US20080167539A1 - Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter - Google Patents

Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter Download PDF

Info

Publication number
US20080167539A1
US20080167539A1 US11/930,101 US93010107A US2008167539A1 US 20080167539 A1 US20080167539 A1 US 20080167539A1 US 93010107 A US93010107 A US 93010107A US 2008167539 A1 US2008167539 A1 US 2008167539A1
Authority
US
United States
Prior art keywords
data
sensor device
user
sensor
individual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/930,101
Inventor
Eric Teller
Jonathan Farringdon
David Andre
Christopher Pacione
John Stivoric
Scott Safier
Raymond Pelletier
Suresh Vishnubhatla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JB IP Acquisition LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32093978&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20080167539(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US11/930,101 priority Critical patent/US20080167539A1/en
Publication of US20080167539A1 publication Critical patent/US20080167539A1/en
Assigned to JB IP ACQUISITION LLC reassignment JB IP ACQUISITION LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALIPHCOM, LLC, BODYMEDIA, INC.
Assigned to J FITNESS LLC reassignment J FITNESS LLC UCC FINANCING STATEMENT Assignors: JAWBONE HEALTH HUB, INC.
Assigned to J FITNESS LLC reassignment J FITNESS LLC UCC FINANCING STATEMENT Assignors: JB IP ACQUISITION, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JB IP ACQUISITION, LLC
Assigned to ALIPHCOM LLC reassignment ALIPHCOM LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BLACKROCK ADVISORS, LLC
Assigned to J FITNESS LLC reassignment J FITNESS LLC RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: JAWBONE HEALTH HUB, INC., JB IP ACQUISITION, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/384Recording apparatus or displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/398Electrooculography [EOG], e.g. detecting nystagmus; Electroretinography [ERG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4809Sleep detection, i.e. determining whether a subject is asleep or not
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4866Evaluating metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4875Hydration status, fluid retention of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4884Other medical applications inducing physiological or psychological stress, e.g. applications for stress testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0833Measuring rate of oxygen consumption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • A63B2024/0065Evaluating the fitness, e.g. fitness level or fitness index
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/905Feedback to patient of biological signal other than brain electric signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/92Computer assisted medical diagnostics
    • Y10S128/921Diet management

Definitions

  • the present invention relates to methods and apparatuses for measuring a state parameter of an individual using signals based on one or more sensors.
  • the present invention also relates to various methods for making such apparatuses.
  • barriers include the fact that the individual is often left to himself or herself to find motivation, to implement a plan for achieving a healthier lifestyle, to monitor progress, and to brainstorm solutions when problems arise; the fact that existing programs are directed to only certain aspects of a healthier lifestyle, and rarely come as a complete package; and the fact that recommendations are often not targeted to the unique characteristics of the individual or his life circumstances.
  • the present invention relates to an apparatus for measuring a state parameter of an individual including a processor, at least two sensors in electronic communication with the processor, at least one of the sensors being a physiological sensor, and a memory for storing software executable by the processor.
  • the software includes instructions for collecting a plurality of sensor signals from the at least two sensors, and utilizing a first set of signals based on one or more of the plurality of sensor signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the state parameter of the individual.
  • the present invention also relates to a method of measuring a state parameter of an individual, including collecting a plurality of sensor signals from at least two sensors in electronic communication with a sensor device worn on a body of the individual, at least one of the sensors being a physiological sensor, and utilizing a first set of signals based on one or more of the plurality of sensor signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the state parameter of the individual.
  • the first function recognizes one or more contexts based on the first set of signals and one or more of the second functions is chosen based on the one or more recognized contexts. The outputs of the chosen second functions are used to predict the state parameter of the individual.
  • the first function recognizes each of a plurality of contexts based on the first set of signals and each of the one or more second functions corresponds to one of the contexts.
  • the first function assigns a weight to each of the one or more second functions based on a recognition probability associated with the corresponding context, and the outputs of the one or more second functions and the weights are used to predict the state parameter of the individual.
  • the outputs may be combined in a post processing step to predict the state parameter.
  • the state parameter may be caloric expenditure
  • the second functions may be regression algorithms
  • the contexts may comprise rest and active
  • the first function may comprise a na ⁇ ve Bayesian classifier.
  • caloric consumption data for the individual may be generated and information based on the caloric expenditure data and the caloric consumption data may be displayed, such as energy balance data, rate of weight loss or gain, or information relating to one or more goals of the individual.
  • the processor and the memory are included in a wearable sensor device.
  • the apparatus includes a wearable sensor device, the processor and the memory being included in a computing device located separately from the sensor device, wherein the sensor signals are transmitted from the sensor device to the computing device.
  • the present invention also relates to a method of making software for an apparatus for measuring a state parameter of an individual including providing a first sensor device, the first sensor device receiving a plurality of signals from at least two sensors, using the first sensor device to create a first function and one or more second functions, each of the one or more second functions having an output, the first function utilizing a first set of signals based on one or more of the plurality of sensor signals to determine how a second set of signals based on one or more of the plurality of sensor signals is utilized in the one or more second functions, wherein one or more of the outputs are used to predict the state parameter of the individual.
  • the method further includes creating the software including instructions for: (i) receiving a second plurality of signals collected by a second sensor device substantially structurally identical to the first sensor device for a period of time; (ii) utilizing a third set of signals based on one or more of the second plurality of sensor signals in the first function to determine how a fourth set of signals based on one or more of the second plurality of sensor signals is utilized in the one or more second functions; and (iii) utilizing the one or more outputs produced by the one or more second functions from the fourth set of signals to predict the state parameter of the individual.
  • the step of using the sensor device to create the first function and the one or more second functions may include gathering a first set of the plurality of signals under conditions where the state parameter is present, contemporaneously gathering gold standard data relating to the state parameter, and using one or more machine learning techniques to generate the first function and the one or more second functions from the first set of the plurality of signals and the gold standard data.
  • a the first function may recognize one or more contexts based on the first set of signals and one or more of the second functions may be chosen based on the one or more recognized contexts, wherein the outputs of the chosen second functions are used to predict the state parameter of the individual.
  • the first function may recognize each of a plurality of contexts based on the first set of signals and each of the one or more second functions may correspond to one of the contexts, wherein the first function assigns a weight to each of the one or more second functions based on a recognition probability associated with the corresponding context, and wherein the outputs of the one or more second functions and the weights are used to predict the state parameter of the individual.
  • One specific embodiment of the present invention relates to a method of measuring energy expenditure of an individual including collecting a plurality of sensor signals from at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor, each in electronic communication with a sensor device worn on a body of the individual, and utilizing a first set of signals based on one or more of the plurality of sensor signals in one or more functions to predict the energy expenditure of the individual.
  • the utilizing step may include utilizing the first set of signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the energy expenditure of the individual.
  • the collecting step may include collecting the plurality of sensor signals from a body motion sensor, a heat flux sensor, and a skin conductance sensor, the second set of signals comprising a heat flux high gain average variance (HFvar), a vector sum of transverse and longitudinal accelerometer SADs (VSAD), and a galvanic skin response low gain (GSR), wherein the second functions have the form of A*VSAD+B*HF+C*GSR+D*BMR+E, wherein A, B, C, D and E are constants and BMR is a basal metabolic rate for the individual.
  • HFvar heat flux high gain average variance
  • VSAD vector sum of transverse and longitudinal accelerometer SADs
  • GSR galvanic skin response low gain
  • the present invention also relates to an apparatus for measuring energy expenditure of an individual including a processor, at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor in electronic communication with the processor, and a memory storing software executable by the processor.
  • the software includes instructions for collecting a plurality of sensor signals from the at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor, and utilizing a first set of signals based on one or more of the plurality of sensor signals in one or more functions to predict the energy expenditure of the individual.
  • the utilizing instruction may include utilizing the first set of signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the energy expenditure of the individual.
  • the collecting instruction may include collecting the plurality of sensor signals from a body motion sensor, a heat flux sensor, and a skin conductance sensor, the second set of signals comprising a heat flux high gain average variance (HFvar), a vector sum of transverse and longitudinal accelerometer SADs (VSAD), and a galvanic skin response low gain (GSR), wherein the second functions have the form of A*VSAD+B*HF+C*GSR+D*BMR+E, wherein A, B, C, D and E are constants and BMR is a basal metabolic rate for the individual.
  • HFvar heat flux high gain average variance
  • VSAD vector sum of transverse and longitudinal accelerometer SADs
  • GSR galvanic skin response low gain
  • the present invention also relates to a method of making software for an apparatus for measuring energy expenditure of an individual, including providing a first sensor device, the first sensor device receiving a plurality of signals from at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor, and using the first sensor device to create one or more functions that predict the energy expenditure of the individual using a first set of signals based on one or more of the plurality of sensor signals.
  • the method further includes creating the software including instructions for: (i) receiving a second plurality of signals collected by a second sensor device substantially structurally identical to the first sensor device for a period of time, the second sensor device receiving the second plurality of signals from at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor; and (ii) utilizing a second set of signals based on one or more of the second plurality of sensor signals in the one or more functions to predict the energy expenditure of the individual.
  • the step of using the sensor device to create the one or more functions may include gathering a first set of the plurality of signals under conditions where energy expenditure data for the individual is present, contemporaneously gathering gold standard data relating to the energy expenditure data for the individual, and using one or more machine learning techniques to generate the one or more functions from the first set of the plurality of signals and the gold standard data.
  • the utilizing instruction may include utilizing the second set of signals in a first function, the first function determining how a third set of signals based on one or more of the second plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output; wherein one or more of the outputs are used to predict the energy expenditure of the individual.
  • the present invention relates to an apparatus for automatically measuring a first state parameter of an individual, including a processor, one or more sensors for generating one or more signals over a period of time, the processor receiving the one or more signals, and a memory storing software executable by the processor.
  • the software includes instructions for inputting one or more signal channels based on the one or more signals into a first function having a first output that predicts one or more second state parameters of the individual and either the first state parameter or an indicator of the first state parameter, wherein the first state parameter may be obtained from the indicator based on a first relationship between the first state parameter and the indicator, inputting the one or more signal channels into a second function having a second output that predicts the one or more second state parameters but not the first state parameter or the indicator of the first state parameter, and obtaining either the first state parameter or the indicator from the first and second outputs based on a second relationship between the first function and the second function, and, if the indicator is obtained, obtaining the first state parameter from the indicator based on the first relationship.
  • the present invention also relates to a method of automatically measuring a first state parameter of an individual, including collecting for a period of time one or more signals from one or more sensors in electronic communication with a sensor device worn on a body of the individual, inputting one or more signal channels based on the one or more signals into a first function having a first output that predicts one or more second state parameters of the individual and either the first state parameter or an indicator of the first state parameter, wherein the first state parameter may be obtained from the indicator based on a first relationship between the first state parameter and the indicator, inputting the one or more signal channels into a second function having a second output that predicts the one or more second state parameters but not the first state parameter or the indicator of the first state parameter, and obtaining either the first state parameter or the indicator from the first and second outputs based on a second relationship between the first function and the second function, and, if the indicator is obtained, obtaining the first state parameter from the indicator based on the first relationship.
  • the first state parameter may be a number of calories consumed by the individual during the period of time.
  • the indicator may include a first effect on the body of food consumed, and in particular, the indicator may be the thermic effect of food.
  • the first output may comprise total energy expenditure, wherein the one or more second state parameters include basal metabolic rate, activity energy expenditure and adaptive thermogenesis, and the first state parameter may be obtained from the indicator by dividing the indicator by 0.1.
  • the software further includes instructions for generating caloric expenditure data for the individual for the period of time from one or more of the one or more signal channels and displaying information based on the caloric expenditure data and the number of calories consumed by the individual.
  • the apparatus may include a display, such as part of a separate I/O device, for displaying the information based on the caloric expenditure data and the number of calories consumed by the individual.
  • the present invention relates to a method of making software for an apparatus for automatically measuring a first state parameter of an individual.
  • the method includes providing a first sensor device, the first sensor device receiving one or more signals from one or more sensors, using the first sensor device to create a first function having a first output that predicts one or more second state parameters of the individual and either the first state parameter or an indicator of the first state parameter, wherein the first state parameter may be obtained from the indicator based on a first relationship between the first state parameter and the indicator, the first function taking as inputs one or more signal channels based on the one or more signals, and using the first sensor device to create a second function having a second output that predicts the one or more second state parameters but not the first state parameter or the indicator of the first state parameter, the second function taking as inputs the one or more signal channels.
  • the method further includes creating the software including instructions for: (i) receiving a second one or more signals collected by a second sensor device substantially structurally identical to the first sensor device for a period of time; (ii) inputting a second one or more signal channels based on the second one or more signals into the first function and the second function for generating the first output and the second output, respectively; and (iii) obtaining either the first state parameter or the indicator from the first and second outputs generated in the inputting step based on a second relationship between the first function and the second function, and, if the indicator is obtained, obtaining the first state parameter from the indicator based on the first relationship.
  • the step of using the sensor device to create the first function may include gathering a first set of the one or more signals under conditions where the second state parameters and either the first state parameter or the indicator are present, contemporaneously gathering gold standard data relating to the second state parameters and either the first state parameter or the indicator, and using one or more machine learning techniques to generate the first function from the first set of one or more signals and the gold standard data
  • the step of using the sensor device to create the second function may include gathering a second set of the one or more signals under conditions where neither the first state parameter nor the indicator are present, contemporaneously gathering second gold standard data relating to the second state parameters but not the first state parameter or the indicator, and using one or more machine learning techniques to generate the second function from the second set of one or more signals and the second gold standard data.
  • the present invention relates to a method of measuring caloric consumption of an individual for a time period, including determining a weight differential for the individual between a beginning of the time period and an end of the time period, multiplying the weight differential by a constant, such as 3500, to obtain a caloric differential, measuring a caloric expenditure of the individual for the time period using a wearable sensor device having one or more sensors, and determining the caloric consumption from the caloric differential and the caloric expenditure.
  • the step of measuring the caloric expenditure may comprises collecting a plurality of sensor signals from at least two sensors in electronic communication with the sensor device, at least one of the sensors being a physiological sensor, and utilizing a first set of signals based on one or more of the plurality of sensor signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the caloric expenditure.
  • FIG. 1 is a diagram of an embodiment of a system for monitoring physiological data and lifestyle over an electronic network according to the present invention
  • FIG. 2 is a block diagram of an embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 3 is a block diagram of an embodiment of the central monitoring unit shown in FIG. 1 ;
  • FIG. 4 is a block diagram of an alternate embodiment of the central monitoring unit shown in FIG. 1 ;
  • FIG. 5 is a representation of a preferred embodiment of the Health Manager web page according to an aspect of the present invention.
  • FIG. 6 is a representation of a preferred embodiment of the nutrition web page according to an aspect of the present invention.
  • FIG. 7 is a representation of a preferred embodiment of the activity level web page according to an aspect of the present invention.
  • FIG. 8 is a representation of a preferred embodiment of the mind centering web page according to an aspect of the present invention.
  • FIG. 9 is a representation of a preferred embodiment of the sleep web page according to an aspect of the present invention.
  • FIG. 10 is a representation of a preferred embodiment of the daily activities web page according to an aspect of the present invention.
  • FIG. 11 is a representation of a preferred embodiment of the Health Index web page according to an aspect of the present invention.
  • FIG. 12 is a front view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 13 is a back view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 14 is a side view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 15 is a bottom view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIGS. 16 and 17 are front perspective views of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 18 is an exploded side perspective view of a specific embodiment of the sensor device shown in FIG. 1 ;
  • FIG. 19 is a side view of the sensor device shown in FIGS. 12 through 18 inserted into a battery recharger unit;
  • FIG. 20 is a block diagram illustrating all of the components either mounted on or coupled to the printed circuit board forming a part of the sensor device shown in FIGS. 12 through 18 ;
  • FIG. 21 is a block diagram of an apparatus for monitoring health, wellness and fitness according to an alternate embodiment of the present invention.
  • FIG. 22 is a front view of an alternate embodiment of a sensor device according to the present invention.
  • FIG. 23 is a back view of an alternate embodiment of a sensor device according to the present invention.
  • FIG. 24 is a cross-sectional view of the sensor device shown in FIG. 22 taken along lines A-A;
  • FIG. 25 is a cross-sectional view of the sensor device shown in FIG. 22 taken along lines B-B;
  • FIG. 26 is a cross-sectional view of the sensor device shown in FIG. 22 taken along lines A-A showing the internal components of the housing of the sensor device;
  • FIG. 27 is a block diagram illustrating the components mounted on or coupled to the printed circuit board forming a part of an embodiment of the sensor device shown in FIGS. 22 through 26 ;
  • FIG. 28 is a front view of an alternate embodiment of a sensor device according to the present invention including an LCD;
  • FIG. 29 is a block diagram illustrating the components mounted on or coupled to the printed circuit board forming a part of an alternate embodiment of the sensor device shown in FIGS. 22 through 26 ;
  • FIGS. 30 and 31 are isometric views of an alternate embodiment of a sensor device according to the present invention having a housing adapted to be removably attached to a flexible section;
  • FIG. 32 is an isometric view of a further alternate embodiment of a sensor device according to the present invention having a housing adapted to be removably attached to a flexible section;
  • FIG. 33 is an isometric view of an embodiment of a sensor device having adjustable operating parameters according to an aspect of the present invention.
  • FIG. 34 is an isometric view of an alternate embodiment of a sensor device according to the present invention having a housing having an adhesive material on an external surface thereof for removably attaching the housing to the body;
  • FIGS. 35A and B are cross-sectional views of a housing for a prior art sensor device
  • FIGS. 35C through H are cross-sectional views of various embodiments of a housing for a sensor device according to an aspect of the present invention taken along lines C-C in FIG. 23 .
  • FIG. 36A is a cross-sectional view of a housing for a prior art sensor device
  • FIGS. 36B through H are cross-sectional views of various embodiments of a housing for a sensor device according to an aspect of the present invention taken along lines D-D in FIG. 23 ;
  • FIG. 37 is an isometric view of an embodiment of a housing for a sensor device according to the present invention having a bottom or inner surface having a concavity in one direction and a convexity in another direction;
  • FIGS. 38A through D are cross-sectional views of a housing for a sensor device having a flat top surface and flat lateral ends;
  • FIGS. 39A through F are cross-sectional views of various embodiments of a housing for a sensor device having surfaces designed to deflect objects and prevent movement of the housing;
  • FIG. 39G is a cross-sectional view of the housing shown in FIG. 39E attached to a flexible section;
  • FIG. 40 is a top plan view of a data input and output device according to the present invention.
  • FIG. 41 is a partial cross-sectional view of the data input and output device shown in FIG. 40 taken along lines A-A in FIG. 40 ;
  • FIG. 42 is a block diagram illustrating the operation of prior art software that enables a prior art input device having a dial and a button to control the operation of a computer by identifying and selecting hot spots;
  • FIGS. 43A-F is a top plan view of a data input and output device according to an embodiment of the present invention in which energy related data for an individual is collected or generated by the data input and output device and a sensor device in electrical communication therewith and displayed by the data input and output device on an LCD provided thereon;
  • FIGS. 43G and H are a plan views of interfaces for entering nutrition information into a data input and output device according to an alternate embodiment of the present invention.
  • FIGS. 43I and J are scatter plots between estimates of the caloric content in meals consumed using an embodiment of the present invention and caloric content computed from full diet diary entries;
  • FIG. 44 is a block diagram showing the components attached or otherwise coupled to a printed circuit board housed within a data input and output device according to an embodiment of the present invention.
  • FIG. 45 is a partial cross-sectional view of a data input and output device according to an alternate embodiment of the present invention having one or more sensors that enable it to collect data indicative of physiological and/or contextual parameters;
  • FIG. 46 is a block diagram of an alternate embodiment of the present invention in which a data input and output device acts as a hub or terminal for collection and, optionally, processing of data from a variety of sources;
  • FIG. 47 is a block diagram showing the format of algorithms that are developed according to an aspect of the present invention.
  • FIG. 48 is a block diagram illustrating an example algorithm for predicting energy expenditure according to the present invention.
  • data relating to the physiological state, the lifestyle and certain contextual parameters of an individual is collected and transmitted, either subsequently or in real-time, to a site, preferably remote from the individual, where it is stored for later manipulation and presentation to a recipient, preferably over an electronic network such as the Internet.
  • Contextual parameters as used herein means parameters relating to the environment, surroundings and location of the individual, including, but not limited to, air quality, sound quality, ambient temperature, global positioning and the like.
  • sensor device 10 located at user location 5 is sensor device 10 adapted to be placed in proximity with at least a portion of the human body.
  • Sensor device 10 is preferably worn by an individual user on his or her body, for example as part of a garment such as a form fitting shirt, or as part of an arm band or the like.
  • Sensor device 10 includes one or more sensors, which are adapted to generate signals in response to physiological characteristics of an individual, and a microprocessor.
  • Proximity as used herein means that the sensors of sensor device 10 are separated from the individual's body by a material or the like, or a distance such that the capabilities of the sensors are not impeded.
  • Sensor device 10 generates data indicative of various physiological parameters of an individual, such as the individual's heart rate, pulse rate, beat-to-beat heart variability, EKG or ECG, respiration rate, skin temperature, core body temperature, heat flow off the body, galvanic skin response or GSR, EMG, EEG, EOG, blood pressure, body fat, hydration level, activity level, oxygen consumption, glucose or blood sugar level, body position, pressure on muscles or bones, and UV radiation exposure and absorption.
  • the data indicative of the various physiological parameters is the signal or signals themselves generated by the one or more sensors and in certain other cases the data is calculated by the microprocessor based on the signal or signals generated by the one or more sensors.
  • Methods for generating data indicative of various physiological parameters and sensors to be used therefor are well known. Table 1 provides several examples of such well known methods and shows the parameter in question, the method used, the sensor device used, and the signal that is generated. Table 1 also provides an indication as to whether further processing based on the generated signal is required to generate the data.
  • Table 1 The types of data listed in Table 1 are intended to be examples of the types of data that can be generated by sensor device 10 . It is to be understood that other types of data relating to other parameters can be generated by sensor device 10 without departing from the scope of the present invention.
  • the microprocessor of sensor device 10 may be programmed to summarize and analyze the data. For example, the microprocessor can be programmed to calculate an average, minimum or maximum heart rate or respiration rate over a defined period of time, such as ten minutes. Sensor device 10 may be able to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. The microprocessor of sensor device 10 is programmed to derive such information using known methods based on the data indicative of one or more physiological parameters. Table 2 provides examples of the type of information that can be derived, and indicates some of the types of data that can be used therefor.
  • sensor device 10 may also generate data indicative of various contextual parameters relating to the environment surrounding the individual.
  • sensor device 10 can generate data indicative of the air quality, sound level/quality, light quality or ambient temperature near the individual, or even the global positioning of the individual.
  • Sensor device 10 may include one or more sensors for generating signals in response to contextual characteristics relating to the environment surrounding the individual, the signals ultimately being used to generate the type of data described above. Such sensors are well known, as are methods for generating contextual parametric data such as air quality, sound level/quality, ambient temperature and global positioning.
  • FIG. 2 is a block diagram of an embodiment of sensor device 10 .
  • Sensor device 10 includes at least one sensor 12 and microprocessor 20 .
  • the signal can be sent through one or more of amplifier 14 , conditioning circuit 16 , and analog-to-digital converter 18 , before being sent to microprocessor 20 .
  • amplifier 14 For example, where sensor 12 generates an analog signal in need of amplification and filtering, that signal can be sent to amplifier 14 , and then on to conditioning circuit 16 , which may, for example, be a band pass filter.
  • the amplified and conditioned analog signal can then be transferred to analog to digital converter 18 , where it is converted to a digital signal.
  • the digital signal is then sent to microprocessor 20 .
  • sensor 12 generates a digital signal
  • that signal can be sent directly to microprocessor 20 .
  • a digital signal or signals representing certain physiological and/or contextual characteristics of the individual user may be used by microprocessor 20 to calculate or generate data indicative of physiological and/or contextual parameters of the individual user.
  • Microprocessor 20 is programmed to derive information relating to at least one aspect of the individual's physiological state. It should be understood that microprocessor 20 may also comprise other forms of processors or processing devices, such as a microcontroller, or any other device that can be programmed to perform the functionality described herein.
  • the data indicative of physiological and/or contextual parameters can, according to one embodiment of the present invention, be sent to memory 22 , such as flash memory, where it is stored until uploaded in the manner to be described below.
  • memory 22 is shown in FIG. 2 as a discrete element, it will be appreciated that it may also be part of microprocessor 20 .
  • Sensor device 10 also includes input/output circuitry 24 , which is adapted to output and receive as input certain data signals in the manners to be described herein.
  • memory 22 of the sensor device 10 will build up, over time, a store of data relating to the individual user's body and/or environment. That data is periodically uploaded from sensor device 10 and sent to remote central monitoring unit 30 , as shown in FIG.
  • sensor device 10 may continuously upload data in real time.
  • the uploading of data from sensor device 10 to central monitoring unit 30 for storage can be accomplished in various ways.
  • the data collected by sensor device 10 is uploaded by first transferring the data to personal computer 35 shown in FIG. 1 by means of physical connection 40 , which, for example, may be a serial connection such as an RS232 or USB port.
  • This physical connection may also be accomplished by using a cradle, not shown, that is electronically coupled to personal computer 35 into which sensor device 10 can be inserted, as is common with many commercially available personal digital assistants.
  • the uploading of data could be initiated by then pressing a button on the cradle or could be initiated automatically upon insertion of sensor device 10 .
  • the data collected by sensor device 10 may be uploaded by first transferring the data to personal computer 35 by means of short range wireless transmission, such as infrared or RF transmission, as indicated at 45 .
  • personal computer 35 Once the data is received by personal computer 35 , it is optionally compressed and encrypted by any one of a variety of well known methods and then sent out over a local or global electronic network, preferably the Internet, to central monitoring unit 30 .
  • personal computer 35 can be replaced by any computing device that has access to and that can transmit and receive data through the electronic network, such as, for example, a personal digital assistant such as the Palm VII sold by Palm, Inc., or the Blackberry 2-way pager sold by Research in Motion, Inc.
  • the data collected by sensor device 10 after being encrypted and, optionally, compressed by microprocessor 20 , may be transferred to wireless device 50 , such as a 2 way pager or cellular phone, for subsequent long distance wireless transmission to local telco site 55 using a wireless protocol such as e mail or as ASCII or binary data.
  • Local telco site 55 includes tower 60 that receives the wireless transmission from wireless device 50 and computer 65 connected to tower 60 .
  • computer 65 has access to the relevant electronic network, such as the Internet, and is used to transmit the data received in the form of the wireless transmission to the central monitoring unit 30 over the Internet.
  • wireless device 50 is shown in FIG. 1 as a discrete device coupled to sensor device 10 , it or a device having the same or similar functionality may be embedded as part of sensor device 10 .
  • Sensor device 10 may be provided with a button to be used to time stamp events such as time to bed, wake time, and time of meals. These time stamps are stored in sensor device 10 and are uploaded to central monitoring unit 30 with the rest of the data as described above.
  • the time stamps may include a digitally recorded voice message that, after being uploaded to central monitoring unit 30 , are translated using voice recognition technology into text or some other information format that can be used by central monitoring unit 30 .
  • a kiosk could be adapted to collect such data by, for example, weighing the individual, providing a sensing device similar to sensor device 10 on which an individual places his or her hand or another part of his or her body, or by scanning the individual's body using, for example, laser technology or an iStat blood analyzer.
  • the kiosk would be provided with processing capability as described herein and access to the relevant electronic network, and would thus be adapted to send the collected data to the central monitoring unit 30 through the electronic network.
  • a desktop sensing device again similar to sensor device 10 , on which an individual places his or her hand or another part of his or her body may also be provided.
  • such a desktop sensing device could be a blood pressure monitor in which an individual places his or her arm.
  • An individual might also wear a ring having a sensor device 10 incorporated therein.
  • a base not shown, could then be provided which is adapted to be coupled to the ring.
  • the desktop sensing device or the base just described may then be coupled to a computer such as personal computer 35 by means of a physical or short range wireless connection so that the collected data could be uploaded to central monitoring unit 30 over the relevant electronic network in the manner described above.
  • a mobile device such as, for example, a personal digital assistant, might also be provided with a sensor device 10 incorporated therein.
  • Such a sensor device 10 would be adapted to collect data when mobile device is placed in proximity with the individual's body, such as by holding the device in the palm of one's hand, and upload the collected data to central monitoring unit 30 in any of the ways described herein.
  • central monitoring unit 30 can also manually provide data relating to various life activities that is ultimately transferred to and stored at central monitoring unit 30 .
  • An individual user can access a web site maintained by central monitoring unit 30 and can directly input information relating to life activities by entering text freely, by responding to questions posed by the web site, or by clicking through dialog boxes provided by the web site.
  • Central monitoring unit 30 can also be adapted to periodically send electronic mail messages containing questions designed to elicit information relating to life activities to personal computer 35 or to some other device that can receive electronic mail, such as a personal digital assistant, a pager, or a cellular phone. The individual would then provide data relating to life activities to central monitoring unit 30 by responding to the appropriate electronic mail message with the relevant data.
  • Central monitoring unit 30 may also be adapted to place a telephone call to an individual user in which certain questions would be posed to the individual user.
  • the user could respond to the questions by entering information using a telephone keypad, or by voice, in which case conventional voice recognition technology would be used by central monitoring unit 30 to receive and process the response.
  • the telephone call may also be initiated by the user, in which case the user could speak to a person directly or enter information using the keypad or by voice/voice recognition technology.
  • Central monitoring unit 30 may also be given access to a source of information controlled by the user, for example the user's electronic calendar such as that provided with the Outlook product sold by Microsoft Corporation of Redmond, Wash., from which it could automatically collect information.
  • the data relating to life activities may relate to the eating, sleep, exercise, mind centering or relaxation, and/or daily living habits, patterns and/or activities of the individual.
  • sample questions may include: What did you have for lunch today? What time did you go to sleep last night? What time did you wake up this morning? How long did you run on the treadmill today?
  • Feedback may also be provided to a user directly through sensor device 10 in a visual form, for example through an LED or LCD or by constructing sensor device 10 , at least in part, of a thermochromatic plastic, in the form of an acoustic signal or in the form of tactile feedback such as vibration.
  • Such feedback may be a reminder or an alert to eat a meal or take medication or a supplement such as a vitamin, to engage in an activity such as exercise or meditation, or to drink water when a state of dehydration is detected.
  • a reminder or alert can be issued in the event that a particular physiological parameter such as ovulation has been detected, a level of calories burned during a workout has been achieved or a high heart rate or respiration rate has been encountered.
  • Adownload@ data from central monitoring unit 30 to sensor device 10 it may be possible to Adownload@ data from central monitoring unit 30 to sensor device 10 .
  • the flow of data in such a download process would be substantially the reverse of that described above with respect to the upload of data from sensor device 10 .
  • the firmware of microprocessor 20 of sensor device 10 can be updated or altered remotely, i.e., the microprocessor can be reprogrammed, by downloading new firmware to sensor device 10 from central monitoring unit 30 for such parameters as timing and sample rates of sensor device 10 .
  • the reminders/alerts provided by sensor device 10 may be set by the user using the web site maintained by central monitoring unit 30 and subsequently downloaded to the sensor device 10 .
  • Central monitoring unit 30 includes CSU/DSU 70 which is connected to router 75 , the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30 .
  • CSU/DSU 70 which is connected to router 75 , the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30 .
  • firewall 80 Connected to router 75 is firewall 80 .
  • the main purpose of firewall 80 is to protect the remainder of central monitoring unit 30 from unauthorized or malicious intrusions.
  • Switch 85 connected to firewall 80 , is used to direct data flow between middleware servers 95 a through 95 c and database server 110 .
  • Load balancer 90 is provided to spread the workload of incoming requests among the identically configured middleware servers 95 a through 95 c .
  • Load balancer 90 analyzes the availability of each middleware server 95 a through 95 c , and the amount of system resources being used in each middleware server 95 a through 95 c , in order to spread tasks among them appropriately.
  • Central monitoring unit 30 includes network storage device 100 , such as a storage area network or SAN, which acts as the central repository for data.
  • network storage device 100 comprises a database that stores all data gathered for each individual user in the manners described above.
  • An example of a suitable network storage device 100 is the Symmetrix product sold by EMC Corporation of Hopkinton, Mass. Although only one network storage device 100 is shown in FIG. 3 , it will be understood that multiple network storage devices of various capacities could be used depending on the data storage needs of central monitoring unit 30 .
  • Central monitoring unit 30 also includes database server 110 which is coupled to network storage device 100 .
  • Database server 110 is made up of two main components: a large scale multiprocessor server and an enterprise type software server component such as the 8/8i component sold by Oracle Corporation of Redwood City, Calif., or the 506 7 component sold by Microsoft Corporation of Redmond, Wash.
  • the primary functions of database server 110 are that of providing access upon request to the data stored in network storage device 100 , and populating network storage device 100 with new data.
  • controller 115 Coupled to network storage device 100 is controller 115 , which typically comprises a desktop personal computer, for managing the data stored in network storage device 100 .
  • Middleware servers 95 a through 95 c each contain software for generating and maintaining the corporate or home web page or pages of the web site maintained by central monitoring unit 30 .
  • a web page refers to a block or blocks of data available on the World-Wide Web comprising a file or files written in Hypertext Markup Language or HTML
  • a web site commonly refers to any computer on the Internet running a World-Wide Web server process.
  • the corporate or home web page or pages are the opening or landing web page or pages that are accessible by all members of the general public that visit the site by using the appropriate uniform resource locator or URL.
  • URLs are the form of address used on the World-Wide Web and provide a standard way of specifying the location of an object, typically a web page, on the Internet.
  • Middleware servers 95 a through 95 c also each contain software for generating and maintaining the web pages of the web site of central monitoring unit 30 that can only be accessed by individuals that register and become members of central monitoring unit 30 .
  • the member users will be those individuals who wish to have their data stored at central monitoring unit 30 . Access by such member users is controlled using passwords for security purposes.
  • Preferred embodiments of those web pages are described in detail below and are generated using collected data that is stored in the database of network storage device 100 .
  • Middleware servers 95 a through 95 c also contain software for requesting data from and writing data to network storage device 100 through database server 110 .
  • the central monitoring unit 30 When an individual user desires to initiate a session with the central monitoring unit 30 for the purpose of entering data into the database of network storage device 100 , viewing his or her data stored in the database of network storage device 100 , or both, the user visits the home web page of central monitoring unit 30 using a browser program such as Internet Explorer distributed by Microsoft Corporation of Redmond, Wash., and logs in as a registered user.
  • Load balancer 90 assigns the user to one of the middleware servers 95 a through 95 c , identified as the chosen middleware server. A user will preferably be assigned to a chosen middleware server for each entire session.
  • the chosen middleware server authenticates the user using any one of many well known methods, to ensure that only the true user is permitted to access the information in the database.
  • a member user may also grant access to his or her data to a third party such as a health care provider or a personal trainer.
  • Each authorized third party may be given a separate password and may view the member user's data using a conventional browser. It is therefore possible for both the user and the third party to be the recipient of the data.
  • the chosen middleware server When the user is authenticated, the chosen middleware server requests, through database server 110 , the individual user's data from network storage device 100 for a predetermined time period.
  • the predetermined time period is preferably thirty days.
  • the requested data once received from network storage device 100 , is temporarily stored by the chosen middleware server in cache memory.
  • the cached data is used by the chosen middleware server as the basis for presenting information, in the form of web pages, to the user again through the user's browser.
  • Each middleware server 95 a through 95 c is provided with appropriate software for generating such web pages, including software for manipulating and performing calculations utilizing the data to put the data in appropriate format for presentation to the user. Once the user ends his or her session, the data is discarded from cache.
  • This caching system thus ideally requires that only one call to the network storage device 100 be made per session, thereby reducing the traffic that database server 110 must handle. Should a request from a user during a particular session require data that is outside of a predetermined time period of cached data already retrieved, a separate call to network storage device 100 may be performed by the chosen middleware server. The predetermined time period should be chosen, however, such that such additional calls are minimized. Cached data may also be saved in cache memory so that it can be reused when a user starts a new session, thus eliminating the need to initiate a new call to network storage device 100 .
  • the microprocessor of sensor device 10 may be programmed to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters.
  • Central monitoring unit 30 and preferably middleware servers 95 a through 95 c , may also be similarly programmed to derive such information based on the data indicative of one or more physiological parameters.
  • a user will input additional data during a session, for example, information relating to the user's eating or sleeping habits.
  • This additional data is preferably stored by the chosen middleware server in a cache during the duration of the user's session.
  • this additional new data stored in a cache is transferred by the chosen middleware server to database server 110 for population in network storage device 100 .
  • the input data may also be immediately transferred to database server 110 for population in network storage device 100 , as part of a write-through cache system which is well known in the art.
  • Data collected by sensor device 10 shown in FIG. 1 is periodically uploaded to central monitoring unit 30 .
  • a connection to central monitoring unit 30 is made through an electronic network, preferably the Internet.
  • connection is made to load balancer 90 through CSU/DSU 70 , router 75 , firewall 80 and switch 85 .
  • Load balancer 90 then chooses one of the middleware servers 95 a through 95 c to handle the upload of data, hereafter called the chosen middleware server.
  • the chosen middleware server authenticates the user using any one of many well known methods. If authentication is successful, the data is uploaded to the chosen middleware server as described above, and is ultimately transferred to database server 110 for population in the network storage device 100 .
  • FIG. 4 an alternate embodiment of central monitoring unit 30 is shown.
  • the embodiment of the central monitoring unit 30 shown in FIG. 4 includes a mirror network storage device 120 which is a redundant backup of network storage device 100 . Coupled to mirror network storage device 120 is controller 122 . Data from network storage device 100 is periodically copied to mirror network storage device 120 for data redundancy purposes.
  • Third parties such as insurance companies or research institutions may be given access, possibly for a fee, to certain of the information stored in mirror network storage device 120 .
  • these third parties are not given access to such user's individual database records, but rather are only given access to the data stored in mirror network storage device 120 in aggregate form.
