the axial direction (Y direction) as part of the “connection part 3”, while both sides of the “plastic deformation part 2” in the width direction (X direction) Therefore, if each of the “connection portions 3” is subdivided, the “connection portions 3” are two (two) “joint portions 31 and 31” located on both sides of the “plastic deformation portion 2” in the width direction. ].

「接続部3」を構成する二つの「接合部31、31」が「塑性変形部2」の変形方向(幅方向:X方向)両側に分散することで、図1−(a)に示すように二つの「接合部31、31」と「塑性変形部2」はせん断力作用方向(X方向)に並列するように配列する。「接合部31、31は構造部材6には主にボルト接合、もしくは溶接等により接合されるが、ボルト接合される場合には、図示するように接合部31にボルト15が挿通する挿通孔3aが形成される。   As shown in FIG. 1- (a), the two “joining portions 31, 31” constituting the “connecting portion 3” are dispersed on both sides of the deformation direction (width direction: X direction) of the “plastic deformation portion 2”. The two “joining portions 31, 31” and “plastic deformation portion 2” are arranged so as to be parallel to the shearing force acting direction (X direction). “The joint portions 31 and 31 are joined to the structural member 6 mainly by bolting or welding, but when bolted, the insertion hole 3a through which the bolt 15 is inserted into the joint 31 as shown in the figure. Is formed.

「両接合部31、31が塑性変形部2のせん断力作用方向に垂直な方向(塑性変形部2の軸方向)の中心寄りに位置している」とは、図2−(a)に示す従来のダンパーの、塑性変形部に直列に配列する接合部とは異なり、「接合部31、31」が「塑性変形部2」の軸方向(Y方向)両端部より軸方向中心側へ寄った位置にあることを言い、必ずしも軸方向の中心に接近していることの意味ではない。「両接合部31、31」は前記のように「塑性変形部2」のせん断力作用方向(X方向)両側に位置し、「接続部3」を構成する二つの「接合部31、31」を指す。   “The two joints 31 and 31 are located closer to the center in the direction perpendicular to the shearing force acting direction of the plastic deformation portion 2 (the axial direction of the plastic deformation portion 2)” as shown in FIG. Unlike the joints of conventional dampers arranged in series with the plastic deformation part, the “joint parts 31, 31” are closer to the axial center side than both axial direction (Y direction) ends of the “plastic deformation part 2”. It means being in a position, and does not necessarily mean approaching the axial center. As described above, the “both joints 31, 31” are located on both sides of the shearing force acting direction (X direction) of the “plastic deformation part 2”, and the two “joints 31, 31” constituting the “connection part 3”. Point to.

図1−(a)においてハッチングで示した領域の少なくとも一部が(b)に破線で示す「塑性変形部2」の軸方向(Y方向)端部より中心寄りに位置していれば、その破線より中心寄りに位置する部分の曲げモーメントは「塑性変形部2」の曲げモーメントの最大値Mbより小さいため、「接合部31」の全体(全長)に生ずる曲げモーメントは図2−(a)に示す従来のダンパーの接合部の全体に生ずる曲げモーメントより小さくなる。   If at least a part of the hatched area in FIG. 1- (a) is located closer to the center than the axial direction (Y direction) end of the “plastic deformation part 2” indicated by the broken line in FIG. Since the bending moment of the part located closer to the center than the broken line is smaller than the maximum value Mb of the bending moment of the “plastic deformation part 2”, the bending moment generated in the entire (total length) of the “joint part 31” is shown in FIG. It becomes smaller than the bending moment which arises in the whole junction part of the conventional damper shown in FIG.

すなわち、ハッチングで示した領域である「接合部31」のY方向中心部が破線で示す「塑性変形部2」の軸方向(Y方向)端部を通り、X方向に平行な曲げモーメントが最大値Mbになる直線より「塑性変形部2」の軸方向(Y方向)中心寄りに位置していれば、「接合部31」のY方向中心に生ずる曲げモーメントはMb以下になるため、ダンパー1が構造部材6へ伝達するための曲げモーメントは小さくなり、結果として後述のように従来のダンパーよりダンパー1の小型化を図ることが可能になる。   That is, the central portion in the Y direction of the “joint portion 31”, which is a hatched region, passes through the end portion in the axial direction (Y direction) of the “plastic deformation portion 2” indicated by the broken line, and the bending moment parallel to the X direction is maximum. If it is located closer to the center in the axial direction (Y direction) of the “plastic deformation part 2” than the straight line having the value Mb, the bending moment generated at the center in the Y direction of the “joining part 31” becomes Mb or less. As a result, the damper 1 can be made smaller than the conventional damper as will be described later.

従って「接合部31」はその領域の内の少なくとも一部が「塑性変形部2」の軸方向(Y方向)両端部より軸方向中心側へ寄った位置にあればよく、このことは「接合部31」が図1−(a)、図4−(b)等に示すように破線で示す「塑性変形部2」の軸方向端部と「接続部3」を区画する線を挟んで「塑性変形部2」の軸方向(Y方向)両端部側から軸方向(Y方向)中心側へ跨ることも含む。   Therefore, the “joining portion 31” only needs to be at a position where at least a part of the region is closer to the axial center side than both ends in the axial direction (Y direction) of the “plastic deformation portion 2”. As shown in FIG. 1- (a), FIG. 4- (b), etc., the “portion 31” sandwiches a line separating the “connecting portion 3” from the axial end portion of the “plastic deformation portion 2” indicated by a broken line. It also includes straddling the axial direction (Y direction) center side from the axial direction (Y direction) both ends of the plastic deformation portion 2 ”.

「接合部31」はダンパー1の内、少なくとも構造部材6に接合される部分(領域)を指し、ボルト接合される場合には挿通孔3aが形成される部分(領域)を指すが、構造部材6への接合が図1−(a)において「塑性変形部2」の端部より中心側に位置する部分のハッチングで示す領域(範囲)での接合で足りる場合は、そのハッチングで示した領域のみが「接合部31」になる。但し、図1−(a)に示すように挿通孔3aが「塑性変形部2」の軸方向(Y方向)端部にまで形成される場合には、ハッチングで示した領域から「塑性変形部2」の軸方向(Y方向)端部までに連続する領域が「接合部31」として機能することにもなる。   “Junction 31” refers to at least a portion (region) joined to the structural member 6 in the damper 1, and refers to a portion (region) in which the insertion hole 3a is formed when bolted. In the case where joining to the region (range) indicated by hatching of the portion located on the center side from the end portion of the “plastic deformation portion 2” in FIG. 1- (a) is sufficient in FIG. Only becomes the “joint 31”. However, when the insertion hole 3a is formed up to the end in the axial direction (Y direction) of the “plastic deformation portion 2” as shown in FIG. The region that continues to the end in the axial direction (Y direction) of “2” also functions as the “joining portion 31”.

「各接続部3の両接合部31、31が塑性変形部2の軸方向(Y方向)の中心寄りに位置すること」で、「接合部31、31」と「塑性変形部2」がせん断力作用方向(X方向)に並列するように配列することと併せ、「塑性変形部2」はせん断力作用方向(X方向)両側から2箇所(二つ)の「接合部31、31」に挟み込まれる形になる。   “The joints 31 and 31 of each connection part 3 are positioned closer to the center of the plastic deformation part 2 in the axial direction (Y direction)”, so that “the joints 31 and 31” and “plastic deformation part 2” are sheared. In combination with the parallel arrangement in the force acting direction (X direction), the “plastic deformation part 2” is formed in two (two) “joints 31, 31” from both sides of the shearing force acting direction (X direction). It will be sandwiched.

「両接合部31、31」がせん断力作用方向(X方向)に「塑性変形部2」と並列し、「塑性変形部2」のX方向両側に位置することで、「塑性変形部2」の軸方向(Y方向)に見たとき、「接合部31、31」の一部が「塑性変形部2」の軸方向(Y方向)の端部より中心寄りに位置する。この結果、「塑性変形部2」の軸方向(Y方向)両側の「接続部3、3」間へのせん断力の作用時に「接合部31、31」が受ける曲げモーメントは前記のように従来のダンパーの接合部より小さくなり、「接合部31,31」のY方向中心部が「塑性変形部2」の軸方向(Y方向)端部より中心寄りに位置する場合には、「塑性変形部2」の軸方向(Y方向)端部に生ずる曲げモーメントの最大値Mb以下になる。   The “both joints 31, 31” are arranged in parallel with the “plastic deformation part 2” in the shearing force acting direction (X direction) and are located on both sides in the X direction of the “plastic deformation part 2”, so that “plastic deformation part 2” When viewed in the axial direction (Y direction), part of the “joining portions 31, 31” is located closer to the center than the end portion in the axial direction (Y direction) of the “plastic deformation portion 2”. As a result, the bending moment received by the “joining portions 31, 31” when the shearing force is applied between the “connecting portions 3, 3” on both sides in the axial direction (Y direction) of the “plastic deformation portion 2” as described above is conventional. When the Y-direction center portion of the “joint portions 31, 31” is located closer to the center than the end portion in the axial direction (Y direction) of the “plastic deformation portion 2”, the “plastic deformation” It becomes below the maximum value Mb of the bending moment generated at the axial direction (Y direction) end of the “part 2”.

「塑性変形部2」に生ずる曲げモーメントは「塑性変形部2」の軸方向(Y方向)中心で0になり、破線で示すように「塑性変形部2」の軸方向端部で最大になるように直線状に分布するため、「塑性変形部2」の軸方向に見たとき、「塑性変形部2」の端部より中心側に位置する部分の曲げモーメントは最大値Mb以下である。   The bending moment generated in the “plastic deformation part 2” is 0 at the center in the axial direction (Y direction) of the “plastic deformation part 2”, and is maximum at the axial end of the “plastic deformation part 2” as indicated by the broken line. Therefore, when viewed in the axial direction of the “plastic deformation portion 2”, the bending moment of the portion located on the center side from the end portion of the “plastic deformation portion 2” is equal to or less than the maximum value Mb.

前記のように図1−(a)では「塑性変形部2」に関して変形方向(幅方向:X方向)両側に位置する領域を「接合部31」としてハッチングで示して区画しているが、図1−(a)に示す「接合部31」の幅のまま、「塑性変形部2」の軸方向(Y方向)端部までに連続する領域を「接合部31」と見なすとしても、図1−(a)においてハッチングで示した領域の少なくとも一部が「塑性変形部2」の軸方向(Y方向)端部より中心寄りに位置していれば、「接合部31」の全体(全長)に生ずる曲げモーメントは図2−(a)に示す従来のダンパーの接合部の全体に生ずる曲げモーメントより小さくなる。   As described above, in FIG. 1- (a), the regions located on both sides of the deformation direction (width direction: X direction) with respect to the “plastic deformation portion 2” are indicated by hatching as “joining portions 31”. Even if the region continuing to the end in the axial direction (Y direction) of the “plastic deformation portion 2” with the width of the “joint portion 31” shown in 1- (a) is regarded as the “joint portion 31”, FIG. -If at least a part of the hatched area in (a) is located closer to the center than the end in the axial direction (Y direction) of the "plastic deformation part 2", the entire "joint part 31" (full length) The bending moment generated in FIG. 2 is smaller than the bending moment generated in the entire joint portion of the conventional damper shown in FIG.