  • Such third parties may be able to access the information stored in mirror network storage device 120 through the Internet using a conventional browser program. Requests from third parties may come in through CSU/DSU 70 , router 75 , firewall 80 and switch 85 . In the embodiment shown in FIG.
  • a separate load balancer 130 is provided for spreading tasks relating to the accessing and presentation of data from mirror drive array 120 among identically configured middleware servers 135 a through 135 c .
  • Middleware servers 135 a through 135 c each contain software for enabling the third parties to, using a browser, formulate queries for information from mirror network storage device 120 through separate database server 125 .
  • Middleware servers 135 a through 135 c also contain software for presenting the information obtained from mirror network storage device 120 to the third parties over the Internet in the form of web pages.
  • the third parties can choose from a series of prepared reports that have information packaged along subject matter lines, such as various demographic categories.
  • the third parties may be given access to the data stored in network storage device 100 .
  • the same functionality instead of providing load balancer 90 and middleware servers 95 a through 95 c , the same functionality, although at a sacrificed level of performance, could be provided by load balancer 90 and middleware servers 95 a through 95 c.
  • the purposes of the survey are to: identify unique characteristics/circumstances for each user that they might need to address in order to maximize the likelihood that they will implement and maintain a healthy lifestyle as suggested by central monitoring unit 30 ; gather baseline data which will be used to set initial goals for the individual user and facilitate the calculation and display of certain graphical data output such as the Health Index pistons; identify unique user characteristics and circumstances that will help central monitoring unit 30 customize the type of content provided to the user in the Health Manager's Daily Dose; and identify unique user characteristics and circumstances that the Health Manager can guide the user to address as possible barriers to a healthy lifestyle through the problem-solving function of the Health Manager.
  • the specific information to be surveyed may include: key individual temperamental characteristics, including activity level, regularity of eating, sleeping, and bowel habits, initial response to situations, adaptability, persistence, threshold of responsiveness, intensity of reaction, and quality of mood; the user's level of independent functioning, i.e., self-organization and management, socialization, memory, and academic achievement skills; the user's ability to focus and sustain attention, including the user's level of arousal, cognitive tempo, ability to filter distractions, vigilance, and self-monitoring; the user's current health status including current weight, height, and blood pressure, most recent general physician visit, gynecological exam, and other applicable physician/healthcare contacts, current medications and supplements, allergies, and a review of current symptoms and/or health-related behaviors; the user's past health history, i.e., illnesses/surgeries, family history, and social stress events, such as divorce or loss of a job, that have required adjustment by the individual; the user's beliefs, values and opinions about health priorities
  • Each member user will have access, through the home web page of central monitoring unit 30 , to a series of web pages customized for that user, referred to as the Health Manager.
  • the opening Health Manager web page 150 is shown in FIG. 5 .
  • the Health Manager web pages are the main workspace area for the member user.
  • the Health Manager web pages comprise a utility through which central monitoring unit 30 provides various types and forms of data, commonly referred to as analytical status data, to the user that is generated from the data it collects or generates, namely one or more of: the data indicative of various physiological parameters generated by sensor device 10 ; the data derived from the data indicative of various physiological parameters; the data indicative of various contextual parameters generated by sensor device 10 ; and the data input by the user.
  • Analytical status data is characterized by the application of certain utilities or algorithms to convert one or more of the data indicative of various physiological parameters generated by sensor device 10 , the data derived from the data indicative of various physiological parameters, the data indicative of various contextual parameters generated by sensor device 10 , and the data input by the user into calculated health, wellness and lifestyle indicators. For example, based on data input by the user relating to the foods he or she has eaten, things such as calories and amounts of proteins, fats, carbohydrates, and certain vitamins can be calculated. As another example, skin temperature, heart rate, respiration rate, heat flow and/or GSR can be used to provide an indicator to the user of his or her stress level over a desired time period.
  • skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption, ambient sound and body movement or motion as detected by a device such as an accelerometer can be used to provide indicators to the user of his or her sleep patterns over a desired time period.
  • Health Index 155 is a graphical utility used to measure and provide feedback to member users regarding their performance and the degree to which they have succeeded in reaching a healthy daily routine suggested by central monitoring unit 30 . Health Index 155 thus provides an indication for the member user to track his or her progress. Health Index 155 includes six categories relating to the user's health and lifestyle: Nutrition, Activity Level, Mind Centering, Sleep, Daily Activities and How You Feel. The Nutrition category relates to what, when and how much a person eats and drinks. The Activity Level category relates to how much a person moves around.
  • the Mind Centering category relates to the quality and quantity of time a person spends engaging in some activity that allows the body to achieve a state of profound relaxation while the mind becomes highly alert and focused.
  • the Sleep category relates to the quality and quantity of a person's sleep.
  • the Daily Activities category relates to the daily responsibilities and health risks people encounter.
  • the How You Feel category relates to the general perception that a person has about how they feel on a particular day.
  • Each category has an associated level indicator or piston that indicates, preferably on a scale ranging from poor to excellent, how the user is performing with respect to that category.
  • a profile is generated that provides the user with a summary of his or her relevant characteristics and life circumstances.
  • a plan and/or set of goals is provided in the form of a suggested healthy daily routine.
  • the suggested healthy daily routine may include any combination of specific suggestions for incorporating proper nutrition, exercise, mind centering, sleep, and selected activities of daily living in the user's life. Prototype schedules may be offered as guides for how these suggested activities can be incorporated into the user's life. The user may periodically retake the survey, and based on the results, the items discussed above will be adjusted accordingly.
  • the Nutrition category is calculated from both data input by the user and sensed by sensor device 10 .
  • the data input by the user comprises the time and duration of breakfast, lunch, dinner and any snacks, and the foods eaten, the supplements such as vitamins that are taken, and the water and other liquids consumed during a relevant, pre-selected time period.
  • central monitoring unit 30 calculates well known nutritional food values such as calories and amounts of proteins, fats, carbohydrates, vitamins, etc., consumed.
  • the Nutrition Health Index piston level is preferably determined with respect to the following suggested healthy daily routine: eat at least three meals; eat a varied diet consisting of 6-11 servings of bread, pasta, cereal, and rice, 2-4 servings fruit, 3-5 servings of vegetables, 2-3 servings of fish, meat, poultry, dry beans, eggs, and nuts, and 2-3 servings of milk, yogurt and cheese; and drink 8 or more 8 ounce glasses of water.
  • This routine may be adjusted based on information about the user, such as sex, age, height and/or weight.
  • Certain nutritional targets may also be set by the user or for the user, relating to daily calories, protein, fiber, fat, carbohydrates, and/or water consumption and percentages of total consumption. Parameters utilized in the calculation of the relevant piston level include the number of meals per day, the number of glasses of water, and the types and amounts of food eaten each day as input by the user.
  • Nutritional information is presented to the user through nutrition web page 160 as shown in FIG. 6 .
  • the preferred nutritional web page 160 includes nutritional fact charts 165 and 170 which illustrate actual and target nutritional facts, respectively as pie charts, and nutritional intake charts 175 and 180 which show total actual nutritional intake and target nutritional intake, respectively as pie charts.
  • Nutritional fact charts 165 and 170 preferably show a percentage breakdown of items such as carbohydrates, protein and fat, and nutritional intake charts 175 and 180 are preferably broken down to show components such as total and target calories, fat, carbohydrates, protein, and vitamins.
  • Web page 160 also includes meal and water consumption tracking 185 with time entries, hyperlinks 190 which allow the user to directly access nutrition-related news items and articles, suggestions for refining or improving daily routine with respect to nutrition and affiliate advertising elsewhere on the network, and calendar 195 for choosing between views having variable and selectable time periods.
  • the items shown at 190 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Activity Level category of Health Index 155 is designed to help users monitor how and when they move around during the day and utilizes both data input by the user and data sensed by sensor device 10 .
  • the data input by the user may include details regarding the user's daily activities, for example the fact that the user worked at a desk from 8 a.m. to 5 p.m. and then took an aerobics class from 6 p.m. to 7 p.m.
  • Relevant data sensed by sensor device 10 may include heart rate, movement as sensed by a device such as an accelerometer, heat flow, respiration rate, calories burned, GSR and hydration level, which may be derived by sensor device 60 or central monitoring unit 30 .
  • Calories burned may be calculated in a variety of manners, including: the multiplication of the type of exercise input by the user by the duration of exercise input by the user; sensed motion multiplied by time of motion multiplied by a filter constant; or sensed heat flux multiplied by time multiplied by a filter constant.
  • the Activity Level Health Index piston level is preferably determined with respect to a suggested healthy daily routine that includes: exercising aerobically for a pre-set time period, preferably 20 minutes, or engaging in a vigorous lifestyle activity for a pre-set time period, preferably one hour, and burning at least a minimum target number of calories, preferably 205 calories, through the aerobic exercise and/or lifestyle activity.
  • the minimum target number of calories may be set according to information about the user, such as sex, age, height and/or weight. Parameters utilized in the calculation of the relevant piston level include the amount of time spent exercising aerobically or engaging in a vigorous lifestyle activity as input by the user and/or sensed by sensor device 10 , and the number of calories burned above pre-calculated energy expenditure parameters.
  • Activity level web page 200 shown in FIG. 7 , which may include activity graph 205 in the form of a bar graph, for monitoring the individual user's activities in one of three categories: high, medium and low intensity with respect to a pre-selected unit of time.
  • Activity percentage chart 210 in the form or a pie chart, may also be provided for showing the percentage of a pre-selected time period, such as one day, that the user spent in each category.
  • Activity level web page 200 may also include calorie section 215 for displaying items such as total calories burned, daily target calories burned, total caloric intake, and duration of aerobic activity.
  • activity level web page 200 may include at least one hyperlink 220 to allow a user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to activity level and affiliate advertising elsewhere on the network.
  • Activity level web page 200 may be viewed in a variety of formats, and may include user-selectable graphs and charts such as a bar graph, pie chart, or both, as selectable by Activity level check boxes 225 .
  • Activity level calendar 230 is provided for selecting among views having variable and selectable time periods. The items shown at 220 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Mind Centering category of Health Index 155 is designed to help users monitor the parameters relating to time spent engaging in certain activities which allow the body to achieve a state of profound relaxation while the mind becomes focused, and is based upon both data input by the user and data sensed by the sensor device 10 .
  • a user may input the beginning and end times of relaxation activities such as yoga or meditation.
  • the quality of those activities as determined by the depth of a mind centering event can be measured by monitoring parameters including skin temperature, heart rate, respiration rate, and heat flow as sensed by sensor device 10 . Percent change in GSR as derived either by sensor device 10 or central monitoring unit 30 may also be utilized.
  • the Mind Centering Health Index piston level is preferably calculated with respect to a suggested healthy daily routine that includes participating each day in an activity that allows the body to achieve profound relaxation while the mind stays highly focused for at least fifteen minutes.
  • Parameters utilized in the calculation of the relevant piston level include the amount of time spent in a mind centering activity, and the percent change in skin temperature, heart rate, respiration rate, heat flow or GSR as sensed by sensor device 10 compared to a baseline which is an indication of the depth or quality of the mind centering activity.
  • the preferred mind centering web page 250 includes the time spent during the session, shown at 255 , the target time, shown at 260 , comparison section 265 showing target and actual depth of mind centering, or focus, and a histogram 270 that shows the overall level of stress derived from such things as skin temperature, heart rate, respiration rate, heat flow and/or GSR.
  • comparison section 265 the human figure outline showing target focus is solid, and the human figure outline showing actual focus ranges from fuzzy to solid depending on the level of focus.
  • the preferred mind centering web page may also include an indication of the total time spent on mind centering activities, shown at 275 , hyperlinks 280 which allow the user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to mind centering and affiliate advertising, and a calendar 285 for choosing among views having variable and selectable time periods.
  • the items shown at 280 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Sleep category of Health Index 155 is designed to help users monitor their sleep patterns and the quality of their sleep. It is intended to help users learn about the importance of sleep in their healthy lifestyle and the relationship of sleep to circadian rhythms, being the normal daily variations in body functions.
  • the Sleep category is based upon both data input by the user and data sensed by sensor device 10 .
  • the data input by the user for each relevant time interval includes the times the user went to sleep and woke up and a rating of the quality of sleep.
  • the data from sensor device 10 that is relevant includes skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, and oxygen consumption.
  • ambient sound and body movement or motion as detected by a device such as an accelerometer. This data can then be used to calculate or derive sleep onset and wake time, sleep interruptions, and the quality and depth of sleep.
  • the Sleep Health Index piston level is determined with respect to a healthy daily routine including getting a minimum amount, preferably eight hours, of sleep each night and having a predictable bed time and wake time.
  • the specific parameters which determine the piston level calculation include the number of hours of sleep per night and the bed time and wake time as sensed by sensor device 10 or as input by the user, and the quality of the sleep as rated by the user or derived from other data.
  • Sleep web page 290 includes a sleep duration indicator 295 , based on either data from sensor device 10 or on data input by the user, together with user sleep time indicator 300 and wake time indicator 305 .
  • a quality of sleep rating 310 input by the user may also be utilized and displayed. If more than a one day time interval is being displayed on sleep web page 290 , then sleep duration indicator 295 is calculated and displayed as a cumulative value, and sleep time indicator 300 , wake time indicator 305 and quality of sleep rating 310 are calculated and illustrated as averages.
  • Sleep web page 290 also includes a user-selectable sleep graph 315 which calculates and displays one sleep related parameter over a pre-selected time interval.
  • FIG. 9 shows heat flow over a one-day period, which tends to be lower during sleeping hours and higher during waking hours. From this information, a person's bio-rhythms can be derived.
  • Sleep graph 315 may also include a graphical representation of data from an accelerometer incorporated in sensor device 10 which monitors the movement of the body.
  • the sleep web page 290 may also include hyperlinks 320 which allow the user to directly access sleep related news items and articles, suggestions for refining or improving daily routine with respect to sleep and affiliate advertising available elsewhere on the network, and a sleep calendar 325 for choosing a relevant time interval. The items shown at 320 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the Activities of Daily Living category of Health Index 155 is designed to help users monitor certain health and safety related activities and risks and is based entirely on data input by the user.
  • the Activities of Daily Living category is divided into four sub categories: personal hygiene, which allows the user to monitor activities such as brushing and flossing his or her teeth and showering; health maintenance, that tracks whether the user is taking prescribed medication or supplements and allows the user to monitor tobacco and alcohol consumption and automobile safety such as seat belt use; personal time, that allows the user to monitor time spent socially with family and friends, leisure, and mind centering activities; and responsibilities, that allows the user to monitor certain work and financial activities such as paying bills and household chores.
  • the Activities of Daily Living Health Index piston level is preferably determined with respect to the healthy daily routine described below.
  • the routine requires that the users shower or bathe each day, brush and floss teeth each day, and maintain regular bowel habits.
  • the routine requires that the user take medications and vitamins and/or supplements, use a seat belt, refrain from smoking, drink moderately, and monitor health each day with the Health Manager.
  • the routine requires the users to spend at least one hour of quality time each day with family and/or friends, restrict work time to a maximum of nine hours a day, spend some time on a leisure or play activity each day, and engage in a mind stimulating activity.
  • the routine requires the users to do household chores, pay bills, be on time for work, and keep appointments.
  • the piston level is calculated based on the degree to which the user completes a list of daily activities as determined by information input by the user.
  • activities chart 335 selectable for one or more of the sub categories, shows whether the user has done what is required by the daily routine.
  • a colored or shaded box indicates that the user has done the required activity, and an empty, non-colored or shaded box indicates that the user has not done the activity.
  • Activities chart 335 can be created and viewed in selectable time intervals. For illustrative purposes, FIG. 10 shows the personal hygiene and personal time sub-categories for a particular week.
  • daily activities web page 330 may include daily activity hyperlinks 340 which allow the user to directly access relevant news items and articles, suggestions for improving or refining daily routine with respect to activities of daily living and affiliate advertising, and a daily activities calendar 345 for selecting a relevant time interval.
  • the items shown at 340 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • the How You Feel category of Health Index 155 is designed to allow users to monitor their perception of how they felt on a particular day, and is based on information, essentially a subjective rating, that is input directly by the user.
  • a user provides a rating, preferably on a scale of 1 to 5, with respect to the following nine subject areas: mental sharpness; emotional and psychological well being; energy level; ability to cope with life stresses; appearance; physical well being; self-control; motivation; and comfort in relating to others. Those ratings are averaged and used to calculate the relevant piston level.
  • Health Index web page 350 enables users to view the performance of their Health Index over a user selectable time interval including any number of consecutive or non-consecutive days.
  • Health Index selector buttons 360 the user can select to view the Health Index piston levels for one category, or can view a side-by-side comparison of the Health Index piston levels for two or more categories. For example, a user might want to just turn on Sleep to see if their overall sleep rating improved over the previous month, much in the same way they view the performance of their favorite stock.
  • Sleep and Activity Level might be simultaneously displayed in order to compare and evaluate Sleep ratings with corresponding Activity Level ratings to determine if any day-to-day correlations exist.
  • Nutrition ratings might be displayed with How You Feel for a pre-selected time interval to determine if any correlation exists between daily eating habits and how they felt during that interval.
  • FIG. 11 illustrates a comparison of Sleep and Activity Level piston levels for the week of June 10 through June 16.
  • Health Index web page 350 also includes tracking calculator 365 that displays access information and statistics such as the total number of days the user has logged in and used the Health Manager, the percentage of days the user has used the Health Manager since becoming a subscriber, and percentage of time the user has used the sensor device 10 to gather data.
  • opening Health Manager web page 150 may include a plurality of user selectable category summaries 156 a through 156 f , one corresponding to each of the Health Index 155 categories.
  • Each category summary 156 a through 156 f presents a pre-selected filtered subset of the data associated with the corresponding category.
  • Nutrition category summary 156 a displays daily target and actual caloric intake.
  • Activity Level category summary 156 b displays daily target and actual calories burned.
  • Mind Centering category summary 156 c displays target and actual depth of mind centering or focus.
  • Sleep category summary 156 d displays target sleep, actual sleep, and a sleep quality rating.
  • Daily Activities category summary 156 e displays a target and actual score based on the percentage of suggested daily activities that are completed. The How You Feel category summary 156 f shows a target and actual rating for the day.
  • Opening Health Manager web page 150 also may include Daily Dose section 157 which provides, on a daily time interval basis, information to the user, including, but not limited to, hyperlinks to news items and articles, commentary and reminders to the user based on tendencies, such as poor nutritional habits, determined from the initial survey.
  • the commentary for Daily Dose 157 may, for example, be a factual statement that drinking 8 glasses of water a day can reduce the risk of colon cancer by as much as 32%, accompanied by a suggestion to keep a cup of water by your computer or on your desk at work and refill often.
  • Opening Health Manager web page 150 also may include a Problem Solver section 158 that actively evaluates the user's performance in each of the categories of Health Index 155 and presents suggestions for improvement.
  • Opening Health Manager web page 150 may also include a Daily Data section 159 that launches an input dialog box.
  • the input dialog box facilitates input by the user of the various data required by the Health Manager.
  • data entry may be in the form of selection from pre defined lists or general free form text input.
  • opening Health Manager web page 150 may include Body Stats section 161 which may provide information regarding the user's height, weight, body measurements, body mass index or BMI, and vital signs such as heart rate, blood pressure or any of the identified physiological parameters.
  • Armband sensor device 400 includes computer housing 405 , flexible wing body 410 , and, as shown in FIG. 17 , elastic strap 415 .
  • Computer housing 405 and flexible wing body 410 are preferably made of a flexible urethane material or an elastomeric material such as rubber or a rubber-silicone blend by a molding process.
  • Flexible wing body 410 includes first and second wings 418 each having a thru-hole 420 located near the ends 425 thereof. First and second wings 418 are adapted to wrap around a portion of the wearer's upper arm.
  • Elastic strap 415 is used to removably affix armband sensor device 400 to the individual's upper arm. As seen in FIG. 17 , bottom surface 426 of elastic strap 415 is provided with Velcro loops 416 along a portion thereof. Each end 427 of elastic strap 415 is provided with Velcro hook patch 428 on bottom surface 426 and pull tab 429 on top surface 430 . A portion of each pull tab 429 extends beyond the edge of each end 427 .
  • a user inserts each end 427 of elastic strap 415 into a respective thru-hole 420 of flexible wing body 410 .
  • the user places his arm through the loop created by elastic strap 415 , flexible wing body 410 and computer housing 405 .
  • Velcro hook patches 428 can be engaged with Velcro loops 416 at almost any position along bottom surface 426 , armband sensor device 400 can be adjusted to fit arms of various sizes.
  • elastic strap 415 may be provided in various lengths to accommodate a wider range of arm sizes.
  • loops having the shape of the letter D may be attached to ends 425 of wings 418 by one of several conventional means.
  • a pin may be inserted through ends 425 , wherein the pin engages each end of each loop.
  • the D-shaped loops would serve as connecting points for elastic strap 415 , effectively creating a thru-hole between each end 425 of each wing 418 and each loop.
  • computer housing 405 includes a top portion 435 and a bottom portion 440 .
  • Contained within computer housing 405 are printed circuit board or PCB 445 , rechargeable battery 450 , preferably a lithium ion battery, and vibrating motor 455 for providing tactile feedback to the wearer, such as those used in pagers, suitable examples of which are the Model 12342 and 12343 motors sold by MG Motors Ltd. of the United Kingdom.
  • Top portion 435 and bottom portion 440 of computer housing 405 sealingly mate along groove 436 into which O-ring 437 is fit, and may be affixed to one another by screws, not shown, which pass through screw holes 438 a and stiffeners 438 b of bottom portion 440 and apertures 439 in PCB 445 and into threaded receiving stiffeners 451 of top portion 435 .
  • top portion 435 and bottom portion 440 may be snap fit together or affixed to one another with an adhesive.
  • the assembled computer housing 405 is sufficiently water resistant to permit armband sensor device 400 to be worn while swimming without adversely affecting the performance thereof.
  • bottom portion 440 includes, on a bottom side thereof, a raised platform 430 .
  • heat flow or flux sensor 460 a suitable example of which is the micro-foil heat flux sensor sold by RdF Corporation of Hudson, N.H.
  • Heat flux sensor 460 functions as a self-generating thermopile transducer, and preferably includes a carrier made of a polyamide film.
  • Bottom portion 440 may include on a top side thereof, that is on a side opposite the side to which heat flux sensor 460 is affixed, a heat sink, not shown, made of a suitable metallic material such as aluminum.
  • GSR sensors 465 are also affixed to raised platform 430 , preferably comprising electrodes formed of a material such as conductive carbonized rubber, gold or stainless steel. Although two GSR sensors 465 are shown in FIG. 13 , it will be appreciated by one of skill in the art that the number of GSR sensors 465 and the placement thereof on raised platform 430 can vary as long as the individual GSR sensors 465 , i.e., the electrodes, are electrically isolated from one another. By being affixed to raised platform 430 , heat flux sensor 460 and GSR sensors 465 are adapted to be in contact with the wearer's skin when armband sensor device 400 is worn.
  • Bottom portion 440 of computer housing 405 may also be provided with a removable and replaceable soft foam fabric pad, not shown, on a portion of the surface thereof that does not include raised platform 430 and screw holes 438 a .
  • the soft foam fabric is intended to contact the wearer's skin and make armband sensor device 400 more comfortable to wear.
  • heat flux sensor 460 GSR sensors 465 , and PCB 445 may be accomplished in one of various known methods.
  • suitable wiring may be molded into bottom portion 440 of computer housing 405 and then electrically connected, such as by soldering, to appropriate input locations on PCB 445 and to heat flux sensor 460 and GSR sensors 465 .
  • thru-holes may be provided in bottom portion 440 through which appropriate wiring may pass. The thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405 .
  • heat flux sensor 460 and GSR sensors 465 may be affixed to the inner portion 466 of flexible wing body 410 on either or both of wings 418 so as to be in contact with the wearer's skin when armband sensor device 400 is worn.
  • electrical coupling between heat flux sensor 460 and GSR sensors 465 , whichever the case may be, and the PCB 445 may be accomplished through suitable wiring, not shown, molded into flexible wing body 410 that passes through one or more thru-holes in computer housing 405 and that is electrically connected, such as by soldering, to appropriate input locations on PCB 445 .
  • the thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405 .
  • the wiring may be captured in computer housing 405 during an overmolding process, described below, and ultimately soldered to appropriate input locations on PCB 445 .
  • computer housing 405 includes a button 470 that is coupled to and adapted to activate a momentary switch 585 on PCB 445 .
  • Button 470 may be used to activate armband sensor device 400 for use, to mark the time an event occurred or to request system status information such as battery level and memory capacity.
  • momentary switch 585 closes a circuit and a signal is sent to processing unit 490 on PCB 445 .
  • the generated signal triggers one of the events just described.
  • Computer housing 405 also includes LEDs 475 , which may be used to indicate battery level or memory capacity or to provide visual feedback to the wearer. Rather than LEDs 475 , computer housing 405 may also include a liquid crystal display or LCD to provide battery level, memory capacity or visual feedback information to the wearer. Battery level, memory capacity or feedback information may also be given to the user tactily or audibly.
  • Armband sensor device 400 may be adapted to be activated for use, that is collecting data, when either of GSR sensors 465 or heat flux sensor 460 senses a particular condition that indicates that armband sensor device 400 has been placed in contact with the user's skin. Also, armband sensor device 400 may be adapted to be activated for use when one or more of heat flux sensor 460 , GSR sensors 465 , accelerometer 495 or 550 , or any other device in communication with armband sensor device 400 , alone or in combination, sense a particular condition or conditions that indicate that the armband sensor device 400 has been placed in contact with the user's skin for use. At other times, armband sensor device 400 would be deactivated, thus preserving battery power.
  • Computer housing 405 is adapted to be coupled to a battery recharger unit 480 shown in FIG. 19 for the purpose of recharging rechargeable battery 450 .
  • Computer housing 405 includes recharger contacts 485 , shown in FIGS. 12 , 15 , 16 and 17 , that are coupled to rechargeable battery 450 .
  • Recharger contacts 485 may be made of a material such as brass, gold or stainless steel, and are adapted to mate with and be electrically coupled to electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein.
  • the electrical contacts provided in battery recharger unit 480 may be coupled to recharging circuit 481 a provided inside battery recharger unit 480 .
  • recharging circuit 481 would be coupled to a wall outlet, such as by way of wiring including a suitable plug that is attached or is attachable to battery recharger unit 480 .
  • electrical contacts 480 may be coupled to wiring that is attached to or is attachable to battery recharger unit 480 that in turn is coupled to recharging circuit 481 b external to battery recharger unit 480 .
  • the wiring in this configuration would also include a plug, not shown, adapted to be plugged into a conventional wall outlet.
  • RF transceiver 483 adapted to receive signals from and transmit signals to RF transceiver 565 provided in computer housing 405 and shown in FIG. 20 .
  • RF transceiver 483 is adapted to be coupled, for example by a suitable cable, to a serial port, such as an RS 232 port or a USB port, of a device such as personal computer 35 shown in FIG. 1 .
  • a serial port such as an RS 232 port or a USB port
  • data may be uploaded from and downloaded to armband sensor device 400 using RF transceiver 483 and RF transceiver 565 . It will be appreciated that although RF transceivers 483 and 565 are shown in FIGS.
  • computer housing 405 may be provided with additional electrical contacts, not shown, that would be adapted to mate with and be electrically coupled to additional electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein.
  • the additional electrical contacts in the computer housing 405 would be coupled to the processing unit 490 and the additional electrical contacts provided in battery recharger unit 480 would be coupled to a suitable cable that in turn would be coupled to a serial port, such as an RS R32 port or a USB port, of a device such as personal computer 35 .
  • This configuration thus provides an alternate method for uploading of data from and downloading of data to armband sensor device 400 using a physical connection.
  • FIG. 20 is a schematic diagram that shows the system architecture of armband sensor device 400 , and in particular each of the components that is either on or coupled to PCB 445 .
  • PCB 445 includes processing unit 490 , which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein.
  • Processing unit 490 is adapted to provide all of the functionality described in connection with microprocessor 20 shown in FIG. 2 .
  • a suitable example of processing unit 490 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Ill.
  • PCB 445 also has thereon a two-axis accelerometer 495 , a suitable example of which is the Model ADXL210 accelerometer sold by Analog Devices, Inc. of Norwood, Mass.
  • Two-axis accelerometer 495 is preferably mounted on PCB 445 at an angle such that its sensing axes are offset at an angle substantially equal to 45 degrees from the longitudinal axis of PCB 445 and thus the longitudinal axis of the wearer's arm when armband sensor device 400 is worn.
  • the longitudinal axis of the wearer's arm refers to the axis defined by a straight line drawn from the wearer's shoulder to the wearer's elbow.
  • the output signals of two-axis accelerometer 495 are passed through buffers 500 and input into analog to digital converter 505 that in turn is coupled to processing unit 490 .
  • GSR sensors 465 are coupled to amplifier 510 on PCB 445 .
  • Amplifier 510 provides amplification and low pass filtering functionality, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass.
  • the amplified and filtered signal output by amplifier 510 is input into amp/offset 515 to provide further gain and to remove any bias voltage and into filter/conditioning circuit 520 , which in turn are each coupled to analog to digital converter 505 .
  • Heat flux sensor 460 is coupled to differential input amplifier 525 , such as the Model INA amplifier sold by Burr-Brown Corporation of Arlington, Ariz., and the resulting amplified signal is passed through filter circuit 530 , buffer 535 and amplifier 540 before being input to analog to digital converter 505 .
  • Amplifier 540 is configured to provide further gain and low pass filtering, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass.
  • PCB 445 also includes thereon a battery monitor 545 that monitors the remaining power level of rechargeable battery 450 .
  • Battery monitor 545 preferably comprises a voltage divider with a low pass filter to provide average battery voltage.
  • processing unit 490 checks the output of battery monitor 545 and provides an indication thereof to the user, preferably through LEDs 475 , but also possibly through vibrating motor 455 or ringer 575 .
  • An LCD may also be used.
  • PCB 445 may include three-axis accelerometer 550 instead of or in addition to two-axis accelerometer 495 .
  • the three-axis accelerometer outputs a signal to processing unit 490 .
  • a suitable example of three-axis accelerometer is the ⁇ PAM product sold by I.M. Systems, Inc. of Scottsdale, Ariz.
  • Three-axis accelerometer 550 is preferably tilted in the manner described with respect to two-axis accelerometer 495 .
  • PCB 445 also includes RF receiver 555 that is coupled to processing unit 490 .
  • RF receiver 555 may be used to receive signals that are output by another device capable of wireless transmission, shown in FIG. 20 as wireless device 558 , worn by or located near the individual wearing armband sensor device 400 .
  • wireless device 558 may be a chest mounted heart rate monitor such as the Tempo product sold by Polar Electro of Oulu, Finland. Using such a heart rate monitor, data indicative of the wearer's heart rate can be collected by armband sensor device 400 .
  • Antenna 560 and RF transceiver 565 are coupled to processing unit 490 and are provided for purposes of uploading data to central monitoring unit 30 and receiving data downloaded from central monitoring unit 30 .
  • RF transceiver 565 and RF receiver 555 may, for example, employ Bluetooth technology as the wireless transmission protocol. Also, other forms of wireless transmission may be used, such as infrared transmission.
  • RF Transceiver 565 may be used for wirelessly uploading data from and wirelessly downloading data to armband sensor device 400 is advantageous because it eliminates the need to remove armband sensor device 400 to perform these functions, as would be required with a physical connection. For example, if armband sensor device 400 was being worn under the user's clothing, requiring removal of armband sensor device 400 prior to uploading and/or downloading data increases user inconvenience. In addition, the wearing of armband sensor device 400 has an effect on the user's skin and underlying blood vessels, which in turn may effect any measurements being made with respect thereto. It may be necessary for a period of time during which armband sensor device 400 is worn by the user to elapse before a steady state is achieved and consistent, accurate measurements can be made.
  • armband sensor device 400 By providing armband sensor device 400 with wireless communications capability, data can be uploaded and downloaded without disturbing an established steady state equilibrium condition. For example, programming data for processing unit 490 that controls the sampling characteristics of armband sensor device 400 can be downloaded to armband sensor device 400 without disturbing the steady state equilibrium condition.
  • antenna 560 and RF transceiver 565 permit armband sensor device 400 to communicate wirelessly with other devices capable of wireless communication, i.e., transmit information to and receive information from those devices.
  • the devices may include, for example, devices that are implanted in the body of the person using armband sensor device 400 , such as an implantable heart pacemaker or an implantable insulin dispensing device, for example the MiniMed® 2007 implantable insulin pump sold by MiniMed Inc. of Northridge, Calif., devices worn on the body of the person using armband sensor device 400 , or devices located near the person using armband sensor device 400 at any particular time, such as an electronic scale, a blood pressure monitor, a glucose monitor, a cholesterol monitor or another armband sensor device 400 .
  • armband sensor device 400 may be adapted to transmit information that activates or deactivates such a device for use or information that programs such a device to behave in a particular way.
  • armband sensor device 400 may be adapted to activate a piece of exercise equipment such as a treadmill and program it to operate with certain parameters that are dictated or desired by or optimal for the user of armband sensor device 400 .
  • armband sensor device 400 may be adapted to adjust a computer controlled thermostat in a home based on the detected skin temperature of the wearer or turn off a computer controlled lighting system, television or stereo when the wearer is determined to have fallen asleep.
  • Vibrating motor 455 is coupled to processing unit 490 through vibrator driver 570 and provides tactile feedback to the wearer.
  • ringer 575 a suitable example of which is the Model SMT916A ringer sold by Projects Unlimited, Inc. of Dayton, Ohio, is coupled to processing unit 490 through ringer driver 580 , a suitable example of which is the Model MMBTA14 CTI darlington transistor driver sold by Motorola, Inc. of Schaumburg, Illinois, and provides audible feedback to the wearer. Feedback may include, for example, celebratory, cautionary and other threshold or event driven messages, such as when a wearer reaches a level of calories burned during a workout.
  • momentary switch 585 is also coupled to button 470 for activating momentary switch 585 .
  • LEDs 475 used to provide various types of feedback information to the wearer, are coupled to processing unit 490 through LED latch/driver 590 .
  • Oscillator 595 is provided on PCB 445 and supplies the system clock to processing unit 490 .
  • Reset circuit 600 accessible and triggerable through a pin-hole in the side of computer housing 405 , is coupled to processing unit 490 and enables processing unit 490 to be reset to a standard initial setting.
  • Rechargeable battery 450 which is the main power source for the armband sensor device 400 , is coupled to processing unit 490 through voltage regulator 605 .
  • memory functionality is provided for armband sensor device 400 by SRAM 610 , which stores data relating to the wearer of armband sensor device 400 , and flash memory 615 , which stores program and configuration data, provided on PCB 445 .
  • SRAM 610 and flash memory 615 are coupled to processing unit 490 and each preferably have at least 512K of memory.
  • top portion 435 of computer housing 405 is preferably formed first, such as by a conventional molding process, and flexible wing body 410 is then overmolded on top of top portion 435 . That is, top portion 435 is placed into an appropriately shaped mold, i.e., one that, when top portion 435 is placed therein, has a remaining cavity shaped according to the desired shape of flexible wing body 410 , and flexible wing body 410 is molded on top of top portion 435 . As a result, flexible wing body 410 and top portion 435 will merge or bond together, forming a single unit.
  • top portion 435 of computer housing 405 and flexible wing body 410 may be formed together, such as by molding in a single mold, to form a single unit. The single unit however formed may then be turned over such that the underside of top portion 435 is facing upwards, and the contents of computer housing 405 can be placed into top portion 435 , and top portion 435 and bottom portion 440 can be affixed to one another.
  • flexible wing body 410 may be separately formed, such as by a conventional molding process, and computer housing 405 , and in particular top portion 435 of computer housing 405 , may be affixed to flexible wing body 410 by one of several known methods, such as by an adhesive, by snap-fitting, or by screwing the two pieces together.
  • FIG. 21 a block diagram of an alternate embodiment of the present invention is shown.
  • This alternate embodiment includes stand alone sensor device 700 which functions as an independent device, meaning that it is capable of collecting and/or generating the various types of data described herein in connection with sensor device 10 and sensor device 400 and providing analytical status data to the user without interaction with a remotely located apparatus such as central monitoring unit 30 .
  • Stand alone sensor device 700 includes a processor that is programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data from the data indicative of various physiological and/or contextual parameters of the user, the data derived therefrom, and the data input by the user, all of which is stored in and accessed as needed from memory provided in stand alone sensor device 700 .
  • Stand alone sensor device 700 may comprise sensor device 10 shown in FIGS. 1 and 2 that includes microprocessor 20 and memory 22 or armband sensor device 400 shown in FIGS. 12-17 that includes processing unit 490 and SRAM 610 .
  • stand alone sensor device 700 may include one or more physiological sensors 705 as described herein for facilitating the collection of data indicative of various physiological parameters of the user.
  • Stand alone sensor device 700 may also include one or more contextual sensors 710 as described herein for facilitating the collection of data indicative of various contextual parameters of the user.
  • stand alone sensor device 700 may be adapted to enable the manual entry of data by the user.
  • stand alone sensor device 700 may include a data input button, such as a button 470 of armband sensor device 400 , through which a user could manually enter information such as information relating to various life activities of the user as described herein or information relating to the operation and/or control of stand alone sensor device 700 , for example, the setting of reminders or alerts as described herein.
  • a data input button such as a button 470 of armband sensor device 400
  • button 470 may simply record or time stamp that an event such as a meal has occurred, with the wearer needing to assign a meaning to that time stamp through data entry at a later time.
  • activation of button 470 in certain sequences such as one activation, two successive activations, three successive activations, etc., can be preset to have different specific meanings.
  • stand alone sensor device 700 may include a more sophisticated means for manual entry of information such as a keypad, a touch screen, a microphone, or a remote control device, for example a remote control device incorporated into a wristwatch.
  • the processor of stand alone sensor device 700 would be provided with well known voice recognition software or the like for converting the input speech into usable data.
  • information comprising data indicative of various physiological and/or contextual parameters and data derived therefrom may be input into stand alone sensor device 700 through interaction with other devices.
  • information such as handshake data or data indicative of various physiological and/or contextual parameters and data derived therefrom may be output from stand alone sensor device 700 to such other devices.
  • the interaction is in the form of wireless communication between stand alone sensor device 700 and another device capable of wireless communication by way of a wireless transceiver provided in stand alone sensor device 700 , such as wireless transceiver 565 shown and described in connection with FIG. 20 .
  • the device-to-device interaction may, as shown by reference number 720 , be explicit, meaning that the user of stand alone sensor device 700 has knowingly initiated the interaction.
  • a user may activate a button on a scale to upload data to stand alone sensor device 700 .
  • the device-to-device interaction may also, as shown by reference number 725 , be hidden, meaning that the user of stand alone sensor device 700 does not knowingly initiate the interaction.
  • a gym may have a sensor that wirelessly transmits a signal to sensing device 700 when the user enters and leaves the gym to time stamp when the user began and ended a workout.
  • information may be output or transmitted from stand alone sensor device 700 in a number of ways.
  • Such information may include the data indicative of various physiological parameters and/or contextual parameters, the data derived therefrom, the data manually input by the user, the analytical status data, or any combination thereof.
  • information may be output or transmitted in an audible fashion such as by a series of tones or beeps or a recorded voice by a device such as a speaker, in a visual fashion such as by one or more LEDs, or in a tactile fashion such as by vibration.
  • stand alone sensor device 700 may be adapted to output a tone or tones, light an LED or LEDs, or vibrate as a reminder for an event, such as a reminder to eat or exercise at a particular time, or when a goal has been reached, such as a target number of calories burned during a workout, or a condition has been sensed, such as ovulation.
  • stand alone sensor device 700 may be provided with a more sophisticated visual output means such as an LCD similar to those found on commercially available cell phones, pagers and personal digital assistants. With an LCD or a similar device and the expanded visual output capabilities it would provide, stand alone sensor device 700 may be adapted to output or transmit some or all of the information described in connection with FIGS.
  • stand alone sensor device 700 could provide analytical status data in the form of the Health Index to the user.
  • stand alone sensor device 700 may be coupled to computing device 750 such as a personal computer, a cell phone, a pager, a personal digital assistant, another stand alone sensor device 700 or any other device having a processor by either wired connection 755 or wireless connection 760 .
  • computing device 750 such as a personal computer, a cell phone, a pager, a personal digital assistant, another stand alone sensor device 700 or any other device having a processor by either wired connection 755 or wireless connection 760 .
  • battery recharger unit 480 shown in FIG. 19 may be used to provide the wired connection 755 or wireless connection 760 .
  • the display of the computing device could be used to visually output information from stand alone sensor device 700 .
  • computing device 750 since computing device 750 includes a sophisticated output means such as an LCD, it may be used to output or transmit to the user some or all of the information described in connection with FIGS. 5 through 11 , such as the Health Index, in the same or a similar format.
  • computing device 750 may in turn be used to control other devices, such as the lights or thermostat in a home, based on data output by stand alone sensor device 700 , such as the fact that the wearer has fallen asleep or the fact that the wearer's skin temperature has reached a certain level.
  • stand alone sensor device 700 and in particular its processor, may be adapted to cause a computing device 750 to trigger an event upon detection of one or more physiological and/or contextual conditions by stand alone sensor device 700 .
  • stand alone sensor device 700 may be adapted to cause a computing device 750 to trigger an event based upon information received from another computing device 750 .
  • Stand alone sensor device 700 may be adapted to interact with and influence an interactive electronic media device, such as a video game, or non-interactive electronic media device, such as on a display device such as a DVD or digital video disc player playing a digitally recorded movie.
  • stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the video game, which in turn adjusts the characteristics of the game, such as the level of difficulty.
  • stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the device displaying the digitally recorded movie which in turn adjusts the characteristics, such as the outcome, of the movie.
  • stand alone sensor device 700 may include location sensing device 765 , such as an ultrasonic or a radio-frequency identification tag, for enabling a computing device 750 to detect the geographic location of stand alone sensor device 700 , such as the location of stand alone sensor device 700 within a defined space such as a building.
  • a location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, preferably based on the detection by stand alone sensor device 700 of one or more physiological conditions of the wearer, such as skin temperature.
  • the location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, if stand alone sensor device 700 detects one or more physiological conditions, such as a skin temperature of the wearer being above a certain level.
  • the input means of the computing device such as the mouse and keyboard of a personal computer, the keypad of a cell phone or pager, or the touch screen of a personal digital assistant, may be used to manually input information into stand alone sensor device 700 .
  • the different modes of output may be used in combination to provide different types and levels of information to a user.
  • stand alone sensor device 700 could be worn by an individual while exercising and an LED or a tone can be used to signal that a goal of a certain number of calories burned has been reached.
  • the user could then transmit additional data wirelessly from stand alone sensor device 700 to a computing device 750 such as a cell phone after he or she is finished exercising to view data such as heart rate and/or respiration rate over time.
  • computing device 750 could be so programmed.
  • stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the data manually input by the user, and/or data input as a result of device-to-device interaction shown at 720 and 725 , all of which is stored in the memory provided in stand alone sensor device 700 .
  • This data is then periodically uploaded to computing device 750 which in turn generates derived data and/or analytical status data.
  • the processor of stand alone sensor device 700 could be programmed to generate the derived data with computing device 750 being programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700 .
  • the processor of stand alone sensor device 700 could be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700 with computing device 750 being programmed to generate the derived data.
  • any or all of the data indicative of physiological and/or contextual parameters of the user, the data derived therefrom, the data manually input by the user, the data input as a result of device-to-device interaction shown at 720 and 725 and the analytical status data may then be viewed by the user using the output means of the programmed computing device 750 or another computing device 750 to which the data is downloaded.
  • the analytical status data may also be output by stand alone sensor device 700 as described herein.
  • Computing device 750 in these alternative embodiments may be connected to an electronic network, such as the Internet, to enable it to communicate with central monitoring unit 30 or the like.
  • the programming of computing device 750 that enables it to generate the derived data and/or the analytical status data may, with such a configuration, be modified or replaced by downloading the relevant data to computing device 750 over the electronic network.
  • computing device 750 may be provided with a custom written plug-in adapted to provide data display functionality through use of a well known browser program.
  • stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the derived data, the data input by the user, data input as a result of device-to-device interaction shown at 720 and 725 , and/or analytical status data based thereon and uploads this data to computing device 750 .
  • the plug-in provided in computing device 750 then generates appropriate display pages based on the data which may be viewed by the user using the browser provided with computing device 750 .
  • the plug-in may be modified/updated from a source such as central monitoring unit 30 over an electronic network such as the Internet.
  • flexible section 810 is made of a material having a durometer of between 75 and 85 Shore A.
  • Flexible section 810 may take on a variety of shapes and may be made of a cloth material, a flexible plastic film, or an elastic material having an adhesive similar in structure to a Band-Aid® disposable adhesive bandage.
  • housing 805 is permanently affixed to flexible section 810 , such as by an over molding or co-molding process, through the use of an adhesive material, or by a fastening mechanism such as one or more screws.
  • Housing 805 includes top portion 815 affixed to bottom portion 820 by any known means, including, for example, an adhesive material, screws, snap fittings, sonic welding, or thermal welding.
  • a watertight seal is provided between top portion 815 and bottom portion 820 .
  • Such a water-tight seal is provided when sonic welding or thermal welding is used.
  • an O-ring could be provided between top portion 815 and bottom portion 820 to create the water-tight seal.
  • GSR sensors 825 affixed to bottom portion 820 of housing 805 are GSR sensors 825 .
  • GSR sensors 825 measure the conductivity of the skin between two points and may comprise electrodes formed of a material such as stainless steel, gold or a conductive carbonized rubber.
  • GSR sensors 825 have an oblong, curved shape as shown in FIG. 23 , much like a kidney bean shape, that allows some portion of GSR sensors 825 to maintain contact with the body even if sensor device 800 is rocking or otherwise moving while being worn.
  • GSR sensors 825 include raised bumps 830 , or some other three-dimensional textured surface, along the surface thereof to perturb the skin and push between hairs to ensure good contact with the skin.
  • raised bumps 830 provide channels for the movement of sweat underneath sensor device 800 , rather than trapping sweat, no matter the orientation of sensor device with respect to the body.
  • heat flux skin interface component 835 and skin temperature skin interface component 840 are a material having thermal conduction properties of at least 12.9 W/mK, such as 304 stainless steel.
  • GSR sensors 825 are spaced at least 0.44 inches apart from one another, and at least 0.09 inches apart from heat flux skin interface component 835 and skin temperature skin interface component 840 .
  • GSR sensors 825 , heat flux skin interface component 835 and skin temperature skin interface component 840 are adapted to be in contact with the wearer's skin when sensor device 800 is worn, and facilitate the measurement of GSR, heat flux from the body and skin temperature data. As can be seen most readily in FIGS.
  • heat flux ambient interface component 845 and ambient temperature interface component 850 which also are made of a thermally conductive material such as stainless steel, preferably a material having thermal conduction properties of at least 12.9 W/mK, such as 304 stainless steel.
  • Heat flux ambient interface component 845 and ambient temperature interface component 850 facilitate the measurement of heat flux from the body and ambient temperature, respectively, by providing a thermal interface to the surrounding environment.
  • holes 855 are provided in flexible section 810 to expose heat flux ambient interface component 845 and ambient temperature interface component 850 to the ambient air.
  • holes 855 are sized so that flexible section 810 occludes as little skin as possible in the regions surrounding heat flux ambient interface component 845 and ambient temperature interface component 850 so as to allow air flowing off of the skin of the wearer to pass these components.
  • GSR Sensors 825 , heat flux, skin interface component 835 , skin temperature skin interface component 840 , or any other sensing component that comes into contact with the skin may be provided with a plurality of microneedles for, among other things, enhancing electrical contact with the skin and providing real time access to interstitial fluid in and below the epidermis, which access may be used to measure various parameters such as pH level of the skin through electrochemical, impedance based or other well known methods.
  • Microneedles enhance electrical contact by penetrating the stratum corneum of the skin to reach the epidermis.
  • Such microneedles are well known in the art and may be made of a metal or plastic material. Prior art microneedles are described in, for example, U.S. Pat. No. 6,312,612 owned by the Procter and Gamble Company. Based on the particular application, the number, density, length, width at the point or base, distribution and spacing of the microneedles will vary.
  • FIG. 26 which is a cross-section taken along lines A-A in FIG. 22 , the internal components of sensor device 800 , housed within housing 805 , are shown.
  • Printed circuit board or PCB 860 is affixed to top portion 815 of housing 805 and receives and supports the electronic components provided inside housing 805 .
  • contacts 865 are attached to a bottom side of PCB 860 and electronically coupled to GSR sensors 825 , which preferably comprise gold plated contact pins such as the Pogo# contacts available from Everett Charles Technologies in Pomona, Calif.
  • skin temperature thermistor 870 is also affixed to the bottom side of PCB 860 , a suitable example of which is the model 100K6D280 thermistor manufactured by BetaTherm Corporation in Shrewsbury, Mass.
  • Skin temperature thermistor 870 is, according to a preferred embodiment, thermally coupled to skin temperature skin interface component 840 by a thermally conductive interface material 875 .
  • Thermally conductive interface material 875 may be any type of thermally conductive interface known in the art, including, for example, thermally conductive gap fillers, thermally conductive phase change interface materials, thermally conductive tapes, thermally conductive cure-in-place compounds or epoxies, and thermal greases.
  • Suitable thermally conductive interface materials include a boron nitride filled expanded polytetrafluoroethylene matrix sold under the trademark PolarChip CP8000 by W. L. Gore & Associates, Inc. and a boron nitride and alumina filled silicone elastomer on an adhesive backed 5 mil. (0.013 cm) thick aluminum foil carrier called A574, which is available from the Chomerics division of Parker Hannefin Corp. located in Woburn, Mass.
  • near-body ambient temperature thermistor 880 a suitable example of which is the model NTHS040ZNOIN100KJ thermistor manufactured by Vishay Intertechnology, Inc. in Malvern, Pa.
  • Near-body ambient temperature thermistor 880 is thermally coupled to ambient temperature interface component 850 by thermally conductive interface material 875 .
  • a preferred embodiment of sensor device 800 includes a particular embodiment of an apparatus for measuring heat flux between a living body and the ambient environment described in co-pending application Ser. No. 09/822,890, the disclosure of which is incorporated herein by reference in its entirety.
  • heat conduit 885 is provided within housing 805 .
  • the term heat conduit refers to one or more heat conductors which are adapted to singly or jointly transfer heat from one location to another, such as a conductor made of stainless steel.
  • Heat conduit 885 is thermally coupled to heat flux skin interface component 835 by thermally conductive interface material 875 .
  • PCB 860 Provided on the bottom side of PCB 860 is a first heat flux thermistor 890 A, and provided on the top side of PCB 860 is a second heat flux thermistor 890 B.
  • PCB 860 acts as a base member for supporting these components. It will be appreciated that a base member separate and apart from PCB 860 may be substituted therefor as an alternative configuration.
  • a suitable example of both heat flux thermistors 890 A and 890 B is the.
  • Heat flux Thermistor 890 A and 890 B are soldered to pads provided on PCB 860 .
  • the second heat flux thermistor 890 B is thermally coupled to heat flux ambient interface 845 by thermally conductive interface material 875 .
  • PCB 860 is made of a rigid or flexible material, such as a fiberglass, having a preselected, known thermal resistance or resistivity K.
  • the heat flux off of the body of the wearer can be determined by measuring a first voltage V 1 with heat flux thermistor 890 A and a second voltage V 2 with heat flux thermistor 890 B. These voltages are then electrically differenced, such as by using a differential amplifier, to provide a voltage value that, as is well known in the art, can be used to calculate the temperature difference (T 2 ⁇ T 1 ) between the top and bottom sides of PCB860. Heat flux can then be calculated according to the following formula:
  • PCB 860 and heat flux thermistors 890 A and 890 B are thus a form of a heat flux sensor
  • One advantage of the configuration of the apparatus for measuring heat flux shown in FIG. 26 is that, due to the vertical orientation of the components, assembly of the apparatus for measuring heat flux, and thus sensor device 800 as a whole, is simplified. Also adding to the simplicity is the fact that thermally conductive interface materials that include a thin adhesive layer on one or both sides may be used for thermally conductive interface materials 875 , enabling components to be adhered to one another.
  • thermistors 890 A and 890 B are relatively inexpensive components, as compared to an integral heat flux sensor such as those commercially available from RdF Corporation of Hudson, N.H., thereby reducing the cost of sensor device 800 .
  • heat flux thermistors 890 A and 890 B are described as being provided on PCB 860 in the embodiment shown in FIG. 26 , it will be appreciated that any piece of material having a known resistivity K may be used.
  • other temperature measuring devices known in the art such as a thermocouple or thermopile, may be substituted for heat flux thermistors 890 A and 890 B.
  • heat conduit 885 may be omitted such that thermal communication between heat flux thermistor 890 A and heat flux skin interface component 835 is provided by one or more pieces of thermally conductive interface material 875 .
  • heat flux skin interface component 835 may be omitted such that thermal communication between heat flux thermistor 890 A and the skin is provided by either or both of heat conduit 885 and one or more pieces of thermally conductive interface material 875 .
  • the combination of one or more of heat conduit 885 , one or more pieces of thermally conductive interface material 875 , and heat flux skin interface component 835 act as a thermal energy communicator for placing heat flux thermistor 890 A in thermal communication with the body of the wearer of sensor device 800 .
  • PCB 860 includes processing unit 900 , which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein, in particular the functionality described in connection with microprocessor 20 shown in FIG. 2 , processing unit 490 shown in FIG. 20 , or stand alone sensor device 700 shown in FIG. 21 .
  • processing unit 900 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Illinois.
  • accelerometer 905 which may be either a two-axis or a three-axis accelerometer.
  • a suitable example of a two-axis accelerometer is the Model ADXL202 accelerometer sold by Analog Devices, Inc.
  • A/D converter 915 input analog to digital, referred to as A/D, converter 915 that in turn is coupled to processing unit 900 .
  • GSR sensors 825 are coupled to A/D converter 915 through current loop 920 , low pass filter 925 , and amplifier 930 .
  • Current loop 920 comprises an opamp and a plurality of resistors, and applies a small, fixed current between the two GSR sensors 825 and measures the voltage across them. The measured voltage is directly proportional to the resistance of the skin in contact with the electrodes.
  • heat flux thermistors 890 A and 890 B are coupled to A/D converter 915 and processing unit 900 , where the heat flux calculations are performed, through low pass filter 935 and amplifier 940 .
  • Battery monitor 945 preferably comprising a voltage divider with low pass filter to provide average battery voltage, monitors the remaining power level of rechargeable battery 950 .
  • Rechargeable battery 950 is preferably a Lilon/LiPolymer 3.7 V Cell.
  • Rechargeable battery 950 which is the main power source for sensor device 800 , is coupled to processing unit 900 through voltage regulator 955 .
  • Rechargeable battery 950 may be recharged either using recharger 960 or USB cable 965 , both of which may be coupled to sensor device 800 through USB interface 970 .
  • USB interface 970 is hermetically sealable, such as with a removable plastic or rubber plug, to protect the contacts of USB interface 970 when not in use.
  • PCB 860 further includes skin temperature thermistor 870 for sensing the temperature of the skin of the wearer of sensor device 800 , and near-body ambient temperature thermistor 880 for sensing the ambient temperature in the area near the body of the wearer of sensor device 800 .
  • skin temperature thermistor 870 for sensing the temperature of the skin of the wearer of sensor device 800
  • near-body ambient temperature thermistor 880 for sensing the ambient temperature in the area near the body of the wearer of sensor device 800 .
  • Each of these components is biased and coupled to processing unit 900 through A/D converter 915 .
  • PCB 860 may include one or both of an ambient light sensor and an ambient sound sensor, shown at 975 in FIG. 27 , coupled to A/D converter 915 .
  • the ambient light sensor and ambient sound sensor may be adapted to merely sense the presence or absence of ambient light or sound, the state where a threshold ambient light or sound level has been exceeded, or a reading reflecting the actual level of ambient light or sound.
  • ECG sensor 980 or impedance sensor 985 may be dedicated electrodes for such sensors, or may be the electrodes from GSR sensors 825 multiplexed for appropriate measurements.
  • ECG sensor 980 and impedance sensor 985 are each coupled to A/D converter 915 .
  • PCB 860 further includes RF transceiver 990 , coupled to processing unit 900 , and antenna 995 for wirelessly transmitting and receiving data to and from wireless devices in proximity to sensor device 800 .
  • RF transceiver 990 and antenna 995 may be used for transmitting and receiving data to and from a device such as a treadmill being used by a wearer of sensor device 800 or a heart rate monitor worn by the wearer of sensor device 800 , or to upload and download data to and from a computing device such as a PDA or a PC.
  • RF transceiver 990 and antenna 995 may be used to transmit information to a feedback device such as a bone conductivity microphone worn by a fireman to let the fireman know if a condition that may threaten the fireman's safety, such as hydration level or fatigue level, has been sensed by sensor device 800 .
  • a feedback device such as a bone conductivity microphone worn by a fireman to let the fireman know if a condition that may threaten the fireman's safety, such as hydration level or fatigue level, has been sensed by sensor device 800 .
  • stand along sensor device 700 may be coupled to computing device 750 to enable data to be communicated therebetween.
  • RF transceiver 990 and antenna 995 may be used to couple sensor device 800 to a computing device such as computing device 750 shown in FIG. 21 .
  • Such a configuration would enable sensor device 800 to transmit data to and receive data from the computing device 750 , for example a computing device worn on the wrist.
  • the computing device could be used to enable a user to input data, which may then be stored therein or transmitted to sensor device 800 , and to display data, including data transmitted from sensor device 800 .
  • the configuration would also allow for computing tasks to be divided between sensor device 800 and computing device 750 , referred to herein as shared computing, as described in detail in connection with FIG. 21 .
  • PCB 860 may include proximity sensor 1000 which is coupled to processing unit 900 for sensing whether sensor device 800 is being worn on the body.
  • Proximity sensor 1000 may also be used as a way to automatically power on and off sensor device 800 .
  • Proximity sensor preferably comprises a capacitor, the electrical capacitance of which changes as sensor device 800 gets closer to the body.
  • PCB 860 may also include sound transducer 1005 , such as a ringer, coupled to processing unit 900 through driver 1010 .
  • Sensor device 800 may also be provided with sensors in addition to those shown in FIG. 27 , such as those taught by U.S. Pat. No. 5,853,005, the disclosure of which is incorporated herein by reference.
  • the '005 patent teaches a sound transducer coupled to a pad containing an acoustic transmission material. The pad and sound transducer may be used to sense acoustic signals generated by the body which in turn may be converted into signals representative of physiological parameters such as heart rate or respiration rate.
  • a sensing apparatus as taught by the '005 patent may be provided separate from sensor device 800 and be coupled, wired or wirelessly, to sensor device 800 .
  • the sound or acoustic transducer is preferably a piezoelectric, electret, or condenser-based hydrophone, similar to those used by the Navy in sonar applications, but can be any other type of waterproof pressure and motion sensing type of sensor.
  • the sensing apparatus as taught by the '005 patent is an example of what shall be referred to herein as a non-ECG heart parameter sensor, meaning that it has the following two qualities: (1) it does not need to make measurements across the torso using at least two contact separated by some distance; and (2) it does not measure electrical activity of the heart.
  • the sensing apparatus as taught by the '005 patent has been shown to be capable of detecting heart rate information and information relating to individual beats of the heart with high reliability under certain circumstances, depending primarily on factors including the proximity of the apparatus to the heart, the level of ambient noise, and motion related sound artifacts caused by the movement of the body. As a result, the sensing apparatus as taught by the '005 patent is most reliable when worn in an ambient environment with a low level of ambient noise and when the body is not moving.
  • sensor device 800 is able to improve the reliability and accuracy of an acoustic-based non-ECG heart parameter sensor 1012 such as the sensing apparatus as taught by the '005 patent that is incorporated therein or coupled thereto.
  • sensor device 800 is particularly suited to be worn on the upper arm.
  • the upper arm is a good location for a sensor device 800 having an acoustic-based non-ECG heart parameter sensor 1012 incorporated therein because it is near the heart and provides a space for sensor device that allows it to be unobtrusive and comfortable to wear.
  • ambient sound sensor shown at 975 in FIG.
  • the acoustic-based non-ECG heart parameter sensor 1012 may be used to filter out ambient noise from the signals detected by the acoustic-based non-ECG heart parameter sensor 1012 in order to isolate the sound signal originating from the body. Filtering of the signal produced by an acoustic-based non-ECG heart parameter sensor 1012 such as the sensing apparatus as taught by the '005 patent in this manner may be used both in the case where such an apparatus is incorporated in sensor device 800 and in the case where it is separated from but coupled to sensor device 800 as described above. Furthermore, the sound generated from the motion of the body that is not created by the heart can be accounted for and adjusted for through the use of a sensor or sensors that detect or that may be used to identify body sounds generated as a result of motion of the body, such as accelerometer 905 shown in FIGS.
  • accelerometer 905 may function as a footfall indicator. Accelerometer 905 may thus be used to filter or subtract out from the signal detected by the acoustic-based non-ECG heart parameter sensor 1012 signals related sound motion artifacts caused by the movement of the body such as by footfalls.
  • Sensor device 800 may also be used to put parameters around and provide a context for the readings made by a non-ECG heart parameter sensor 1012 so that inaccurate reading can be identified and compensated for.
  • sensor device 800 may be used to detect real time energy expenditure of the wearer as well as the type of activity in which the wearer is engaging, such as running or riding a bike.
  • the energy expenditure and activity type information can be used to provide a context in which the heart related parameters detected by the non-ECG heart parameter sensor 1012 can be assessed and possibly filtered.
  • sensor device 800 detects that a person is burning 13 calories per minute and is biking, and the non-ECG heart parameter sensor 1012 is indicating that the wearer's heart rate is 60 beats per minute, then it is highly likely that further filtration of the signal from the non-ECG heart parameter sensor 1012 is necessary.
  • non-ECG heart parameter sensing devices include, for example, those based on micro-power impulse radar technology, those based on the use of piezo-electric based strain gauges, and those based on plethysmography, which involves the measurement of changes in the size of a body part as modified by the circulation of blood in that part. It will be appreciated that the performance of these devices may also be enhanced through the use of data integration as described herein.
  • Another sensor that may be incorporated into the sensor device 800 measures the pressure with which sensor device 800 is held against the body of the wearer.
  • a sensor could be capacitive or resistive in nature.
  • One such instantiation places a piezo-resistive strain gauge on the back of the enclosure to measure the small deflection of the plastic as increasing force is applied. Data gathered from such a sensor can be used to compensate the readings of other sensors in sensor device 800 according to the readings of such a sensor.
  • switch 1015 is also coupled to button 1020 provided on housing 805 .
  • Button 1020 by activating switch 1015 , may be used to enter information into sensor device 800 , such as a time stamp to mark the occurrence of an event such taking medication.
  • button 1020 has a tactile, positive d-tent feedback when depressed, and a concave shape to prevent accidental depression.
  • flexible section 810 includes membrane 1022 that covers and seals button 1020 . In the embodiments shown in FIGS.
  • a similar membrane 1022 may be provided on flexible section 810 , and, preferably, also on housing 805 such that button 1020 is sealed when housing 805 is removed from flexible section 810 .
  • a hole may be provided in flexible section 810 exposing button 1020 and membrane 1022 when housing 805 is attached to flexible section 810 .
  • LCDs and/or LEDs 1025 coupled to processing unit 900 on PCB 860 are LCDs and/or LEDs 1025 for outputting information to the wearer.
  • FIG. 28 shows an alternate embodiment of sensor device 800 in which LCD 1025 is provided on a top face of housing 805 .
  • sensor device 800 may include a prior art electrochemical display that retains its ability to display information even when power is no longer being provided thereto.
  • Such a display is described in U.S. Pat. No. 6,368,287 B1, the disclosure of which is incorporated herein by reference, and includes a plurality of markers comprising a miniature heating element and a coating of heat sensitive material. When current is passed through one of the heating elements, it heats up, thereby inducing a change in the color of the coating material. The color change is permanent, even after the heating element cools down.
  • Such displays are relatively inexpensive and thus are well adapted for use in embodiments of sensor device 800 that are designed to be disposable, possibly single use, items.
  • Oscillator 1030 is provided on PCB 860 and supplies the system clock to processing unit 900 .
  • Reset circuit 1035 is coupled to processing unit 900 and enables processing unit to be reset to a standard initial setting.
  • non-volatile data storage device 1040 such as a FLASH memory chip, is provided for storing information collected and/or generated by sensor device 800 .
  • data storage device 1040 includes at least 128K of memory.
  • Non-volatile program storage device 1045 such as a FLASH ROM chip, is provided for storing the programs required to operate sensor device 800 .
  • a microprocessor with integral A/D converters, data storage, and program storage may be substituted for processing unit 900 , A/D converter 915 , data storage device 1040 and non-volatile memory 1045 .
  • a suitable example of such a microprocessor is the Texas Instruments Model MSP430 processor.
  • Any component forming a part of sensor device 800 that comes in contact with the wearer's skin should not, in a preferred embodiment, degrade in durometer, elasticity, color or other physical or chemical properties when exposed to skin oils, perspiration, deodorant, suntan oils or lotions, skin moisturizers, perfume or isopropyl alcohol.
  • such components preferably are hypoallergenic.
  • FIG. 29 shows an alternate embodiment of PCB 860 in which rechargeable battery 950 , voltage regulator 955 , recharger 960 and USB cable 965 have been replaced by disposable AAA battery 1050 and boost converter 1055 .
  • Boost converter 1055 uses an inductor to boost the voltage of AAA battery 1050 to the 3.0-3.3 V required to run the electronics on PCB 860 .
  • a suitable boost converter 1055 is the model MAX1724 sold by Maxim Integrated Products, Inc. of Sunnydale, Calif.
  • housing 805 is removably attached to flexible section 810 .
  • housing 805 is provided with groove 1060 along with outer edge thereof which is adapted to receive therein tongue 1065 provided on the bottom side of flexible section 810 for securely but removably attaching housing 805 to flexible section 810 .
  • tongue 1065 provided on the bottom side of flexible section 810 for securely but removably attaching housing 805 to flexible section 810 .
  • housing 805 may thus be readily popped in and out of flexible section 810 .
  • Such a configuration enables housing 805 to be readily attached to multiple flexible sections having sizes and shapes that are different than flexible section 810 as long as the flexible section includes a tongue similar to tongue 1065 .
  • Such alternate flexible sections may be sized and shaped to fit on particular parts of the body, such as the calf or thigh, and may comprise a garment such as a shirt having the tongue or tongues located in places of interest, such as the upper arm or upper left chest, the latter enabling housing 805 to be positioned over the heart of the wearer.
  • Co-pending U.S. application Ser. No. 09/419,600 owned by the assignee of the present application and incorporated herein by reference, identifies several locations on the body that are particularly well adapted to receive particularly sized and shaped sensor devices so as to avoid interference with the motion and flexibility of the body.
  • groove 1060 and tongue 1065 may be swapped such that groove 1060 is provided in flexible section 810 and tongue 1065 is provided on housing 805 .
  • multiple alternative structures exist for securely but removably attaching housing 805 to flexible section 810 .
  • These alternative structures include, without limitation, temporary adhesives, screws, a tight fit between having 805 and flexible section 810 that holds the two together by friction, magnets provided in each of housing 805 and flexible section 810 , well-known snaps and snapping mechanisms, a threaded portion provided on housing 805 adapted to be received by threads in flexible section 810 , an O-ring or similar elastic band adapted to fit around a portion of flexible section 810 and into a groove provided in housing 805 when flexible section 810 is placed over housing 805 , or merely pressure when housing 805 is placed on the body and flexible section 810 is placed thereover and attached to the body such as by strap 811 .
  • temporary adhesives screws
  • a tight fit between having 805 and flexible section 810 that holds the two together by friction magnets provided in each of housing 805 and flexible section 810
  • well-known snaps and snapping mechanisms well-known snaps and snapping mechanisms
  • a threaded portion provided on housing 805 adapted to be received by threads in flexible section 810
  • flexible section 810 comprises and elastic or similar band that is adapted to fit into a groove 1062 provided in housing 805 .
  • Housing 805 and flexible section 810 may then be placed on the body and held in place by strap 811 or the like inserted through gaps 1064 between housing 805 and flexible section 810 .
  • FIG. 33 shows an alternate embodiment of sensor device 800 as shown in FIGS. 30 and 31 that is adapted to automatically adjust or alter the operating parameters of sensor device 800 , such as its functionality, settings or capabilities, depending on the particular flexible section to which housing 805 is attached.
  • a parameter such as energy expenditure
  • the calculation of a parameter, such as energy expenditure may depend on information that is particular each individual, such as age, height, weight, and sex. Rather than having each individual enter that information in sensor device 800 each time he or she wants to wear the device, each individual that is going to wear the device could enter the information once and have their own flexible section that causes sensor device to make measurements based on his or her particular information.
  • the memory in sensor device 800 for storage of user data may be divided into several compartments, one for each user, so as to avoid co-mingling of user data.
  • Sensor device 800 may be adapted to alter where collected data is stored depending on the particular flexible section that is being used.
  • sensor device 800 may be calibrated and recalibrated differently over time depending on the particular flexible section to which housing 805 is attached as it learns about each particular wearer and his or her habits, demographics and/or activities.
  • housing 805 is provided with first magnetic switch 1070 and second magnetic switch 1075 , each on PCB 860 .
  • magnet 1080 Provided on or inside flexible section 810 , such as by an insert molding technique, is magnet 1080 .
  • Magnet 1080 is positioned on or inside flexible section 810 such that it aligns with and thereby activates one of first magnetic switch 1080 and second magnetic switch 1075 when housing 805 is attached to flexible section 810 .
  • second magnetic switch 1075 will be activated.
  • a second flexible section 810 similar to flexible section 810 shown in FIG. 33 will also be provided, the difference being that the magnet 1080 provided therewith will be positioned such that first magnetic switch 1070 is activated when housing 805 , the same housing 805 shown in FIG.
  • Housing 805 and in particular processing unit 900 , may be programmed to alter its functionality, settings or capabilities depending on which one of first magnetic switch 1070 and second magnetic switch 1075 is activated, i.e., which particular flexible section 810 is being used.
  • housing 805 may be programmed to operate with functionality, settings or capabilities particular to the husband when first magnetic switch 1070 is activated, and with functionality, settings or capabilities particular to the wife when second magnetic switch 1075 is activated. Although only two magnetic switches are shown in FIG.
  • multiple magnetic switches and multiple flexible sections may be used to allow sensor device 800 to be programmed for multiple wearers, such as an entire family, with each family member having his or her own flexible section.
  • multiple flexible sections may be provided that are adapted to be worn on different parts of the body, each having a magnet placed in a different location.
  • Housing 805 may then be programmed to have functionality, settings or capabilities particular to the type of sensing to be done on each different part of the body, with magnetic switches placed so as to be activated when housing 805 is attached to the appropriate flexible section.
  • Sensor device 800 according to this embodiment is thus a “smart” device.
  • first and second magnetic switches 1070 and 1075 and magnet 1080 may be used to provide the functionality described in connection with FIG. 33 .
  • Such alternatives include, without limitation, mechanical switches provided in housing 805 that are activated by a protruding portion, such as a pin, provided at a particular location on flexible section 810 , optical switches comprising an array of light sensors provided in housing 805 that are activated when the surrounding light is blocked, reflected or filtered in a particular way with one or more translucent sections and a single opaque, reflective or filtering section being selectively provided on flexible section 810 at particular locations, the translucent sections not activating the corresponding optical switches and the opaque, reflective or filtering section activating the corresponding optical switch, electronic switches provided in housing 805 activated by a conductor provided in particular locations in flexible section 810 .
  • housing 805 may be provided with multiple switches and each flexible section 810 may be provided with one or more switch activators positioned to activate certain selected switches.
  • the operating parameters of housing 805 would in this embodiment be adapted to change depending upon the particular set of one or more switches that are activated. This embodiment thus employs an encoding scheme to alter the operating parameters of housing 805 depending on which flexible section 810 is used.
  • housing 805 may be provided with a single switch adapted to alter the operating parameters of housing 805 depending upon the way in which or state in which it is activated, such as by the properties of the switch activators.
  • the switch may be a magnetic switch that is activated a plurality of different ways depending upon the magnetic level or strength of the magnet provided in each flexible section 810 .
  • a plurality of flexible sections 810 could then be provided, each having a magnet of a different strength.
  • any particular flexible section 810 may be provided with a plurality of magnets having different strengths with each magnet being able to activate the switch in housing 805 in a different manner.
  • Such a flexible section 810 would be able to selectively trigger different operating parameters of housing 805 , such as by rotating a portion of flexible wing 805 to align a particular magnet with the switch.
  • the switch could be an electrical switch and the switch activators could be conductors having different resistances. The switch would, in this embodiment, be activated in different ways depending on the measured resistance of the switch activator that closes the circuit.
  • housing 805 may be provided with adhesive material 1085 on a back side thereof to enable housing 805 to be removably attached to selected portions of the body, such as the upper left chest over the heart, without flexible section 810 .
  • Adhesive material 1085 may be any well-known adhesive that would securely attach housing 805 to the body and enable it to be worn for a period of time, but that would also readily enable housing 805 to be removed from the body after use.
  • Adhesive material 1085 may comprise, for example, a double sided adhesive foam backing that would allow for comfortable attachment of housing 805 to the body.
  • housing 805 may be made of a well-known flexible plastic film or the like, such as that taught in U.S. Pat. No. 6,368,287 B1, the disclosure of which is incorporated herein by reference, that would, due to low cost, enable sensor device 800 to be disposable.
  • a disposable sensor device may also include an electrochemical display described above to enhance its disposability.
  • sensor device 800 would include one or more sensors described herein for sensing heart related parameters such as heart rate, beat-to-beat or interbeat variability, ECG or EKG, pulse oximetry, heart sounds, such as detected with a microphone, and mechanical action of the heart, such as detected with ultrasound or micro-pulse radar devices.
  • FIGS. 35A-H and 36 A-H illustrate aspects of the present invention relating to the ergonomic design of sensor device 800 .
  • a housing 1100 of a prior art sensor device having a rectangular cross-section is shown resting on the body 1110 of a wearer of the prior art sensor device.
  • body 1110 flexes and forms a concavity, as may happen many times each minute on various parts of the body or for extended periods of time depending on the position of various body parties during particular activities, a significant portion of housing 1100 is caused to be removed from body 1110 .
  • housing 1100 When housing 1100 is caused to be removed in this manner, the ability of the prior art sensor device to accurately make measurements and collect data will be jeopardized, especially for any readings to be taken near the center of the cross-section indicated by the arrows in FIG. 35B .
  • FIGS. 35C-H illustrate a cross-section of housing 805 of sensor device 800 taken along lines C-C shown in FIG. 23 according to various aspects of the present invention.
  • the cross-section shown in FIGS. 35C-H is taken near the middle portion of housing 805 shown in FIG. 23 between GSR sensors 825 .
  • bottom surface 1115 of housing 805 is provided with a generally convex shape such that, when body 1110 flexes and forms a concavity, a substantial portion of bottom surface 1115 of housing 805 remains in contact with body 1110 by fitting into the concavity.
  • FIG. 35C illustrate a cross-section of housing 805 of sensor device 800 taken along lines C-C shown in FIG. 23 according to various aspects of the present invention.
  • the cross-section shown in FIGS. 35C-H is taken near the middle portion of housing 805 shown in FIG. 23 between GSR sensors 825 .
  • bottom surface 1115 of housing 805 is provided with a generally convex shape such that, when body 1110
  • FIG. 35G wherein the lateral ends 1120 A and 1120 B of housing 805 are provided with radiused portions 1125 A and 1125 B, respectively adjacent to and including opposite lateral ends of bottom surface 1115 .