図2−(a)に示す従来のダンパーの塑性変形部に、その軸方向の延長線上の両側に位置する「接合部」に生ずる曲げモーメントMaは、「塑性変形部」の軸方向(Y方向)には「接合部」が「塑性変形部」に直列に配列していることから、(b)に示すように「塑性変形部」に軸方向(Y方向)に生ずる曲げモーメントの最大値Mbより大きい(Ma>Mb)。前記のように図2−(b)中のMaは接合部のY方向の中間部(中心)位置の曲げモーメントを示している。   The bending moment Ma generated in the “joint portion” located on both sides of the axial extension line in the plastic deformation portion of the conventional damper shown in FIG. 2A is the axial direction (Y direction) of the “plastic deformation portion”. ), The “joining part” is arranged in series with the “plastic deformation part”, so that the maximum value Mb of the bending moment generated in the axial direction (Y direction) in the “plastic deformation part” as shown in FIG. Greater than (Ma> Mb). As described above, Ma in FIG. 2B indicates the bending moment at the intermediate portion (center) position in the Y direction of the joint portion.

これに対し、本発明では「接合部31、31」が「塑性変形部」に対し、軸方向(Y方向)に直交する方向(X方向)に並列していることから、「接合部31、31」に生ずる曲げモーメントは「接合部31、31」のY方向中心部が「塑性変形部2」の軸方向(Y方向)端部より中心寄りに位置する場合には、「塑性変形部2」に軸方向(Y方向)の端部に生ずる曲げモーメントの最大値Mb以下になるため、「接合部31、31」は「塑性変形部2」の軸方向端部が負担する曲げモーメントより小さい曲げモーメントを負担すればよい。従って「接合部31、31」に曲げモーメントに抵抗し得る強度を接合部に持たせる上で、「接合部31、31」の面積を従来のダンパーの接合部より小さくすることが可能になる。   In contrast, in the present invention, the “joining portions 31, 31” are parallel to the “plastic deformation portion” in the direction (X direction) orthogonal to the axial direction (Y direction). The bending moment generated in “31” is “plastic deformation portion 2” when the Y direction center portion of “joint portions 31, 31” is located closer to the center than the axial direction (Y direction) end portion of “plastic deformation portion 2”. "Below the maximum value Mb of the bending moment generated at the end portion in the axial direction (Y direction)", "joint portions 31, 31" are smaller than the bending moment borne by the axial end portion of "plastic deformation portion 2". It only has to bear the bending moment. Therefore, the area of the “joint portions 31, 31” can be made smaller than the joint portion of the conventional damper when the “joint portions 31, 31” have a strength capable of resisting a bending moment.

この結果として、本発明の「塑性変形部2」と「接続部3」を合わせたダンパー1全体(本体1A)の面積S2は同一面積の「塑性変形部」を持つ従来のダンパー全体(本体1A)の面積S1より小さくすることが可能であり、その分、必要な鋼材使用量も削減されるため、製作コストの大幅な削減が図られる。   As a result, the area S2 of the entire damper 1 (main body 1A) including the “plastic deformation portion 2” and the “connection portion 3” of the present invention is the same as that of the conventional damper (main body 1A) having the same “plastic deformation portion”. ) Can be made smaller than the area S1, and the necessary amount of steel used can be reduced accordingly, so that the manufacturing cost can be greatly reduced.

例えば「塑性変形部」が同一の面積を持つ図2−(a)に示す従来のダンパーを製作するために必要な、除去部分を含めた鋼板(本体1A)の面積S1と、図1−(a)に示す本発明のダンパー1を製作するために必要な鋼板(本体1A)の面積S2を対比すれば、S2/S1は概算で後述のように1/2程度になっている。図3は図2に示す従来のダンパーに図1に示す本発明のダンパー1を重ねた様子を示している。   For example, the area S1 of the steel plate (main body 1A) including the removed portion, which is necessary for manufacturing the conventional damper shown in FIG. If the area S2 of the steel plate (main body 1A) necessary for manufacturing the damper 1 of the present invention shown in a) is compared, S2 / S1 is approximately ½ as will be described later. FIG. 3 shows a state in which the damper 1 of the present invention shown in FIG. 1 is stacked on the conventional damper shown in FIG.

図2−(a)に示す従来のダンパーの除去部分を含めた鋼板(本体1A)の面積S1は図3に示すようにS1=b1×h1、図1−(a)に示す本発明のダンパー1の除去部分を含めた鋼板(本体1A)の面積S2はS2=b2×h2で、図3に示す比率の場合、S2/S1=約0.54になっている。このことは、ダンパー1を製作するための使用鋼材量(材料費)が従来のダンパーの半分程度で済むことを意味する。   The area S1 of the steel plate (main body 1A) including the removed portion of the conventional damper shown in FIG. 2- (a) is S1 = b1 × h1 as shown in FIG. 3, and the damper of the present invention shown in FIG. The area S2 of the steel plate (main body 1A) including the removed portion 1 is S2 = b2 × h2, and in the case of the ratio shown in FIG. 3, S2 / S1 = about 0.54. This means that the amount of steel used (material cost) for manufacturing the damper 1 is about half that of the conventional damper.

図2−(a)に示す従来のダンパーの「塑性変形部」を除く「接続部3」に相当する部分(領域)の面積S3は図3に示すようにS3=b1×h3、図1−(a)に示す本発明のダンパー1の「塑性変形部2」を除く「接続部3」の面積S4はS4=b2×h4+2×b3×h5で、図3に示す比率の場合、S4/S3=約0.48になっている。このことは、従来のダンパーと同等のエネルギ吸収能力(塑性変形能力)を持つダンパー1を構造部材6に接合(固定)するための「接続部3(接合部31)」に固定状態を維持させる上で、あるいは「塑性変形部2」を塑性変形させるための曲げモーメントを負担させる上で、ダンパー1を従来のダンパーより小さい大きさ(規模)で済ませることができることを意味する。   The area S3 of the portion (region) corresponding to the “connection portion 3” excluding the “plastic deformation portion” of the conventional damper shown in FIG. 2A is S3 = b1 × h3 as shown in FIG. The area S4 of the “connection portion 3” excluding the “plastic deformation portion 2” of the damper 1 of the present invention shown in FIG. 4A is S4 = b2 × h4 + 2 × b3 × h5, and in the case of the ratio shown in FIG. = About 0.48. This maintains the fixed state in the “connection portion 3 (joint portion 31)” for joining (fixing) the damper 1 having the energy absorption capability (plastic deformation capability) equivalent to that of the conventional damper to the structural member 6. This means that the damper 1 can be made smaller in size (scale) than the conventional damper in order to bear a bending moment for plastically deforming the “plastic deformation portion 2”.

このように本発明のダンパー1を製作するために必要な鋼板の面積S2が従来のダンパーを製作するために必要な鋼板の面積S1の半分程度で済むことと、接合部31、31を塑性変形部2の幅方向両側に配置できることから、1枚の板の内、ダンパー1を製作するために除去すべき領域が縮小される。   As described above, the area S2 of the steel plate necessary for manufacturing the damper 1 of the present invention is about half of the area S1 of the steel plate required for manufacturing the conventional damper, and the joints 31, 31 are plastically deformed. Since it can be arranged on both sides in the width direction of the portion 2, the area to be removed in order to manufacture the damper 1 in one plate is reduced.

従来のダンパーの場合には、図2−(a)に示すように塑性変形部2の幅方向両側の五角形状の領域は接合部31に使用されることがない無用の領域であり、この領域を接合部31として使用する考えはない。一方、塑性変形部2の幅方向両側の領域を塑性変形部2の一部に取り込むことは面内剛性を大きくさせることであり、塑性変形部2の塑性変形能力を低下させることになるため、ダンパーからは不在にする必要がある。   In the case of a conventional damper, as shown in FIG. 2A, the pentagonal regions on both sides in the width direction of the plastic deformation portion 2 are useless regions that are not used for the joint portion 31. Is not considered to be used as the joint 31. On the other hand, taking in the regions on both sides in the width direction of the plastic deformation portion 2 into a part of the plastic deformation portion 2 increases the in-plane rigidity, and decreases the plastic deformation capability of the plastic deformation portion 2. Must be absent from the damper.

これに対し、本発明では図1−(a)に示すように接合部31を塑性変形部2の幅方向両側に配置できることで、除去すべき領域としては塑性変形部2と接合部31、31を分離させるためのスリット(縦スリット5)が形成されればよく、無駄に廃棄される材料が節減される。従って除去部分の領域が原形である1枚の鋼材の面積に占める割合が小さく、原料の鋼材に対する、1枚のダンパーの製作に要する鋼材量の比率が大きくなるため、製作効率が高まる。   On the other hand, in this invention, as shown to FIG. 1- (a), since the junction part 31 can be arrange | positioned at the width direction both sides of the plastic deformation part 2, as a region which should be removed, the plastic deformation part 2 and the junction parts 31 and 31 are shown. It is only necessary to form a slit (vertical slit 5) for separating the material, and material that is wasted is saved. Accordingly, the ratio of the removed portion to the area of one original steel material is small, and the ratio of the amount of steel material required for manufacturing one damper to the raw steel material is increased, so that the manufacturing efficiency is increased.

極端に言えば、図4−(a)に示すようにダンパー1本体1Aに対しては、本体1Aを大きく塑性変形部2の軸方向両側に二分する横スリット4と、横スリット4の塑性変形部2側の端部から、塑性変形部2の軸方向に、塑性変形部2と接合部31、31に区分する縦スリット5が入れられればよい。横スリット4は加工前の鋼板の周囲から塑性変形部2の幅方向側面に到達するまで入れられればよい。図4−(b)は図1−(a)に示す形状のダンパー1と図4−(a)に示す形状のダンパー1を組み合わせた形状に形成した場合の例を示している。   Speaking extremely, as shown in FIG. 4A, for the damper 1 main body 1A, the horizontal slit 4 that bisects the main body 1A on both sides in the axial direction of the plastic deformation portion 2, and the plastic deformation of the horizontal slit 4 A longitudinal slit 5 that divides the plastic deformation portion 2 and the joint portions 31, 31 may be inserted in the axial direction of the plastic deformation portion 2 from the end on the portion 2 side. The transverse slit 4 may be inserted until it reaches the side surface in the width direction of the plastic deformation portion 2 from the periphery of the steel plate before processing. FIG. 4- (b) shows an example in which the damper 1 having the shape shown in FIG. 1 (a) and the damper 1 having the shape shown in FIG. 4- (a) are combined.