  • Radiused portions 1125 A and 1125 B enable housing 805 to sit lower and fit into the concavity created when body 1110 flexes to an extreme degree.
  • radiused portions 1125 A and 1125 B provide for more comfortable wear as they eliminate sharp edges 1130 A and 1130 B shown in FIG. 35F that contact body 1110 .
  • FIG. 35H shows how body 1110 will tend to conform to the shape of housing 805 due at least in part to the viscosity of the skin when body 1110 is in a relaxed condition.
  • FIG. 36A shows a cross-section of housing 1100 of prior art sensor device taken along a line perpendicular to the line on which the cross-section shown in FIGS. 35A and 35B was taken.
  • FIG. 36A when housing 1100 is placed on a convex portion of body 1110 , significant portions of housing 1100 , specifically the lateral ends thereof indicated by the arrows in FIG. 36A , are not in contact body 1110 .
  • FIGS. 36B-H show a cross-section of housing 805 according to various aspects of the present invention taken along lines D-D shown in FIG. 23 . As seen in FIG.
  • bottom surface 1115 of housing 805 is provided with a generally concave shape adapted to receive the convex portion of body 1110 .
  • lateral ends 1130 A and 1130 B may be provided with radiused portions 1135 A and 1135 B adjacent to and including opposite lateral ends of bottom surface 1115 , which allow housing 805 to rest in closer contact with body 1110 , even when body 1110 flexes to an extreme degree, i.e., more than the anticipated maximum that it was designed for, and remove sharp edges 1140 A and 1140 B shown in FIG. 36B , providing for more comfortable wear.
  • body 1110 will tend to conform to the shape of housing 805 when body 1110 is in a relaxed condition.
  • FIGS. 36E and 36F good contact with body 1110 is maintained at the points illustrated by the arrows when body 1110 is flexed in a manner that decreases the convex shape thereof or that creates a convexity therein.
  • sensors or sensing elements at the points indicated by the arrows because those points will tend to remain in contact with body 1110 .
  • FIGS. 36G and 36H showing, for example, heat flux skin interface component 835 and skin temperature skin interface component 840 placed at the points indicated by the arrows, illustrate this point. As seen in FIGS. 36G and 36H , there is more than point contact between body 1110 and skin temperature skin interface component 840 .
  • FIG. 37 is an isometric view of housing 805 according to an embodiment of the present invention in which bottom surface 1115 has both the generally convex shape shown in FIGS. 35C-H and the generally concave shape shown in FIGS. 36B-H .
  • bottom surface 1115 which is the inner surface of housing 805 for mounting adjacent to the body of the wearer, includes a longitudinal axis 1141 and a transverse axis 1142 .
  • Bottom surface 1115 has a generally concave shape having an axis of concavity 1143 that is coincident with longitudinal axis 1141 , meaning that it runs in a first direction from first lateral end 1144 of inner surface 1115 to second lateral end 1145 of inner surface 1115 .
  • Bottom surface 1115 has a generally convex shape having an axis of convexity 1146 that is coincident with transverse axis 1142 , meaning that it runs in a second direction from third lateral end 1147 of inner surface 1115 to fourth lateral end 1148 of inner surface 1115 .
  • first and second directions, and longitudinal axis 1141 and transverse axis 1142 are generally perpendicular to one another.
  • housing 805 having a flat top surface 1150 and flat lateral ends 1130 A and 1130 B may tend to be jostled and bumped by object 1155 , such as a wall or door or the corner or edge of a drawer, cabinet or desk, thereby moving housing 805 on body 1110 because such flat surfaces are not well adapted to deflect object 1155 . Movement of housing 805 on body 1110 will detrimentally effect the ability of sensor device 800 to accurately make measurements and collect data.
  • FIGS. 39A-G illustrate various aspects of the present invention that are adapted to deflect object 1155 and substantially prevent movement of housing 805 on body 1110 . In addition, the forms shown in FIGS.
  • housing 805 may have tapered sides 1160 A and 1160 B such that the width of housing 805 decreases in the direction from bottom surface 1115 to top surface 1150 .
  • top surface 1150 of housing 805 may have a convex shape.
  • housing 805 may be provided with radiused portions 1165 A and 1165 B that meet with radiused portions 1135 A and 1135 B such that the lateral ends of housing 805 have a substantially semicircular shape. As shown in FIG.
  • housing 805 may have both tapered sides 1160 A and 1160 B and a top surface 1150 with a convex shape.
  • FIG. 39E is a modification of housing 805 shown in FIG. 39E in which the points 1170 A and 1170 B where radiused portions 1135 A and 1135 B meet tapered sides 1160 A and 1160 B, respectively, are themselves radiused.
  • FIG. 39F is a variation of housing 805 shown in FIG. 39E having elongated tapered sides 1160 A and 1160 B.
  • FIG. 39G shows how the ability of housing 805 , such as the embodiment shown in FIG. 39E , to deflect object 1155 may be enhanced by the addition of flexible section 810 having a substantially convex outer surface.
  • an air channel is provided between flexible section 810 and body 1110 to allow for heat to flow away from body 1110 .
  • FIG. 40 a top plan view of a data input and output, abbreviated I/O, device 1200 is shown.
  • FIG. 41 is a partial cross-sectional view of I/O device 1200 taken along lines A-A in FIG. 40 .
  • I/O device 1200 is in electronic communication with sensor device 1201 shown in FIG. 40 through communications connection 1230 , which may comprise a wired connection or a wireless connection as described elsewhere herein.
  • Sensor device 1201 detects human physiological and/or contextual parameters, and may be any one of sensor device 400 shown in FIGS. 12-17 , stand alone sensor device 700 shown in FIG. 21 , or sensor device 800 shown in FIGS. 22-26 .
  • I/O device 1200 includes housing 1205 and LCD 1210 attached to housing 1205 .
  • Various alternative display devices may be used instead of an LCD for displaying information, and such displaying of information and display devices are not limited to visual display devices, but may include various tactile or audible displays as described elsewhere herein.
  • LCD 1210 may display information relating to the human physiological and/or contextual parameters detected by sensor device 1201 that is transmitted to I/O device by sensor device 1201 over communications connection 1230 .
  • I/O device 1200 may display the same information and give the same feedback that any of the previously described sensor devices.
  • I/O device 1200 also includes button 1215 and dial 1220 .
  • Dial 1220 is moveably mounted within groove 1225 provided in housing 1205 such that dial 1220 is free to rotate about the top surface of housing 1205 in both clockwise and counter-clockwise directions within groove 1225 .
  • Button 1215 and dial 1220 may be used to enter or input information into I/O device 1200 for subsequent storage in and use by I/O device 1200 and/or transmission to sensor device 1201 .
  • LCD 1210 may also display information that is entered or input into I/O device 1200 , or information generated from such entered or input information.
  • I/O device 1200 may take on any number of forms, including, but not limited to, a watch-like form adapted to be worn on the wrist, a form that may be clipped to or integrated within a bag or clothing, or otherwise easily carried in a pocket or a bag, a form similar to well known commercially available pagers or PDAs, a form that may be removably, such as magnetically, attached to sensor device 1201 or another apparatus such as a car dashboard, or the form of a key fob.
  • I/O device 1200 could also be a separate electronic device such as a weight scale, in which case the weight scale may comprise a sensor that communicates information to sensor device 1201 .
  • I/O device 1200 may perform the manual data entry functions indicated by and described in connection with reference numeral 715 in FIG. 21 .
  • I/O device 1200 may be the computing device 750 shown in FIG. 21 .
  • this configuration provides several possibilities for data collection, generation and display.
  • sensor device 1201 as described in connection with stand alone sensor device 700 shown in FIG. 21 and the subject of co-pending application Ser. No.
  • 09/923,181 owned by the assignee hereof may collect and/or generate data indicative of various physiological and/or contextual parameters of the user, data manually input by the user, such as by using button 1215 and dial 1220 , and/or data input as a result of device-to-device interaction shown at 720 and 725 in FIG. 21 .
  • Sensor device 1201 may then generate derived data and analytical status data which may be transmitted to I/O device 1200 for display.
  • sensor device 1201 may be programmed to generate derived data, which, along with the data collected by sensor device 1201 , may be transmitted to I/O device 1200 , and I/O device 1200 may be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on the data indicative of one or more physiological and/or contextual parameters, the data derived therefrom, the data manually input by the user and/or the data input as a result of device-to-device interaction.
  • the derived data and the analytical status data so created may be displayed to the user with LCD 1210 .
  • the data indicative of various physiological and/or contextual parameters, the manually input data, and/or the data input as a result of device-to-device interaction may be transmitted to I/O device 1200 , and I/O device 1200 may be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create derived data and/or analytical status data from the foregoing sources of data, all of which may then be displayed to the user with LCD 1210 .
  • I/O device 1200 may also use the information input into it, such as by using button 1215 and dial 1220 , to create derived data and/or analytical status data, or may use data sensed by a sensor provided on I/O device 1200 as described elsewhere herein for the same purpose.
  • I/O device 1200 may be in electronic communication with and transmit data to still another device, such as a computing device or an earpiece or tactile communications device worn by a firefighter or other first responder or a runner.
  • I/O device 1200 acts as a relay of information.
  • the data may indicate an important physiological state, such as level of hydration, as determined by sensor device 1201 , and in the case of a runner, the data may indicate caloric expenditure or distance traveled.
  • buttons and dials are commercially available from Duraswitch Industries, Inc. located in Mesa, Ariz. under the names PUSHGATETM pushbutton and thiNcoderTM ROTOR, respectively.
  • PUSHGATETM pushbutton and thiNcoderTM ROTOR, respectively.
  • the '096 patent describes a rotary switch including a bottom substrate layer and a top membrane layer separated by a non-conductive spacer.
  • the internal surface of the membrane layer carries a set of electrodes which define the spaced contacts of at least one electrical switch.
  • the membrane layer also carries an electrically conductive metallic armature, in the form of a flat circular disc, that is received in an annular opening provided in the spacer.
  • the switch further includes a rotatable actuating knob that carries a coupler in its underside.
  • the coupler is a magnet which may be molded or otherwise entrapped in the knob. The coupler forces the armature against the internal surface of the membrane by means of the magnetic field originating from the coupler.
  • the coupler functions both to create the switch contact pressure as well as to drag the armature from one contact to another when a user rotates the knob.
  • the coupler rotates with the knob and, by virtue of the magnetic coupling between the coupler and the armature, the armature rotates with the knob as well.
  • the armature rotates, it moves into and out of shorting contact with the contact or contacts on the membrane.
  • the armature is in shorting contact with a contact, the corresponding switch is closed.
  • various encoding schemes are known for converting the actuation of one or more switches into information that may be used by a processor or other device coupled to the switch.
  • U.S. Pat. No. 6,225,980 B1 the disclosure of which is incorporated herein by reference, describes a rotary dial input device for portable computers including an insulating member overlying a printed circuit board, a spine rigidly connected to the printed circuit board, a rotatable dial, a switch ring carried by the dial and a snap ring rigidly connected to the dial.
  • the dial, the switch ring and the snap ring rotate together around the periphery of the spine.
  • the switch ring carries at least two magnets located 1800 apart, and a plurality of Hall effect sensors are mounted on the printed circuit board and lie just under the surface of the insulating material.
  • the position of the magnets relative to any of the Hall effect sensors may be used to generate an output signal based on the position of the dial.
  • the '980 patent also describes a spring-based mechanism for enabling the dial to be moved between first and second vertical positions, wherein the springs biases the dial toward the first vertical position and downward pressure is required to move the dial toward the second vertical position.
  • An additional magnet is included on a flexible arm carried by the switch ring. Upon movement of the dial from the first vertical position to the second vertical position, the magnet is moved in a direction toward another Hall effect sensor mounted on the printed circuit board. This Hall effect sensor produces a signal whenever the dial is depressed, which signal may be used to control the associated portable computer.
  • the '980 patent further states that a momentary switch may be provided, such as in the center of the dial, for producing another computer control signal.
  • the multiple switch rotary dial input device described therein that generates signals from the rotation of the dial and the depression of the dial and/or a momentary switch, may be used in place of conventional mouse input devices as a mechanism for controlling and entering information into a computer.
  • the '980 patent states that the dial may be rotated to scroll through a list of items appearing on a display device of the computer, and the dial or monetary switch may be depressed to select an identified item. In the preferred embodiment, the dial cannot be depressed while it is being rotated and vice versa.
  • U.S. Pat. No. 5,959,611 the disclosure of which is incorporated herein by reference, describes a portable computer system including a CPU, an input interface, a display and an input device, wherein the input device comprises a rotary switch or dial and three on/off switches.
  • the rotary switch may be a 16 position, binary coded rotary switch which outputs a four-digit gray code representing the position of the switch.
  • a gray code is a special binary encoding scheme in which adjacent numbers or positions have codes that differ in only one bit position.
  • the on/of switches may be momentary push button switches positioned so as to surround the rotary switch.
  • the input interface translates the rotational movement of the rotary switch and the depressions of the on/off switches into data appropriately formatted for the CPU. Specifically, four conductors carry a first input signal produced by the rotary switch indicative of its position, and each of three separate conductors carry second input signals generated by depression of each of the on/off switches.
  • the '611 patent states that the first input signal may be used to sequentially identify, through rotation of the dial, information appearing on the display, and the second input signals may be used to select an identified piece of information.
  • the input interface may be implemented using a PIC microcontroller that is programmed to encode the first and second input signals into, for example, an eight bit byte transmitted to the CPU consisting of one byte for each switch depression and every turn of the rotary switch.
  • Such an eight bit byte consists of six significant bits.
  • Bits 5 and 6 represent the rotary switch turning clockwise and counterclockwise, respectively. If one of those bits is set to one, thereby indicating either a clockwise or counter-clockwise rotation, then bits 1 through 4 represent the gray code input signal. If both of those bits are set to zero, then bits 1 through 4 represent the depression of one of four possible on/off switches, only three of which are actually in use in the device described in the '611 patent. In other words, if any of bits 1 through 4 is set to one, then the corresponding switch was just depressed.
  • a user can sequentially identify or step through hot spots provided on the display by rotating the rotary switch in a clockwise direction. Rotation of the rotary switch in a counter-clockwise direction enables the user to step through the hot spots in the reverse order.
  • the desired hot spot is identified, such as by being made bold or otherwise highlighted, any one of the on/off switches may be depressed to select the identified hot spot, thereby causing the computer to perform an action.
  • the input device described in the '611 patent may be used to input information into and control a computer much like a conventional mouse.
  • FIG. 42 is a reproduction of FIG. 5 of the '611 patent and is a block diagram illustrating the operation of the software that enables the input device to identify and select hot spots.
  • a screen is drawn or redrawn at step 6200 .
  • process control proceeds to step 6200 in which the software awaits input from the user, i.e., the eight bit byte of information provided to the CPU from the input interface.
  • step 6600 determines if a selection has been made, i.e., whether of the of on/off switches has been depressed. If none of the switches has been depressed, then the input must be rotation of the rotary switch and process control proceeds with step 6800 .
  • step 6800 a determination is made as to whether the rotary switch has been rotated in a clockwise direction. If so, process control proceeds with step 7200 wherein the next hot spot becomes the active hot spot. If the rotary switch has been rotated in a counter-clockwise direction, process control proceeds with step 7000 in which the previous hot spot becomes the current hot spot. After either step 7000 or 7200 , process control returns to step 6400 to await additional user input.
  • step 6600 If at step 6600 a selection was made, process control proceeds with step 7400 to determine if a system command had been invoked. If not, the type of hot spot is checked at step 7600 , the relevant code is executed, and the screen is redrawn at step 6200 . If, on the other hand, a system command is invoked at step 7400 , at step 7800 an execution of the next screen or previous screen, as appropriate, is performed and the appropriate screen is redrawn at step 6200 . Thereafter, process control returns to step 6400 to await additional user input. In this manner, the rotation of the rotary switch coupled with operation of the push-button switches controls the hot spots and ultimately controls the information displayed on the display and the actions taken by the computer.
  • the process illustrated in FIG. 42 can be implemented in software in a variety of ways.
  • dial 1220 may be used to step through or toggle between or among various input or command or control possibilities presented on LCD 1210 by selectively rotating dial 1220 in either the clockwise or counter-clockwise direction. As dial 1220 is rotated, the various input or command or control possibilities are highlighted. Highlighted items may be selected and a corresponding action commenced by pressing button 1215 , or alternatively dial 1220 itself, in which case dial 1220 acts as both a dial and a button as those terms are used herein such that the device in question would be considered to have both a dial and a button.
  • dial 1220 is the knob on the side of a watch that rotates about the side external surface of the watch.
  • buttons such as an up button and a down button or left and right buttons, may be used to step through or toggle between or among various input or command or possibilities presented on LCD 1210 .
  • button 1215 may still be used to select and commence a highlighted items.
  • I/O device 1200 may be provided with voice recognition software and voice commands may be used to step through or toggle between or among various input or command or possibilities presented on LCD 1210 . Voice commands may also be used to select and commence a highlighted items.
  • voice commands in combination with voice recognition software may be used to directly enter information, such as nutrition information described below, into I/O device 1200 .
  • FIGS. 43A-F an embodiment of the present invention including I/O device 1200 is shown in which energy related data for an individual is collected or generated by I/O device 1200 and sensor device 1201 and displayed by I/O device 1200 on LCD 1210 .
  • the energy related data may include calories consumed and calories burned by the individual over specific time periods such as a day, a week or a month.
  • this data is presented in a format that provides a comparison to a predetermined goal for each value. The example shown in FIG.
  • 43A shows that a daily goal of 2000 calories consumed was set by the individual and that the individual has consumed 1,483 calories on the day in question, and that a daily goal of 2,400 calories burned was set by the individual and that the individual has burned 2,750 calories on the day in question.
  • energy balance in which the amount of calories consumed by the individual is compared to the amount of calories expended or burned by the individual for daily, weekly or monthly periods. It will be appreciated that the individual may toggle between the goal based and energy balance formats just described, and among the various time periods within each, by rotating dial 1220 and, in one embodiment, also pressing button 1215 .
  • LCD 1210 is shown displaying data in the goal based format for a daily time period.
  • LCD 1210 may be caused to display the data in the goal based format for a weekly or monthly period by progressively rotating dial 1220 in the clockwise direction.
  • LCD 1210 may be caused to switch from displaying data in the goal based format shown in FIG. 43A to displaying data in the energy balance format for the various time periods by progressively rotating dial 1220 in the counter-clockwise direction.
  • the calories burned data that is displayed by I/O device 1200 may, according to one embodiment of the present invention, be generated by sensor device 1201 from the physiological and/or contextual parameters it detects and thereafter transmitted to I/O device 1200 for storage, use in appropriate calculations and/or display.
  • the calories burned data may also be generated using data that is input by the user in addition to the detected parameters.
  • the caloric consumption data that is displayed by I/O device 1200 may, according to one embodiment of the present invention, be generated, preferably by I/O device 1200 but also by sensor device 1201 , from data input into I/O device 1200 by the individual relating to foods consumed (as described elsewhere herein, caloric consumption data may also be generated using various detected parameters in addition to information that is input manually).
  • I/O device 1200 may be provided with access to a user accessible database of foods and corresponding caloric value.
  • a database may be provided as part of I/O device 1200 itself, as in the case of the preferred embodiment of the present invention, or I/O device 1200 may be able to access a database stored and maintained on a computing device located separately from the I/O device such as through short or long distance wireless or wired communications.
  • LCD 1210 is shown displaying an ENTER NUTRITION menu screen that may be accessible from, for example, a main menu screen presented on LCD 1210 using dial 1220 and button 1215 .
  • I/O device 1200 presents a list on LCD 1210 of foods that match the entered search information. The individual may then select the appropriate food by rotating dial 1220 and pressing button 1215 . When this is done, the corresponding caloric information may be displayed to the user on LCD 1210 and will be stored by I/O device 1200 as part of the caloric consumption data for that day.
  • the database may include several sub-entries for each food that correspond to particular serving sizes, such as a 3 oz. slice of pie or a 6 oz. piece of chicken, and the appropriate caloric value associated therewith. As will be appreciated by one of skill in the art, these sub-entries may be presented to the user and selected using dial 1220 and button 1215 in the manner described above. Referring again to FIG.
  • I/O device may also be used to store a list of favorite foods that are consumed frequently.
  • FAVORITE FOODS line from the Enter Nutrition menu screen provided on LCD 1210 and subsequently selecting the appropriate favorite food, both done by using dial 1220 and button 1215 , an individual eliminates the need to search through the database as described above.
  • an individual may add a custom food and associated caloric value to the food database using dial 1220 and button 1215 by selecting the ADD CUSTOM FOOD line from this Enter Nutrition menu screen provided on LCD 1210 and using a subsequently provided alpha-numeric entry screen similar to that shown in FIG. 43E to enter the food name and caloric information. Once entered, this custom food will be accessible from the food database.
  • the information displayed on LCD 1210 may be shown in list menu or serial menu format.
  • FIGS. 43D-F illustrate the use of a database of food information according to one embodiment of the present invention
  • the database could store a number of activities, such as walking, running or biking for a particular time period, and the caloric expenditure associated with each.
  • I/O device 1200 would enable an individual to input and track his or her caloric expenditure over a period of time.
  • I/O device 1200 is not limited to receiving and displaying information relating to caloric consumption and expenditure as shown in FIGS. 43A-F . Instead, I/O device may receive and display many different types of information from one or both of sensor device 1201 and the user, including, for example, information relating to sleep states and patterns.
  • a single-dimensional point system the user may select from a 7 point scale, where each point value corresponds to a rough approximation of the relative size of the meal in relation to the user's normal sized meal.
  • a categorical system the user may select from the set ⁇ tiny, small, medium, large, and super-size ⁇ when describing a meal.
  • An example of a multi-dimensional categorical system is the grid system described below.
  • the users are asked to score each meal (including snacks) according to the choice of scoring system.
  • the user's classification of the meal as identified by a classification identifier chosen by the user, is used as an input to an algorithm that estimates the caloric content of the meal.
  • the algorithm that does this calculation may take other factors into consideration, including, but not limited to, the time of day, the day of the week, the season, whether the day is a holiday, the user's past meal habits, the raw or derived values from a body monitoring product such as sensor device 1201 , demographic information, and trends in the user's reporting of data.
  • the algorithm may be a simple look-up table where each classification identifier is associated with a caloric amount, but can be more complicated as well.
  • an alternate interface 1250 displayed on LCD 1210 for entering nutrition information into I/O device 1200 is shown which simplifies user interaction.
  • users are provided with a two-dimensional grid-based system based on grid 1255 and are asked to rate each meal, including snacks, according to a grid system based on the size of the meal or snack, shown on the horizontal axis of grid 1255 , and the estimated caloric density of the meal or snack (essentially the fat content), shown on the vertical axis of grid 1255 .
  • the grid squares are then translated into caloric estimates (or caloric estimate ranges) using any of a variety of algorithms.
  • the grid squares correspond directly to caloric estimates via a lookup table derived from aggregate population statistics.
  • the corresponding caloric estimates are based on a weighted combination of a user's own previous data and aggregate population statistics. The user may answer a pair of questions instead of directly choosing a grid square. The pair of questions first may ask about the size of the meal, and then may ask about the caloric density.
  • FIG. 43I shows a scatter plot between the estimates of the caloric content based on the present invention and those computed from the full diet diary entries for one of the subjects in the in-house study, and FIG.
  • 43J shows the relationship between the estimates of the caloric content based on the present invention and those computed from the full diet diary entries for the three-day.
  • the correlation between the estimates of the in-house study and the diet diary caloric totals was 0.80, and the estimates of the three-day study and the diet diary caloric totals was 0.57, without any normalization by each subject's basal metabolic rate.
  • This data taken with the most simple of the embodiments of the system, strongly supports the premise that diet recording using a quick entry system can result in reasonably accurate estimates of a user's daily caloric intake.
  • a further alternate interface 1250 displayed on LCD 1210 for entering nutrition information into I/O device 1200 is shown which simplifies user interaction.
  • users are provided with a point system based on grid 1255 and are asked to score each meal, including snacks, according to a point system based on the size of the meal (including snacks), shown on the horizontal axis of grid 1255 , and the estimated caloric density for the meal (including or snacks), shown on the vertical axis of grid 1255 .
  • the points act as categories enabling the user to classify each meal, including any snacks, and thereby associate a caloric amount with the meal. Users may also be given a baseline size and calorie value to be associated with each point level.
  • a 1 may be set to be a meal that is the size of a fist having an estimated calorie value of 300-500 calories
  • a 2 may be set to be a meal that is either the size of a fist having an estimated calorie value of 500-700 calories, or the size of a fist and a half with a calorie value of 300-500 calories, and so on, with a 7 being a super-size meal that exceeds any of the provided levels.
  • the meal score may further be weighted, by multiplying the score by a weighting factor, depending on whether it is breakfast, lunch, dinner or a snack.
  • the user can use dial 1220 , or alternatively one or more buttons or voice commands, to toggle among the scores or points shown in grid 1255 and button 1215 to select a score or point level.
  • Each point level has associated therewith a caloric value or amount, which may be a range of calories, that is saved for the meal in question.
  • the associated caloric amounts may be a generic values designed to suit the public at large, or may be specific values tailored to particular individuals. It will be appreciated that, depending on the grid 1255 , the user, in selecting a point level, may actually be making two selections, one based on the horizontal axis of the grid (size of meal) and the other based on the vertical axis of the grid (caloric density of the meal).
  • the I/O device 1200 is programmed to adjust its settings over time based on information that is collected. For example, if a user begins a week weighing 200 pounds and at the end of the week should weigh 197 pounds based on the input nutrition and other information, but instead actually weighs 202 pounds, the problem could be that what the user thinks is a 1 point meal is actually a 2 point meal. To account for this problem, I/O device 1200 can, over time learn and adjust or calibrate its settings and how it does its calculations to personalize itself for the user by, for example, increasing the number of calories associated with a user's classification. This learning process thus increases the accuracy of I/O device 1200 .
  • One method for implementing this automatic calibration is to use Bayesian statistics and use an initial prior for the caloric value of the classifications based on aggregate user statistics and then to train it for the given user over time as data is entered into the system.
  • the system can allow the wearer to input both simplified dietary information (such as the grids shown in FIGS. 43G and H) and full dietary information about the meals that are eaten.
  • the caloric amounts from the full dietary information can easily be calculated and used to train the caloric estimates for each category.
  • I/O device learns, adjusts or calibrates it may also modify the goals of the user and the program he or she is following.
  • I/O device 1200 can take the information it has accumulated over time and provide information automatically for a user. For example, if a user forgets to enter a lunch value, I/O device may be programmed to enter the average of a predetermined number of, such as the last ten or even all, lunch values for the missing lunch. This may be done automatically, or only after prompting the user for verification of the values and authorization to do so. Alternatively, I/O device may fill in such gaps by matching that days routine to a previous day's routine, and using the lunch or other missing value from that day, thereby taking advantage of the fact that people tend to be creatures of habit.
  • Another aspect of the invention is that of automatic adaptation of feedback given to the user by sensor device 1201 or I/O device 1200 .
  • the feedback given to the user in this invention (e.g. “you might want to run an extra 10 minutes today”) can be given exactly when appropriate by taking advantage of the system's ability to detect contexts and to auto-journal as describe elsewhere herein. For example, feedback for eating might be best given just before a meal, and exercise feedback might be best given right when the user is most likely to exercise. Furthermore, if the system has detected that the user has already jogged that day, then an alternate suggestion can be given. Finally, the user's response to feedback can be utilized to further adapt the choice of the given feedback. If the user never takes exercise suggestions, advice can focus instead on nutrition.
  • sensor device 1201 can calibrate itself to the user.
  • the device can use an initial training or calibration period where the user performs some additional tasks to train the system. For example, the user can enter in a full diet diary in addition to the quick estimates, allowing the system to learn the user's own definitions for each meal classification.
  • the user might additionally perform a program of activities (such as walking around the block for at least 10 minutes or resting for 20 minutes) in order to calibrate a subsystem for obtaining energy expenditure that may be provided in sensor device 1201 and obtain personalized parameters for the individual that are then used in later use of the system.
  • the subsystem for obtaining energy expenditure may also be calibrated against gold standard data from, for example, a VO2 machine.
  • the second method involves repeating the training procedures (or a subset thereof) every so often.
  • One example of this would be for a glucose level prediction algorithm where, each week (for example), the user performs a finger-prick glucose test to calibrate the prediction system.
  • the third method involved doing continual training while the user is using the system including sensor device 1201 .
  • the system described above that utilizes discrepancies in predicted weights between the system's prediction and that reported by a scale to adjust the estimated caloric amounts for each category is an example of this type of training.
  • the user can be queried to answer questions that the sensor device 1201 or I/O device 1200 can not figure out for itself, or about which it has too much uncertainty.
  • the sensor device 1201 or I/O device 1200 may have enough information to ask the user only a single question about breakfast, but may require more information for a morning snack that the user doesn't have every day.
  • the system can ask the questions specifically when the range of its uncertainty about a quantity is too large, and can thus minimize the input required from the user.
  • I/O device 1200 , sensor device 1201 and a computing device such as a PC or a PDA may be used together as a weight management system.
  • I/O device 1200 such as a watch like device, is used to input and track information relating to calories consumed by an individual and sensor device 1201 is used to measure calories burned or expended by the individual.
  • the caloric expenditure information measured by sensor device 1201 is transmitted, by wire or wirelessly, to I/O device 1200 .
  • I/O device 1200 then, based on the caloric consumption and caloric expenditure information, displays to the individual a current rate of weight loss or gain and/or an energy balance value on LCD 1210 .
  • sensor device 1201 assumes that the individual is inactive if sensor device 1201 is not being worn, and uses the individual's resting metabolic rate to calculate caloric expenditure during such period.
  • the individual for each meal, including snacks, rather than inputting a specific food or foods selected from a database as described in connection with FIGS. 43D-43F , merely classifies each meal according to an indication of the estimated size of the meal (in terms of an estimated caloric value) using classifiers such as small (S), medium (M), large (L) or extra large (XL).
  • classifiers such as small (S), medium (M), large (L) or extra large (XL).
  • S small
  • M medium
  • L large
  • XL extra large
  • I/O device 1200 stores for the meal the caloric amount corresponding to the entered classifier.
  • I/O device 1200 first displays on LCD 1210 a list of each meal possibility, i.e., breakfast, lunch, dinner or snack.
  • I/O device 1200 displays on LCD 1210 a list of the classifiers such as S, M, L, and XL. Again, the individual is able to toggle among these items using dial 1220 or one or more buttons, and select one using button 1215 .
  • the corresponding caloric amount is saved for the meal in question and is used to generate the caloric consumption information used by I/O device 1200 .
  • I/O device 1200 may be programmed to prompt the individual to enter meal information if the individual has not done so by a certain time or times each day.
  • the computing device is provided with weight management software that enables the individual to input information relating to foods actually eaten during each meal using a database such as that shown in FIGS. 43D through F. Based on the information that is input, a specific caloric amount is assigned to each meal entry. The individual is also able to enter information relating to weight goals, such as how much weight the individual wants to lose and over what time period the individual wants to lose the weight. Based on this information, a target weight loss rate may be established for achieving the input goal. In this embodiment, the individual, while entering information into I/O device 1200 using the S, M, L, and XL classifier system, also enters information into the computing device using the weight management software for a predetermined time period.
  • Sensor device 1201 is in electronic communication, by wire or wirelessly, with the computing device to enable information to be transmitted from the computing device to sensor device 1201 .
  • the information that is transmitted from the computing device includes information relating to the weight goals, namely target weight loss amount, time frame and rate, and information relating to the caloric amount associated with each meal eaten by the individual based on the food items input into the computing device.
  • Sensor device 1201 may then transmit the information to I/O device 1200 .
  • I/O device 1201 may be in electronic communication, by wire or wirelessly, with the computing device so that the information may be transmitted directly to the I/O device 1200 .
  • I/O device 1200 compares the caloric amounts entered for each meal using the S, M, L, and XL classifiers with the caloric amounts entered for each meal using the computing device and database of food information over the predetermined time period, and make adjustments to the caloric amounts that are associated with each of the classifiers so that they more accurately reflect calories actually consumed.
  • the individual enters nutrition information both using I/O device 1200 and the computing and database for a specified period of time, for example two weeks, after which the entry system on I/O device 1200 is calibrated or adjusted to bring the individual's perception of what should be classified as S, M, L, or XL based on calories in line with more accurate caloric data.
  • the individual only enters nutrition information using I/O device 1200 and the S, M, L, and XL classifiers, and caloric data is recorded for each meal depending on how the meal is classified.
  • I/O device 1200 is programmed to provide suggestions to the individual, in the form of information displayed on LCD 1210 , on how to achieve the individual's weight goals. These suggestions are based on the caloric expenditure and caloric consumption data that is logged by I/O device 1200 . For example, if the individual is currently below the target weight loss rate of, for example, 1 pound per week, I/O device 1200 may display a message that instructs the individual to walk for 55 minutes to bring the current weight loss rate up to 1 pound per week.
  • the suggestions may be of many types, including, without limitation, actions for the individual to take, explanations for why the individual is experiencing certain things such as inability to lose weight, feedback regarding the individual progress toward goals, and/or relationships between or among the parameters being measured and/or reported by sensor device 1201 and/or I/O device 1200 .
  • the suggestions may self adjust or learn based on the individual's performance toward goals.
  • the substance of the suggestions may come from a number of sources, such as sensor device 1201 and/or I/O device 1200 or a third party source, including a person such as a trainer or health care provider, a computing device such as a treadmill, or a remote computer, such as an Internet source.
  • I/O device 1200 displays a current weight loss or gain rate on display 1200 .
  • the current weight loss or gain rate that is displayed on I/O device 1200 may be a daily, weekly or monthly rate, or may be a rate calculated based on the total time remaining until the weight loss target date.
  • I/O device 1200 may be programmed to selectively display each of these rates depending on the desires of the individual, such as by using dial 1220 or one or more buttons to toggle among these various options.
  • FIG. 44 is a block diagram showing the components attached or otherwise coupled to a printed circuit board (not shown) housed within housing 1205 of an embodiment of I/O device 1200 .
  • processing unit 1300 which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein.
  • non-volatile data storage device 1305 such as a flash memory, chip for storing information input and/or transmitted to I/O device 1200
  • non-volatile program storage device 1310 such as a FLASH ROM chip, for storing the programs required for operation of I/O device 1200 .
  • reference database 1315 which may, as described in connection with FIGS. 43D-F , be used to provide user accessible and selectable information for use by I/O device 1200 or sensor device 1201 .
  • reference database 1315 includes a software component for organizing and accessing data, and a memory component for physically storing data.
  • wireless link 1320 such as an RF transceiver
  • hardware interface 1330 such as a USB port
  • Driver 1350 and ringer/buzzer 1345 may also be connected to processing unit 1300 to provide audible and/or tactile feedback to a user.
  • LCD 1210 and backlight 1350 for LCD 1210 are connected to processing unit 1300 through appropriate well known drivers 1355 .
  • Battery 1360 which may be disposable or rechargeable, provides power for I/O device 1200 and is connected to processing unit 1300 through voltage regulator 1365 .
  • Oscillator 1370 provides the system clock to processing unit 1300
  • reset circuit 1375 enables processing unit 1300 to be reset to a standard initial setting.
  • button 1215 and dial 1220 are electronically connected to processing unit 1300 according to any known means, such as those described in the '980 and '619 patents, which would enable button 1215 and dial 1220 to provide input or command or control signals to processing unit 1300 .
  • I/O device 1200 may be adapted to operate on its own, without being in communication with sensor device 1201 .
  • a user may enter information into I/O device 1200 as described herein and may use I/O device to store and track such information over time.
  • reference database 1315 may store food and activity related information and a user may enter caloric consumption and caloric expenditure or burn information as described in connection with FIGS. 43D-F .
  • the entered information would in this embodiment be stored in data storage device 1305 , and processing unit 1300 would be programmed to generate and display the information shown in FIGS. 43A-C .
  • RF link 1320 , antenna 1325 , hardware interface 1330 and connector 1335 would not be required since communication with sensor device 1201 is not necessary, but may be included as optional enhancements.
  • one or more sensors 1400 such as those described in connection with sensor device 400 , stand alone sensor device 700 and sensor device 800 , may be, as shown in FIG. 45 , attached to, supported by or otherwise coupled to I/O device 1200 , enabling it to collect data indicative of physiological and/or contextual parameters.
  • sensor 1400 may be a heart rate sensor in the form of a chest strap.
  • sensor 1400 may be a non-ECG heart parameter sensor such as that described in the '005 patent.
  • Sensor 1400 in this embodiment may be used in connection with heart rate information collected by sensor device 1201 , such as ECG information obtained from the upper arm, to make pulse transit time measurements, which, as is known in the art, are an indication of cardiovascular health and have a relationship to blood pressure. Such pulse transit time measurements may also be calibrated against measurement using a traditional blood pressure cuff for increased accuracy.
  • This collected data, other data entered by the user, and/or one or both of derived data and analytical status data generated therefrom may be displayed to the user using LCD 1210 or some other output/feedback device such as a screen on a treadmill, headphones worn by the user, or an earpiece such as those worn by first responders.
  • I/O device 1200 may act as a hub or terminal for collection and, in a specific embodiment, processing data received from a variety of sources.
  • I/O device 1200 may be used as a hub or terminal in health club 1500 to collect and, in a specific embodiment, process data relating to a user's activities in health club 1500 received from a variety of devices located in health club 1500 .
  • I/O device 1200 may take the form of a watch-like device that is worn by the user on his or her wrist, clipped to the clothing of the user, or otherwise carried by the user. Referring to FIG.
  • I/O device 1200 is in electronic communication with exercise equipment 1505 through communications connection 1230 , which may be a wired connection, but which preferably is a wireless connection.
  • Exercise equipment 1505 may be any type of exercise equipment, such as a treadmill or exercise bike, that possesses the ability to generate data relating to the exercise being done and transmit the data to I/O device 1200 over communications connection 1230 .