「接合部31、31」に生ずる曲げモーメントを「塑性変形部2」の軸方向(Y方向)に生ずる曲げモーメントの最大値Mb以下にするには、図1−(a)に破線で示すように塑性変形部2の軸方向(Y方向)両端の位置を通り、せん断力作用方向(X方向)に平行な直線より、塑性変形部2の軸方向(Y方向)中心側寄りの位置(範囲)に接合部31、31のY方向中心部を配置すればよい。但し、塑性変形部2と接合部31、31はダンパー1の一部であるため、塑性変形部2に連続する接合部31、31が塑性変形部2の幅方向両側に位置する状態になるには、塑性変形部2と接合部31、31を連続させるためのつなぎの領域が必要である。   In order to set the bending moment generated in the “joint portions 31, 31” to be equal to or less than the maximum value Mb of the bending moment generated in the axial direction (Y direction) of the “plastic deformation portion 2”, as shown by a broken line in FIG. Passes through the positions of both ends of the plastic deformation part 2 in the axial direction (Y direction) and is closer to the center side of the plastic deformation part 2 in the axial direction (Y direction) than the straight line parallel to the shearing force acting direction (X direction). ), The Y direction center part of the joint parts 31 and 31 may be disposed. However, since the plastic deformation portion 2 and the joint portions 31, 31 are part of the damper 1, the joint portions 31, 31 that are continuous to the plastic deformation portion 2 are positioned on both sides in the width direction of the plastic deformation portion 2. A connecting region is required for the plastic deformation portion 2 and the joint portions 31 and 31 to be continuous.

そこで、塑性変形部2のせん断力作用方向に垂直な方向(Y方向)の両端部に、塑性変形部2と接合部31、31を連続させるつなぎ部32を連続させ、このつなぎ部32のせん断力作用方向両側に接合部31、31を連続させて形成することで(請求項2)、塑性変形部2と接合部31、31の連続性が確保される。   Therefore, a connecting portion 32 that connects the plastic deforming portion 2 and the joint portions 31, 31 is connected to both ends of the plastic deforming portion 2 in a direction perpendicular to the shearing force acting direction (Y direction), and shearing of the connecting portion 32 is performed. By forming the joint portions 31 and 31 continuously on both sides in the force acting direction (Claim 2), the continuity between the plastic deformation portion 2 and the joint portions 31 and 31 is ensured.

請求項2ではつなぎ部32は機能的には塑性変形部2と接合部31、31を連続させる働きをするが、つなぎ部32が構造部材6に重なる場合には、つなぎ部32に接合部31の機能を兼ねさせることができる。このため、つなぎ部32が接合部31として機能する場合には、接続部3での構造部材6への接合状態において構造部材6と弾塑性ダンパー1を面内方向に分離させようとするせん断力に対する抵抗力(せん断抵抗力)を高め、構造部材6と弾塑性ダンパー1との一体性の効果を向上させることが可能になる。図1−(a)ではつなぎ部32にもボルト15が挿通する挿通孔3aを形成した様子を示している。   In the second aspect, the connecting portion 32 functions to make the plastic deformation portion 2 and the joint portions 31, 31 functionally continuous. However, when the joint portion 32 overlaps the structural member 6, the joint portion 31 is connected to the joint portion 32. It can also serve as a function. For this reason, when the connection part 32 functions as the junction part 31, in the joining state to the structural member 6 in the connection part 3, the shear force which tries to isolate | separate the structural member 6 and the elastic-plastic damper 1 to an in-plane direction. It is possible to increase the resistance force (shear resistance force) to the structural member 6 and improve the integrity effect of the structural member 6 and the elastic-plastic damper 1. 1A shows a state in which the insertion hole 3a through which the bolt 15 is inserted is also formed in the connecting portion 32. FIG.

接合部31、あるいは接合部31とつなぎ部32が構造部材6にボルト15により接合される場合、構造部材6とダンパー1を面内方向に分離させようとするせん断力の作用時には、接合部31の挿通孔3aを挿通するボルト15には軸に直交する方向のせん断力が作用するため、ボルト15はせん断抵抗力により、あるいは構造部材6との間の摩擦力により外力に抵抗することになる。   When the joint portion 31 or the joint portion 31 and the joint portion 32 are joined to the structural member 6 by the bolt 15, the joint portion 31 is acted upon when a shearing force is applied to separate the structural member 6 and the damper 1 in the in-plane direction. Since a shearing force in a direction perpendicular to the axis acts on the bolt 15 inserted through the insertion hole 3a, the bolt 15 resists an external force by a shearing resistance force or a frictional force with the structural member 6. .

図1−(a)、図4以下に示す本発明のダンパー1は図6−(a)〜(d)に示すようにせん断力作用方向(X方向)に接合部31を挟んで塑性変形部2が複数、配列する形状に形成されることもある(請求項4)。この場合、1個のダンパー1が複数個の塑性変形部2を持つことで、エネルギ吸収能力が高い利点を有する。   The damper 1 of the present invention shown in FIG. 1- (a) and FIG. 4 and subsequent figures is a plastic deformation portion with a joint portion 31 sandwiched in a shearing force acting direction (X direction) as shown in FIGS. 6 (a)-(d). A plurality of 2 may be formed in an arrayed shape (claim 4). In this case, since one damper 1 has a plurality of plastic deformation portions 2, it has an advantage of high energy absorption capability.

「接合部31を挟んで塑性変形部2が複数、配列する」とは、図6−(a)、(b)に示すようにせん断力作用方向(X方向)に複数の塑性変形部2と接合部31が交互に、あるいは図6−(c)、(d)に示すように接合部31が両端部に集約して配列することを言い、ダンパー1(本体1A)全体ではせん断力作用方向(X方向)の両側に接合部31が位置する。「塑性変形部2が複数、配列すること」で、請求項4のダンパー1は例えば図6−(a)、(b)に示すように図1−(a)、図4等に示す「塑性変形部2」が単一のダンパー1をせん断力作用方向(X方向)に連ねた形になり、図1−(a)等に示すダンパー1を、接合部31を重複させながら、接合部31の位置でせん断力作用方向に折り返した形状になる。   “A plurality of plastic deformation portions 2 are arranged across the joint portion 31” means that the plurality of plastic deformation portions 2 are arranged in the shearing force acting direction (X direction) as shown in FIGS. 6 (a) and 6 (b). It means that the joint portions 31 are arranged alternately or as shown in FIGS. 6 (c) and 6 (d), and the joint portions 31 are gathered and arranged at both ends, and the entire direction of the shear force acting on the damper 1 (main body 1A). The joint portions 31 are located on both sides in the (X direction). By arranging “a plurality of plastically deforming portions 2”, the damper 1 according to claim 4 is, for example, as shown in FIGS. 6- (a) and (b), shown in FIGS. The deformed portion 2 "has a shape in which a single damper 1 is connected in a shearing force acting direction (X direction), and the damper 1 shown in FIG. The shape is folded back in the shearing force acting direction at the position.

図6−(a)は図1−(a)に示す形状のダンパー1の塑性変形部2がせん断力作用方向(X方向)に接合部31を挟んで複数、配列する形状にダンパー1を形成した場合、(b)は図4−(a)に示す形状のダンパー1の塑性変形部2がせん断力作用方向(X方向)に接合部31を挟んで複数、配列する形状にダンパー1を形成した場合を示している。図6−(c)、(d)は形態的にはそれぞれ図6−(a)、(b)において、X方向に隣接する塑性変形部2、2間の接合部31を省略した形に相当する。図6−(b)ではX方向中間部に1個の塑性変形部2を形成しているが、(d)では中間部に2個の塑性変形部2を配置している。   6A shows a configuration in which a plurality of the plastically deformed portions 2 of the damper 1 having the shape shown in FIG. 1A are arranged with the joint portions 31 sandwiched in the shearing force acting direction (X direction). In this case, (b) forms the damper 1 in a shape in which a plurality of the plastically deformed portions 2 of the damper 1 having the shape shown in FIG. 4- (a) are arranged with the joint portions 31 in the shearing force acting direction (X direction). Shows the case. 6 (c) and 6 (d) correspond to shapes in which the joint portions 31 between the plastic deformation portions 2 and 2 adjacent in the X direction are omitted in FIGS. 6 (a) and 6 (b). To do. In FIG. 6- (b), one plastic deformation part 2 is formed in the X direction intermediate part, but in FIG. 6D, two plastic deformation parts 2 are arranged in the intermediate part.

塑性変形部に関してせん断力作用方向に垂直な方向の両側寄りに位置し、構造部材に接続される接続部が塑性変形部のせん断力作用方向両側に分散して位置する接合部を有し、両接合部が塑性変形部のせん断力作用方向に垂直な方向の中心寄りに位置しているため、接合部と塑性変形部をせん断力作用方向に並列させることができる。   The plastic deformation part is located near both sides in the direction perpendicular to the shearing force acting direction, and the connection part connected to the structural member has joints located on both sides of the plastic deformation part in the shearing force acting direction. Since the joining portion is located closer to the center in the direction perpendicular to the shearing force acting direction of the plastic deformation portion, the joining portion and the plastic deformation portion can be arranged in parallel in the shearing force acting direction.

この結果、塑性変形部の軸方向両側の接続部間へのせん断力の作用時に接合部が受ける曲げモーメントを塑性変形部に軸方向に生ずる曲げモーメントの最大値Mb以下に抑えることもできるように、接合部は塑性変形部の軸方向端部が負担する曲げモーメントを、従来のダンパーより小さい曲げモーメントで負担すればよいため、接合部の面積を従来のダンパーの接合部より小さくすることができる。従って塑性変形部と接続部を合わせたダンパー全体の面積を同一面積の塑性変形部を持つ従来のダンパー全体の面積より小さくすることができ、その分、必要な鋼材使用量も削減されるため、製作コストの大幅な削減が図られる。   As a result, the bending moment that the joint receives when the shearing force is applied between the connecting portions on both sides in the axial direction of the plastic deformation portion can be suppressed to be equal to or less than the maximum value Mb of the bending moment generated in the axial direction in the plastic deformation portion. In addition, since it is only necessary for the joint portion to bear the bending moment borne by the axial end of the plastic deformation portion with a bending moment smaller than that of the conventional damper, the area of the joint portion can be made smaller than the joint portion of the conventional damper. . Therefore, the area of the entire damper including the plastic deformation portion and the connection portion can be made smaller than the area of the entire conventional damper having the plastic deformation portion of the same area, and accordingly, the necessary amount of steel material used is also reduced. Production costs can be significantly reduced.

また接合部を塑性変形部の幅方向両側に配置できることで、1枚の鋼材(鋼板)からダンパーを製作する場合に、除去すべき領域としては塑性変形部と接合部を分離させるためのスリットを形成すればよく、無駄な材料を節減できるため、除去部分の領域が原形である1枚の鋼材の面積に占める割合が小さく、原料の鋼材に対する、1枚のダンパーの製作に要する鋼材量の比率が大きくなるため、製作効率が高まる。   In addition, since the joints can be arranged on both sides in the width direction of the plastic deformation part, when the damper is manufactured from one steel material (steel plate), a slit for separating the plastic deformation part and the joint part is to be removed. It is only necessary to form it, and wasteful materials can be saved. Therefore, the ratio of the amount of steel material required to manufacture one damper to the raw steel material is small, because the area of the removed part occupies a small area in the original steel material. Increases the production efficiency.