  • I/O device 1200 is thus able to collect and store data relating to exercise activity such as the calories expended during a workout or the duration of the workout.
  • I/O device 1200 may be programmed to store settings and/or exercise programs for each of the various types of exercise equipment 1505 such that the settings and/or exercise programs may be transmitted over communications connection 1230 to exercise equipment 1505 prior to commencement of a workout for controlling it during the workout.
  • I/O device 1200 may be provided with an artificial intelligence based program or algorithm that modifies, based on the information collected by I/O device 1200 , the exercise program being followed by the user.
  • the settings used by and/or exercise programs followed by a user can be set or modified remotely by a trainer or similar individual and be communicated to I/O device from computing device 1515 or through computing device 1515 from a remote source over the Internet, described in detail below.
  • I/O device 1200 preferably being portable, is able to collect and store data from a number of different pieces of exercise equipment 1505 that are used by the user as he or she moves around health club 1500 , or, as described elsewhere herein, while the user is outside of health club 1500 , for example at home or while traveling.
  • I/O device 1200 may also be in electronic communication with sensor device 1201 through communications connection 1230 , which preferably is a wireless connection, but which may be a wired connection such as with a cradle.
  • I/O device 1200 is able to collect and store data relating to the physiological parameters of the user before, during and after any exercise activity. For low bandwidth applications, methods are known for transmitting electronic signals through the body.
  • sensor device 1201 acts as the hub or terminal for collection and, in a specific embodiment, processing data received from a variety of sources, and as such, would replace I/O device 1200 in FIG. 46 .
  • I/O device 1200 stores a program or regimen preferably including a set of goals that may be established by set by the user or a third party such as a trainer or care giver.
  • I/O device 1200 communicates with and is programmed to control an apparatus in the environment such as a treadmill or weight machine. Specifically, I/O device 1200 is able to communicate instructions to the apparatus for setting the apparatus up for the desired interaction/result, such as choosing treadmill programs or setting or weight machine weight amounts.
  • I/O device 1200 While user interacts with the apparatus, I/O device 1200 , being in communication with the apparatus, tracks the user's performance, preferably with respect to the program or regimen including goals.
  • the tracking may be based on information received from the apparatus, such as repetitions on a weight machine or distances run on or heart rate measured by a treadmill, and may also be based on parameters being measured by sensor device 1201 or I/O device 1200 such as energy expenditure. I/O device 1200 may also adjust/control the apparatus the user is interacting with to maximize the performance toward the goal, such as by adjusting the treadmill angle and/or resistance to decrease heart rate or energy expenditure rate of the individual. Such adjustment may be important if, for example, the individual is a CVD patient that needs to watch how much they exert themselves.
  • I/O device 1200 can adjust the program or regimen so that the next time the user uses the apparatus, the program or regimen will have been adjusted to comply with the progress or lack of progress the person has made.
  • This adjustment could also include free-living exercise and other information that gets collected between periods of use of the apparatus. For example, if the person walked the rest of the week according to their program or regimen, the next time they come to use the apparatus, instead of using the same now outdated program/regimen, the program/regimen is adjusted to meet the user's new capabilities.
  • the principle just described could also apply to interaction with other types of equipment other than exercise equipment, such as medication dispensers, CPAP machines used in sleep therapy, or even a thermostat in the house.
  • I/O device 1200 may be in electronic communication through communications connection 1230 with entertainment equipment 1510 , which comprises an access device or similar equipment as just described provided adjacent to exercise equipment 1505 that allows a user to select among various entertainment options.
  • entertainment equipment 1510 comprises an access device or similar equipment as just described provided adjacent to exercise equipment 1505 that allows a user to select among various entertainment options.
  • users may be able to choose to view and or listen to a prescribed program such as a health education program or a motivational program.
  • I/O device 1200 and entertainment equipment 1510 may be adapted to enable I/O device 1200 to collect from entertainment equipment 1510 and store data relating to the various entertainment or other programming options selected by the user.
  • health club 1500 includes computing device 1515 , which may be a PC or a server computer or the like.
  • I/O device 1200 is adapted to be in electronic communication with computing device 1515 through communications connection 1230 to enable the data collected, stored and, in a specific embodiment, processed by I/O device 1200 to be transmitted to computing device 1515 .
  • a wireless interface device in electronic communication with computing device 1515 could be placed near the front desk of health club 1500 .
  • the wireless interface device could be replaced by a docking station or a jack device that requires I/O device to be physically coupled thereto to establish an electronic communications path.
  • computing device 1515 is in electronic communication with remote server 1520 through the Internet or a similar computer network.
  • Remote server 1520 aggregates data transmitted from computing device 1515 for a number of users and, according to a specific embodiment, from similar devices located at other health clubs.
  • data may be transmitted directly from I/O device 1200 to remote server 1520 , rather than through computing device 1515 , by, for example a long range wireless communications protocol such a those used with cell phones or 2-way pagers.
  • Remote server 1520 may include a web server that makes the collected data, such as physiological, exercise activity, and/or caloric consumption data, available to users over the Internet through computing device 1525 under the control of the user, such as a PC, cell phone or PDA.
  • the data may, in one embodiment, be presented to users in a form similar to that described in connection with FIG. 5 through 11 .
  • remote server 1520 may be used to segregate the data collected from entertainment equipment 1510 and, in a specific embodiment, demographic information about the users associated with the data.
  • the segregated data may be used to track the level of use of each programming channel and provide ratings, similar to Nielsen ratings, for each programming channel.
  • I/O device 1200 may also be used to collect data from devices located outside of health club 1500 that have capabilities and functionality that are similar to exercise equipment 1505 or entertainment equipment 1510 .
  • a user that normally exercises at health club 1500 may be out of town for a period of time and, while out of town, may exercise at another facility.
  • I/O device 1200 may be used to collect data from exercise and/or entertainment equipment used at the other facility, provided such equipment has capabilities and functionality similar to that of exercise equipment 1505 and entertainment equipment 1510 .
  • I/O device 1200 may also be used to collect data when a user is exercising or watching or listening to some sort of programming, as described herein, at home using compatible equipment.
  • I/O device 1200 can collect relevant information while the user is not at health club 1500 through ways other than from compatible equipment. For example, if a user takes a walk at home, I/O device 1200 could collect data relating to the walk from sensor device 1201 or from manual entry. When the user returns to health club 1500 , he or she can transmit the data collected while he or she was away or while exercising or engaging in other activities at home to computing device 1515 , thereby eliminating gaps in data collection that otherwise would have occurred while the user was away from health club 1500 . By eliminating such gaps, a program being followed by the user or goals set by the user can be more accurately monitored and modified, for example by a personal trainer or though an artificial intelligence program or algorithm employed by I/O device 1200 .
  • I/O device 1200 would store information about the user including demographic information, identification information, musical preferences, and the type of program they are on, such as rehab, cardio, or fat burning. I/O device 1200 may also collect information about the specific room it was in while the person interacted in the club, when they entered and left the room and what machine they used. In one specific embodiment, a wireless system may be utilized in which I/O device 1200 could understand it's own location in the facility through means of triangulating off two other RF transceivers in the facility.
  • I/O device 1200 instead of a space or facility like a health club requiring all the infrastructure for all it's machines to be networked with one another, either wired or wirelessly, and with a central computer to collect information about and control the machines, people can take I/O device 1200 with them as they interact with the space and use it to communicate with the equipment using local (not long distance wireless, or wires), low power communication methods, so when they use equipment such as a treadmill, I/O device 1200 tracks the machine they were on, the use, how they performed, etc. I/O device 1200 may also select entertainment programs they want to watch and/or listen to.
  • the information can be downloaded to a specified site such as the central computer of the facility and/or a remote server.
  • a specified site such as the central computer of the facility and/or a remote server.
  • sensor device 1201 which may be any one of sensor device 400 shown in FIGS. 12-17 , stand alone sensor device 700 shown in FIG. 21 , or sensor device 800 shown in FIGS. 22-26 , includes a plurality of physiological and/or contextual sensors.
  • sensor device 400 , stand alone sensor device 700 , or sensor device 800 includes a 2-axis accelerometer, a heat flux sensor, a GSR sensor, a skin temperature sensor, a near-body ambient temperature sensor, and a receiver for receiving heart rate data from a heart rate sensor on, for example, a chest strap being worn by the user.
  • One aspect of the present invention relates to a sophisticated algorithm development process for creating a wide range of algorithms for generating information relating to a variety of variables from the data received from the plurality of physiological and/or contextual sensors on sensor device 1201 .
  • variables may include, without limitation, energy expenditure, including resting, active and total values, daily caloric intake, sleep states, including in bed, sleep onset, sleep interruptions, wake, and out of bed, and activity states, including exercising, sitting, traveling in a motor vehicle, and lying down, and the algorithms for generating values for such variables may be based on data from, for example, the 2-axis accelerometer, the heat flux sensor, the GSR sensor, the skin temperature sensor, the near-body ambient temperature sensor, and the heart rate sensor in the embodiment described above.
  • <extra_id_29>“ ⁇ ” there are several types of algorithms that can be computed. For example, and without limitation, these include algorithms for predicting user characteristics, continual measurements, durative contexts, instantaneous events, and cumulative conditions.
  • User characteristics include permanent and semi-permanent parameters of the wearer, including aspects such as weight, height, and wearer identity.
  • An example of a continual measurement is energy expenditure, which constantly measures, for example on a minute by minute basis, the number of calories of energy expended by the wearer.
  • Durative contexts are behaviors that last some period of time, such as sleeping, driving a car, or jogging.
  • Instantaneous events are those that occur at a fixed or over a very short time period, such as a heart attack or falling down.
  • Cumulative conditions are those where the person's condition can be deduced from their behavior over some previous period of time. For example, if a person hasn't slept in 36 hours and hasn't eaten in 10 hours, it is likely that they are fatigued. Table 3 below shows numerous examples of specific personal characteristics, continual measurements, durative measurements, instantaneous events, and cumulative conditions.
  • the present invention may be utilized in a method for doing automatic journaling of a wearer's physiological and contextual states.
  • the system can automatically produce a journal of what activities the user was engaged in, what events occurred, how the user's physiological state changed over time, and when the user experienced or was likely to experience certain conditions. For example, the system can produce a record of when the user exercised, drove a car, slept, was in danger of heat stress, or ate, in addition to recording the user's hydration level, energy expenditure level, sleep levels, and alertness levels throughout a day.
  • linear or non-linear mathematical models or algorithms are constructed that map the data from the plurality of sensors to a desired variable.
  • the process consists of several steps.
  • This first step provides the following two sets of data that are then used as inputs to the algorithm development process: (i) the raw data from sensor device 1201 , and (ii) the data consisting of the gold-standard labels measured with the more accurate lab equipment.
  • the gold-standard data is provided by the subjects themselves, such as through information input manually into sensor device 1201 , a PC, or otherwise manually recorded.
  • the collected data i.e., both the raw data and the corresponding gold standard label data, is then organized into a database and is split into training and test sets.
  • a mathematical model is built that relates the raw data to the corresponding gold standard labeled data.
  • machine learning techniques are used to generate two types of algorithms: 1) algorithms known as feature detectors that produce a result that is highly correlated with the lab-measured level (e.g. VO2 level information from a metabolic cart, douglas bag, or doubly labeled water), and 2) algorithms known as context detectors that predict various contexts (e.g., running, exercising, lying down, sleeping, driving) useful for the overall algorithm.
  • a number of well known machine learning techniques may be used in this step, including artificial neural nets, decision trees, memory-based methods, boosting, attribute selection through cross-validation, and stochastic search methods such as simulated annealing and evolutionary computation.
  • machine learning techniques include, but are not limited to, multilinear regression, locally weighted regression, decision trees, artificial neural networks, stochastic search methods, support vector machines, and model trees.
  • the models make predictions on, for example, a minute by minute basis. Inter-minute effects are next taken into account by creating an overall model that integrates the minute by minute predictions. A well known or custom windowing and threshold optimization tool may be used in this step to take advantage of the temporal continuity of the data.
  • the model's performance can be evaluated on the test set, which has not yet been used in the creation of the algorithm. Performance of the model on the test set is thus a good estimate of the algorithm's expected performance on other unseen data.
  • the algorithm may undergo live testing on new data for further validation.
  • non-linear functions and/or machine learning method examples include the following: conditionals, case statements, logical processing, probabilistic or logical inference, neural network processing, kernel based methods, memory-based lookup (kNN, SOMs), decision lists, decision-tree prediction, support vector machine prediction, clustering, boosted methods, cascade-correlation, Boltzmann classifier, regression trees, case-based reasoning, Gaussians, Bayes nets, dynamic Bayesian networks, HMMs, Kalman filters, Gaussian processes, algorithmic predictors (e.g. learned by evolutionary computation or other program synthesis tools).
  • each derivation produces a signal referred to as a derived channel.
  • the raw sensor values or signals are also referred to as channels, specifically raw channels rather than derived channels.
  • These derivations also referred to as functions, can be simple or complex but are applied in a predetermined order on the raw values and, possibly, on already existing derived channels. The first derivation must, of course, only take as input raw sensor signals, but subsequent derivations can take as input previously derived channels.
  • the raw signals are first summarized into channels that are sufficient for later derivations and can be efficiently stored. These channels include derivations such as summation, summation of differences, and averages.
  • these summary channels are then calibrated to take minor measurable differences in manufacturing into account and to result in values in the appropriate scale and in the correct units. For example, if, during the manufacturing process, a particular temperature sensor was determined to have a slight offset, this offset can be applied, resulting in a derived channel expressing temperature in degrees Celsius.
  • a derivation or function is linear if it is expressed as a weighted combination of its inputs together with some offset. For example, if FOO and BAR are two raw or derived channels, then all derivations of the form A*FOO+B*BAR+C, where A, B, and C are constants, is a linear derivation. A derivation is non-linear with respect to its inputs if it is not expressed as a weighted sum of the inputs with a constant offset. An example of a nonlinear derivation is as follows: if (FOO>7) then return BAR*9, else return (BAR*3.5+912).
  • a channel is linearly derived if all derivations involved in computing it are linear, and a channel is nonlinearly derived if any of the derivations used in creating it are nonlinear.
  • a channel nonlinearly mediates a derivation if changes in the value of the channel change the computation performed in the derivation, keeping all other inputs constant.
  • the algorithms that are developed using this process will have the format shown conceptually in FIG. 47 . Specifically, the algorithm will take as inputs the channels derived from the sensor data collected by the sensor device from the various sensors and demographic information for the individual as shown in box 1600 .
  • the algorithm includes at least one context detector 1605 that produces a weight, shown as W 1 through WN, expressing the probability that a given portion of collected data, such as is collected over a minute, was collected while the wearer was in each of several possible contexts. Such contexts may include whether the individual was at rest or active.
  • a regression algorithm 1610 is provided where a continuous prediction is computed taking raw or derived channels as input.
  • the individual regressions can be any of a variety of regression equations or methods, including, for example, multivariate linear or polynomial regression, memory based methods, support vector machine regression, neural networks, Gaussian processes, arbitrary procedural functions, etc. Each regression is an estimate of the output of the parameter of interest in the algorithm, for example energy expenditure.
  • each regression algorithm 1610 for each context shown as A 1 through AN
  • the weights W 1 through WN are combined in a post-processor 1615 which outputs the parameter of interest being measured or predicted by the algorithm, shown in box 1620 .
  • the post-processor 1615 can consist of any of many methods for combining the separate contextual predictions, including committee methods, boosting, voting methods, consistency checking, or context based recombination.
  • an example algorithm for measuring energy expenditure of an individual is shown conceptually.
  • This example algorithm may be run on sensor device 1201 having at least an accelerometer, a heat flux sensor and a GSR sensor, or I/O 1200 that receives data from such a sensor device.
  • the raw data from the sensors is calibrated and numerous values based thereon, i.e., derived channels, are created.
  • the following derived channels shown at 1600 in FIG.
  • Context detector 1605 consists of a na ⁇ ve Bayesian classifier that predicts whether the wearer is active or resting using the LAVE, TSAD, and HFvar derived channels.
  • the output is a probabilistic weight (W 1 and W 2 for the two contexts rest and active).
  • the regression algorithm 1610 is a linear regression combining channels derived from the accelerometer, the heat flux sensor, the user's demographic data, and the galvanic skin response sensor.
  • the equation, obtained through the algorithm design process, is A*VSAD+B*HFvar+C*GSR+D*BMR+E, where A, B, C, D and E are constants.
  • the regression algorithm 1610 for the active context is the same, except that the constants are different.
  • the post-processor 1615 for this example is to add together the weighted results of each contextual regression.
  • a 1 is the result of the rest regression and A 2 is the result of the active regression, then the combination is just W 1 *A 1 +W 2 *A 2 , which is energy expenditure shown at 1620 .
  • a derived channel that calculates whether the wearer is motoring (driving in a car) at the time period in question might also be input into the post-processor 1615 .
  • the process by which this derived motoring channel is computed is algorithm 3 .
  • the post-processor 1615 in this case might then enforce a constraint that when the wearer is predicted to be driving by algorithm 3 , the energy expenditure is limited for that time period to a value equal to some factor (e.g. 1.3) times their minute by minute basal metabolic rate.
  • This algorithm development process may be used to create algorithms to enable sensor device 1201 to detect and measure various parameters, including, without limitation, the following: (i) when an individual is suffering from duress, including states of unconsciousness, fatigue, shock, drowsiness, heat stress and dehydration; and (ii) an individual's state of readiness, health and/or metabolic status, such as in a military environment, including states of dehydration, under-nourishment and lack of sleep.
  • algorithms may be developed for other purposes, such as filtering, signal clean-up and noise cancellation for signals measured by a sensor device as described herein.
  • the actual algorithm or function that is developed using this method will be highly dependent on the specifics of the sensor device used, such as the specific sensors and placement thereof and the overall structure and geometry of the sensor device.
  • an algorithm developed with one sensor device will not work as well, if at all, on sensor devices that are not substantially structurally identical to the sensor device used to create the algorithm.
  • Data uncertainty refers to sensor noise and possible sensor failures.
  • Data uncertainty is when one cannot fully trust the data. Under such conditions, for example, if a sensor, for example an accelerometer, fails, the system might conclude that the wearer is sleeping or resting or that no motion is taking place. Under such conditions it is very hard to conclude if the data is bad or if the model that is predicting and making the conclusion is wrong. When an application involves both model and data uncertainties, it is very important to identify the relative magnitudes of the uncertainties associated with data and the model.
  • Clinical uncertainty refers to the fact that different sensors might indicate seemingly contradictory conclusions. Clinical uncertainty is when one cannot be sure of the conclusion that is drawn from the data. For example, the accelerometers might indicate that the wearer is motionless (leading toward a conclusion of “resting”), the galvanic skin response sensor might provide a very high response (leading toward “active”), and the heat flow sensor might indicate that the wearer is still dispersing substantial heat (leading toward “active”). How should these differing factors be assessed? An inferior system would simply try to vote among the sensors or use similarly unfounded methods to integrate the various readings. The present invention instead weights the important joint probabilities and determines the appropriate most likely conclusion (which might be, for this example, that the wearer is currently performing or has recently performed a low motion activity such as stationary biking).
  • a sensor device such as sensor device 400 shown in FIGS. 12-17 , stand alone sensor device 700 shown in FIG. 21 , sensor device 800 shown in FIGS. 22-26 or sensor device 1201 shown in FIG. 40 , each of which have a processor and either have one or more sensors or receive signals from one or more sensors, may be used to automatically measure, record, store and/or report a parameter Y relating to the state of a person, preferably a state of the person that cannot be directly measured by the sensors.
  • State parameter Y may be, for example and without limitation, calories consumed, energy expenditure, sleep states, hydration levels, ketosis levels, shock, insulin levels, physical exhaustion and heat exhaustion, among others.
  • the sensor device is able to observe a vector of raw signals consisting of the outputs of certain of the one or more sensors, which may include all of such sensors or a subset of such sensors.
  • certain signals referred to as channels
  • certain signals may be derived from the vector of raw sensor signals as well.
  • a vector X of certain of these raw and/or derived channels, referred to herein as the raw and derived channels X, will change in some systematic way depending on or sensitive to the state, event and/or level of either the state parameter Y that is of interest or some indicator of Y, referred to as U, wherein there is a relationship between Y and U such that Y can be obtained from U.
  • a first algorithm or function f 1 is created using the sensor device that takes as inputs the raw and derived channels X and gives an output that predicts and is conditionally dependent on (i) either the state parameter Y or the indicator U, and (ii) some other state parameter(s) Z of the individual.
  • This algorithm or function f 1 may be expressed as follows:
  • f 1 is developed using the algorithm development process described elsewhere herein which uses data, specifically the raw and derived channels X, derived from the signals collected by the sensor device, so-called gold standard data relating to U or Y and Z contemporaneously measured using a method taken to be the correct answer, for example highly accurate medical grade lab equipment, and various machine learning techniques to generate the algorithms from the collected data.
  • the algorithm or function f 1 is created under conditions where the indicator U or state parameter Y, whichever the case may be, is present.
  • the actual algorithm or function that is developed using this method will be highly dependent on the specifics of the sensor device used, such as the specific sensors and placement thereof and the overall structure and geometry of the sensor device.
  • an algorithm developed with one sensor device will not work as well, if at all, on sensor devices that are not substantially structurally identical to the sensor device used to create the algorithm.
  • a second algorithm or function f 2 is created using the sensor device that takes as inputs the raw and derived channels X and gives an output that predicts and is conditionally dependent on everything output by f 1 except either Y or U, whichever the case may be and is conditionally independent of either Y or U, whichever the case may be.
  • the idea is that certain of the raw and derived channels X from the one or more sensors make it possible to explain away or filter out changes in the raw and derived channels X coming from non-Y or non-U related events.
  • This algorithm or function f 2 may be expressed as follows:
  • f 2 is developed using the algorithm development process referenced above.
  • f 2 is developed and validated under conditions where U or Y, whichever the case may, is not present.
  • the gold standard data used to create f 2 is data relating to Z only measured using highly accurate medical grade lab equipment.
  • f 1 is sensitive to U or Y
  • f 2 is insensitive to U or Y.
  • f 1 and f 2 there is a relationship between f 1 and f 2 that will yield either U or Y, whichever the case may be.
  • the next step involves obtaining Y from U based on the relationship between Y and U.
  • Y may be some fixed percentage of U such that Y can be obtained by dividing U by some factor.
  • the method just described may, for example, be used to automatically measure and/or report the caloric consumption or intake of a person using the sensor device, such as that person's daily caloric intake, also known as DCI.
  • Automatic measuring and reporting of caloric intake would be advantageous because other non-automated methods, such as keeping diaries and journals of food intake, are hard to maintain and because caloric information for food items is not always reliable or, as in the case of a restaurant, readily available.
  • TEE total energy expenditure
  • TEE BMR+AE+TEF+AT
  • BMR basal metabolic rate, which is the energy expended by the body during rest such as sleep
  • AE activity energy expenditure, which is the energy expended during physical activity
  • TEF is thermic effect of food, which is the energy expended while digesting and processing the food that is eaten
  • AT is adaptive thermogenesis, which is a mechanism by which the body modifies its metabolism to extreme temperatures. It is estimated that it costs humans about 10% of the value of food that is eaten to process the food. TEF is therefore estimated to be 10% of the total calories consumed.
  • TEF is therefore estimated to be 10% of the total calories consumed.
  • a sensor device as described above may be used to automatically measure and/or record calories consumed by an individual.
  • the state parameter Y is calories consumed by the individual and the indicator U is TEF.
  • the sensor device is used to create f 1 , which is an algorithm for predicting TEE.
  • f 1 is developed and validated on subjects who ate food, in other words, subjects who were performing activity and who were experiencing a TEF effect. As such, f 1 is referred to as EE(gorge) to represent that it predicts energy expenditure including eating effects.
  • the gold standard data used to create f 1 is a VO2 machine.
  • the function f 1 which predicts TEE, is conditionally dependent on and predicts the item U of interest, which is TEF.
  • f 1 is conditionally dependent on and predicts Z which, in this case, is BMR+AE+AT.
  • the sensor device is used to create f 2 , which is an algorithm for predicting all aspects of TEE except for TEF.
  • f 2 is developed and validated on subjects who fasted for a period of time prior to the collection of data, preferably 4-6 hours, to ensure that TEF was not present and was not a factor. Such subjects will be performing physical activity without any TEF effect.
  • f 2 is conditionally dependent to and predicts BMR+AE+AT but is conditionally independent of and does not predict TEF.
  • f 2 is referred to as EE(fast) to represent that it predicts energy expenditure not including eating effects.
  • f 1 so developed will be sensitive to TEF and f 2 so developed will be insensitive to TEF.
  • the relationship between f 1 and f 2 that will yield the indicator U, which in this case is TEF, is subtraction.
  • EE (gorge) ⁇ EE (fast) TEF.
  • functions f 1 and f 2 can be programmed into software stored by the sensor device and executed by the processor of the sensor device. Data from which the raw and derived channels X can be derived can then be collected by the sensor device. The outputs of f 1 and f 2 using the collected data as inputs can then be subtracted to yield TEF. Once TEF is determined for a period of time such as a day, calories consumed can be obtained for that period by dividing TEF by 0.1, since TEF is estimated to be 10% of the total calories consumed. The caloric consumption data so obtained may be stored, reported and/or used in lieu of the manually collected caloric consumption data utilized in the embodiments described elsewhere herein, such as in connection with FIGS. 43A-43H .
  • the sensor device in this embodiment is sensor device 800 shown in FIGS. 22-26 that includes and/or is in communication with a body motion sensor such as an accelerometer adapted to generate data indicative of motion, a skin conductance sensor such as a GSR sensor adapted to generate data indicative of the resistance of the individual's skin to electrical current, a heat flux sensor adapted to generate data indicative of heat flow off the body, a body potential sensor such as an ECG sensor adapted to generate data indicative of the rate or other characteristics of the heart beats of the individual, and a temperature sensor adapted to generate data indicative of a temperature of the individual's skin.
  • these signals in addition the demographic information about the wearer, make up the vector of signals from which the raw and derived channels X are derived. Most preferably, this vector of signals includes data indicative of motion, resistance of the individual's skin to electrical current and heat flow off the body.
  • any effect of food on the body such as, for example, drowsiness, urination or an electrical effect, or any other signs of eating, such as stomach sounds, may be used as the indicator U in the method just described for enabling the automatic measurement of caloric consumption.
  • the relationship between U and the state parameter Y, which is calories consumed, may, in these alternative embodiments, be based on some known or developed scientific property or equation or may be based on statistical modeling techniques.
  • DCI can be estimated using an algorithm that takes sensor data and attempts to directly estimate the calories consumed by the wearer, using that number of calories as the gold standard and the set of raw and derived channels as the training data. This is just an instance of the algorithmic process described above.
  • Another specific instantiation where the present invention can be utilized relates to detecting when a person is fatigued. Such detection can either be performed in at least two ways.
  • a first way involves accurately measuring parameters such as their caloric intake, hydration levels, sleep, stress, and energy expenditure levels using a sensor device and using the two function (f 1 and f 2 ) approach described with respect to TEF and caloric intake estimation to provide an estimate of fatigue.
  • a second way involves directly attempting to model fatigue using the direct derivational approach described in connection with FIGS. 47 and 48 .
  • This example illustrates that complex algorithms that predict the wearer's physiologic state can themselves be used as inputs to other more complex algorithms.
  • One potential application for such an embodiment of the present invention would be for first-responders (e.g.
  • such software may be resident on and run by a computing device separate from the sensor device.
  • the computing device receives, by wire or wirelessly, the signals collected by the sensor device from which the set of raw and derived channels X are derived and determines U and/or Y from those signals as described above.
  • This alternate embodiment may be an embodiment wherein the state parameter Y that is determined by the computing device is calories consumed and wherein the indicator is some effect on the body of food, such as TEF.
  • the computing device may display the determined caloric consumption data to the user.
  • the sensor device may also generate caloric expenditure data as described elsewhere herein which is communicated to the computing device.
  • the computing device may then generate and display information based on the caloric consumption data and the caloric expenditure data, such as energy balance data, goal related data, and rate of weight loss or gain data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Psychology (AREA)
  • Pulmonology (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)

Abstract

Various methods and apparatuses for measuring a state parameter of an individual using signals based on one or more sensors are disclosed. In one embodiment, a first set of signals is used in a first function to determine how a second set of signals is used in one or more second functions to predict the state parameter. In another embodiment, first and second functions are used where the state parameter or an indicator of the state parameter may be obtained from a relationship between the first function and the second function. The state parameter may, for example, include calories consumed or calories burned by the individual. Various methods for making such apparatuses are also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. patent application Ser. No. 10/682,293 filed Oct. 9, 2003, which claims the benefit of U.S. Provisional Application No. 60/417,163 filed on Oct. 9, 2002.
  • BACKGROUND
  • 1. Field
  • The present invention relates to methods and apparatuses for measuring a state parameter of an individual using signals based on one or more sensors. The present invention also relates to various methods for making such apparatuses.
  • 2. Description of the Related Art
  • Research has shown that a large number of the top health problems in society are either caused in whole or in part by an unhealthy lifestyle. More and more, our society requires people to lead fast paced, achievement oriented lifestyles that often result in poor eating habits, high stress levels, lack of exercise, poor sleep habits and the inability to find the time to center the mind and relax. Recognizing this fact, people are becoming increasingly interested in establishing a healthier lifestyle.
  • Traditional medicine, embodied in the form of an HMO or similar organizations, does not have the time, the training, or the reimbursement mechanism to address the needs of those individuals interested in a healthier lifestyle. There have been several attempts to meet the needs of these individuals, including a perfusion of fitness programs and exercise equipment, dietary plans, self help books, alternative therapies, and most recently, a plethora of health information web sites on the Internet. Each of these attempts are targeted to empower the individual to take charge and get healthy. Each of these attempts, however, addresses only part of the needs of individuals seeking a healthier lifestyle and ignores many of the real barriers that most individuals face when trying to adopt a healthier lifestyle. These barriers include the fact that the individual is often left to himself or herself to find motivation, to implement a plan for achieving a healthier lifestyle, to monitor progress, and to brainstorm solutions when problems arise; the fact that existing programs are directed to only certain aspects of a healthier lifestyle, and rarely come as a complete package; and the fact that recommendations are often not targeted to the unique characteristics of the individual or his life circumstances.
  • SUMMARY
  • The present invention relates to an apparatus for measuring a state parameter of an individual including a processor, at least two sensors in electronic communication with the processor, at least one of the sensors being a physiological sensor, and a memory for storing software executable by the processor. The software includes instructions for collecting a plurality of sensor signals from the at least two sensors, and utilizing a first set of signals based on one or more of the plurality of sensor signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the state parameter of the individual.
  • The present invention also relates to a method of measuring a state parameter of an individual, including collecting a plurality of sensor signals from at least two sensors in electronic communication with a sensor device worn on a body of the individual, at least one of the sensors being a physiological sensor, and utilizing a first set of signals based on one or more of the plurality of sensor signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the state parameter of the individual.
  • In one embodiment of either the apparatus or method, the first function recognizes one or more contexts based on the first set of signals and one or more of the second functions is chosen based on the one or more recognized contexts. The outputs of the chosen second functions are used to predict the state parameter of the individual. In another embodiment, the first function recognizes each of a plurality of contexts based on the first set of signals and each of the one or more second functions corresponds to one of the contexts. The first function assigns a weight to each of the one or more second functions based on a recognition probability associated with the corresponding context, and the outputs of the one or more second functions and the weights are used to predict the state parameter of the individual. The outputs may be combined in a post processing step to predict the state parameter. In addition, in either the apparatus or the method, the state parameter may be caloric expenditure the second functions may be regression algorithms, the contexts may comprise rest and active and, the first function may comprise a naïve Bayesian classifier. Where the state parameter is caloric expenditure, caloric consumption data for the individual may be generated and information based on the caloric expenditure data and the caloric consumption data may be displayed, such as energy balance data, rate of weight loss or gain, or information relating to one or more goals of the individual.
  • In one embodiment of the apparatus, the processor and the memory are included in a wearable sensor device. In another embodiment, the apparatus includes a wearable sensor device, the processor and the memory being included in a computing device located separately from the sensor device, wherein the sensor signals are transmitted from the sensor device to the computing device.
  • The present invention also relates to a method of making software for an apparatus for measuring a state parameter of an individual including providing a first sensor device, the first sensor device receiving a plurality of signals from at least two sensors, using the first sensor device to create a first function and one or more second functions, each of the one or more second functions having an output, the first function utilizing a first set of signals based on one or more of the plurality of sensor signals to determine how a second set of signals based on one or more of the plurality of sensor signals is utilized in the one or more second functions, wherein one or more of the outputs are used to predict the state parameter of the individual. The method further includes creating the software including instructions for: (i) receiving a second plurality of signals collected by a second sensor device substantially structurally identical to the first sensor device for a period of time; (ii) utilizing a third set of signals based on one or more of the second plurality of sensor signals in the first function to determine how a fourth set of signals based on one or more of the second plurality of sensor signals is utilized in the one or more second functions; and (iii) utilizing the one or more outputs produced by the one or more second functions from the fourth set of signals to predict the state parameter of the individual. In the method, the step of using the sensor device to create the first function and the one or more second functions may include gathering a first set of the plurality of signals under conditions where the state parameter is present, contemporaneously gathering gold standard data relating to the state parameter, and using one or more machine learning techniques to generate the first function and the one or more second functions from the first set of the plurality of signals and the gold standard data. In addition, A the first function may recognize one or more contexts based on the first set of signals and one or more of the second functions may be chosen based on the one or more recognized contexts, wherein the outputs of the chosen second functions are used to predict the state parameter of the individual. Alternatively, the first function may recognize each of a plurality of contexts based on the first set of signals and each of the one or more second functions may correspond to one of the contexts, wherein the first function assigns a weight to each of the one or more second functions based on a recognition probability associated with the corresponding context, and wherein the outputs of the one or more second functions and the weights are used to predict the state parameter of the individual.
  • One specific embodiment of the present invention relates to a method of measuring energy expenditure of an individual including collecting a plurality of sensor signals from at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor, each in electronic communication with a sensor device worn on a body of the individual, and utilizing a first set of signals based on one or more of the plurality of sensor signals in one or more functions to predict the energy expenditure of the individual. The utilizing step may include utilizing the first set of signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the energy expenditure of the individual. In addition, the collecting step may include collecting the plurality of sensor signals from a body motion sensor, a heat flux sensor, and a skin conductance sensor, the second set of signals comprising a heat flux high gain average variance (HFvar), a vector sum of transverse and longitudinal accelerometer SADs (VSAD), and a galvanic skin response low gain (GSR), wherein the second functions have the form of A*VSAD+B*HF+C*GSR+D*BMR+E, wherein A, B, C, D and E are constants and BMR is a basal metabolic rate for the individual.
  • The present invention also relates to an apparatus for measuring energy expenditure of an individual including a processor, at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor in electronic communication with the processor, and a memory storing software executable by the processor. The software includes instructions for collecting a plurality of sensor signals from the at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor, and utilizing a first set of signals based on one or more of the plurality of sensor signals in one or more functions to predict the energy expenditure of the individual. The utilizing instruction may include utilizing the first set of signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the energy expenditure of the individual. The collecting instruction may include collecting the plurality of sensor signals from a body motion sensor, a heat flux sensor, and a skin conductance sensor, the second set of signals comprising a heat flux high gain average variance (HFvar), a vector sum of transverse and longitudinal accelerometer SADs (VSAD), and a galvanic skin response low gain (GSR), wherein the second functions have the form of A*VSAD+B*HF+C*GSR+D*BMR+E, wherein A, B, C, D and E are constants and BMR is a basal metabolic rate for the individual.
  • The present invention also relates to a method of making software for an apparatus for measuring energy expenditure of an individual, including providing a first sensor device, the first sensor device receiving a plurality of signals from at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor, and using the first sensor device to create one or more functions that predict the energy expenditure of the individual using a first set of signals based on one or more of the plurality of sensor signals. The method further includes creating the software including instructions for: (i) receiving a second plurality of signals collected by a second sensor device substantially structurally identical to the first sensor device for a period of time, the second sensor device receiving the second plurality of signals from at least two of a body motion sensor, a heat flux sensor, a skin conductance sensor, and a skin temperature sensor; and (ii) utilizing a second set of signals based on one or more of the second plurality of sensor signals in the one or more functions to predict the energy expenditure of the individual. The step of using the sensor device to create the one or more functions may include gathering a first set of the plurality of signals under conditions where energy expenditure data for the individual is present, contemporaneously gathering gold standard data relating to the energy expenditure data for the individual, and using one or more machine learning techniques to generate the one or more functions from the first set of the plurality of signals and the gold standard data. In addition, the utilizing instruction may include utilizing the second set of signals in a first function, the first function determining how a third set of signals based on one or more of the second plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output; wherein one or more of the outputs are used to predict the energy expenditure of the individual.
  • In yet another embodiment, the present invention relates to an apparatus for automatically measuring a first state parameter of an individual, including a processor, one or more sensors for generating one or more signals over a period of time, the processor receiving the one or more signals, and a memory storing software executable by the processor. The software includes instructions for inputting one or more signal channels based on the one or more signals into a first function having a first output that predicts one or more second state parameters of the individual and either the first state parameter or an indicator of the first state parameter, wherein the first state parameter may be obtained from the indicator based on a first relationship between the first state parameter and the indicator, inputting the one or more signal channels into a second function having a second output that predicts the one or more second state parameters but not the first state parameter or the indicator of the first state parameter, and obtaining either the first state parameter or the indicator from the first and second outputs based on a second relationship between the first function and the second function, and, if the indicator is obtained, obtaining the first state parameter from the indicator based on the first relationship.
  • The present invention also relates to a method of automatically measuring a first state parameter of an individual, including collecting for a period of time one or more signals from one or more sensors in electronic communication with a sensor device worn on a body of the individual, inputting one or more signal channels based on the one or more signals into a first function having a first output that predicts one or more second state parameters of the individual and either the first state parameter or an indicator of the first state parameter, wherein the first state parameter may be obtained from the indicator based on a first relationship between the first state parameter and the indicator, inputting the one or more signal channels into a second function having a second output that predicts the one or more second state parameters but not the first state parameter or the indicator of the first state parameter, and obtaining either the first state parameter or the indicator from the first and second outputs based on a second relationship between the first function and the second function, and, if the indicator is obtained, obtaining the first state parameter from the indicator based on the first relationship.
  • In either the method or the apparatus, the first state parameter may be a number of calories consumed by the individual during the period of time. In such an embodiment, the indicator may include a first effect on the body of food consumed, and in particular, the indicator may be the thermic effect of food. In the case of thermic effect of food, the first output may comprise total energy expenditure, wherein the one or more second state parameters include basal metabolic rate, activity energy expenditure and adaptive thermogenesis, and the first state parameter may be obtained from the indicator by dividing the indicator by 0.1. In one specific embodiment, the software further includes instructions for generating caloric expenditure data for the individual for the period of time from one or more of the one or more signal channels and displaying information based on the caloric expenditure data and the number of calories consumed by the individual. The apparatus may include a display, such as part of a separate I/O device, for displaying the information based on the caloric expenditure data and the number of calories consumed by the individual.
  • In yet another embodiment, the present invention relates to a method of making software for an apparatus for automatically measuring a first state parameter of an individual. The method includes providing a first sensor device, the first sensor device receiving one or more signals from one or more sensors, using the first sensor device to create a first function having a first output that predicts one or more second state parameters of the individual and either the first state parameter or an indicator of the first state parameter, wherein the first state parameter may be obtained from the indicator based on a first relationship between the first state parameter and the indicator, the first function taking as inputs one or more signal channels based on the one or more signals, and using the first sensor device to create a second function having a second output that predicts the one or more second state parameters but not the first state parameter or the indicator of the first state parameter, the second function taking as inputs the one or more signal channels. The method further includes creating the software including instructions for: (i) receiving a second one or more signals collected by a second sensor device substantially structurally identical to the first sensor device for a period of time; (ii) inputting a second one or more signal channels based on the second one or more signals into the first function and the second function for generating the first output and the second output, respectively; and (iii) obtaining either the first state parameter or the indicator from the first and second outputs generated in the inputting step based on a second relationship between the first function and the second function, and, if the indicator is obtained, obtaining the first state parameter from the indicator based on the first relationship. The step of using the sensor device to create the first function may include gathering a first set of the one or more signals under conditions where the second state parameters and either the first state parameter or the indicator are present, contemporaneously gathering gold standard data relating to the second state parameters and either the first state parameter or the indicator, and using one or more machine learning techniques to generate the first function from the first set of one or more signals and the gold standard data, and the step of using the sensor device to create the second function may include gathering a second set of the one or more signals under conditions where neither the first state parameter nor the indicator are present, contemporaneously gathering second gold standard data relating to the second state parameters but not the first state parameter or the indicator, and using one or more machine learning techniques to generate the second function from the second set of one or more signals and the second gold standard data.
  • In still another alternate embodiment, the present invention relates to a method of measuring caloric consumption of an individual for a time period, including determining a weight differential for the individual between a beginning of the time period and an end of the time period, multiplying the weight differential by a constant, such as 3500, to obtain a caloric differential, measuring a caloric expenditure of the individual for the time period using a wearable sensor device having one or more sensors, and determining the caloric consumption from the caloric differential and the caloric expenditure. The step of measuring the caloric expenditure may comprises collecting a plurality of sensor signals from at least two sensors in electronic communication with the sensor device, at least one of the sensors being a physiological sensor, and utilizing a first set of signals based on one or more of the plurality of sensor signals in a first function, the first function determining how a second set of signals based on one or more of the plurality of sensor signals is utilized in one or more second functions, each of the one or more second functions having an output, wherein one or more of the outputs are used to predict the caloric expenditure.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Further features and advantages of the present invention will be apparent upon consideration of the following detailed description of the present invention, taken in conjunction with the following drawings, in which like reference characters refer to like parts, and in which:
  • FIG. 1 is a diagram of an embodiment of a system for monitoring physiological data and lifestyle over an electronic network according to the present invention;
  • FIG. 2 is a block diagram of an embodiment of the sensor device shown in FIG. 1;
  • FIG. 3 is a block diagram of an embodiment of the central monitoring unit shown in FIG. 1;
  • FIG. 4 is a block diagram of an alternate embodiment of the central monitoring unit shown in FIG. 1;
  • FIG. 5 is a representation of a preferred embodiment of the Health Manager web page according to an aspect of the present invention;
  • FIG. 6 is a representation of a preferred embodiment of the nutrition web page according to an aspect of the present invention;
  • FIG. 7 is a representation of a preferred embodiment of the activity level web page according to an aspect of the present invention;
  • FIG. 8 is a representation of a preferred embodiment of the mind centering web page according to an aspect of the present invention;
  • FIG. 9 is a representation of a preferred embodiment of the sleep web page according to an aspect of the present invention;
  • FIG. 10 is a representation of a preferred embodiment of the daily activities web page according to an aspect of the present invention;
  • FIG. 11 is a representation of a preferred embodiment of the Health Index web page according to an aspect of the present invention;
  • FIG. 12 is a front view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 13 is a back view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 14 is a side view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 15 is a bottom view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIGS. 16 and 17 are front perspective views of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 18 is an exploded side perspective view of a specific embodiment of the sensor device shown in FIG. 1;
  • FIG. 19 is a side view of the sensor device shown in FIGS. 12 through 18 inserted into a battery recharger unit;
  • FIG. 20 is a block diagram illustrating all of the components either mounted on or coupled to the printed circuit board forming a part of the sensor device shown in FIGS. 12 through 18;
  • FIG. 21 is a block diagram of an apparatus for monitoring health, wellness and fitness according to an alternate embodiment of the present invention.
  • FIG. 22 is a front view of an alternate embodiment of a sensor device according to the present invention;
  • FIG. 23 is a back view of an alternate embodiment of a sensor device according to the present invention;
  • FIG. 24 is a cross-sectional view of the sensor device shown in FIG. 22 taken along lines A-A;
  • FIG. 25 is a cross-sectional view of the sensor device shown in FIG. 22 taken along lines B-B;
  • FIG. 26 is a cross-sectional view of the sensor device shown in FIG. 22 taken along lines A-A showing the internal components of the housing of the sensor device;
  • FIG. 27 is a block diagram illustrating the components mounted on or coupled to the printed circuit board forming a part of an embodiment of the sensor device shown in FIGS. 22 through 26;
  • FIG. 28 is a front view of an alternate embodiment of a sensor device according to the present invention including an LCD;
  • FIG. 29 is a block diagram illustrating the components mounted on or coupled to the printed circuit board forming a part of an alternate embodiment of the sensor device shown in FIGS. 22 through 26;
  • FIGS. 30 and 31 are isometric views of an alternate embodiment of a sensor device according to the present invention having a housing adapted to be removably attached to a flexible section;
  • FIG. 32 is an isometric view of a further alternate embodiment of a sensor device according to the present invention having a housing adapted to be removably attached to a flexible section;
  • FIG. 33 is an isometric view of an embodiment of a sensor device having adjustable operating parameters according to an aspect of the present invention;
  • FIG. 34 is an isometric view of an alternate embodiment of a sensor device according to the present invention having a housing having an adhesive material on an external surface thereof for removably attaching the housing to the body;
  • FIGS. 35A and B are cross-sectional views of a housing for a prior art sensor device;
  • FIGS. 35C through H are cross-sectional views of various embodiments of a housing for a sensor device according to an aspect of the present invention taken along lines C-C in FIG. 23.
  • FIG. 36A is a cross-sectional view of a housing for a prior art sensor device;
  • FIGS. 36B through H are cross-sectional views of various embodiments of a housing for a sensor device according to an aspect of the present invention taken along lines D-D in FIG. 23;
  • FIG. 37 is an isometric view of an embodiment of a housing for a sensor device according to the present invention having a bottom or inner surface having a concavity in one direction and a convexity in another direction;
  • FIGS. 38A through D are cross-sectional views of a housing for a sensor device having a flat top surface and flat lateral ends;
  • FIGS. 39A through F are cross-sectional views of various embodiments of a housing for a sensor device having surfaces designed to deflect objects and prevent movement of the housing;
  • FIG. 39G is a cross-sectional view of the housing shown in FIG. 39E attached to a flexible section;
  • FIG. 40 is a top plan view of a data input and output device according to the present invention;
  • FIG. 41 is a partial cross-sectional view of the data input and output device shown in FIG. 40 taken along lines A-A in FIG. 40;
  • FIG. 42 is a block diagram illustrating the operation of prior art software that enables a prior art input device having a dial and a button to control the operation of a computer by identifying and selecting hot spots;
  • FIGS. 43A-F is a top plan view of a data input and output device according to an embodiment of the present invention in which energy related data for an individual is collected or generated by the data input and output device and a sensor device in electrical communication therewith and displayed by the data input and output device on an LCD provided thereon;
  • FIGS. 43G and H are a plan views of interfaces for entering nutrition information into a data input and output device according to an alternate embodiment of the present invention;
  • FIGS. 43I and J are scatter plots between estimates of the caloric content in meals consumed using an embodiment of the present invention and caloric content computed from full diet diary entries;
  • FIG. 44 is a block diagram showing the components attached or otherwise coupled to a printed circuit board housed within a data input and output device according to an embodiment of the present invention;
  • FIG. 45 is a partial cross-sectional view of a data input and output device according to an alternate embodiment of the present invention having one or more sensors that enable it to collect data indicative of physiological and/or contextual parameters;
  • FIG. 46 is a block diagram of an alternate embodiment of the present invention in which a data input and output device acts as a hub or terminal for collection and, optionally, processing of data from a variety of sources;
  • FIG. 47 is a block diagram showing the format of algorithms that are developed according to an aspect of the present invention; and
  • FIG. 48 is a block diagram illustrating an example algorithm for predicting energy expenditure according to the present invention.
  • DETAILED DESCRIPTION
  • In general, according to the present invention, data relating to the physiological state, the lifestyle and certain contextual parameters of an individual is collected and transmitted, either subsequently or in real-time, to a site, preferably remote from the individual, where it is stored for later manipulation and presentation to a recipient, preferably over an electronic network such as the Internet. Contextual parameters as used herein means parameters relating to the environment, surroundings and location of the individual, including, but not limited to, air quality, sound quality, ambient temperature, global positioning and the like. Referring to FIG. 1, located at user location 5 is sensor device 10 adapted to be placed in proximity with at least a portion of the human body. Sensor device 10 is preferably worn by an individual user on his or her body, for example as part of a garment such as a form fitting shirt, or as part of an arm band or the like. Sensor device 10, includes one or more sensors, which are adapted to generate signals in response to physiological characteristics of an individual, and a microprocessor. Proximity as used herein means that the sensors of sensor device 10 are separated from the individual's body by a material or the like, or a distance such that the capabilities of the sensors are not impeded.
  • Sensor device 10 generates data indicative of various physiological parameters of an individual, such as the individual's heart rate, pulse rate, beat-to-beat heart variability, EKG or ECG, respiration rate, skin temperature, core body temperature, heat flow off the body, galvanic skin response or GSR, EMG, EEG, EOG, blood pressure, body fat, hydration level, activity level, oxygen consumption, glucose or blood sugar level, body position, pressure on muscles or bones, and UV radiation exposure and absorption. In certain cases, the data indicative of the various physiological parameters is the signal or signals themselves generated by the one or more sensors and in certain other cases the data is calculated by the microprocessor based on the signal or signals generated by the one or more sensors. Methods for generating data indicative of various physiological parameters and sensors to be used therefor are well known. Table 1 provides several examples of such well known methods and shows the parameter in question, the method used, the sensor device used, and the signal that is generated. Table 1 also provides an indication as to whether further processing based on the generated signal is required to generate the data.
  • TABLE 1
    Further
    Parameter Method Sensor Signal Processing
    Heart Rate EKG 2 Electrodes DC Voltage Yes
    Pulse Rate BVP LED Emitter and Change in Resistance Yes
    Optical Sensor
    Beat-to-Beat Heart Rate 2 Electrodes DC Voltage Yes
    Variability
    EKG Skin Surface 3-10 Electrodes DC Voltage No
    Potentials
    Respiration Rate Chest Volume Strain Gauge Change in Resistance Yes
    Change
    Skin Temperature Surface Thermistors Change in Resistance Yes
    Temperature
    Probe
    Core Temperature Esophageal or Thermistors Change in Resistance Yes
    Rectal Probe
    Heat Flow Heat Flux Thermopile DC Voltage Yes
    Galvanic Skin Skin Conductance 2 Electrodes Change in Resistance No
    Response
    EMG Skin Surface 3 Electrodes DC Voltage No
    Potentials
    EEG Skin Surface Multiple Electrodes DC Voltage Yes
    Potentials
    EOG Eye Movement Thin Film DC Voltage Yes
    Piezoelectric
    Sensors
    Blood Pressure Non-Invasive Electronic Change in Resistance Yes
    Korotkuff Sounds Sphygromarometer
    Body Fat Body Impedance 2 Active Electrodes Change in Impedance Yes
    Activity in Body Movement Accelerometer DC Voltage, Yes
    Interpreted G Capacitance Changes
    Shocks per Minute
    Oxygen Oxygen Uptake Electro-chemical DC Voltage Change Yes
    Consumption
    Glucose Level Non-Invasive Electro-chemical DC Voltage Change Yes
    Body Position (e.g. N/A Mercury Switch DC Voltage Change Yes
    supine, erect, Array
    sitting)
    Muscle Pressure N/A Thin Film DC Voltage Change Yes
    Piezoelectric
    Sensors
    UV Radiation N/A UV Sensitive Photo DC Voltage Change Yes
    Absorption Cells
  • The types of data listed in Table 1 are intended to be examples of the types of data that can be generated by sensor device 10. It is to be understood that other types of data relating to other parameters can be generated by sensor device 10 without departing from the scope of the present invention.
  • The microprocessor of sensor device 10 may be programmed to summarize and analyze the data. For example, the microprocessor can be programmed to calculate an average, minimum or maximum heart rate or respiration rate over a defined period of time, such as ten minutes. Sensor device 10 may be able to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. The microprocessor of sensor device 10 is programmed to derive such information using known methods based on the data indicative of one or more physiological parameters. Table 2 provides examples of the type of information that can be derived, and indicates some of the types of data that can be used therefor.
  • TABLE 2
    Derived Information Data Used
    Ovulation Skin temperature, core temperature, oxygen consumption
    Sleep onset/wake Beat-to-beat variability, heart rate, pulse rate, respiration
    rate, skin temperature, core temperature, heat flow, galvanic
    skin response, EMG, EEG, EOG, blood pressure, oxygen
    consumption
    Calories burned Heart rate, pulse rate, respiration rate, heat flow, activity,
    oxygen consumption
    Basal metabolic rate Heart rate, pulse rate, respiration rate, heat flow, activity,
    oxygen consumption
    Basal temperature Skin temperature, core temperature
    Activity level Heart rate, pulse rate, respiration rate, heat flow, activity,
    oxygen consumption
    Stress level EKG, beat-to-beat variability, heart rate, pulse rate,
    respiration rate, skin temperature, heat flow, galvanic skin
    response, EMG, EEG, blood pressure, activity, oxygen
    consumption
    Relaxation level EKG, beat-to-beat variability, heart rate, pulse rate,
    respiration rate, skin temperature, heat flow, galvanic skin
    response, EMG, EEG, blood pressure, activity, oxygen
    consumption
    Maximum oxygen consumption rate EKG, heart rate, pulse rate, respiration rate, heat flow, blood
    pressure, activity, oxygen consumption
    Rise time or the time it takes to rise from Heart rate, pulse rate, heat flow, oxygen consumption
    a resting rate to 85% of a target maximum
    Time in zone or the time heart rate was Heart rate, pulse rate, heat flow, oxygen consumption
    above 85% of a target maximum
    Recovery time or the time it takes heart Heart rate, pulse rate, heat flow, oxygen consumption
    rate to return to a resting rate after heart
    rate was above 85% of a target maximum
  • Additionally, sensor device 10 may also generate data indicative of various contextual parameters relating to the environment surrounding the individual. For example, sensor device 10 can generate data indicative of the air quality, sound level/quality, light quality or ambient temperature near the individual, or even the global positioning of the individual. Sensor device 10 may include one or more sensors for generating signals in response to contextual characteristics relating to the environment surrounding the individual, the signals ultimately being used to generate the type of data described above. Such sensors are well known, as are methods for generating contextual parametric data such as air quality, sound level/quality, ambient temperature and global positioning.
  • FIG. 2 is a block diagram of an embodiment of sensor device 10. Sensor device 10 includes at least one sensor 12 and microprocessor 20. Depending upon the nature of the signal generated by sensor 12, the signal can be sent through one or more of amplifier 14, conditioning circuit 16, and analog-to-digital converter 18, before being sent to microprocessor 20. For example, where sensor 12 generates an analog signal in need of amplification and filtering, that signal can be sent to amplifier 14, and then on to conditioning circuit 16, which may, for example, be a band pass filter. The amplified and conditioned analog signal can then be transferred to analog to digital converter 18, where it is converted to a digital signal. The digital signal is then sent to microprocessor 20. Alternatively, if sensor 12 generates a digital signal, that signal can be sent directly to microprocessor 20.
  • A digital signal or signals representing certain physiological and/or contextual characteristics of the individual user may be used by microprocessor 20 to calculate or generate data indicative of physiological and/or contextual parameters of the individual user. Microprocessor 20 is programmed to derive information relating to at least one aspect of the individual's physiological state. It should be understood that microprocessor 20 may also comprise other forms of processors or processing devices, such as a microcontroller, or any other device that can be programmed to perform the functionality described herein.
  • The data indicative of physiological and/or contextual parameters can, according to one embodiment of the present invention, be sent to memory 22, such as flash memory, where it is stored until uploaded in the manner to be described below. Although memory 22 is shown in FIG. 2 as a discrete element, it will be appreciated that it may also be part of microprocessor 20. Sensor device 10 also includes input/output circuitry 24, which is adapted to output and receive as input certain data signals in the manners to be described herein. Thus, memory 22 of the sensor device 10 will build up, over time, a store of data relating to the individual user's body and/or environment. That data is periodically uploaded from sensor device 10 and sent to remote central monitoring unit 30, as shown in FIG. 1, where it is stored in a database for subsequent processing and presentation to the user, preferably through a local or global electronic network such as the Internet. This uploading of data can be an automatic process that is initiated by sensor device 10 periodically or upon the happening of an event such as the detection by sensor device 10 of a heart rate below a certain level, or can be initiated by the individual user or some third party authorized by the user, preferably according to some periodic schedule, such as every day at 10:00 p.m. Alternatively, rather than storing data in memory 22, sensor device 10 may continuously upload data in real time.
  • The uploading of data from sensor device 10 to central monitoring unit 30 for storage can be accomplished in various ways. In one embodiment, the data collected by sensor device 10 is uploaded by first transferring the data to personal computer 35 shown in FIG. 1 by means of physical connection 40, which, for example, may be a serial connection such as an RS232 or USB port. This physical connection may also be accomplished by using a cradle, not shown, that is electronically coupled to personal computer 35 into which sensor device 10 can be inserted, as is common with many commercially available personal digital assistants. The uploading of data could be initiated by then pressing a button on the cradle or could be initiated automatically upon insertion of sensor device 10. The data collected by sensor device 10 may be uploaded by first transferring the data to personal computer 35 by means of short range wireless transmission, such as infrared or RF transmission, as indicated at 45.
  • Once the data is received by personal computer 35, it is optionally compressed and encrypted by any one of a variety of well known methods and then sent out over a local or global electronic network, preferably the Internet, to central monitoring unit 30. It should be noted that personal computer 35 can be replaced by any computing device that has access to and that can transmit and receive data through the electronic network, such as, for example, a personal digital assistant such as the Palm VII sold by Palm, Inc., or the Blackberry 2-way pager sold by Research in Motion, Inc.
  • Alternatively, the data collected by sensor device 10, after being encrypted and, optionally, compressed by microprocessor 20, may be transferred to wireless device 50, such as a 2 way pager or cellular phone, for subsequent long distance wireless transmission to local telco site 55 using a wireless protocol such as e mail or as ASCII or binary data. Local telco site 55 includes tower 60 that receives the wireless transmission from wireless device 50 and computer 65 connected to tower 60. According to the preferred embodiment, computer 65 has access to the relevant electronic network, such as the Internet, and is used to transmit the data received in the form of the wireless transmission to the central monitoring unit 30 over the Internet. Although wireless device 50 is shown in FIG. 1 as a discrete device coupled to sensor device 10, it or a device having the same or similar functionality may be embedded as part of sensor device 10.
  • Sensor device 10 may be provided with a button to be used to time stamp events such as time to bed, wake time, and time of meals. These time stamps are stored in sensor device 10 and are uploaded to central monitoring unit 30 with the rest of the data as described above. The time stamps may include a digitally recorded voice message that, after being uploaded to central monitoring unit 30, are translated using voice recognition technology into text or some other information format that can be used by central monitoring unit 30.
  • In addition to using sensor device 10 to automatically collect physiological data relating to an individual user, a kiosk could be adapted to collect such data by, for example, weighing the individual, providing a sensing device similar to sensor device 10 on which an individual places his or her hand or another part of his or her body, or by scanning the individual's body using, for example, laser technology or an iStat blood analyzer. The kiosk would be provided with processing capability as described herein and access to the relevant electronic network, and would thus be adapted to send the collected data to the central monitoring unit 30 through the electronic network. A desktop sensing device, again similar to sensor device 10, on which an individual places his or her hand or another part of his or her body may also be provided. For example, such a desktop sensing device could be a blood pressure monitor in which an individual places his or her arm. An individual might also wear a ring having a sensor device 10 incorporated therein. A base, not shown, could then be provided which is adapted to be coupled to the ring. The desktop sensing device or the base just described may then be coupled to a computer such as personal computer 35 by means of a physical or short range wireless connection so that the collected data could be uploaded to central monitoring unit 30 over the relevant electronic network in the manner described above. A mobile device such as, for example, a personal digital assistant, might also be provided with a sensor device 10 incorporated therein. Such a sensor device 10 would be adapted to collect data when mobile device is placed in proximity with the individual's body, such as by holding the device in the palm of one's hand, and upload the collected data to central monitoring unit 30 in any of the ways described herein.
  • Furthermore, in addition to collecting data by automatically sensing such data in the manners described above, individuals can also manually provide data relating to various life activities that is ultimately transferred to and stored at central monitoring unit 30. An individual user can access a web site maintained by central monitoring unit 30 and can directly input information relating to life activities by entering text freely, by responding to questions posed by the web site, or by clicking through dialog boxes provided by the web site. Central monitoring unit 30 can also be adapted to periodically send electronic mail messages containing questions designed to elicit information relating to life activities to personal computer 35 or to some other device that can receive electronic mail, such as a personal digital assistant, a pager, or a cellular phone. The individual would then provide data relating to life activities to central monitoring unit 30 by responding to the appropriate electronic mail message with the relevant data. Central monitoring unit 30 may also be adapted to place a telephone call to an individual user in which certain questions would be posed to the individual user. The user could respond to the questions by entering information using a telephone keypad, or by voice, in which case conventional voice recognition technology would be used by central monitoring unit 30 to receive and process the response. The telephone call may also be initiated by the user, in which case the user could speak to a person directly or enter information using the keypad or by voice/voice recognition technology. Central monitoring unit 30 may also be given access to a source of information controlled by the user, for example the user's electronic calendar such as that provided with the Outlook product sold by Microsoft Corporation of Redmond, Wash., from which it could automatically collect information. The data relating to life activities may relate to the eating, sleep, exercise, mind centering or relaxation, and/or daily living habits, patterns and/or activities of the individual. Thus, sample questions may include: What did you have for lunch today? What time did you go to sleep last night? What time did you wake up this morning? How long did you run on the treadmill today?
  • Feedback may also be provided to a user directly through sensor device 10 in a visual form, for example through an LED or LCD or by constructing sensor device 10, at least in part, of a thermochromatic plastic, in the form of an acoustic signal or in the form of tactile feedback such as vibration. Such feedback may be a reminder or an alert to eat a meal or take medication or a supplement such as a vitamin, to engage in an activity such as exercise or meditation, or to drink water when a state of dehydration is detected. Additionally, a reminder or alert can be issued in the event that a particular physiological parameter such as ovulation has been detected, a level of calories burned during a workout has been achieved or a high heart rate or respiration rate has been encountered.
  • As will be apparent to those of skill in the art, it may be possible to Adownload@ data from central monitoring unit 30 to sensor device 10. The flow of data in such a download process would be substantially the reverse of that described above with respect to the upload of data from sensor device 10. Thus, it is possible that the firmware of microprocessor 20 of sensor device 10 can be updated or altered remotely, i.e., the microprocessor can be reprogrammed, by downloading new firmware to sensor device 10 from central monitoring unit 30 for such parameters as timing and sample rates of sensor device 10. Also, the reminders/alerts provided by sensor device 10 may be set by the user using the web site maintained by central monitoring unit 30 and subsequently downloaded to the sensor device 10.
  • Referring to FIG. 3, a block diagram of an embodiment of central monitoring unit 30 is shown. Central monitoring unit 30 includes CSU/DSU 70 which is connected to router 75, the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30. Connected to router 75 is firewall 80. The main purpose of firewall 80 is to protect the remainder of central monitoring unit 30 from unauthorized or malicious intrusions. Switch 85, connected to firewall 80, is used to direct data flow between middleware servers 95 a through 95 c and database server 110. Load balancer 90 is provided to spread the workload of incoming requests among the identically configured middleware servers 95 a through 95 c. Load balancer 90, a suitable example of which is the F5 ServerIron product sold by Foundry Networks, Inc. of San Jose, Calif., analyzes the availability of each middleware server 95 a through 95 c, and the amount of system resources being used in each middleware server 95 a through 95 c, in order to spread tasks among them appropriately.
  • Central monitoring unit 30 includes network storage device 100, such as a storage area network or SAN, which acts as the central repository for data. In particular, network storage device 100 comprises a database that stores all data gathered for each individual user in the manners described above. An example of a suitable network storage device 100 is the Symmetrix product sold by EMC Corporation of Hopkinton, Mass. Although only one network storage device 100 is shown in FIG. 3, it will be understood that multiple network storage devices of various capacities could be used depending on the data storage needs of central monitoring unit 30. Central monitoring unit 30 also includes database server 110 which is coupled to network storage device 100. Database server 110 is made up of two main components: a large scale multiprocessor server and an enterprise type software server component such as the 8/8i component sold by Oracle Corporation of Redwood City, Calif., or the 506 7 component sold by Microsoft Corporation of Redmond, Wash. The primary functions of database server 110 are that of providing access upon request to the data stored in network storage device 100, and populating network storage device 100 with new data. Coupled to network storage device 100 is controller 115, which typically comprises a desktop personal computer, for managing the data stored in network storage device 100.
  • Middleware servers 95 a through 95 c, a suitable example of which is the 220R Dual Processor sold by Sun Microsystems, Inc. of Palo Alto, Calif., each contain software for generating and maintaining the corporate or home web page or pages of the web site maintained by central monitoring unit 30. As is known in the art, a web page refers to a block or blocks of data available on the World-Wide Web comprising a file or files written in Hypertext Markup Language or HTML, and a web site commonly refers to any computer on the Internet running a World-Wide Web server process. The corporate or home web page or pages are the opening or landing web page or pages that are accessible by all members of the general public that visit the site by using the appropriate uniform resource locator or URL. As is known in the art, URLs are the form of address used on the World-Wide Web and provide a standard way of specifying the location of an object, typically a web page, on the Internet. Middleware servers 95 a through 95 c also each contain software for generating and maintaining the web pages of the web site of central monitoring unit 30 that can only be accessed by individuals that register and become members of central monitoring unit 30. The member users will be those individuals who wish to have their data stored at central monitoring unit 30. Access by such member users is controlled using passwords for security purposes. Preferred embodiments of those web pages are described in detail below and are generated using collected data that is stored in the database of network storage device 100.
  • Middleware servers 95 a through 95 c also contain software for requesting data from and writing data to network storage device 100 through database server 110. When an individual user desires to initiate a session with the central monitoring unit 30 for the purpose of entering data into the database of network storage device 100, viewing his or her data stored in the database of network storage device 100, or both, the user visits the home web page of central monitoring unit 30 using a browser program such as Internet Explorer distributed by Microsoft Corporation of Redmond, Wash., and logs in as a registered user. Load balancer 90 assigns the user to one of the middleware servers 95 a through 95 c, identified as the chosen middleware server. A user will preferably be assigned to a chosen middleware server for each entire session. The chosen middleware server authenticates the user using any one of many well known methods, to ensure that only the true user is permitted to access the information in the database. A member user may also grant access to his or her data to a third party such as a health care provider or a personal trainer. Each authorized third party may be given a separate password and may view the member user's data using a conventional browser. It is therefore possible for both the user and the third party to be the recipient of the data.
  • When the user is authenticated, the chosen middleware server requests, through database server 110, the individual user's data from network storage device 100 for a predetermined time period. The predetermined time period is preferably thirty days. The requested data, once received from network storage device 100, is temporarily stored by the chosen middleware server in cache memory. The cached data is used by the chosen middleware server as the basis for presenting information, in the form of web pages, to the user again through the user's browser. Each middleware server 95 a through 95 c is provided with appropriate software for generating such web pages, including software for manipulating and performing calculations utilizing the data to put the data in appropriate format for presentation to the user. Once the user ends his or her session, the data is discarded from cache. When the user initiates a new session, the process for obtaining and caching data for that user as described above is repeated. This caching system thus ideally requires that only one call to the network storage device 100 be made per session, thereby reducing the traffic that database server 110 must handle. Should a request from a user during a particular session require data that is outside of a predetermined time period of cached data already retrieved, a separate call to network storage device 100 may be performed by the chosen middleware server. The predetermined time period should be chosen, however, such that such additional calls are minimized. Cached data may also be saved in cache memory so that it can be reused when a user starts a new session, thus eliminating the need to initiate a new call to network storage device 100.
  • As described in connection with Table 2, the microprocessor of sensor device 10 may be programmed to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. Central monitoring unit 30, and preferably middleware servers 95 a through 95 c, may also be similarly programmed to derive such information based on the data indicative of one or more physiological parameters.
  • It is also contemplated that a user will input additional data during a session, for example, information relating to the user's eating or sleeping habits. This additional data is preferably stored by the chosen middleware server in a cache during the duration of the user's session. When the user ends the session, this additional new data stored in a cache is transferred by the chosen middleware server to database server 110 for population in network storage device 100. Alternatively, in addition to being stored in a cache for potential use during a session, the input data may also be immediately transferred to database server 110 for population in network storage device 100, as part of a write-through cache system which is well known in the art.
  • Data collected by sensor device 10 shown in FIG. 1 is periodically uploaded to central monitoring unit 30. Either by long distance wireless transmission or through personal computer 35, a connection to central monitoring unit 30 is made through an electronic network, preferably the Internet. In particular, connection is made to load balancer 90 through CSU/DSU 70, router 75, firewall 80 and switch 85. Load balancer 90 then chooses one of the middleware servers 95 a through 95 c to handle the upload of data, hereafter called the chosen middleware server. The chosen middleware server authenticates the user using any one of many well known methods. If authentication is successful, the data is uploaded to the chosen middleware server as described above, and is ultimately transferred to database server 110 for population in the network storage device 100.
  • Referring to FIG. 4, an alternate embodiment of central monitoring unit 30 is shown. In addition to the elements shown and described with respect to FIG. 3, the embodiment of the central monitoring unit 30 shown in FIG. 4 includes a mirror network storage device 120 which is a redundant backup of network storage device 100. Coupled to mirror network storage device 120 is controller 122. Data from network storage device 100 is periodically copied to mirror network storage device 120 for data redundancy purposes.
  • Third parties such as insurance companies or research institutions may be given access, possibly for a fee, to certain of the information stored in mirror network storage device 120. Preferably, in order to maintain the confidentiality of the individual users who supply data to central monitoring unit 30, these third parties are not given access to such user's individual database records, but rather are only given access to the data stored in mirror network storage device 120 in aggregate form. Such third parties may be able to access the information stored in mirror network storage device 120 through the Internet using a conventional browser program. Requests from third parties may come in through CSU/DSU 70, router 75, firewall 80 and switch 85. In the embodiment shown in FIG. 4, a separate load balancer 130 is provided for spreading tasks relating to the accessing and presentation of data from mirror drive array 120 among identically configured middleware servers 135 a through 135 c. Middleware servers 135 a through 135 c each contain software for enabling the third parties to, using a browser, formulate queries for information from mirror network storage device 120 through separate database server 125. Middleware servers 135 a through 135 c also contain software for presenting the information obtained from mirror network storage device 120 to the third parties over the Internet in the form of web pages. In addition, the third parties can choose from a series of prepared reports that have information packaged along subject matter lines, such as various demographic categories.
  • As will be apparent to one of skill in the art, instead of giving these third parties access to the backup data stored in mirror network storage device 120, the third parties may be given access to the data stored in network storage device 100. Also, instead of providing load balancer 130 and middleware servers 135 a through 135 c, the same functionality, although at a sacrificed level of performance, could be provided by load balancer 90 and middleware servers 95 a through 95 c.
  • When an individual user first becomes a registered user or member, that user completes a detailed survey. The purposes of the survey are to: identify unique characteristics/circumstances for each user that they might need to address in order to maximize the likelihood that they will implement and maintain a healthy lifestyle as suggested by central monitoring unit 30; gather baseline data which will be used to set initial goals for the individual user and facilitate the calculation and display of certain graphical data output such as the Health Index pistons; identify unique user characteristics and circumstances that will help central monitoring unit 30 customize the type of content provided to the user in the Health Manager's Daily Dose; and identify unique user characteristics and circumstances that the Health Manager can guide the user to address as possible barriers to a healthy lifestyle through the problem-solving function of the Health Manager.
  • The specific information to be surveyed may include: key individual temperamental characteristics, including activity level, regularity of eating, sleeping, and bowel habits, initial response to situations, adaptability, persistence, threshold of responsiveness, intensity of reaction, and quality of mood; the user's level of independent functioning, i.e., self-organization and management, socialization, memory, and academic achievement skills; the user's ability to focus and sustain attention, including the user's level of arousal, cognitive tempo, ability to filter distractions, vigilance, and self-monitoring; the user's current health status including current weight, height, and blood pressure, most recent general physician visit, gynecological exam, and other applicable physician/healthcare contacts, current medications and supplements, allergies, and a review of current symptoms and/or health-related behaviors; the user's past health history, i.e., illnesses/surgeries, family history, and social stress events, such as divorce or loss of a job, that have required adjustment by the individual; the user's beliefs, values and opinions about health priorities, their ability to alter their behavior and, what might contribute to stress in their life, and how they manage it; the user's degree of self-awareness, empathy, empowerment, and self-esteem, and the user's current daily routines for eating, sleeping, exercise, relaxation and completing activities of daily living; and the user's perception of the temperamental characteristics of two key persons in their life, for example, their spouse, a friend, a co-worker, or their boss, and whether there are clashes present in their relationships that might interfere with a healthy lifestyle or contribute to stress.
  • Each member user will have access, through the home web page of central monitoring unit 30, to a series of web pages customized for that user, referred to as the Health Manager. The opening Health Manager web page 150 is shown in FIG. 5. The Health Manager web pages are the main workspace area for the member user. The Health Manager web pages comprise a utility through which central monitoring unit 30 provides various types and forms of data, commonly referred to as analytical status data, to the user that is generated from the data it collects or generates, namely one or more of: the data indicative of various physiological parameters generated by sensor device 10; the data derived from the data indicative of various physiological parameters; the data indicative of various contextual parameters generated by sensor device 10; and the data input by the user. Analytical status data is characterized by the application of certain utilities or algorithms to convert one or more of the data indicative of various physiological parameters generated by sensor device 10, the data derived from the data indicative of various physiological parameters, the data indicative of various contextual parameters generated by sensor device 10, and the data input by the user into calculated health, wellness and lifestyle indicators. For example, based on data input by the user relating to the foods he or she has eaten, things such as calories and amounts of proteins, fats, carbohydrates, and certain vitamins can be calculated. As another example, skin temperature, heart rate, respiration rate, heat flow and/or GSR can be used to provide an indicator to the user of his or her stress level over a desired time period. As still another example, skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption, ambient sound and body movement or motion as detected by a device such as an accelerometer can be used to provide indicators to the user of his or her sleep patterns over a desired time period.
  • Located on the opening Health Manager web page 150 is Health Index 155. Health Index 155 is a graphical utility used to measure and provide feedback to member users regarding their performance and the degree to which they have succeeded in reaching a healthy daily routine suggested by central monitoring unit 30. Health Index 155 thus provides an indication for the member user to track his or her progress. Health Index 155 includes six categories relating to the user's health and lifestyle: Nutrition, Activity Level, Mind Centering, Sleep, Daily Activities and How You Feel. The Nutrition category relates to what, when and how much a person eats and drinks. The Activity Level category relates to how much a person moves around. The Mind Centering category relates to the quality and quantity of time a person spends engaging in some activity that allows the body to achieve a state of profound relaxation while the mind becomes highly alert and focused. The Sleep category relates to the quality and quantity of a person's sleep. The Daily Activities category relates to the daily responsibilities and health risks people encounter. Finally, the How You Feel category relates to the general perception that a person has about how they feel on a particular day. Each category has an associated level indicator or piston that indicates, preferably on a scale ranging from poor to excellent, how the user is performing with respect to that category.
  • When each member user completes the initial survey described above, a profile is generated that provides the user with a summary of his or her relevant characteristics and life circumstances. A plan and/or set of goals is provided in the form of a suggested healthy daily routine. The suggested healthy daily routine may include any combination of specific suggestions for incorporating proper nutrition, exercise, mind centering, sleep, and selected activities of daily living in the user's life. Prototype schedules may be offered as guides for how these suggested activities can be incorporated into the user's life. The user may periodically retake the survey, and based on the results, the items discussed above will be adjusted accordingly.