(a)は本発明の弾塑性ダンパーの基本的な製作例を示した立面図、(b)は塑性変形部がせん断力を受けたときに塑性変形部に生ずる曲げモーメントの分布状態を示した曲げモーメント図である。(A) is an elevational view showing a basic manufacturing example of the elastic-plastic damper of the present invention, and (b) shows a distribution state of bending moment generated in the plastic deformation portion when the plastic deformation portion receives a shearing force. FIG. (a)は従来の弾塑性ダンパーの基本的な製作例を示した立面図、(b)は塑性変形部がせん断力を受けたときに塑性変形部に生ずる曲げモーメントの分布状態を示した曲げモーメント図である。(A) is an elevation view showing a basic manufacturing example of a conventional elastic-plastic damper, and (b) shows a distribution state of bending moment generated in the plastic deformation portion when the plastic deformation portion receives a shearing force. It is a bending moment figure. 図2に示す従来の弾塑性ダンパーに、同一形状、同一面積の塑性変形部を持つ図1−(a)に示す本発明の弾塑性ダンパーを重ねた様子を示した立面図である。It is the elevation which showed a mode that the elastic-plastic damper of this invention shown in FIG. 1- (a) which has a plastic deformation part of the same shape and the same area was piled up on the conventional elastic-plastic damper shown in FIG. (a)は本発明の弾塑性ダンパーを製作する上で、鋼材の無駄を極力少なくした場合の製作例を示した立面図、(b)は図1−(a)に示す形状の塑性変形部を持つ弾塑性ダンパーを製作する上で、鋼材の無駄を極力少なくした場合の製作例を示した立面図である。(A) is an elevation view showing an example of production in which the waste of the steel material is reduced as much as possible in producing the elastic-plastic damper of the present invention, and (b) is a plastic deformation of the shape shown in FIG. FIG. 5 is an elevational view showing a production example in which waste of the steel material is reduced as much as possible in producing an elastoplastic damper having a portion. (a)は図4−(b)に示す製作例の弾塑性ダンパーの変形例として接合部の領域(面積)を拡大した場合の例を示した立面図、(b)は(a)に示す弾塑性ダンパーがせん断力を受けて変形を生じたときの様子を示した立面図である。(A) is an elevation view showing an example in which the region (area) of the joint is enlarged as a modification of the elastic-plastic damper of the production example shown in FIG. It is the elevation which showed a mode when the elastic-plastic damper shown showed a deformation | transformation by receiving a shearing force. (a)は図1−(a)に示す形状の弾塑性ダンパーの塑性変形部がせん断力作用方向(X方向)に接合部を挟んで複数、配列する形状に弾塑性ダンパーを形成した場合の製作例を示した立面図、(b)は図4−(a)に示す形状の弾塑性ダンパーの塑性変形部がせん断力作用方向(X方向)に接合部を挟んで複数、配列する形状に弾塑性ダンパーを形成した場合の製作例を示した立面図、(c)は(a)に示す弾塑性ダンパーにおける、X方向に隣接する塑性変形部間の接合部を省略した形に弾塑性ダンパーを形成した場合の製作例を示した立面図、(d)は(b)に示す弾塑性ダンパーにおける、X方向に隣接する塑性変形部間の接合部を省略し、X方向中間部に2個の塑性変形部を配置した形に弾塑性ダンパーを形成した場合の製作例を示した立面図である。(A) is a case where an elastic-plastic damper is formed in a shape in which a plurality of plastic deformation portions of an elastic-plastic damper having the shape shown in FIG. Fig. 4B is an elevation view showing a manufacturing example. Fig. 4B shows a shape in which a plurality of plastic deformation portions of the elastic-plastic damper having the shape shown in Fig. 4A are arranged with a joint portion interposed in the shearing force acting direction (X direction). Fig. 8C is an elevation view showing an example of production when an elastic-plastic damper is formed in Fig. 8C. Fig. 8C is an elastic view of the elastic-plastic damper shown in Fig. 9A in which the joint between the plastic deformation portions adjacent in the X direction is omitted. The elevation which showed the example of manufacture at the time of forming a plastic damper, (d) omits the joined part between the plastic deformation parts adjacent to the X direction in the elastic-plastic damper shown in (b), and is the X direction middle part Example of production when an elasto-plastic damper is formed in a shape in which two plastic deformation parts are arranged Is an elevational view taken. 図1−(a)に示す弾塑性ダンパーの構造部材への設置(接合)例を示した立面図であり、(a)は構造部材が分離した梁部材の場合、(b)は分離した間柱の場合、(c)はブレースと梁部材の場合である。It is the elevation which showed the example of installation (joining) to the structural member of the elastic-plastic damper shown in FIG. 1- (a), (a) is the beam member from which the structural member separated, (b) separated In the case of a stud, (c) is the case of a brace and a beam member. 図4−(b)、あるいは図5に示す弾塑性ダンパーの他の構造部材への設置(接合)例を示した立面図であり、(a)は構造部材が分離した梁部材の場合、(b)は分離した間柱の場合、(c)は分離した梁部材の場合である。FIG. 4- (b) or FIG. 5 is an elevation view showing an example of installation (joining) to the other structural member of the elastic-plastic damper shown in FIG. 5, where (a) is a beam member in which the structural member is separated, (B) is the case of the separated stud, and (c) is the case of the separated beam member.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図1−(a)は互いに分離した構造部材6、6間に跨って設置され、面内方向のせん断力を受けて変形する、本体1Aが板状の曲げ降伏型弾塑性ダンパー(以下、ダンパー)1の製作例を示している。構造部材6、6は直接、力の伝達がされない状態に互いに分離していればよく、構造物内での部位は問われない。具体的には分離した梁部材同士、柱部材同士、間柱同士の他、耐震壁やブレースと柱・梁のフレーム同士等があり、構造部材6には基礎も含まれる。   FIG. 1- (a) shows a bending yield type elasto-plastic damper (hereinafter referred to as a damper) having a main body 1A which is installed between structural members 6 and 6 separated from each other and is deformed by receiving a shearing force in an in-plane direction. ) A production example 1 is shown. The structural members 6 and 6 need only be separated from each other in a state where force is not directly transmitted, and the position within the structure is not limited. Specifically, there are seismic walls and brace / column / beam frames in addition to the separated beam members, column members, and inter-columns, and the structural member 6 includes a foundation.

図1−(a)等はダンパー1に作用するせん断力の作用方向(X方向)に垂直な方向(Y方向)を上下に向けた状態で示しているが、構造部材6、6へのダンパー1の設置状態で水平方向にせん断力が作用するとは必ずしも限らず、図7−(a)、図8−(a)、(c)に示すように設置状態で鉛直方向にせん断力が作用することもある。   FIG. 1- (a) and the like show the direction (Y direction) perpendicular to the acting direction (X direction) of the shearing force acting on the damper 1 in a state where the damper is applied to the structural members 6 and 6. The shearing force does not necessarily act in the horizontal direction in the installation state of 1, but the shearing force acts in the vertical direction in the installation state as shown in FIGS. 7- (a), 8- (a), and (c). Sometimes.

例えば図7−(a)に示すように構造部材6、6が水平方向に隣接する柱11、11間に架設され、互いに分離した梁(梁部材)12、12である場合には、柱11と梁12からなるフレームの層間変形時に、構造部材6、6(梁(梁部材)12、12)間には鉛直方向に相対変形が生じ、せん断力の作用方向は鉛直方向になるから、ダンパー1は図1−(a)等の向きの状態から90度、回転させた状態で構造部材6、6間に設置される。   For example, as shown in FIG. 7A, in the case where the structural members 6 and 6 are beams (beam members) 12 and 12 that are installed between the columns 11 and 11 adjacent in the horizontal direction and are separated from each other, the column 11 When the frame composed of the beam 12 and the beam 12 is deformed between layers, relative deformation occurs in the vertical direction between the structural members 6 and 6 (beams (beam members) 12 and 12), and the acting direction of the shear force becomes the vertical direction. 1 is installed between the structural members 6 and 6 while being rotated 90 degrees from the orientation shown in FIG.

図7−(b)に示すように構造部材6が鉛直方向に隣接する梁12、12間に架設され、互いに分離した間柱(あるいは壁)13、13である場合には、フレームの層間変形時に構造部材6、6(間柱13、13)間に水平方向に相対変形が生じ、せん断力の作用方向は水平方向になるから、ダンパー1は図1−(a)等の向きのまま、構造部材6、6間に設置される。   As shown in FIG. 7- (b), when the structural member 6 is spanned between the beams 12 and 12 adjacent in the vertical direction and is separated from each other by the pillars (or walls) 13 and 13, Since relative deformation occurs in the horizontal direction between the structural members 6 and 6 (intermediate columns 13 and 13) and the acting direction of the shearing force becomes the horizontal direction, the damper 1 remains in the structural member in the direction shown in FIG. It is installed between 6 and 6.

図7−(c)は一方の構造部材6がブレース14で、他方の構造部材6がフレームを構成する梁12である場合のダンパー1の設置状態を示しているが、この場合、構造部材6、6間には水平方向に相対変形が生じるから、ダンパー1は図7−(b)の場合と同様、図1−(a)等の状態のまま、構造部材6、6間に設置される。ブレース14が柱11にダンパー1を介して接合される場合には、相対変形は鉛直方向になるから、ダンパー1は図7−(a)と同じ向きで使用される。   FIG. 7- (c) shows the installation state of the damper 1 when one structural member 6 is a brace 14 and the other structural member 6 is a beam 12 constituting a frame. In this case, the structural member 6 , 6 is relatively deformed in the horizontal direction, so that the damper 1 is installed between the structural members 6, 6 in the state shown in FIG. 1- (a), as in the case of FIG. 7- (b). . When the brace 14 is joined to the column 11 via the damper 1, the relative deformation is in the vertical direction, so the damper 1 is used in the same direction as FIG. 7- (a).

ダンパー1の本体1Aは図1−(a)等に示すように本体1Aの中心部、もしくはその付近に位置し、矢印で示すX方向のせん断力を負担して曲げ降伏し得る塑性変形部2と、せん断力の作用方向(X方向)に垂直な方向(Y方向)の、塑性変形2部の両側に位置し、各構造部材6に接続される接続部3、3の3部分を備える。図1−(a)中、本体1Aの中心部において概略台形をX方向に線対称形に組み合わせた鼓形のような形状の領域が塑性変形部2を示している。図面では製作のし易さと構造部材6への接合のし易さから、本体1Aの外形を方形状に形成しているが、本体1Aの外形形状は任意であり、多角形状、楕円形状、円形状等にも形成される。   The main body 1A of the damper 1 is located at or near the center of the main body 1A as shown in FIG. 1- (a) and the like, and is a plastic deformation portion 2 that can bend and yield by bearing a shearing force in the X direction indicated by an arrow. And three portions of connecting portions 3 and 3 connected to the respective structural members 6 and located on both sides of the plastic deformation 2 portion in the direction (Y direction) perpendicular to the direction of the shearing force (X direction). In FIG. 1- (a), a region having a drum-like shape obtained by combining a substantially trapezoidal shape in a line-symmetric manner in the X direction at the center of the main body 1A indicates the plastic deformation portion 2. In the drawing, the outer shape of the main body 1A is formed in a rectangular shape from the viewpoint of ease of manufacture and ease of joining to the structural member 6, but the outer shape of the main body 1A is arbitrary, such as a polygonal shape, an elliptical shape, a circle shape. It is also formed in shape and the like.