  • The Nutrition category is calculated from both data input by the user and sensed by sensor device 10. The data input by the user comprises the time and duration of breakfast, lunch, dinner and any snacks, and the foods eaten, the supplements such as vitamins that are taken, and the water and other liquids consumed during a relevant, pre-selected time period. Based upon this data and on stored data relating to known properties of various foods, central monitoring unit 30 calculates well known nutritional food values such as calories and amounts of proteins, fats, carbohydrates, vitamins, etc., consumed.
  • The Nutrition Health Index piston level is preferably determined with respect to the following suggested healthy daily routine: eat at least three meals; eat a varied diet consisting of 6-11 servings of bread, pasta, cereal, and rice, 2-4 servings fruit, 3-5 servings of vegetables, 2-3 servings of fish, meat, poultry, dry beans, eggs, and nuts, and 2-3 servings of milk, yogurt and cheese; and drink 8 or more 8 ounce glasses of water. This routine may be adjusted based on information about the user, such as sex, age, height and/or weight. Certain nutritional targets may also be set by the user or for the user, relating to daily calories, protein, fiber, fat, carbohydrates, and/or water consumption and percentages of total consumption. Parameters utilized in the calculation of the relevant piston level include the number of meals per day, the number of glasses of water, and the types and amounts of food eaten each day as input by the user.
  • Nutritional information is presented to the user through nutrition web page 160 as shown in FIG. 6. The preferred nutritional web page 160 includes nutritional fact charts 165 and 170 which illustrate actual and target nutritional facts, respectively as pie charts, and nutritional intake charts 175 and 180 which show total actual nutritional intake and target nutritional intake, respectively as pie charts. Nutritional fact charts 165 and 170 preferably show a percentage breakdown of items such as carbohydrates, protein and fat, and nutritional intake charts 175 and 180 are preferably broken down to show components such as total and target calories, fat, carbohydrates, protein, and vitamins. Web page 160 also includes meal and water consumption tracking 185 with time entries, hyperlinks 190 which allow the user to directly access nutrition-related news items and articles, suggestions for refining or improving daily routine with respect to nutrition and affiliate advertising elsewhere on the network, and calendar 195 for choosing between views having variable and selectable time periods. The items shown at 190 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Activity Level category of Health Index 155 is designed to help users monitor how and when they move around during the day and utilizes both data input by the user and data sensed by sensor device 10. The data input by the user may include details regarding the user's daily activities, for example the fact that the user worked at a desk from 8 a.m. to 5 p.m. and then took an aerobics class from 6 p.m. to 7 p.m. Relevant data sensed by sensor device 10 may include heart rate, movement as sensed by a device such as an accelerometer, heat flow, respiration rate, calories burned, GSR and hydration level, which may be derived by sensor device 60 or central monitoring unit 30. Calories burned may be calculated in a variety of manners, including: the multiplication of the type of exercise input by the user by the duration of exercise input by the user; sensed motion multiplied by time of motion multiplied by a filter constant; or sensed heat flux multiplied by time multiplied by a filter constant.
  • The Activity Level Health Index piston level is preferably determined with respect to a suggested healthy daily routine that includes: exercising aerobically for a pre-set time period, preferably 20 minutes, or engaging in a vigorous lifestyle activity for a pre-set time period, preferably one hour, and burning at least a minimum target number of calories, preferably 205 calories, through the aerobic exercise and/or lifestyle activity. The minimum target number of calories may be set according to information about the user, such as sex, age, height and/or weight. Parameters utilized in the calculation of the relevant piston level include the amount of time spent exercising aerobically or engaging in a vigorous lifestyle activity as input by the user and/or sensed by sensor device 10, and the number of calories burned above pre-calculated energy expenditure parameters.
  • Information regarding the individual user's movement is presented to the user through activity level web page 200 shown in FIG. 7, which may include activity graph 205 in the form of a bar graph, for monitoring the individual user's activities in one of three categories: high, medium and low intensity with respect to a pre-selected unit of time. Activity percentage chart 210, in the form or a pie chart, may also be provided for showing the percentage of a pre-selected time period, such as one day, that the user spent in each category. Activity level web page 200 may also include calorie section 215 for displaying items such as total calories burned, daily target calories burned, total caloric intake, and duration of aerobic activity. Finally, activity level web page 200 may include at least one hyperlink 220 to allow a user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to activity level and affiliate advertising elsewhere on the network. Activity level web page 200 may be viewed in a variety of formats, and may include user-selectable graphs and charts such as a bar graph, pie chart, or both, as selectable by Activity level check boxes 225. Activity level calendar 230 is provided for selecting among views having variable and selectable time periods. The items shown at 220 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Mind Centering category of Health Index 155 is designed to help users monitor the parameters relating to time spent engaging in certain activities which allow the body to achieve a state of profound relaxation while the mind becomes focused, and is based upon both data input by the user and data sensed by the sensor device 10. In particular, a user may input the beginning and end times of relaxation activities such as yoga or meditation. The quality of those activities as determined by the depth of a mind centering event can be measured by monitoring parameters including skin temperature, heart rate, respiration rate, and heat flow as sensed by sensor device 10. Percent change in GSR as derived either by sensor device 10 or central monitoring unit 30 may also be utilized.
  • The Mind Centering Health Index piston level is preferably calculated with respect to a suggested healthy daily routine that includes participating each day in an activity that allows the body to achieve profound relaxation while the mind stays highly focused for at least fifteen minutes. Parameters utilized in the calculation of the relevant piston level include the amount of time spent in a mind centering activity, and the percent change in skin temperature, heart rate, respiration rate, heat flow or GSR as sensed by sensor device 10 compared to a baseline which is an indication of the depth or quality of the mind centering activity.
  • Information regarding the time spent on self reflection and relaxation is presented to the user through mind centering web page 250 shown in FIG. 8. For each mind centering activity, referred to as a session, the preferred mind centering web page 250 includes the time spent during the session, shown at 255, the target time, shown at 260, comparison section 265 showing target and actual depth of mind centering, or focus, and a histogram 270 that shows the overall level of stress derived from such things as skin temperature, heart rate, respiration rate, heat flow and/or GSR. In comparison section 265, the human figure outline showing target focus is solid, and the human figure outline showing actual focus ranges from fuzzy to solid depending on the level of focus. The preferred mind centering web page may also include an indication of the total time spent on mind centering activities, shown at 275, hyperlinks 280 which allow the user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to mind centering and affiliate advertising, and a calendar 285 for choosing among views having variable and selectable time periods. The items shown at 280 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Sleep category of Health Index 155 is designed to help users monitor their sleep patterns and the quality of their sleep. It is intended to help users learn about the importance of sleep in their healthy lifestyle and the relationship of sleep to circadian rhythms, being the normal daily variations in body functions. The Sleep category is based upon both data input by the user and data sensed by sensor device 10. The data input by the user for each relevant time interval includes the times the user went to sleep and woke up and a rating of the quality of sleep. As noted in Table 2, the data from sensor device 10 that is relevant includes skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, and oxygen consumption. Also relevant is ambient sound and body movement or motion as detected by a device such as an accelerometer. This data can then be used to calculate or derive sleep onset and wake time, sleep interruptions, and the quality and depth of sleep.
  • The Sleep Health Index piston level is determined with respect to a healthy daily routine including getting a minimum amount, preferably eight hours, of sleep each night and having a predictable bed time and wake time. The specific parameters which determine the piston level calculation include the number of hours of sleep per night and the bed time and wake time as sensed by sensor device 10 or as input by the user, and the quality of the sleep as rated by the user or derived from other data.
  • Information regarding sleep is presented to the user through sleep web page 290 shown in FIG. 9. Sleep web page 290 includes a sleep duration indicator 295, based on either data from sensor device 10 or on data input by the user, together with user sleep time indicator 300 and wake time indicator 305. A quality of sleep rating 310 input by the user may also be utilized and displayed. If more than a one day time interval is being displayed on sleep web page 290, then sleep duration indicator 295 is calculated and displayed as a cumulative value, and sleep time indicator 300, wake time indicator 305 and quality of sleep rating 310 are calculated and illustrated as averages. Sleep web page 290 also includes a user-selectable sleep graph 315 which calculates and displays one sleep related parameter over a pre-selected time interval. For illustrative purposes, FIG. 9 shows heat flow over a one-day period, which tends to be lower during sleeping hours and higher during waking hours. From this information, a person's bio-rhythms can be derived. Sleep graph 315 may also include a graphical representation of data from an accelerometer incorporated in sensor device 10 which monitors the movement of the body. The sleep web page 290 may also include hyperlinks 320 which allow the user to directly access sleep related news items and articles, suggestions for refining or improving daily routine with respect to sleep and affiliate advertising available elsewhere on the network, and a sleep calendar 325 for choosing a relevant time interval. The items shown at 320 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The Activities of Daily Living category of Health Index 155 is designed to help users monitor certain health and safety related activities and risks and is based entirely on data input by the user. The Activities of Daily Living category is divided into four sub categories: personal hygiene, which allows the user to monitor activities such as brushing and flossing his or her teeth and showering; health maintenance, that tracks whether the user is taking prescribed medication or supplements and allows the user to monitor tobacco and alcohol consumption and automobile safety such as seat belt use; personal time, that allows the user to monitor time spent socially with family and friends, leisure, and mind centering activities; and responsibilities, that allows the user to monitor certain work and financial activities such as paying bills and household chores.
  • The Activities of Daily Living Health Index piston level is preferably determined with respect to the healthy daily routine described below. With respect to personal hygiene, the routine requires that the users shower or bathe each day, brush and floss teeth each day, and maintain regular bowel habits. With respect to health maintenance, the routine requires that the user take medications and vitamins and/or supplements, use a seat belt, refrain from smoking, drink moderately, and monitor health each day with the Health Manager. With respect to personal time, the routine requires the users to spend at least one hour of quality time each day with family and/or friends, restrict work time to a maximum of nine hours a day, spend some time on a leisure or play activity each day, and engage in a mind stimulating activity. With respect to responsibilities, the routine requires the users to do household chores, pay bills, be on time for work, and keep appointments. The piston level is calculated based on the degree to which the user completes a list of daily activities as determined by information input by the user.
  • Information relating to these activities is presented to the user through daily activities web page 330 shown in FIG. 10. In preferred daily activities web page 330, activities chart 335, selectable for one or more of the sub categories, shows whether the user has done what is required by the daily routine. A colored or shaded box indicates that the user has done the required activity, and an empty, non-colored or shaded box indicates that the user has not done the activity. Activities chart 335 can be created and viewed in selectable time intervals. For illustrative purposes, FIG. 10 shows the personal hygiene and personal time sub-categories for a particular week. In addition, daily activities web page 330 may include daily activity hyperlinks 340 which allow the user to directly access relevant news items and articles, suggestions for improving or refining daily routine with respect to activities of daily living and affiliate advertising, and a daily activities calendar 345 for selecting a relevant time interval. The items shown at 340 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.
  • The How You Feel category of Health Index 155 is designed to allow users to monitor their perception of how they felt on a particular day, and is based on information, essentially a subjective rating, that is input directly by the user. A user provides a rating, preferably on a scale of 1 to 5, with respect to the following nine subject areas: mental sharpness; emotional and psychological well being; energy level; ability to cope with life stresses; appearance; physical well being; self-control; motivation; and comfort in relating to others. Those ratings are averaged and used to calculate the relevant piston level.
  • Referring to FIG. 11, Health Index web page 350 is shown. Health Index web page 350 enables users to view the performance of their Health Index over a user selectable time interval including any number of consecutive or non-consecutive days. Using Health Index selector buttons 360, the user can select to view the Health Index piston levels for one category, or can view a side-by-side comparison of the Health Index piston levels for two or more categories. For example, a user might want to just turn on Sleep to see if their overall sleep rating improved over the previous month, much in the same way they view the performance of their favorite stock. Alternatively, Sleep and Activity Level might be simultaneously displayed in order to compare and evaluate Sleep ratings with corresponding Activity Level ratings to determine if any day-to-day correlations exist. Nutrition ratings might be displayed with How You Feel for a pre-selected time interval to determine if any correlation exists between daily eating habits and how they felt during that interval. For illustrative purposes, FIG. 11 illustrates a comparison of Sleep and Activity Level piston levels for the week of June 10 through June 16. Health Index web page 350 also includes tracking calculator 365 that displays access information and statistics such as the total number of days the user has logged in and used the Health Manager, the percentage of days the user has used the Health Manager since becoming a subscriber, and percentage of time the user has used the sensor device 10 to gather data.
  • Referring again to FIG. 5, opening Health Manager web page 150 may include a plurality of user selectable category summaries 156 a through 156 f, one corresponding to each of the Health Index 155 categories. Each category summary 156 a through 156 f presents a pre-selected filtered subset of the data associated with the corresponding category. Nutrition category summary 156 a displays daily target and actual caloric intake. Activity Level category summary 156 b displays daily target and actual calories burned. Mind Centering category summary 156 c displays target and actual depth of mind centering or focus. Sleep category summary 156 d displays target sleep, actual sleep, and a sleep quality rating. Daily Activities category summary 156 e displays a target and actual score based on the percentage of suggested daily activities that are completed. The How You Feel category summary 156 f shows a target and actual rating for the day.
  • Opening Health Manager web page 150 also may include Daily Dose section 157 which provides, on a daily time interval basis, information to the user, including, but not limited to, hyperlinks to news items and articles, commentary and reminders to the user based on tendencies, such as poor nutritional habits, determined from the initial survey. The commentary for Daily Dose 157 may, for example, be a factual statement that drinking 8 glasses of water a day can reduce the risk of colon cancer by as much as 32%, accompanied by a suggestion to keep a cup of water by your computer or on your desk at work and refill often. Opening Health Manager web page 150 also may include a Problem Solver section 158 that actively evaluates the user's performance in each of the categories of Health Index 155 and presents suggestions for improvement. For example, if the system detects that a user's Sleep levels have been low, which suggest that the user has been having trouble sleeping, Problem Solver 158 can provide suggestions for way to improve sleep. Problem Solver 158 also may include the capability of user questions regarding improvements in performance. Opening Health Manager web page 150 may also include a Daily Data section 159 that launches an input dialog box. The input dialog box facilitates input by the user of the various data required by the Health Manager. As is known in the art, data entry may be in the form of selection from pre defined lists or general free form text input. Finally, opening Health Manager web page 150 may include Body Stats section 161 which may provide information regarding the user's height, weight, body measurements, body mass index or BMI, and vital signs such as heart rate, blood pressure or any of the identified physiological parameters.
  • Referring to FIGS. 12-17, a specific embodiment of sensor device 10 is shown which is in the form of an armband adapted to be worn by an individual on his or her upper arm, between the shoulder and the elbow. The specific embodiment of sensor device 10 shown in FIGS. 12-17 will, for convenience, be referred to as armband sensor device 400. Armband sensor device 400 includes computer housing 405, flexible wing body 410, and, as shown in FIG. 17, elastic strap 415. Computer housing 405 and flexible wing body 410 are preferably made of a flexible urethane material or an elastomeric material such as rubber or a rubber-silicone blend by a molding process. Flexible wing body 410 includes first and second wings 418 each having a thru-hole 420 located near the ends 425 thereof. First and second wings 418 are adapted to wrap around a portion of the wearer's upper arm.
  • Elastic strap 415 is used to removably affix armband sensor device 400 to the individual's upper arm. As seen in FIG. 17, bottom surface 426 of elastic strap 415 is provided with Velcro loops 416 along a portion thereof. Each end 427 of elastic strap 415 is provided with Velcro hook patch 428 on bottom surface 426 and pull tab 429 on top surface 430. A portion of each pull tab 429 extends beyond the edge of each end 427.
  • In order to wear armband sensor device 400, a user inserts each end 427 of elastic strap 415 into a respective thru-hole 420 of flexible wing body 410. The user then places his arm through the loop created by elastic strap 415, flexible wing body 410 and computer housing 405. By pulling each pull tab 429 and engaging Velcro hook patches 428 with Velcro loops 416 at a desired position along bottom surface 426 of elastic strap 415, the user can adjust elastic strap 415 to fit comfortably. Since Velcro hook patches 428 can be engaged with Velcro loops 416 at almost any position along bottom surface 426, armband sensor device 400 can be adjusted to fit arms of various sizes. Also, elastic strap 415 may be provided in various lengths to accommodate a wider range of arm sizes. As will be apparent to one of skill in the art, other means of fastening and adjusting the size of elastic strap may be used, including, but not limited to, snaps, buttons, or buckles. It is also possible to use two elastic straps that fasten by one of several conventional means including Velcro, snaps, buttons, buckles or the like, or merely a single elastic strap affixed to wings 418.
  • Alternatively, instead of providing thru-holes 420 in wings 418, loops having the shape of the letter D, not shown, may be attached to ends 425 of wings 418 by one of several conventional means. For example, a pin, not shown, may be inserted through ends 425, wherein the pin engages each end of each loop. In this configuration, the D-shaped loops would serve as connecting points for elastic strap 415, effectively creating a thru-hole between each end 425 of each wing 418 and each loop.
  • As shown in FIG. 18, which is an exploded view of armband sensor device 400, computer housing 405 includes a top portion 435 and a bottom portion 440. Contained within computer housing 405 are printed circuit board or PCB 445, rechargeable battery 450, preferably a lithium ion battery, and vibrating motor 455 for providing tactile feedback to the wearer, such as those used in pagers, suitable examples of which are the Model 12342 and 12343 motors sold by MG Motors Ltd. of the United Kingdom.
  • Top portion 435 and bottom portion 440 of computer housing 405 sealingly mate along groove 436 into which O-ring 437 is fit, and may be affixed to one another by screws, not shown, which pass through screw holes 438 a and stiffeners 438 b of bottom portion 440 and apertures 439 in PCB 445 and into threaded receiving stiffeners 451 of top portion 435. Alternately, top portion 435 and bottom portion 440 may be snap fit together or affixed to one another with an adhesive. Preferably, the assembled computer housing 405 is sufficiently water resistant to permit armband sensor device 400 to be worn while swimming without adversely affecting the performance thereof.
  • As can be seen in FIG. 13, bottom portion 440 includes, on a bottom side thereof, a raised platform 430. Affixed to raised platform 430 is heat flow or flux sensor 460, a suitable example of which is the micro-foil heat flux sensor sold by RdF Corporation of Hudson, N.H. Heat flux sensor 460 functions as a self-generating thermopile transducer, and preferably includes a carrier made of a polyamide film. Bottom portion 440 may include on a top side thereof, that is on a side opposite the side to which heat flux sensor 460 is affixed, a heat sink, not shown, made of a suitable metallic material such as aluminum. Also affixed to raised platform 430 are GSR sensors 465, preferably comprising electrodes formed of a material such as conductive carbonized rubber, gold or stainless steel. Although two GSR sensors 465 are shown in FIG. 13, it will be appreciated by one of skill in the art that the number of GSR sensors 465 and the placement thereof on raised platform 430 can vary as long as the individual GSR sensors 465, i.e., the electrodes, are electrically isolated from one another. By being affixed to raised platform 430, heat flux sensor 460 and GSR sensors 465 are adapted to be in contact with the wearer's skin when armband sensor device 400 is worn. Bottom portion 440 of computer housing 405 may also be provided with a removable and replaceable soft foam fabric pad, not shown, on a portion of the surface thereof that does not include raised platform 430 and screw holes 438 a. The soft foam fabric is intended to contact the wearer's skin and make armband sensor device 400 more comfortable to wear.
  • Electrical coupling between heat flux sensor 460, GSR sensors 465, and PCB 445 may be accomplished in one of various known methods. For example, suitable wiring, not shown, may be molded into bottom portion 440 of computer housing 405 and then electrically connected, such as by soldering, to appropriate input locations on PCB 445 and to heat flux sensor 460 and GSR sensors 465. Alternatively, rather than molding wiring into bottom portion 440, thru-holes may be provided in bottom portion 440 through which appropriate wiring may pass. The thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405.
  • Rather than being affixed to raised platform 430 as shown in FIG. 13, one or both of heat flux sensor 460 and GSR sensors 465 may be affixed to the inner portion 466 of flexible wing body 410 on either or both of wings 418 so as to be in contact with the wearer's skin when armband sensor device 400 is worn. In such a configuration, electrical coupling between heat flux sensor 460 and GSR sensors 465, whichever the case may be, and the PCB 445 may be accomplished through suitable wiring, not shown, molded into flexible wing body 410 that passes through one or more thru-holes in computer housing 405 and that is electrically connected, such as by soldering, to appropriate input locations on PCB 445. Again, the thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405. Alternatively, rather than providing thru-holes in computer housing 405 through which the wiring passes, the wiring may be captured in computer housing 405 during an overmolding process, described below, and ultimately soldered to appropriate input locations on PCB 445.
  • As shown in FIGS. 12, 16, 17 and 18, computer housing 405 includes a button 470 that is coupled to and adapted to activate a momentary switch 585 on PCB 445. Button 470 may be used to activate armband sensor device 400 for use, to mark the time an event occurred or to request system status information such as battery level and memory capacity. When button 470 is depressed, momentary switch 585 closes a circuit and a signal is sent to processing unit 490 on PCB 445. Depending on the time interval for which button 470 is depressed, the generated signal triggers one of the events just described. Computer housing 405 also includes LEDs 475, which may be used to indicate battery level or memory capacity or to provide visual feedback to the wearer. Rather than LEDs 475, computer housing 405 may also include a liquid crystal display or LCD to provide battery level, memory capacity or visual feedback information to the wearer. Battery level, memory capacity or feedback information may also be given to the user tactily or audibly.
  • Armband sensor device 400 may be adapted to be activated for use, that is collecting data, when either of GSR sensors 465 or heat flux sensor 460 senses a particular condition that indicates that armband sensor device 400 has been placed in contact with the user's skin. Also, armband sensor device 400 may be adapted to be activated for use when one or more of heat flux sensor 460, GSR sensors 465, accelerometer 495 or 550, or any other device in communication with armband sensor device 400, alone or in combination, sense a particular condition or conditions that indicate that the armband sensor device 400 has been placed in contact with the user's skin for use. At other times, armband sensor device 400 would be deactivated, thus preserving battery power.
  • Computer housing 405 is adapted to be coupled to a battery recharger unit 480 shown in FIG. 19 for the purpose of recharging rechargeable battery 450. Computer housing 405 includes recharger contacts 485, shown in FIGS. 12, 15, 16 and 17, that are coupled to rechargeable battery 450. Recharger contacts 485 may be made of a material such as brass, gold or stainless steel, and are adapted to mate with and be electrically coupled to electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein. The electrical contacts provided in battery recharger unit 480 may be coupled to recharging circuit 481 a provided inside battery recharger unit 480. In this configuration, recharging circuit 481 would be coupled to a wall outlet, such as by way of wiring including a suitable plug that is attached or is attachable to battery recharger unit 480. Alternatively, electrical contacts 480 may be coupled to wiring that is attached to or is attachable to battery recharger unit 480 that in turn is coupled to recharging circuit 481 b external to battery recharger unit 480. The wiring in this configuration would also include a plug, not shown, adapted to be plugged into a conventional wall outlet.
  • Also provided inside battery recharger unit 480 is RF transceiver 483 adapted to receive signals from and transmit signals to RF transceiver 565 provided in computer housing 405 and shown in FIG. 20. RF transceiver 483 is adapted to be coupled, for example by a suitable cable, to a serial port, such as an RS 232 port or a USB port, of a device such as personal computer 35 shown in FIG. 1. Thus, data may be uploaded from and downloaded to armband sensor device 400 using RF transceiver 483 and RF transceiver 565. It will be appreciated that although RF transceivers 483 and 565 are shown in FIGS. 19 and 20, other forms of wireless transceivers may be used, such as infrared transceivers. Alternatively, computer housing 405 may be provided with additional electrical contacts, not shown, that would be adapted to mate with and be electrically coupled to additional electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein. The additional electrical contacts in the computer housing 405 would be coupled to the processing unit 490 and the additional electrical contacts provided in battery recharger unit 480 would be coupled to a suitable cable that in turn would be coupled to a serial port, such as an RS R32 port or a USB port, of a device such as personal computer 35. This configuration thus provides an alternate method for uploading of data from and downloading of data to armband sensor device 400 using a physical connection.
  • FIG. 20 is a schematic diagram that shows the system architecture of armband sensor device 400, and in particular each of the components that is either on or coupled to PCB 445.
  • As shown in FIG. 17, PCB 445 includes processing unit 490, which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein. Processing unit 490 is adapted to provide all of the functionality described in connection with microprocessor 20 shown in FIG. 2. A suitable example of processing unit 490 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Ill. PCB 445 also has thereon a two-axis accelerometer 495, a suitable example of which is the Model ADXL210 accelerometer sold by Analog Devices, Inc. of Norwood, Mass. Two-axis accelerometer 495 is preferably mounted on PCB 445 at an angle such that its sensing axes are offset at an angle substantially equal to 45 degrees from the longitudinal axis of PCB 445 and thus the longitudinal axis of the wearer's arm when armband sensor device 400 is worn. The longitudinal axis of the wearer's arm refers to the axis defined by a straight line drawn from the wearer's shoulder to the wearer's elbow. The output signals of two-axis accelerometer 495 are passed through buffers 500 and input into analog to digital converter 505 that in turn is coupled to processing unit 490. GSR sensors 465 are coupled to amplifier 510 on PCB 445. Amplifier 510 provides amplification and low pass filtering functionality, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass. The amplified and filtered signal output by amplifier 510 is input into amp/offset 515 to provide further gain and to remove any bias voltage and into filter/conditioning circuit 520, which in turn are each coupled to analog to digital converter 505. Heat flux sensor 460 is coupled to differential input amplifier 525, such as the Model INA amplifier sold by Burr-Brown Corporation of Tucson, Ariz., and the resulting amplified signal is passed through filter circuit 530, buffer 535 and amplifier 540 before being input to analog to digital converter 505. Amplifier 540 is configured to provide further gain and low pass filtering, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Mass. PCB 445 also includes thereon a battery monitor 545 that monitors the remaining power level of rechargeable battery 450. Battery monitor 545 preferably comprises a voltage divider with a low pass filter to provide average battery voltage. When a user depresses button 470 in the manner adapted for requesting battery level, processing unit 490 checks the output of battery monitor 545 and provides an indication thereof to the user, preferably through LEDs 475, but also possibly through vibrating motor 455 or ringer 575. An LCD may also be used.
  • PCB 445 may include three-axis accelerometer 550 instead of or in addition to two-axis accelerometer 495. The three-axis accelerometer outputs a signal to processing unit 490. A suitable example of three-axis accelerometer is the μPAM product sold by I.M. Systems, Inc. of Scottsdale, Ariz. Three-axis accelerometer 550 is preferably tilted in the manner described with respect to two-axis accelerometer 495.
  • PCB 445 also includes RF receiver 555 that is coupled to processing unit 490. RF receiver 555 may be used to receive signals that are output by another device capable of wireless transmission, shown in FIG. 20 as wireless device 558, worn by or located near the individual wearing armband sensor device 400. Located near as used herein means within the transmission range of wireless device 558. For example, wireless device 558 may be a chest mounted heart rate monitor such as the Tempo product sold by Polar Electro of Oulu, Finland. Using such a heart rate monitor, data indicative of the wearer's heart rate can be collected by armband sensor device 400. Antenna 560 and RF transceiver 565 are coupled to processing unit 490 and are provided for purposes of uploading data to central monitoring unit 30 and receiving data downloaded from central monitoring unit 30. RF transceiver 565 and RF receiver 555 may, for example, employ Bluetooth technology as the wireless transmission protocol. Also, other forms of wireless transmission may be used, such as infrared transmission.
  • The fact that RF Transceiver 565 may be used for wirelessly uploading data from and wirelessly downloading data to armband sensor device 400 is advantageous because it eliminates the need to remove armband sensor device 400 to perform these functions, as would be required with a physical connection. For example, if armband sensor device 400 was being worn under the user's clothing, requiring removal of armband sensor device 400 prior to uploading and/or downloading data increases user inconvenience. In addition, the wearing of armband sensor device 400 has an effect on the user's skin and underlying blood vessels, which in turn may effect any measurements being made with respect thereto. It may be necessary for a period of time during which armband sensor device 400 is worn by the user to elapse before a steady state is achieved and consistent, accurate measurements can be made. By providing armband sensor device 400 with wireless communications capability, data can be uploaded and downloaded without disturbing an established steady state equilibrium condition. For example, programming data for processing unit 490 that controls the sampling characteristics of armband sensor device 400 can be downloaded to armband sensor device 400 without disturbing the steady state equilibrium condition.
  • In addition, antenna 560 and RF transceiver 565 permit armband sensor device 400 to communicate wirelessly with other devices capable of wireless communication, i.e., transmit information to and receive information from those devices. The devices may include, for example, devices that are implanted in the body of the person using armband sensor device 400, such as an implantable heart pacemaker or an implantable insulin dispensing device, for example the MiniMed® 2007 implantable insulin pump sold by MiniMed Inc. of Northridge, Calif., devices worn on the body of the person using armband sensor device 400, or devices located near the person using armband sensor device 400 at any particular time, such as an electronic scale, a blood pressure monitor, a glucose monitor, a cholesterol monitor or another armband sensor device 400. With this two-way wireless communication capability, armband sensor device 400 may be adapted to transmit information that activates or deactivates such a device for use or information that programs such a device to behave in a particular way. For example, armband sensor device 400 may be adapted to activate a piece of exercise equipment such as a treadmill and program it to operate with certain parameters that are dictated or desired by or optimal for the user of armband sensor device 400. As another example, armband sensor device 400 may be adapted to adjust a computer controlled thermostat in a home based on the detected skin temperature of the wearer or turn off a computer controlled lighting system, television or stereo when the wearer is determined to have fallen asleep.
  • Vibrating motor 455 is coupled to processing unit 490 through vibrator driver 570 and provides tactile feedback to the wearer. Similarly, ringer 575, a suitable example of which is the Model SMT916A ringer sold by Projects Unlimited, Inc. of Dayton, Ohio, is coupled to processing unit 490 through ringer driver 580, a suitable example of which is the Model MMBTA14 CTI darlington transistor driver sold by Motorola, Inc. of Schaumburg, Illinois, and provides audible feedback to the wearer. Feedback may include, for example, celebratory, cautionary and other threshold or event driven messages, such as when a wearer reaches a level of calories burned during a workout.
  • Also provided on PCB 445 and coupled to processing unit 490 is momentary switch 585. Momentary switch 585 is also coupled to button 470 for activating momentary switch 585. LEDs 475, used to provide various types of feedback information to the wearer, are coupled to processing unit 490 through LED latch/driver 590.
  • Oscillator 595 is provided on PCB 445 and supplies the system clock to processing unit 490. Reset circuit 600, accessible and triggerable through a pin-hole in the side of computer housing 405, is coupled to processing unit 490 and enables processing unit 490 to be reset to a standard initial setting.
  • Rechargeable battery 450, which is the main power source for the armband sensor device 400, is coupled to processing unit 490 through voltage regulator 605. Finally, memory functionality is provided for armband sensor device 400 by SRAM 610, which stores data relating to the wearer of armband sensor device 400, and flash memory 615, which stores program and configuration data, provided on PCB 445. SRAM 610 and flash memory 615 are coupled to processing unit 490 and each preferably have at least 512K of memory.
  • In manufacturing and assembling armband sensor device 400, top portion 435 of computer housing 405 is preferably formed first, such as by a conventional molding process, and flexible wing body 410 is then overmolded on top of top portion 435. That is, top portion 435 is placed into an appropriately shaped mold, i.e., one that, when top portion 435 is placed therein, has a remaining cavity shaped according to the desired shape of flexible wing body 410, and flexible wing body 410 is molded on top of top portion 435. As a result, flexible wing body 410 and top portion 435 will merge or bond together, forming a single unit. Alternatively, top portion 435 of computer housing 405 and flexible wing body 410 may be formed together, such as by molding in a single mold, to form a single unit. The single unit however formed may then be turned over such that the underside of top portion 435 is facing upwards, and the contents of computer housing 405 can be placed into top portion 435, and top portion 435 and bottom portion 440 can be affixed to one another. As still another alternative, flexible wing body 410 may be separately formed, such as by a conventional molding process, and computer housing 405, and in particular top portion 435 of computer housing 405, may be affixed to flexible wing body 410 by one of several known methods, such as by an adhesive, by snap-fitting, or by screwing the two pieces together. Then, the remainder of computer housing 405 would be assembled as described above. It will be appreciated that rather than assembling the remainder of computer housing 405 after top portion 435 has been affixed to flexible wing body 410, the computer housing 405 could be assembled first and then affixed to flexible wing body 410.
  • Referring to FIG. 21, a block diagram of an alternate embodiment of the present invention is shown. This alternate embodiment includes stand alone sensor device 700 which functions as an independent device, meaning that it is capable of collecting and/or generating the various types of data described herein in connection with sensor device 10 and sensor device 400 and providing analytical status data to the user without interaction with a remotely located apparatus such as central monitoring unit 30. Stand alone sensor device 700 includes a processor that is programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data from the data indicative of various physiological and/or contextual parameters of the user, the data derived therefrom, and the data input by the user, all of which is stored in and accessed as needed from memory provided in stand alone sensor device 700. Stand alone sensor device 700 may comprise sensor device 10 shown in FIGS. 1 and 2 that includes microprocessor 20 and memory 22 or armband sensor device 400 shown in FIGS. 12-17 that includes processing unit 490 and SRAM 610.
  • As shown schematically in FIG. 21, data may be input into stand alone sensor device 700 in a number of ways. Stand alone sensor device 700 may include one or more physiological sensors 705 as described herein for facilitating the collection of data indicative of various physiological parameters of the user. Stand alone sensor device 700 may also include one or more contextual sensors 710 as described herein for facilitating the collection of data indicative of various contextual parameters of the user. As indicated by reference number 715, stand alone sensor device 700 may be adapted to enable the manual entry of data by the user. For example, stand alone sensor device 700 may include a data input button, such as a button 470 of armband sensor device 400, through which a user could manually enter information such as information relating to various life activities of the user as described herein or information relating to the operation and/or control of stand alone sensor device 700, for example, the setting of reminders or alerts as described herein. In this example, activation of button 470 may simply record or time stamp that an event such as a meal has occurred, with the wearer needing to assign a meaning to that time stamp through data entry at a later time. Alternatively, activation of button 470 in certain sequences, such as one activation, two successive activations, three successive activations, etc., can be preset to have different specific meanings. A wearer would need to follow a menu or guide of such preset activation sequences to input relevant data. Alternatively, stand alone sensor device 700 may include a more sophisticated means for manual entry of information such as a keypad, a touch screen, a microphone, or a remote control device, for example a remote control device incorporated into a wristwatch. In the case of a microphone, the processor of stand alone sensor device 700 would be provided with well known voice recognition software or the like for converting the input speech into usable data.
  • As indicated by reference numbers 720 and 725, information comprising data indicative of various physiological and/or contextual parameters and data derived therefrom may be input into stand alone sensor device 700 through interaction with other devices. In addition, information such as handshake data or data indicative of various physiological and/or contextual parameters and data derived therefrom may be output from stand alone sensor device 700 to such other devices. According to one embodiment, the interaction is in the form of wireless communication between stand alone sensor device 700 and another device capable of wireless communication by way of a wireless transceiver provided in stand alone sensor device 700, such as wireless transceiver 565 shown and described in connection with FIG. 20. The device-to-device interaction may, as shown by reference number 720, be explicit, meaning that the user of stand alone sensor device 700 has knowingly initiated the interaction. For example, a user may activate a button on a scale to upload data to stand alone sensor device 700. The device-to-device interaction may also, as shown by reference number 725, be hidden, meaning that the user of stand alone sensor device 700 does not knowingly initiate the interaction. For example, a gym may have a sensor that wirelessly transmits a signal to sensing device 700 when the user enters and leaves the gym to time stamp when the user began and ended a workout.
  • As shown schematically in FIG. 21, information may be output or transmitted from stand alone sensor device 700 in a number of ways. Such information may include the data indicative of various physiological parameters and/or contextual parameters, the data derived therefrom, the data manually input by the user, the analytical status data, or any combination thereof. As shown by reference numbers 730, 735 and 740, information may be output or transmitted in an audible fashion such as by a series of tones or beeps or a recorded voice by a device such as a speaker, in a visual fashion such as by one or more LEDs, or in a tactile fashion such as by vibration. For example, stand alone sensor device 700 may be adapted to output a tone or tones, light an LED or LEDs, or vibrate as a reminder for an event, such as a reminder to eat or exercise at a particular time, or when a goal has been reached, such as a target number of calories burned during a workout, or a condition has been sensed, such as ovulation. Alternatively, stand alone sensor device 700 may be provided with a more sophisticated visual output means such as an LCD similar to those found on commercially available cell phones, pagers and personal digital assistants. With an LCD or a similar device and the expanded visual output capabilities it would provide, stand alone sensor device 700 may be adapted to output or transmit some or all of the information described in connection with FIGS. 5 through 11 in the same or a similar format. For example, stand alone sensor device 700 could provide analytical status data in the form of the Health Index to the user. As a further alternative, stand alone sensor device 700 may be coupled to computing device 750 such as a personal computer, a cell phone, a pager, a personal digital assistant, another stand alone sensor device 700 or any other device having a processor by either wired connection 755 or wireless connection 760. For example, battery recharger unit 480 shown in FIG. 19 may be used to provide the wired connection 755 or wireless connection 760. In this configuration, the display of the computing device could be used to visually output information from stand alone sensor device 700. It will be appreciated that since computing device 750 includes a sophisticated output means such as an LCD, it may be used to output or transmit to the user some or all of the information described in connection with FIGS. 5 through 11, such as the Health Index, in the same or a similar format.