各接続部3は塑性変形部2のせん断力作用方向(X方向)両側に分散して位置する接合部31、31を有し、両接合部31、31は塑性変形部2のせん断力作用方向(X方向)に垂直な方向(Y方向)の中心寄りに位置している。図1−(a)中、ハッチングを入れた領域が接合部31の一部を示しているが、図面ではハッチングで示した領域からY方向の端部までの連続した領域にも挿通孔3aを形成し、ハッチングで示した領域とY方向の端部までの連続した領域を接合部31として使用している。塑性変形部2のせん断力作用方向(X方向)に垂直な方向(Y方向)の中心は図1−(a)に示す概略台形を連ねた鼓形のような形状の塑性変形部2の最も幅の小さい部分を指す。せん断力作用方向(X方向)に垂直な方向(Y方向)は塑性変形部2の軸方向でもある。   Each connecting portion 3 has joint portions 31, 31 that are dispersedly located on both sides of the shearing force acting direction (X direction) of the plastic deformation portion 2, and both joining portions 31, 31 are shearing force acting directions of the plastic deformation portion 2. It is located near the center in the direction (Y direction) perpendicular to the (X direction). In FIG. 1- (a), the hatched region indicates a part of the joint portion 31. However, in the drawing, the insertion hole 3a is also formed in a continuous region from the hatched region to the end in the Y direction. A region formed and hatched and a continuous region up to the end in the Y direction are used as the junction 31. The center of the direction (Y direction) perpendicular to the shearing force acting direction (X direction) of the plastic deformation part 2 is the most of the plastic deformation part 2 having a shape like a drum shape in which the approximate trapezoids shown in FIG. Refers to the narrow part. The direction (Y direction) perpendicular to the shearing force acting direction (X direction) is also the axial direction of the plastic deformation portion 2.

接合部31、31は接続部3の内、X方向両側に位置し、且つX方向の各側に付き、Y方向には塑性変形部2の軸方向(Y方向)の中心側寄りに位置し、両接合部31、31と塑性変形部2はX方向に並列する。このX方向両側に位置する接合部31、31を接続部3の一部として連続させるために、塑性変形部2の軸方向(Y方向)の両端部には接続部3を構成する(接続部3の一部となる)つなぎ部32が連続して形成される。このつなぎ部32のX方向両側部分からY方向の中心側へハッチングで示す接合部31、31の一部が連続して形成される。   The joints 31 and 31 are located on both sides in the X direction of the connection part 3 and attached to each side in the X direction, and are located closer to the center side in the axial direction (Y direction) of the plastic deformation part 2 in the Y direction. The joints 31 and 31 and the plastic deformation part 2 are arranged in parallel in the X direction. In order to continue the joint portions 31, 31 located on both sides in the X direction as a part of the connection portion 3, the connection portion 3 is configured at both ends in the axial direction (Y direction) of the plastic deformation portion 2 (connection portion). 3) is formed continuously. A part of the joint portions 31, 31 indicated by hatching from both side portions in the X direction of the connecting portion 32 to the center side in the Y direction is continuously formed.

接続部3は少なくとも接合部31において構造部材6に接合されるが、つなぎ部32は接続部3の一部であるため、図面では接合部31に加え、つなぎ部32にも構造部材6へのボルト15による接合のための挿通孔3aを形成し、接続部3の全体を接合部31として利用している。   The connecting portion 3 is joined to the structural member 6 at least at the joining portion 31. However, since the connecting portion 32 is a part of the connecting portion 3, in the drawing, in addition to the joining portion 31, the connecting portion 32 is also connected to the structural member 6. An insertion hole 3 a for joining with the bolt 15 is formed, and the entire connection part 3 is used as the joining part 31.

本発明では接続部3の全体が図2−(a)に示す従来のダンパーにおける接合部と同等の機能を果たし(エネルギ吸収能力を発揮し)ながらも、接合部31が塑性変形部2の軸方向(Y方向)中心寄りに位置していることで、接続部3、3間に作用するせん断力により接続部3全体が負担する曲げモーメントが低減されるため、挿通孔3aの形成数は図2−(a)との対比では削減されている。図2−(a)の塑性変形部と同一面積の塑性変形部2を持つ図1−(a)のダンパー1の場合、接続部3の面積は図2−(a)のダンパーの接合部の50%程度の大きさになっており、それに伴い、挿通孔3aの数は従来のダンパーより少なくなっている。   In the present invention, the entire connecting portion 3 performs the same function as the connecting portion in the conventional damper shown in FIG. 2A (exhibits energy absorption capability), but the connecting portion 31 is the axis of the plastic deformation portion 2. Since the bending moment which the whole connection part 3 bears by the shear force which acts between the connection parts 3 and 3 by being located near the direction (Y direction) center, the number of formation of the insertion holes 3a is as shown in FIG. In comparison with 2- (a), it is reduced. In the case of the damper 1 of FIG. 1- (a) having the plastic deformation part 2 of the same area as the plastic deformation part of FIG. 2- (a), the area of the connection part 3 is the same as that of the joint part of the damper of FIG. 2- (a). The size is about 50%, and accordingly, the number of insertion holes 3a is smaller than that of the conventional damper.

図4−(a)、(b)はダンパー1本体1Aの原形となる鋼材(鋼板)が方形状である場合に、1枚の鋼材からダンパー1を製作する上で、除去される部分が少なく、無駄の少ない形状にダンパー1を製作した場合の製作例を示している。図4−(a)、(b)では鋼材(鋼板)の除去部分を縦と横の二方向のスリットのみにしている。   4 (a) and 4 (b), when the steel material (steel plate), which is the original shape of the damper 1 main body 1A, is rectangular, there are few parts to be removed when the damper 1 is manufactured from one steel material. The example of manufacture when the damper 1 is manufactured in a shape with little waste is shown. 4- (a) and (b), the removed portion of the steel material (steel plate) is limited to the vertical and horizontal slits only.

ダンパー1の本体1Aを大きく区分すれば、本体1Aの中心部、もしくはその付近の領域を占める塑性変形部2と、その軸方向(Y方向)両側に位置する接続部3、3の3部分(領域)に区分される。従って本体1Aをこの3部分に区分する上では、図4−(a)に示すようにせん断力作用方向(X方向)を横に向け、垂直な方向(Y方向)を縦に向けた状態で、本体1Aの縦向きの外周縁のY方向中間部(中央部)からX方向に平行に本体1Aの中途まで横スリット4を入れ、その横スリット4の本体1A中心部側の先端位置からY方向に平行に本体1Aの中途まで縦スリット5を入れることにより本体1Aが3部分に区分される。   If the main body 1A of the damper 1 is roughly divided, the three portions of the plastic deformation portion 2 occupying the central portion of the main body 1A or a region in the vicinity thereof and the connection portions 3 and 3 positioned on both sides in the axial direction (Y direction) ( Area). Therefore, in dividing the main body 1A into these three parts, as shown in FIG. 4- (a), the shearing force acting direction (X direction) is directed sideways and the vertical direction (Y direction) is oriented vertically. The horizontal slit 4 is inserted from the Y-direction intermediate portion (center portion) of the longitudinal outer periphery of the main body 1A to the middle of the main body 1A in parallel with the X direction, The main body 1A is divided into three parts by inserting the vertical slit 5 in the middle of the main body 1A in parallel with the direction.

横スリット4の方向は必ずしもX方向に平行であるとは限らず、X方向に対して傾斜することもある。また横スリット4は本体1Aの縦向きの外周縁のY方向中央部から入れられるとも限らない。同じく図4−(b)に示すように縦スリット5の方向も必ずしもY方向に平行であるとは限らず、Y方向に対して傾斜することもある。   The direction of the horizontal slit 4 is not necessarily parallel to the X direction, and may be inclined with respect to the X direction. Moreover, the horizontal slit 4 is not necessarily inserted from the Y-direction central portion of the longitudinal outer periphery of the main body 1A. Similarly, as shown in FIG. 4B, the direction of the longitudinal slit 5 is not necessarily parallel to the Y direction and may be inclined with respect to the Y direction.

横スリット4は基本的に本体1Aの縦向きの外周縁の全長の内、その方向の中間部位置、特に中央部位置から、塑性変形部2の外形を区画する位置までX方向に入れられる。横スリット4の端部である、塑性変形部2を区画する位置からY方向に縦スリット5が塑性変形部2の軸方向(Y方向)の端部を区画する位置まで入れられる。縦スリット5の端部である塑性変形部2の軸方向(Y方向)の端部を区画する位置は接続部3との境界でもある。本体1Aは縦スリット5の形成によってX方向に塑性変形部2と接合部31の一部とに区画される。本体1Aは横スリット4の形成によってY方向には塑性変形部2の軸方向両側に位置する接続部3、3の接合部31、31に区分される。   The horizontal slit 4 is basically inserted in the X direction from the middle position, particularly the central position, of the entire length of the longitudinal outer peripheral edge of the main body 1 </ b> A to the position defining the outer shape of the plastic deformation portion 2. The vertical slit 5 is inserted in the Y direction from the position that defines the plastic deformation portion 2, which is the end of the horizontal slit 4, to the position that defines the end in the axial direction (Y direction) of the plastic deformation portion 2. The position that divides the end portion in the axial direction (Y direction) of the plastic deformation portion 2 that is the end portion of the vertical slit 5 is also a boundary with the connection portion 3. The main body 1 </ b> A is partitioned into the plastic deformation portion 2 and a part of the joint portion 31 in the X direction by forming the vertical slit 5. The main body 1 </ b> A is divided into joint portions 31, 31 of connection portions 3, 3 located on both sides in the axial direction of the plastic deformation portion 2 in the Y direction by the formation of the lateral slits 4.

図4−(b)は図4−(a)に示す要領で横スリット4と縦スリット5を入れる上で、縦スリット5によって区画される塑性変形部2の立面形状が図1−(a)に示すダンパー1の塑性変形部2に近い形状になるように縦スリット5の方向をY方向に対して角度を付けた場合の例を示している。ここでは縦スリット5を横スリット4の端部から両接続部3、3側へかけて塑性変形部2の軸方向(Y方向)を向く中心線からの距離が大きくなるような傾斜を付けて形成している。   FIG. 4- (b) shows the elevational shape of the plastic deformation portion 2 defined by the vertical slit 5 when the horizontal slit 4 and the vertical slit 5 are inserted in the manner shown in FIG. 4- (a). An example in which the direction of the longitudinal slit 5 is angled with respect to the Y direction so as to have a shape close to the plastic deformation portion 2 of the damper 1 shown in FIG. In this case, the vertical slit 5 is inclined from the end of the horizontal slit 4 to the connecting portions 3 and 3 so as to increase the distance from the center line facing the axial direction (Y direction) of the plastic deformation portion 2. Forming.

図4−(b)では縦スリット5の接続部3寄りの端部を塑性変形部2の軸方向(Y方向)に平行に近い方向からX方向に平行に近い方向へ縦スリット5の傾斜角度を変えているが、このようにすることで、塑性変形部2の軸方向の端部の幅を接続部3へかけて緩やかに拡大することができる。結果として、塑性変形部2の軸方向端部の幅が急激に変化する箇所の形成がなくなるため、塑性変形時に塑性変形部2の軸方向端部付近に応力が集中することが回避される利点がある。   In FIG. 4- (b), the inclination angle of the vertical slit 5 from the direction close to the axial direction (Y direction) of the plastic deformation portion 2 toward the direction parallel to the X direction is changed from the direction close to the connecting portion 3 of the vertical slit 5 to the direction close to parallel to the X direction. However, by doing so, the width of the end portion in the axial direction of the plastic deformation portion 2 can be gradually increased toward the connection portion 3. As a result, since the formation of the portion where the width of the axial end portion of the plastic deformation portion 2 changes rapidly is eliminated, it is possible to avoid stress concentration near the axial end portion of the plastic deformation portion 2 during plastic deformation. There is.

図5−(b)は(a)に示すダンパー1の接続部3、3が構造部材6、6に接合された使用状態で、両構造部材6、6間に互いに平行なまま相対変形が生じ、ダンパー1にせん断力が作用、塑性変形部2に曲げモーメントが作用したときの様子を示す。ここに示すようにダンパー1は塑性変形部2が曲げ変形を伴うせん断変形を生ずることにより構造部材6、6間の相対変形に追従する。   FIG. 5B shows a state in which the connecting portions 3 and 3 of the damper 1 shown in FIG. 5A are joined to the structural members 6 and 6, and relative deformation occurs between the structural members 6 and 6 while being parallel to each other. The state when a shearing force acts on the damper 1 and a bending moment acts on the plastic deformation portion 2 is shown. As shown here, the damper 1 follows the relative deformation between the structural members 6 and 6 by causing the plastic deformation portion 2 to undergo shear deformation accompanied by bending deformation.

図5−(a)は図4−(b)に示す製作例のダンパー1の変形例として、塑性変形部2の両側の接合部31、31の領域(面積)を拡大し、構造部材6への接合状態における構造部材6、6間に作用するせん断力に対する抵抗力を増大させた場合の製作例を示している。(b)は(a)に示すダンパー1がX方向にせん断力を受けて変形を生じたときの様子を示している。   FIG. 5- (a) is an example of a modification of the damper 1 of the manufacturing example shown in FIG. 4- (b), and enlarges the region (area) of the joint portions 31, 31 on both sides of the plastic deformation portion 2 to the structural member 6. The example of manufacture at the time of increasing resistance with respect to the shearing force which acts between the structural members 6 and 6 in the joining state of is shown. (B) has shown the mode when the damper 1 shown to (a) receives a shear force to a X direction, and produced a deformation | transformation.

図5−(b)では塑性変形部2のせん断変形時の挙動として塑性変形部2の上側に位置する接続部3が下側の接続部3に対して図面上、左側へ相対移動(相対変形)したときの様子を示している。この上側の接続部3に着目すれば、その接続部3の内、塑性変形部2に関して右側に位置する接合部31は塑性変形部2に接近しようとし、左側に位置する接合部31は塑性変形部2から遠ざかろうとする。   In FIG. 5B, as the behavior of the plastic deformation portion 2 at the time of shear deformation, the connection portion 3 located above the plastic deformation portion 2 moves relative to the lower connection portion 3 to the left in the drawing (relative deformation). ) Is shown. If attention is paid to the upper connecting portion 3, among the connecting portions 3, the joint portion 31 located on the right side with respect to the plastic deformation portion 2 tends to approach the plastic deformation portion 2, and the joint portion 31 located on the left side is plastically deformed. Trying to move away from part 2.

図5−(b)は塑性変形部2を挟んで上側(下側)に位置する接続部3が下側(上側)に位置する接続部3に対して左側(右側)へ相対変形しているときの様子を示しているが、相対変形はせん断力作用方向(X方向)の正負の向きに交互に生ずるため、図5−(b)の次の場面では上側(下側)に位置する接合部31が下側(上側)に位置する接続部3に対して右側(左側)へ相対変形する。   In FIG. 5B, the connecting portion 3 positioned on the upper side (lower side) with the plastic deformation portion 2 interposed therebetween is deformed relative to the left side (right side) with respect to the connecting portion 3 positioned on the lower side (upper side). However, since the relative deformation occurs alternately in the positive and negative directions of the shearing force acting direction (X direction), the joint located on the upper side (lower side) in the next scene in FIG. The portion 31 is deformed relative to the right side (left side) with respect to the connection portion 3 located on the lower side (upper side).

このように両接続部3、3間の相対変形時には、塑性変形部2に接近しようとする側(図5−(b)の右上側と左下側)の接合部31と塑性変形部2との間の縦スリット5の幅である対向する内周面は互いに接近し、縦スリット5の対向する内周面が互いに接触するまでは、両接続部3、3間にせん断力作用方向(X方向)に相対変形が生じ得る。詳しく言えば、両接続部3、3間の相対変形時には、塑性変形部2の軸方向(Y方向)の中心に関して点対称の位置関係にある右上側の接合部31と左下側の接合部31の各塑性変形部2側の側面(縦スリット5の内周面)が、それぞれに対向する塑性変形部2の側面(縦スリット5の内周面)に接近する。   Thus, at the time of relative deformation between both the connection parts 3 and 3, between the joint part 31 and the plastic deformation part 2 of the side (upper right side and lower left side of FIG.5- (b)) which is going to approach the plastic deformation part 2 The opposing inner peripheral surfaces, which are the width of the longitudinal slit 5 in between, approach each other, and until the opposing inner peripheral surfaces of the vertical slits 5 are in contact with each other, a shearing force acting direction (X direction) is established between the connecting portions 3 and 3. Relative deformation may occur. Specifically, at the time of relative deformation between the connecting portions 3 and 3, the upper right joint portion 31 and the lower left joint portion 31 that are point-symmetric with respect to the center of the plastic deformation portion 2 in the axial direction (Y direction). Side surfaces (inner peripheral surfaces of the vertical slits 5) on the respective plastic deformation portions 2 approach the side surfaces (inner peripheral surfaces of the vertical slits 5) of the plastic deformation portions 2 facing each other.

この結果、両接続部3、3間の相対変形が進行することで、双方の対向する側面(縦スリット5の対向する内周面)が互いに接触し、互いに接触すれば、接触時以降の相対変形が制限されるため、双方の対向する側面は塑性変形部2に対する接合部31(接続部3)の相対変形量、あるいは両接続部3、3間の相対変形量を制限するストッパとしての機能を果たし得ることになる。「縦スリット5の対向する内周面」は縦スリット5の全周の内、せん断力作用方向(X方向)に対向する内周面を指し、「内周面間距離」は縦スリット5の幅であり、せん断力作用方向(X方向)に対向する内周面間の距離を言う。   As a result, when the relative deformation between the connecting portions 3 and 3 progresses, the opposing side surfaces (the opposing inner peripheral surfaces of the vertical slits 5) come into contact with each other. Since deformation is limited, both opposing side surfaces function as a stopper that limits the relative deformation amount of the joint portion 31 (connection portion 3) with respect to the plastic deformation portion 2 or the relative deformation amount between the connection portions 3 and 3. Will be fulfilled. The “inner peripheral surface facing the vertical slit 5” refers to the inner peripheral surface of the entire circumference of the vertical slit 5 that opposes the shearing force acting direction (X direction). It is the width and refers to the distance between the inner peripheral surfaces facing the shearing force acting direction (X direction).

図5−(b)の次の瞬間には両接続部3、3は塑性変形部2の軸方向(Y方向)に関して線対称に挙動するため、塑性変形部2の軸方向の中心に関して点対称位置にある左上側の接合部31の塑性変形部2側の側面(縦スリット5の内周面)と右下側の接合部31の塑性変形部2側の側面(縦スリット5の内周面)が共に塑性変形部2の側面に接近し、ストッパとして機能し得る。縦スリット5の対向する内周面が互いに平行なまま、塑性変形部2の変形に追従する場合には、縦スリット5の対向する内周面は全長に亘って一様に接触するため、全長がストッパになるが、内周面が平行な状態を維持しない場合には、最初に接触する内周面同士がストッパになる。   At the next moment of FIG. 5B, both connecting portions 3 and 3 behave line-symmetrically with respect to the axial direction (Y direction) of the plastic deformation portion 2, so that they are point-symmetric with respect to the axial center of the plastic deformation portion 2. The side surface (the inner peripheral surface of the vertical slit 5) of the left upper joint portion 31 at the position (the inner peripheral surface of the vertical slit 5) and the side surface of the lower right joint portion 31 on the plastic deformable portion 2 (the inner peripheral surface of the vertical slit 5) ) Approach the side surface of the plastic deformation portion 2 and can function as a stopper. When the inner peripheral surfaces of the vertical slits 5 are parallel to each other and follow the deformation of the plastic deformation portion 2, the opposing inner peripheral surfaces of the vertical slits 5 are in uniform contact over the entire length. However, if the inner peripheral surfaces do not maintain a parallel state, the inner peripheral surfaces that contact first become stoppers.

このように塑性変形部2に接近しようとする側(図5−(b)中、右上側と左下側)の接合部31の側面(縦スリット5の内周面)と塑性変形部2の側面(縦スリット5の内周面)との間において、縦スリット5の対向する内周面同士が全長、あるいは少なくとも一定区間に亘って一様に接触する状態を得ることが可能になる。縦スリット5の対向する内周面同士が少なくとも一定区間に亘って一様に接触することで、その状態から更に縦スリット5の内周面間距離が縮小することはないため、内周面同士が接触した状態以降の塑性変形部2の変形が阻止され、両接続部3、3間の相対変形量(塑性変形部2の変形量)が制限される。   Thus, the side surface (inner peripheral surface of the longitudinal slit 5) of the joint portion 31 and the side surface of the plastic deformation portion 2 on the side (upper right side and lower left side in FIG. It is possible to obtain a state in which the inner peripheral surfaces facing each other of the vertical slits 5 are in uniform contact with each other over the entire length or at least a certain interval. Since the inner peripheral surfaces facing each other of the vertical slits 5 are uniformly in contact with each other over at least a certain interval, the distance between the inner peripheral surfaces of the vertical slits 5 is not further reduced from that state. The deformation of the plastic deformation portion 2 after the contact state is prevented, and the relative deformation amount between the connection portions 3 and 3 (the deformation amount of the plastic deformation portion 2) is limited.

縦スリット5の対向する内周面同士の接触により両接続部3、3間の相対変形量が制限されることで、ある構面内、例えば柱・梁のフレーム内に塑性変形部2の曲げ剛性、あるいはせん断剛性の相違する複数個のダンパー1が配置される場合に、これら複数個のダンパー1を降伏強度の小さい順に段階的に機能させることが可能になる。   Bending of the plastic deformation portion 2 within a certain construction surface, for example, within the frame of a column / beam, is limited by the amount of relative deformation between the connection portions 3 and 3 being limited by contact between the inner peripheral surfaces facing each other of the vertical slit 5. When a plurality of dampers 1 having different rigidity or shear rigidity are arranged, the plurality of dampers 1 can be made to function stepwise in order of increasing yield strength.