  • Also, computing device 750 may in turn be used to control other devices, such as the lights or thermostat in a home, based on data output by stand alone sensor device 700, such as the fact that the wearer has fallen asleep or the fact that the wearer's skin temperature has reached a certain level. In other words, stand alone sensor device 700, and in particular its processor, may be adapted to cause a computing device 750 to trigger an event upon detection of one or more physiological and/or contextual conditions by stand alone sensor device 700. Alternatively, stand alone sensor device 700 may be adapted to cause a computing device 750 to trigger an event based upon information received from another computing device 750.
  • Stand alone sensor device 700 may be adapted to interact with and influence an interactive electronic media device, such as a video game, or non-interactive electronic media device, such as on a display device such as a DVD or digital video disc player playing a digitally recorded movie. For example, stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the video game, which in turn adjusts the characteristics of the game, such as the level of difficulty. As another example, stand alone sensor device 700 may be adapted to transmit information relating to the physiological state of the wearer to the device displaying the digitally recorded movie which in turn adjusts the characteristics, such as the outcome, of the movie.
  • Furthermore, stand alone sensor device 700 may include location sensing device 765, such as an ultrasonic or a radio-frequency identification tag, for enabling a computing device 750 to detect the geographic location of stand alone sensor device 700, such as the location of stand alone sensor device 700 within a defined space such as a building. In one embodiment, a location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, preferably based on the detection by stand alone sensor device 700 of one or more physiological conditions of the wearer, such as skin temperature. In another embodiment, the location indication causes computing device 750 to trigger an event, such as lowering the temperature in a room corresponding to the indicated location, if stand alone sensor device 700 detects one or more physiological conditions, such as a skin temperature of the wearer being above a certain level. In addition, the input means of the computing device, such as the mouse and keyboard of a personal computer, the keypad of a cell phone or pager, or the touch screen of a personal digital assistant, may be used to manually input information into stand alone sensor device 700.
  • The different modes of output may be used in combination to provide different types and levels of information to a user. For example, stand alone sensor device 700 could be worn by an individual while exercising and an LED or a tone can be used to signal that a goal of a certain number of calories burned has been reached. The user could then transmit additional data wirelessly from stand alone sensor device 700 to a computing device 750 such as a cell phone after he or she is finished exercising to view data such as heart rate and/or respiration rate over time.
  • As a further alternative embodiment of the present invention, rather than the processor provided in stand alone sensor device 700 being programmed and/or otherwise adapted to generate the derived data and to include the utilities and algorithms necessary to create analytical status data, computing device 750 could be so programmed. In this embodiment, stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the data manually input by the user, and/or data input as a result of device-to-device interaction shown at 720 and 725, all of which is stored in the memory provided in stand alone sensor device 700. This data is then periodically uploaded to computing device 750 which in turn generates derived data and/or analytical status data. Alternatively, the processor of stand alone sensor device 700 could be programmed to generate the derived data with computing device 750 being programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700. As still a further alternative, the processor of stand alone sensor device 700 could be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on data indicative of one or more physiological and/or contextual parameters, data derived therefrom, data manually input by the user and/or data input as a result of device-to-device interaction shown at 720 and 725 uploaded from stand alone sensor device 700 with computing device 750 being programmed to generate the derived data. In either alternative, any or all of the data indicative of physiological and/or contextual parameters of the user, the data derived therefrom, the data manually input by the user, the data input as a result of device-to-device interaction shown at 720 and 725 and the analytical status data may then be viewed by the user using the output means of the programmed computing device 750 or another computing device 750 to which the data is downloaded. In the latter alternative, everything but the analytical status data may also be output by stand alone sensor device 700 as described herein.
  • Computing device 750 in these alternative embodiments may be connected to an electronic network, such as the Internet, to enable it to communicate with central monitoring unit 30 or the like. The programming of computing device 750 that enables it to generate the derived data and/or the analytical status data may, with such a configuration, be modified or replaced by downloading the relevant data to computing device 750 over the electronic network.
  • As still a further alternative embodiment, computing device 750 may be provided with a custom written plug-in adapted to provide data display functionality through use of a well known browser program. In this embodiment, stand alone sensor device 700 collects and/or generates the data indicative of various physiological and/or contextual parameters of the user, the derived data, the data input by the user, data input as a result of device-to-device interaction shown at 720 and 725, and/or analytical status data based thereon and uploads this data to computing device 750. The plug-in provided in computing device 750 then generates appropriate display pages based on the data which may be viewed by the user using the browser provided with computing device 750. The plug-in may be modified/updated from a source such as central monitoring unit 30 over an electronic network such as the Internet.
  • Referring to FIGS. 22-26, an alternate embodiment of a sensor device is shown at 800. Sensor device 800 may be a specific embodiment of either sensor device 10 described in connection with FIGS. 1-11 or stand alone sensor device 700 described in connection with FIG. 21. Sensor device 800 includes housing 805 affixed to flexible section 810, which is similar to flexible wing body 410 shown in FIGS. 12-17. Flexible section 810 is adapted to engage, such as by wrapping around or conforming to, at least a portion of the human body, such as the upper arm, to enable sensor device 800, in combination with a removable strap 811 inserted through slots 812 provided in flexible section 810, to be worn on the body. Preferably, flexible section 810 is made of a material having a durometer of between 75 and 85 Shore A. Flexible section 810 may take on a variety of shapes and may be made of a cloth material, a flexible plastic film, or an elastic material having an adhesive similar in structure to a Band-Aid® disposable adhesive bandage. In the embodiment shown in FIGS. 22-26, housing 805 is permanently affixed to flexible section 810, such as by an over molding or co-molding process, through the use of an adhesive material, or by a fastening mechanism such as one or more screws. Housing 805 includes top portion 815 affixed to bottom portion 820 by any known means, including, for example, an adhesive material, screws, snap fittings, sonic welding, or thermal welding. According to a preferred embodiment, a watertight seal is provided between top portion 815 and bottom portion 820. Such a water-tight seal is provided when sonic welding or thermal welding is used. Alternatively, an O-ring could be provided between top portion 815 and bottom portion 820 to create the water-tight seal.
  • As can be seen most readily in FIGS. 23, 24 and 26, affixed to bottom portion 820 of housing 805 are GSR sensors 825. GSR sensors 825 measure the conductivity of the skin between two points and may comprise electrodes formed of a material such as stainless steel, gold or a conductive carbonized rubber. Preferably, GSR sensors 825 have an oblong, curved shape as shown in FIG. 23, much like a kidney bean shape, that allows some portion of GSR sensors 825 to maintain contact with the body even if sensor device 800 is rocking or otherwise moving while being worn. Most preferably, GSR sensors 825 include raised bumps 830, or some other three-dimensional textured surface, along the surface thereof to perturb the skin and push between hairs to ensure good contact with the skin. In addition, raised bumps 830 provide channels for the movement of sweat underneath sensor device 800, rather than trapping sweat, no matter the orientation of sensor device with respect to the body. Also affixed to bottom portion 820 are heat flux skin interface component 835 and skin temperature skin interface component 840, each comprising a plate made of a thermally conductive material such as stainless steel. Preferably, heat flux skin interface component 835 and skin temperature skin interface component 840 are made of a material having thermal conduction properties of at least 12.9 W/mK, such as 304 stainless steel. Preferably, GSR sensors 825 are spaced at least 0.44 inches apart from one another, and at least 0.09 inches apart from heat flux skin interface component 835 and skin temperature skin interface component 840. GSR sensors 825, heat flux skin interface component 835 and skin temperature skin interface component 840 are adapted to be in contact with the wearer's skin when sensor device 800 is worn, and facilitate the measurement of GSR, heat flux from the body and skin temperature data. As can be seen most readily in FIGS. 22, 24 and 26, affixed to top portion 815 of housing 805 are heat flux ambient interface component 845 and ambient temperature interface component 850, which also are made of a thermally conductive material such as stainless steel, preferably a material having thermal conduction properties of at least 12.9 W/mK, such as 304 stainless steel. Heat flux ambient interface component 845 and ambient temperature interface component 850 facilitate the measurement of heat flux from the body and ambient temperature, respectively, by providing a thermal interface to the surrounding environment. To further enhance the measurement of these parameters, holes 855 are provided in flexible section 810 to expose heat flux ambient interface component 845 and ambient temperature interface component 850 to the ambient air. Preferably, holes 855 are sized so that flexible section 810 occludes as little skin as possible in the regions surrounding heat flux ambient interface component 845 and ambient temperature interface component 850 so as to allow air flowing off of the skin of the wearer to pass these components.
  • GSR Sensors 825, heat flux, skin interface component 835, skin temperature skin interface component 840, or any other sensing component that comes into contact with the skin may be provided with a plurality of microneedles for, among other things, enhancing electrical contact with the skin and providing real time access to interstitial fluid in and below the epidermis, which access may be used to measure various parameters such as pH level of the skin through electrochemical, impedance based or other well known methods. Microneedles enhance electrical contact by penetrating the stratum corneum of the skin to reach the epidermis. Such microneedles are well known in the art and may be made of a metal or plastic material. Prior art microneedles are described in, for example, U.S. Pat. No. 6,312,612 owned by the Procter and Gamble Company. Based on the particular application, the number, density, length, width at the point or base, distribution and spacing of the microneedles will vary.
  • Referring to FIG. 26, which is a cross-section taken along lines A-A in FIG. 22, the internal components of sensor device 800, housed within housing 805, are shown. Printed circuit board or PCB 860 is affixed to top portion 815 of housing 805 and receives and supports the electronic components provided inside housing 805. Affixed to a bottom side of PCB 860 and electronically coupled to GSR sensors 825 are contacts 865, which preferably comprise gold plated contact pins such as the Pogo# contacts available from Everett Charles Technologies in Pomona, Calif. Also affixed to the bottom side of PCB 860 is skin temperature thermistor 870, a suitable example of which is the model 100K6D280 thermistor manufactured by BetaTherm Corporation in Shrewsbury, Mass. Skin temperature thermistor 870 is, according to a preferred embodiment, thermally coupled to skin temperature skin interface component 840 by a thermally conductive interface material 875. Thermally conductive interface material 875 may be any type of thermally conductive interface known in the art, including, for example, thermally conductive gap fillers, thermally conductive phase change interface materials, thermally conductive tapes, thermally conductive cure-in-place compounds or epoxies, and thermal greases. Suitable thermally conductive interface materials include a boron nitride filled expanded polytetrafluoroethylene matrix sold under the trademark PolarChip CP8000 by W. L. Gore & Associates, Inc. and a boron nitride and alumina filled silicone elastomer on an adhesive backed 5 mil. (0.013 cm) thick aluminum foil carrier called A574, which is available from the Chomerics division of Parker Hannefin Corp. located in Woburn, Mass. Provided on top of PCB 860 is near-body ambient temperature thermistor 880, a suitable example of which is the model NTHS040ZNOIN100KJ thermistor manufactured by Vishay Intertechnology, Inc. in Malvern, Pa. Near-body ambient temperature thermistor 880 is thermally coupled to ambient temperature interface component 850 by thermally conductive interface material 875.
  • Still referring to FIG. 26, a preferred embodiment of sensor device 800 includes a particular embodiment of an apparatus for measuring heat flux between a living body and the ambient environment described in co-pending application Ser. No. 09/822,890, the disclosure of which is incorporated herein by reference in its entirety. Specifically, heat conduit 885 is provided within housing 805. As used herein, the term heat conduit refers to one or more heat conductors which are adapted to singly or jointly transfer heat from one location to another, such as a conductor made of stainless steel. Heat conduit 885 is thermally coupled to heat flux skin interface component 835 by thermally conductive interface material 875. Provided on the bottom side of PCB 860 is a first heat flux thermistor 890A, and provided on the top side of PCB 860 is a second heat flux thermistor 890B. PCB 860 acts as a base member for supporting these components. It will be appreciated that a base member separate and apart from PCB 860 may be substituted therefor as an alternative configuration. A suitable example of both heat flux thermistors 890A and 890B is the. Heat flux Thermistor 890A and 890B are soldered to pads provided on PCB 860. The second heat flux thermistor 890B is thermally coupled to heat flux ambient interface 845 by thermally conductive interface material 875. As is well-known in the art, PCB 860 is made of a rigid or flexible material, such as a fiberglass, having a preselected, known thermal resistance or resistivity K. The heat flux off of the body of the wearer can be determined by measuring a first voltage V1 with heat flux thermistor 890A and a second voltage V2 with heat flux thermistor 890B. These voltages are then electrically differenced, such as by using a differential amplifier, to provide a voltage value that, as is well known in the art, can be used to calculate the temperature difference (T2−T1) between the top and bottom sides of PCB860. Heat flux can then be calculated according to the following formula:

  • Heat Flux=K(T2−T1)
  • The combination of PCB 860 and heat flux thermistors 890A and 890B are thus a form of a heat flux sensor One advantage of the configuration of the apparatus for measuring heat flux shown in FIG. 26 is that, due to the vertical orientation of the components, assembly of the apparatus for measuring heat flux, and thus sensor device 800 as a whole, is simplified. Also adding to the simplicity is the fact that thermally conductive interface materials that include a thin adhesive layer on one or both sides may be used for thermally conductive interface materials 875, enabling components to be adhered to one another. In addition, thermistors 890A and 890B are relatively inexpensive components, as compared to an integral heat flux sensor such as those commercially available from RdF Corporation of Hudson, N.H., thereby reducing the cost of sensor device 800. Although heat flux thermistors 890A and 890B are described as being provided on PCB 860 in the embodiment shown in FIG. 26, it will be appreciated that any piece of material having a known resistivity K may be used. Furthermore, other temperature measuring devices known in the art, such as a thermocouple or thermopile, may be substituted for heat flux thermistors 890A and 890B. As a further alternative, heat conduit 885 may be omitted such that thermal communication between heat flux thermistor 890A and heat flux skin interface component 835 is provided by one or more pieces of thermally conductive interface material 875. As still a further alternative, heat flux skin interface component 835 may be omitted such that thermal communication between heat flux thermistor 890A and the skin is provided by either or both of heat conduit 885 and one or more pieces of thermally conductive interface material 875. In any of the embodiments described herein, the combination of one or more of heat conduit 885, one or more pieces of thermally conductive interface material 875, and heat flux skin interface component 835 act as a thermal energy communicator for placing heat flux thermistor 890A in thermal communication with the body of the wearer of sensor device 800.
  • FIG. 27 is a schematic diagram that shows an embodiment of the system architecture of sensor device 800, and in particular each of the components that is either provided on or coupled to PCB 860.
  • As shown in FIG. 27, PCB 860 includes processing unit 900, which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein, in particular the functionality described in connection with microprocessor 20 shown in FIG. 2, processing unit 490 shown in FIG. 20, or stand alone sensor device 700 shown in FIG. 21. A suitable example of processing unit 900 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Illinois. Also provided on PCB 860 is accelerometer 905, which may be either a two-axis or a three-axis accelerometer. A suitable example of a two-axis accelerometer is the Model ADXL202 accelerometer sold by Analog Devices, Inc. of Norwood, Mass., and a suitable example of a three-axis accelerometer is the model ACH-04-08-05 accelerator sold by Measurement Specialties Incorporated in Norristown, Pa. The output signals of accelerometer 905 are passed through buffers 910 and input analog to digital, referred to as A/D, converter 915 that in turn is coupled to processing unit 900. GSR sensors 825 are coupled to A/D converter 915 through current loop 920, low pass filter 925, and amplifier 930. Current loop 920 comprises an opamp and a plurality of resistors, and applies a small, fixed current between the two GSR sensors 825 and measures the voltage across them. The measured voltage is directly proportional to the resistance of the skin in contact with the electrodes. Similarly, heat flux thermistors 890A and 890B are coupled to A/D converter 915 and processing unit 900, where the heat flux calculations are performed, through low pass filter 935 and amplifier 940.
  • Battery monitor 945, preferably comprising a voltage divider with low pass filter to provide average battery voltage, monitors the remaining power level of rechargeable battery 950. Rechargeable battery 950 is preferably a Lilon/LiPolymer 3.7 V Cell. Rechargeable battery 950, which is the main power source for sensor device 800, is coupled to processing unit 900 through voltage regulator 955. Rechargeable battery 950 may be recharged either using recharger 960 or USB cable 965, both of which may be coupled to sensor device 800 through USB interface 970. Preferably, USB interface 970 is hermetically sealable, such as with a removable plastic or rubber plug, to protect the contacts of USB interface 970 when not in use.
  • PCB 860 further includes skin temperature thermistor 870 for sensing the temperature of the skin of the wearer of sensor device 800, and near-body ambient temperature thermistor 880 for sensing the ambient temperature in the area near the body of the wearer of sensor device 800. Each of these components is biased and coupled to processing unit 900 through A/D converter 915.
  • According to a specific embodiment of sensor device 800, PCB 860 may include one or both of an ambient light sensor and an ambient sound sensor, shown at 975 in FIG. 27, coupled to A/D converter 915. The ambient light sensor and ambient sound sensor may be adapted to merely sense the presence or absence of ambient light or sound, the state where a threshold ambient light or sound level has been exceeded, or a reading reflecting the actual level of ambient light or sound. A suitable example of an ambient sound sensor is the WM-60A Condenser Microphone Cartridge sold by Matsushita Electric Corporation of America located in Secaucus, N.J., and suitable examples of an ambient light sensor are the Optek OPR5500 phototransistor and the Optek OPR5910 photodiode sold by Optek Technology, Inc. located in Carrollton, Tex. In addition, PCB 860 may include ECG sensor 980, including two or more electrodes, for measuring the heart rate of the wearer, and impedance sensor 985, also including a plurality of electrodes, for measuring the impedance of the skin of the wearer. Impedance sensor 985 may also be an EMG sensor which gives an indication of the muscular activity of the wearer. The electrodes forming part of ECG sensor 980 or impedance sensor 985 may be dedicated electrodes for such sensors, or may be the electrodes from GSR sensors 825 multiplexed for appropriate measurements. ECG sensor 980 and impedance sensor 985 are each coupled to A/D converter 915.
  • PCB 860 further includes RF transceiver 990, coupled to processing unit 900, and antenna 995 for wirelessly transmitting and receiving data to and from wireless devices in proximity to sensor device 800. RF transceiver 990 and antenna 995 may be used for transmitting and receiving data to and from a device such as a treadmill being used by a wearer of sensor device 800 or a heart rate monitor worn by the wearer of sensor device 800, or to upload and download data to and from a computing device such as a PDA or a PC. In addition, RF transceiver 990 and antenna 995 may be used to transmit information to a feedback device such as a bone conductivity microphone worn by a fireman to let the fireman know if a condition that may threaten the fireman's safety, such as hydration level or fatigue level, has been sensed by sensor device 800. As described in detail in connection with FIG. 21, stand along sensor device 700 may be coupled to computing device 750 to enable data to be communicated therebetween. Thus, as a further alternative, RF transceiver 990 and antenna 995 may be used to couple sensor device 800 to a computing device such as computing device 750 shown in FIG. 21. Such a configuration would enable sensor device 800 to transmit data to and receive data from the computing device 750, for example a computing device worn on the wrist. The computing device could be used to enable a user to input data, which may then be stored therein or transmitted to sensor device 800, and to display data, including data transmitted from sensor device 800. The configuration would also allow for computing tasks to be divided between sensor device 800 and computing device 750, referred to herein as shared computing, as described in detail in connection with FIG. 21.
  • As shown in FIG. 27, PCB 860 may include proximity sensor 1000 which is coupled to processing unit 900 for sensing whether sensor device 800 is being worn on the body. Proximity sensor 1000 may also be used as a way to automatically power on and off sensor device 800. Proximity sensor preferably comprises a capacitor, the electrical capacitance of which changes as sensor device 800 gets closer to the body. PCB 860 may also include sound transducer 1005, such as a ringer, coupled to processing unit 900 through driver 1010.
  • Sensor device 800 may also be provided with sensors in addition to those shown in FIG. 27, such as those taught by U.S. Pat. No. 5,853,005, the disclosure of which is incorporated herein by reference. The '005 patent teaches a sound transducer coupled to a pad containing an acoustic transmission material. The pad and sound transducer may be used to sense acoustic signals generated by the body which in turn may be converted into signals representative of physiological parameters such as heart rate or respiration rate. In addition, rather than being integrated in sensor device 800 as part of one or more of housing 805, flexible section 810 or strap 811, a sensing apparatus as taught by the '005 patent may be provided separate from sensor device 800 and be coupled, wired or wirelessly, to sensor device 800. According to the '005, the sound or acoustic transducer is preferably a piezoelectric, electret, or condenser-based hydrophone, similar to those used by the Navy in sonar applications, but can be any other type of waterproof pressure and motion sensing type of sensor.
  • The sensing apparatus as taught by the '005 patent is an example of what shall be referred to herein as a non-ECG heart parameter sensor, meaning that it has the following two qualities: (1) it does not need to make measurements across the torso using at least two contact separated by some distance; and (2) it does not measure electrical activity of the heart. The sensing apparatus as taught by the '005 patent has been shown to be capable of detecting heart rate information and information relating to individual beats of the heart with high reliability under certain circumstances, depending primarily on factors including the proximity of the apparatus to the heart, the level of ambient noise, and motion related sound artifacts caused by the movement of the body. As a result, the sensing apparatus as taught by the '005 patent is most reliable when worn in an ambient environment with a low level of ambient noise and when the body is not moving.
  • Certain characteristics, sensors and sensing capabilities of sensor device 800 are able to improve the reliability and accuracy of an acoustic-based non-ECG heart parameter sensor 1012 such as the sensing apparatus as taught by the '005 patent that is incorporated therein or coupled thereto. For example, in one specific embodiment, sensor device 800 is particularly suited to be worn on the upper arm. The upper arm is a good location for a sensor device 800 having an acoustic-based non-ECG heart parameter sensor 1012 incorporated therein because it is near the heart and provides a space for sensor device that allows it to be unobtrusive and comfortable to wear. In addition, ambient sound sensor shown at 975 in FIG. 27 may be used to filter out ambient noise from the signals detected by the acoustic-based non-ECG heart parameter sensor 1012 in order to isolate the sound signal originating from the body. Filtering of the signal produced by an acoustic-based non-ECG heart parameter sensor 1012 such as the sensing apparatus as taught by the '005 patent in this manner may be used both in the case where such an apparatus is incorporated in sensor device 800 and in the case where it is separated from but coupled to sensor device 800 as described above. Furthermore, the sound generated from the motion of the body that is not created by the heart can be accounted for and adjusted for through the use of a sensor or sensors that detect or that may be used to identify body sounds generated as a result of motion of the body, such as accelerometer 905 shown in FIGS. 27 and 29 or the body position or muscle pressure sensors identified in Table 1. For example, footfalls create sound within the body that can lower the signal to noise ratio of an acoustic-based non-ECG heart parameter sensor 1012, which will likely result in false positive and false negative heart beat identifications. As is well known in the art, accelerometer 905 may function as a footfall indicator. Accelerometer 905 may thus be used to filter or subtract out from the signal detected by the acoustic-based non-ECG heart parameter sensor 1012 signals related sound motion artifacts caused by the movement of the body such as by footfalls.
  • Several methodologies for performing the filtering or subtracting of signals described herein are known to those of ordinary skill in the art. Such filtering or subtracting of signals used in connection with the monitoring of disparate signal, some used for noise cancellation and some used for their direct measure, is also known as data integration.
  • Sensor device 800 may also be used to put parameters around and provide a context for the readings made by a non-ECG heart parameter sensor 1012 so that inaccurate reading can be identified and compensated for. For example, sensor device 800 may be used to detect real time energy expenditure of the wearer as well as the type of activity in which the wearer is engaging, such as running or riding a bike. Thus, as another example of how the sensors and sensing capabilities of sensor device 800 may be used to increase the reliability and accuracy of a non-ECG heart parameter sensor 1012 through data integration, the energy expenditure and activity type information can be used to provide a context in which the heart related parameters detected by the non-ECG heart parameter sensor 1012 can be assessed and possibly filtered. For example, if sensor device 800 detects that a person is burning 13 calories per minute and is biking, and the non-ECG heart parameter sensor 1012 is indicating that the wearer's heart rate is 60 beats per minute, then it is highly likely that further filtration of the signal from the non-ECG heart parameter sensor 1012 is necessary.
  • Other well known non-ECG heart parameter sensing devices include, for example, those based on micro-power impulse radar technology, those based on the use of piezo-electric based strain gauges, and those based on plethysmography, which involves the measurement of changes in the size of a body part as modified by the circulation of blood in that part. It will be appreciated that the performance of these devices may also be enhanced through the use of data integration as described herein.
  • Another sensor that may be incorporated into the sensor device 800 measures the pressure with which sensor device 800 is held against the body of the wearer. Such a sensor could be capacitive or resistive in nature. One such instantiation places a piezo-resistive strain gauge on the back of the enclosure to measure the small deflection of the plastic as increasing force is applied. Data gathered from such a sensor can be used to compensate the readings of other sensors in sensor device 800 according to the readings of such a sensor.
  • Also provided on PCB 860 and coupled to processing unit 900 is switch 1015. Switch 1015 is also coupled to button 1020 provided on housing 805. Button 1020, by activating switch 1015, may be used to enter information into sensor device 800, such as a time stamp to mark the occurrence of an event such taking medication. Preferably, button 1020 has a tactile, positive d-tent feedback when depressed, and a concave shape to prevent accidental depression. Also, in the embodiment shown in FIGS. 22-26, flexible section 810 includes membrane 1022 that covers and seals button 1020. In the embodiments shown in FIGS. 30-32, a similar membrane 1022 may be provided on flexible section 810, and, preferably, also on housing 805 such that button 1020 is sealed when housing 805 is removed from flexible section 810. Alternatively, a hole may be provided in flexible section 810 exposing button 1020 and membrane 1022 when housing 805 is attached to flexible section 810. In addition, coupled to processing unit 900 on PCB 860 are LCDs and/or LEDs 1025 for outputting information to the wearer. FIG. 28 shows an alternate embodiment of sensor device 800 in which LCD 1025 is provided on a top face of housing 805. As an alternative to LCDs or LEDs 1025, sensor device 800 may include a prior art electrochemical display that retains its ability to display information even when power is no longer being provided thereto. Such a display is described in U.S. Pat. No. 6,368,287 B1, the disclosure of which is incorporated herein by reference, and includes a plurality of markers comprising a miniature heating element and a coating of heat sensitive material. When current is passed through one of the heating elements, it heats up, thereby inducing a change in the color of the coating material. The color change is permanent, even after the heating element cools down. Such displays are relatively inexpensive and thus are well adapted for use in embodiments of sensor device 800 that are designed to be disposable, possibly single use, items.
  • Oscillator 1030 is provided on PCB 860 and supplies the system clock to processing unit 900. Reset circuit 1035 is coupled to processing unit 900 and enables processing unit to be reset to a standard initial setting.
  • Finally, non-volatile data storage device 1040, such as a FLASH memory chip, is provided for storing information collected and/or generated by sensor device 800. Preferably, data storage device 1040 includes at least 128K of memory. Non-volatile program storage device 1045, such as a FLASH ROM chip, is provided for storing the programs required to operate sensor device 800.
  • As an alternative, a microprocessor with integral A/D converters, data storage, and program storage may be substituted for processing unit 900, A/D converter 915, data storage device 1040 and non-volatile memory 1045. A suitable example of such a microprocessor is the Texas Instruments Model MSP430 processor.
  • Any component forming a part of sensor device 800 that comes in contact with the wearer's skin should not, in a preferred embodiment, degrade in durometer, elasticity, color or other physical or chemical properties when exposed to skin oils, perspiration, deodorant, suntan oils or lotions, skin moisturizers, perfume or isopropyl alcohol. In addition, such components preferably are hypoallergenic.
  • FIG. 29 shows an alternate embodiment of PCB 860 in which rechargeable battery 950, voltage regulator 955, recharger 960 and USB cable 965 have been replaced by disposable AAA battery 1050 and boost converter 1055. Boost converter 1055 uses an inductor to boost the voltage of AAA battery 1050 to the 3.0-3.3 V required to run the electronics on PCB 860. A suitable boost converter 1055 is the model MAX1724 sold by Maxim Integrated Products, Inc. of Sunnydale, Calif.
  • Referring to FIGS. 30 and 31, an alternate embodiment of sensor device 800 is shown in which housing 805 is removably attached to flexible section 810. As shown in FIGS. 30 and 31, housing 805 is provided with groove 1060 along with outer edge thereof which is adapted to receive therein tongue 1065 provided on the bottom side of flexible section 810 for securely but removably attaching housing 805 to flexible section 810. Through the interaction of groove 1060 and tongue 1065, housing 805 may thus be readily popped in and out of flexible section 810. Such a configuration enables housing 805 to be readily attached to multiple flexible sections having sizes and shapes that are different than flexible section 810 as long as the flexible section includes a tongue similar to tongue 1065. Such alternate flexible sections may be sized and shaped to fit on particular parts of the body, such as the calf or thigh, and may comprise a garment such as a shirt having the tongue or tongues located in places of interest, such as the upper arm or upper left chest, the latter enabling housing 805 to be positioned over the heart of the wearer. Co-pending U.S. application Ser. No. 09/419,600, owned by the assignee of the present application and incorporated herein by reference, identifies several locations on the body that are particularly well adapted to receive particularly sized and shaped sensor devices so as to avoid interference with the motion and flexibility of the body. As will be appreciated by those of skill in the art, groove 1060 and tongue 1065 may be swapped such that groove 1060 is provided in flexible section 810 and tongue 1065 is provided on housing 805. As will also be appreciated by those of skill in the art, multiple alternative structures exist for securely but removably attaching housing 805 to flexible section 810. These alternative structures include, without limitation, temporary adhesives, screws, a tight fit between having 805 and flexible section 810 that holds the two together by friction, magnets provided in each of housing 805 and flexible section 810, well-known snaps and snapping mechanisms, a threaded portion provided on housing 805 adapted to be received by threads in flexible section 810, an O-ring or similar elastic band adapted to fit around a portion of flexible section 810 and into a groove provided in housing 805 when flexible section 810 is placed over housing 805, or merely pressure when housing 805 is placed on the body and flexible section 810 is placed thereover and attached to the body such as by strap 811. Referring to FIG. 32, a still further alternative structure for removably securing flexible section 810 to housing 805 is shown in which flexible section 810 comprises and elastic or similar band that is adapted to fit into a groove 1062 provided in housing 805. Housing 805 and flexible section 810 may then be placed on the body and held in place by strap 811 or the like inserted through gaps 1064 between housing 805 and flexible section 810.
  • FIG. 33 shows an alternate embodiment of sensor device 800 as shown in FIGS. 30 and 31 that is adapted to automatically adjust or alter the operating parameters of sensor device 800, such as its functionality, settings or capabilities, depending on the particular flexible section to which housing 805 is attached. For example, the calculation of a parameter, such as energy expenditure, may depend on information that is particular each individual, such as age, height, weight, and sex. Rather than having each individual enter that information in sensor device 800 each time he or she wants to wear the device, each individual that is going to wear the device could enter the information once and have their own flexible section that causes sensor device to make measurements based on his or her particular information. Alternatively, the memory in sensor device 800 for storage of user data may be divided into several compartments, one for each user, so as to avoid co-mingling of user data. Sensor device 800 may be adapted to alter where collected data is stored depending on the particular flexible section that is being used. In addition, sensor device 800 may be calibrated and recalibrated differently over time depending on the particular flexible section to which housing 805 is attached as it learns about each particular wearer and his or her habits, demographics and/or activities.
  • According to a particular embodiment, housing 805 is provided with first magnetic switch 1070 and second magnetic switch 1075, each on PCB 860. Provided on or inside flexible section 810, such as by an insert molding technique, is magnet 1080. Magnet 1080 is positioned on or inside flexible section 810 such that it aligns with and thereby activates one of first magnetic switch 1080 and second magnetic switch 1075 when housing 805 is attached to flexible section 810. In the embodiment shown in FIG. 33, second magnetic switch 1075 will be activated. A second flexible section 810 similar to flexible section 810 shown in FIG. 33 will also be provided, the difference being that the magnet 1080 provided therewith will be positioned such that first magnetic switch 1070 is activated when housing 805, the same housing 805 shown in FIG. 33, is attached to the second flexible section 810. Housing 805, and in particular processing unit 900, may be programmed to alter its functionality, settings or capabilities depending on which one of first magnetic switch 1070 and second magnetic switch 1075 is activated, i.e., which particular flexible section 810 is being used. Thus, a husband and wife may share a single housing 805 but have different flexible wings 810 with magnets 1080 located in different places. In such a case, housing 805 may be programmed to operate with functionality, settings or capabilities particular to the husband when first magnetic switch 1070 is activated, and with functionality, settings or capabilities particular to the wife when second magnetic switch 1075 is activated. Although only two magnetic switches are shown in FIG. 33, it will be appreciated that multiple magnetic switches and multiple flexible sections may be used to allow sensor device 800 to be programmed for multiple wearers, such as an entire family, with each family member having his or her own flexible section. As still a further alternative, multiple flexible sections may be provided that are adapted to be worn on different parts of the body, each having a magnet placed in a different location. Housing 805 may then be programmed to have functionality, settings or capabilities particular to the type of sensing to be done on each different part of the body, with magnetic switches placed so as to be activated when housing 805 is attached to the appropriate flexible section. Sensor device 800 according to this embodiment is thus a “smart” device. As will be appreciated by one of skill in the art, many alternatives to first and second magnetic switches 1070 and 1075 and magnet 1080 may be used to provide the functionality described in connection with FIG. 33. Such alternatives include, without limitation, mechanical switches provided in housing 805 that are activated by a protruding portion, such as a pin, provided at a particular location on flexible section 810, optical switches comprising an array of light sensors provided in housing 805 that are activated when the surrounding light is blocked, reflected or filtered in a particular way with one or more translucent sections and a single opaque, reflective or filtering section being selectively provided on flexible section 810 at particular locations, the translucent sections not activating the corresponding optical switches and the opaque, reflective or filtering section activating the corresponding optical switch, electronic switches provided in housing 805 activated by a conductor provided in particular locations in flexible section 810. As still a further alternative, housing 805 may be provided with multiple switches and each flexible section 810 may be provided with one or more switch activators positioned to activate certain selected switches. The operating parameters of housing 805 would in this embodiment be adapted to change depending upon the particular set of one or more switches that are activated. This embodiment thus employs an encoding scheme to alter the operating parameters of housing 805 depending on which flexible section 810 is used. As still a further alternative, housing 805 may be provided with a single switch adapted to alter the operating parameters of housing 805 depending upon the way in which or state in which it is activated, such as by the properties of the switch activators. For example, the switch may be a magnetic switch that is activated a plurality of different ways depending upon the magnetic level or strength of the magnet provided in each flexible section 810. A plurality of flexible sections 810 could then be provided, each having a magnet of a different strength. In addition, any particular flexible section 810 may be provided with a plurality of magnets having different strengths with each magnet being able to activate the switch in housing 805 in a different manner. Such a flexible section 810 would be able to selectively trigger different operating parameters of housing 805, such as by rotating a portion of flexible wing 805 to align a particular magnet with the switch. As an alternative, the switch could be an electrical switch and the switch activators could be conductors having different resistances. The switch would, in this embodiment, be activated in different ways depending on the measured resistance of the switch activator that closes the circuit.
  • Referring to FIG. 34, as still a further embodiment of sensor device 800, housing 805 may be provided with adhesive material 1085 on a back side thereof to enable housing 805 to be removably attached to selected portions of the body, such as the upper left chest over the heart, without flexible section 810. Adhesive material 1085 may be any well-known adhesive that would securely attach housing 805 to the body and enable it to be worn for a period of time, but that would also readily enable housing 805 to be removed from the body after use. Adhesive material 1085 may comprise, for example, a double sided adhesive foam backing that would allow for comfortable attachment of housing 805 to the body. Furthermore, housing 805 may be made of a well-known flexible plastic film or the like, such as that taught in U.S. Pat. No. 6,368,287 B1, the disclosure of which is incorporated herein by reference, that would, due to low cost, enable sensor device 800 to be disposable. Such a disposable sensor device may also include an electrochemical display described above to enhance its disposability. In an embodiment adapted for placement over the upper left chest or any other appropriate region for detecting heart related parameters, sensor device 800 would include one or more sensors described herein for sensing heart related parameters such as heart rate, beat-to-beat or interbeat variability, ECG or EKG, pulse oximetry, heart sounds, such as detected with a microphone, and mechanical action of the heart, such as detected with ultrasound or micro-pulse radar devices.
  • FIGS. 35A-H and 36A-H illustrate aspects of the present invention relating to the ergonomic design of sensor device 800. Referring to FIGS. 35A and 35B, a housing 1100 of a prior art sensor device having a rectangular cross-section is shown resting on the body 1110 of a wearer of the prior art sensor device. As seen in FIG. 35B, when body 1110 flexes and forms a concavity, as may happen many times each minute on various parts of the body or for extended periods of time depending on the position of various body parties during particular activities, a significant portion of housing 1100 is caused to be removed from body 1110. When housing 1100 is caused to be removed in this manner, the ability of the prior art sensor device to accurately make measurements and collect data will be jeopardized, especially for any readings to be taken near the center of the cross-section indicated by the arrows in FIG. 35B.
  • FIGS. 35C-H illustrate a cross-section of housing 805 of sensor device 800 taken along lines C-C shown in FIG. 23 according to various aspects of the present invention. The cross-section shown in FIGS. 35C-H is taken near the middle portion of housing 805 shown in FIG. 23 between GSR sensors 825. As seen in FIG. 35C, bottom surface 1115 of housing 805 is provided with a generally convex shape such that, when body 1110 flexes and forms a concavity, a substantial portion of bottom surface 1115 of housing 805 remains in contact with body 1110 by fitting into the concavity. As seen in FIG. 35D, when body 1110 flexes in the opposite direction so as to create a convexity, the center portion of housing 805, indicated by the arrow in FIG. 35D, remains in contact with body 1110. As shown in FIG. 35E, this is true even if housing 805 were to rock within the concavity formed in body 1110. Referring to FIG. 35F, body 1