例えば柱・梁のフレーム内に、曲げ剛性の相違する複数個の曲げ変形型のダンパーを配置したとしても、従来のように各ダンパーの変形量に制限がなければ、最初に降伏した、曲げ降伏強度の最も小さいダンパーが変形しきるまで変形しながらせん断力を負担するため、そのダンパーより降伏強度の高いダンパーを降伏させることにはならない。結局、複数個のダンパーを一フレーム内に配置しても、これらを段階的に降伏させることはできない。   For example, even if multiple bending deformation type dampers with different bending rigidity are arranged in the frame of columns and beams, if the amount of deformation of each damper is not limited as in the conventional case, the yielding yielded first. Since the shear force is borne while the damper having the lowest strength is deformed, the damper having higher yield strength than the damper is not yielded. After all, even if a plurality of dampers are arranged in one frame, they cannot be yielded in stages.

すなわち、従来のダンパーを一フレーム内に複数個、配置しても、全ダンパーが段階的に機能する訳ではないため、複数個分のエネルギ吸収効果を期待することはできず、一フレーム単位では1個のダンパーを配置したことと違いがない。従って、例えばフレームの梁(梁部材)にダンパーを設置するとすれば、梁の中央部に1個のダンパーを設置することになる。   In other words, even if a plurality of conventional dampers are arranged in one frame, not all the dampers function in stages, so it is not possible to expect an energy absorption effect for a plurality of dampers. There is no difference from the arrangement of one damper. Therefore, for example, if a damper is installed on the beam (beam member) of the frame, one damper is installed at the center of the beam.

これに対し、図5−(b)の例では塑性変形部2のせん断変形量(曲げ変形量)が制限されていることで、降伏強度の相違する(相対変形量が制限された)複数個のダンパー1を一フレーム内に配置したとき、最も降伏強度の小さいダンパー1の変形量が制限された時点で、そのダンパー1はそれ以上の変形が進行しなくなるため、次に降伏強度の小さいダンパー1が降伏を開始し、塑性変形をすることになる。このように降伏強度の相違する複数個のダンパー1が一フレーム内に設置されることで、降伏強度の小さい順に段階的に機能することが可能になる。   On the other hand, in the example of FIG. 5B, the shear deformation amount (bending deformation amount) of the plastic deformation portion 2 is limited, so that the yield strength differs (the relative deformation amount is limited). When the damper 1 is arranged in one frame, when the amount of deformation of the damper 1 with the lowest yield strength is limited, the damper 1 will not progress further, so the damper with the next lowest yield strength 1 starts yielding and undergoes plastic deformation. By installing a plurality of dampers 1 having different yield strengths in one frame in this way, it becomes possible to function stepwise in order of increasing yield strength.

このことから、図5−(b)の例では従来はエネルギ吸収効果を期待する上で、意味を持たなかった一フレーム内への複数個のダンパー1の配置が意味を持つにようになり、複数個の配置により全ダンパー1を有効に機能させ、エネルギ効果を発揮させることが可能になる。   From this, in the example of FIG. 5- (b), the arrangement of a plurality of dampers 1 in one frame, which has no meaning in the prior art, has a meaning in expecting an energy absorption effect. The plurality of arrangements allow all the dampers 1 to function effectively and exhibit energy effects.

図6−(a)、(b)はせん断力作用方向(X方向)に接合部31を挟んで複数個の塑性変形部2が配列する形状にダンパー1を形成した場合の製作例を示す。図6−(a)は図1−(a)に示す形状のダンパー1の塑性変形部2がせん断力作用方向(X方向)に接合部31を挟んで2個、配列する形状にダンパー1を形成した場合、(b)は図4−(a)に示す形状のダンパー1の塑性変形部2がせん断力作用方向(X方向)に接合部31を挟んで3個、配列する形状にダンパー1を形成した場合である。これらの場合、ダンパー1が複数個の塑性変形部2を持つことで、複数個分のダンパー1のエネルギ吸収能力を持つことになる。   6A and 6B show a manufacturing example in the case where the damper 1 is formed in a shape in which a plurality of plastic deformation portions 2 are arranged with the joint portion 31 in the shearing force acting direction (X direction). 6A shows a configuration in which two plastic deformation portions 2 of the damper 1 having the shape shown in FIG. 1A are arranged with the joint portion 31 sandwiched in the shearing force acting direction (X direction). When formed, (b) shows a configuration in which three plastic deformation portions 2 of the damper 1 having the shape shown in FIG. 4- (a) are arranged with the joint portion 31 sandwiched in the shearing force acting direction (X direction). Is formed. In these cases, the damper 1 has a plurality of the plastic deformation portions 2, so that the plurality of dampers 1 have the energy absorbing ability.

図6−(c)、(d)はそれぞれ図6−(a)、(b)の変形例であり、(a)、(b)におけるX方向に隣接する塑性変形部2、2間の接合部31を省略した形にダンパー1を形成した場合の製作例を示す。図6−(c)、(d)に示す製作例の場合、X方向中間部の接合部31が不在になることで、X方向中間部に接合部31がある(a)、(b)に示す製作例との対比では、同等のエネルギ吸収能力を持ちながらも、ダンパー1のX方向長さを短縮し、ダンパー1全体の面積を縮小させることができ、ダンパー1の小型化が図られる利点がある。図6−(c)、(d)に示す例では隣接する塑性変形部2、2間の接合部31が省略された形をすることで、接合部31がX方向両側にのみ配置されるため、(d)ではX方向両側の接合部31の構造部材10への接合状態における構造部材10からの分離に対する安定性向上のために、ボルト15用の挿通孔3aを2列に配列させている。   6 (c) and 6 (d) are modified examples of FIGS. 6 (a) and 6 (b), respectively, and the joining between the plastic deformation portions 2 and 2 adjacent to each other in the X direction in FIGS. 6 (a) and 6 (b). An example of manufacturing when the damper 1 is formed in a shape in which the portion 31 is omitted is shown. In the case of the manufacturing example shown in FIGS. 6C and 6D, the joint portion 31 is present in the X-direction intermediate portion due to the absence of the joint portion 31 in the X-direction intermediate portion in (a) and (b). In comparison with the production example shown, the X-direction length of the damper 1 can be shortened and the entire area of the damper 1 can be reduced while having the same energy absorption capability, and the damper 1 can be reduced in size. There is. In the example shown in FIGS. 6C and 6D, the joint portions 31 are arranged only on both sides in the X direction by omitting the joint portions 31 between the adjacent plastic deformation portions 2 and 2. In (d), the insertion holes 3a for the bolts 15 are arranged in two rows in order to improve stability against separation from the structural member 10 when the joint portions 31 on both sides in the X direction are joined to the structural member 10. .

図7−(a)は前記の通り、図1−(a)に示すダンパー1をその向きから90度、回転させた状態で互いに分離した、構造部材10としての梁(梁部材)12、12間に跨設した場合の例を示している。柱11と梁12からなるフレームの層間変形時には、梁(梁部材)12、12のウェブ間に(フレームの構面内で)せん断変形が生じようとするため、ダンパー1はフレームの構面内方向に面内方向を向けた状態で、例えば両梁(梁部材)12、12のウェブに重なってボルト15等により接合される。図面では構造部材10(梁12のウェブ等)の片面にダンパー1を重ねて接合している様子を示しているが、ダンパー1は構造部材10(梁12のウェブ等)の両面に重なって接合されることもある。   7- (a), as described above, beams (beam members) 12, 12 as structural members 10 separated from each other in a state in which the damper 1 shown in FIG. 1- (a) is rotated 90 degrees from the direction. An example in the case of straddling between is shown. At the time of interlayer deformation of the frame composed of the pillar 11 and the beam 12, shear deformation is likely to occur between the webs of the beams (beam members) 12 and 12 (within the frame surface), so that the damper 1 is within the frame surface. In a state where the in-plane direction is directed to the direction, for example, the webs of both beams (beam members) 12 and 12 are overlapped and joined by bolts 15 or the like. The drawing shows a state in which the damper 1 is overlapped and joined to one side of the structural member 10 (web of the beam 12, etc.), but the damper 1 is overlapped and joined to both surfaces of the structural member 10 (web of the beam 12, etc.). Sometimes.

図7−(b)は図1−(a)に示すダンパー1をその向きのまま、互いに分離した、構造部材10としての間柱(壁)13、13間に跨設した場合の例を示している。この場合、フレームの層間変形時には、間柱13、13のウェブ間に(フレームの構面内で)せん断変形が生じようとするため、ダンパー1は図8−(a)と同様にフレームの構面内方向に面内方向を向けた状態で、例えば両間柱13、13のウェブに重なってボルト15等により接合される。   FIG. 7- (b) shows an example in which the damper 1 shown in FIG. 1- (a) is separated from each other in the orientation and is straddled between the studs (walls) 13, 13 as the structural member 10. Yes. In this case, when the frame is deformed between layers, shear deformation tends to occur between the webs of the intermediate pillars 13 and 13 (within the frame structure), so that the damper 1 has the frame surface as in FIG. In a state where the in-plane direction is directed inward, for example, the webs of both the pillars 13 and 13 are overlapped and joined by bolts 15 or the like.

図7−(c)は図1−(a)に示すダンパー1をその向きのまま、互いに分離した、構造部材10としてのブレース14と、構造部材10としてのフレームを構成する梁12との間に跨設した場合の例を示している。この場合、フレームの層間変形時には、図7−(b)と同様、ブレース14と梁12との間にフレームの構面内でせん断変形が生じようとするため、ダンパー1はフレームの構面内方向に面内方向を向けた状態で、ブレース14と梁12との間に跨って双方に直接、もしくは間接的に接合される。図面ではブレース14と梁12からそれぞれガセットプレート18、18を突設し、両ガセットプレート18、18にダンパー1をボルト15により接合している。   FIG. 7- (c) shows the gap between the brace 14 as the structural member 10 and the beam 12 constituting the frame as the structural member 10 in which the dampers 1 shown in FIG. An example in the case of straddling is shown. In this case, during the interlayer deformation of the frame, as in FIG. 7- (b), since the shear deformation tends to occur between the brace 14 and the beam 12 in the frame surface, the damper 1 is in the frame surface. In the state where the in-plane direction is directed to the direction, the brace 14 and the beam 12 are joined directly or indirectly to each other. In the drawing, gusset plates 18 and 18 project from the brace 14 and the beam 12, respectively, and the damper 1 is joined to both gusset plates 18 and 18 by bolts 15.

図8−(a)〜(c)は図5−(b)に示すように縦スリット5の対向する内周面が変形制限機能を発揮し得るダンパー1の柱・梁のフレーム内への設置例を示す。変形制限機能付きのダンパー1は一構面(一フレーム)内に複数個、設置されたときに、降伏強度の小さい順に段階的に曲げ降伏していくことが可能であるから、図8では一構面(一フレーム)内に降伏強度の異なる複数個のダンパー1を設置している。   8 (a) to 8 (c), as shown in FIG. 5 (b), the damper 1 is installed in the frame of the pillar / beam so that the inner peripheral surface of the vertical slit 5 can exert the deformation limiting function. An example is shown. When a plurality of dampers 1 with a deformation limiting function are installed in one frame (one frame), it is possible to bend and yield in a stepwise manner in order of increasing yield strength. A plurality of dampers 1 having different yield strengths are installed in the construction surface (one frame).

図8−(a)はフレームを構成する柱(柱部材)11、11から梁12を構成する、構造部材10としてのブラケット16、16を突設し、両ブラケット16、16間に構造部材10としての梁部材12を架設し、ブラケット16と梁部材12のウェブ間にダンパー1を跨設した場合の例を示している。ブラケット16と梁部材12のフランジ間には継手部材17を跨設している。   FIG. 8A shows a bracket 16, 16 as a structural member 10, which constitutes a beam 12 from pillars (column members) 11, 11 constituting the frame, and the structural member 10 between the brackets 16, 16. As an example, a beam member 12 is erected and a damper 1 is straddled between the bracket 16 and the web of the beam member 12. A joint member 17 is provided between the bracket 16 and the flange of the beam member 12.

梁(梁部材)12は現場での作業性の面より、図8−(a)に示すように柱11、11間に亘る全長の内、予め柱(柱部材)11に一体化させられる柱側の一部区間であるブラケット16と、両ブラケット16、16間に配置される中間区間である梁部材12とに分割されることが多く、梁部材12は現場でブラケット16、16に接合される。梁部材12と両側のブラケット16、16とは双方のウェブ間及びフランジ間に跨る継手部材17によって接合される。   The beam (beam member) 12 is a column that is integrated with the column (column member) 11 in advance, out of the total length between the columns 11 and 11, as shown in FIG. It is often divided into a bracket 16 that is a partial section on the side and a beam member 12 that is an intermediate section disposed between the brackets 16 and 16, and the beam member 12 is joined to the brackets 16 and 16 in the field. The The beam member 12 and the brackets 16 on both sides are joined by a joint member 17 straddling between both webs and between the flanges.

図8−(b)はフレームを構成する梁(梁部材)12、12から間柱(壁)13を構成する、構造部材10としてのブラケット16、16を突設し、両ブラケット16、16間に構造部材10としての間柱13の部材を架設し、ブラケット16と間柱13の部材のウェブ間にダンパー1を跨設した場合の例を示している。ブラケット16と間柱13の部材のフランジ間には継手部材17を跨設している。図7−(b)、図8−(b)に示す間柱(壁)13は図7−(c)に示すブレース14と同様、フレーム内では耐震要素として機能するが、間柱13の幅(成)が拡大すれば、間柱13は耐震壁に相当する。   In FIG. 8B, brackets 16, 16 as structural members 10, which form a stud (wall) 13, project from beams (beam members) 12, 12 constituting the frame, and between the brackets 16, 16. The example of the case where the member of the intermediate pillar 13 as a structural member 10 is constructed and the damper 1 is straddled between the web of the member of the bracket 16 and the intermediate pillar 13 is shown. A joint member 17 is straddled between the flanges of the members of the bracket 16 and the intermediate post 13. Like the brace 14 shown in FIG. 7- (c), the stud (wall) 13 shown in FIG. 7- (b) and FIG. 8- (b) functions as an earthquake-resistant element in the frame. ) Expands, the stud 13 corresponds to a seismic wall.

図8−(c)は図7−(a)と同様に、フレームを構成する柱(柱部材)11、11から梁12を構成する、構造部材10としての梁部材12、12を片持ち梁状態で、互いに分離した状態で突設し、分離した梁部材12、12のウェブ間にダンパー1を跨設した場合の例を示している。図8−(c)では梁部材12、12のフランジ間に継手部材17を跨設しているが、図7−(a)と同様に継手部材17は跨設されないこともある。   FIG. 8C is a cantilever beam member 12 or 12 as a structural member 10 that forms the beam 12 from the column (column member) 11 or 11 constituting the frame, as in FIG. In this state, an example is shown in which the damper 1 is protruded in a state of being separated from each other, and the damper 1 is straddled between the webs of the separated beam members 12 and 12. Although the joint member 17 is straddled between the flanges of the beam members 12 and 12 in FIG. 8- (c), the joint member 17 may not be straddled similarly to FIG. 7- (a).

1……弾塑性ダンパー、1A……本体、
2……塑性変形部、
3……接続部、31……接合部、32……つなぎ部、3a……挿通孔、
4……横スリット、5……縦スリット、
6……構造部材、
11……柱(柱部材)、12……梁(梁部材)、
13……間柱(壁)、14……ブレース、
15……ボルト、16……ブラケット、
17……継手部材、18……ガセットプレート。
1 ... Elastic-plastic damper, 1A ... Main unit,
2 ... Plastic deformation part,
3 .. connection part, 31 .. joint part, 32 .. joint part, 3a .. insertion hole,
4 ... Horizontal slit, 5 ... Vertical slit,
6 …… Structural members
11 …… Column (column member), 12 …… Beam (beam member),
13 ... studs (walls), 14 ... braces,
15 ... bolts, 16 ... brackets,
17 ... Fitting member, 18 ... Guset plate.

Claims (4)

互いに分離した構造部材間に跨って設置され、面内方向のせん断力を受けて変形し、曲げ降伏する板状の弾塑性ダンパーであり、
板状の本体の中心部、もしくはその付近に位置し、前記せん断力を負担して曲げ降伏し得る塑性変形部と、前記塑性変形部に関して前記せん断力作用方向に垂直な方向の両側寄りに位置し、前記各構造部材に接続される接続部の3部分を備え、
前記各接続部は前記塑性変形部の前記せん断力作用方向両側に分散して位置する接合部を有し、この両接合部は前記塑性変形部の前記せん断力作用方向に垂直な方向の中心寄りに位置していることを特徴とする曲げ降伏型弾塑性ダンパー。
It is a plate-like elastoplastic damper that is installed across structural members separated from each other, deforms by receiving a shearing force in the in-plane direction, and bends and yields.
A plastic deformation part that is located at or near the center of the plate-like main body and can be bent and yielded by bearing the shearing force, and located on both sides of the plastic deformation part in a direction perpendicular to the shearing force acting direction. And three portions of a connecting portion connected to each structural member,
Each of the connecting portions has joints that are distributed and located on both sides of the shearing force acting direction of the plastic deformation part. Bending-yield elasto-plastic damper, characterized in that
前記塑性変形部の前記せん断力作用方向に垂直な方向の両端部につなぎ部が連続し、このつなぎ部の前記せん断力作用方向両側に前記接合部が連続していることを特徴とする請求項1に記載の曲げ降伏型弾塑性ダンパー。   The joint portion is continuous at both ends of the plastic deformation portion in a direction perpendicular to the shearing force acting direction, and the joint portion is continuous on both sides of the joining force in the shearing force acting direction. The bending yield type elastoplastic damper according to 1. 前記塑性変形部は前記せん断力の作用時に、前記せん断力作用方向に垂直な方向を向く軸に関して前記せん断力作用方向に交互に生ずる曲げモーメント分布に対応した立面形状をしていることを特徴とする請求項1、もしくは請求項2に記載の曲げ降伏型弾塑性ダンパー。   The plastic deformation portion has an elevational shape corresponding to a bending moment distribution alternately generated in the shearing force acting direction with respect to an axis oriented in a direction perpendicular to the shearing force acting direction when the shearing force is applied. The bending yield type elastic-plastic damper according to claim 1 or 2. 前記せん断力作用方向に前記接合部を挟んで前記塑性変形部が複数、配列していることを特徴とする請求項1乃至請求項3のいずれかに記載の曲げ降伏型弾塑性ダンパー。
The bending yield type elastoplastic damper according to any one of claims 1 to 3, wherein a plurality of the plastic deformation portions are arranged in the direction in which the shearing force is applied with the joint portion interposed therebetween.
JP2011110080A 2011-05-17 2011-05-17 Bending-yield elastic-plastic damper Expired - Fee Related JP5551652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011110080A JP5551652B2 (en) 2011-05-17 2011-05-17 Bending-yield elastic-plastic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011110080A JP5551652B2 (en) 2011-05-17 2011-05-17 Bending-yield elastic-plastic damper

Publications (2)

Publication Number Publication Date
JP2012241747A JP2012241747A (en) 2012-12-10
JP5551652B2 true JP5551652B2 (en) 2014-07-16

Family

ID=47463694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011110080A Expired - Fee Related JP5551652B2 (en) 2011-05-17 2011-05-17 Bending-yield elastic-plastic damper

Country Status (1)

Country Link
JP (1) JP5551652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535645A (en) * 2020-05-14 2020-08-14 常州机电职业技术学院 Damping anti-seismic support

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6517052B2 (en) * 2015-03-12 2019-05-22 大和ハウス工業株式会社 Shear damper
JP7245513B2 (en) * 2019-06-18 2023-03-24 国立研究開発法人建築研究所 METHOD AND INSTALLATION STRUCTURE FOR SUPPRESSING DAMAGE TO MULTILAYER SHARE WALL

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508244B2 (en) * 1989-03-02 1996-06-19 鹿島建設株式会社 Elasto-plastic damper
JP2531053B2 (en) * 1991-12-10 1996-09-04 鹿島建設株式会社 Steel damper mounting structure
JPH0715962U (en) * 1993-08-30 1995-03-17 株式会社熊谷組 Elastic-plastic damper
ES2358936B1 (en) * 2008-04-10 2012-03-21 Universitat De Girona MODULAR POWER DISSIPATION SYSTEM.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535645A (en) * 2020-05-14 2020-08-14 常州机电职业技术学院 Damping anti-seismic support

Also Published As

Publication number Publication date
JP2012241747A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
TWI399473B (en) Metal joint, vibration-damping structure, and architecture
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP6990979B2 (en) Framing structure of a building
JP4931490B2 (en) Structure reinforcement structure and method of reinforcement
JP2007191987A (en) Earthquake resisting brace
JP5551652B2 (en) Bending-yield elastic-plastic damper
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
JP2017133282A (en) Steel device and load bearing wall
JP5491256B2 (en) Bending deformation control structure
JP4563872B2 (en) Seismic wall
JP4771136B2 (en) Anti-seismic brace
JP5404679B2 (en) Shear damper
JP4395419B2 (en) Vibration control pillar
JP5559073B2 (en) Shear deformation type elastic-plastic damper
JP3197734U (en) Steel frame reinforcement structure
JP6167564B2 (en) Vibration control structure
JP6447227B2 (en) Damper structure
JP5806843B2 (en) Seismic structure of building and building
JP6934290B2 (en) Truss frame
JP5379590B2 (en) Diagonal column frame
JP2008038464A (en) Vibration control wall structure for steel house
JP6208623B2 (en) Elasto-plastic damper mounting structure to existing structural members
JP7336787B2 (en) Damping member for wooden structure and damping structure for wooden structure
JP7213623B2 (en) stud damper
JP6349056B2 (en) Pile head joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140522

R150 Certificate of patent or registration of utility model

Ref document number: 5551652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees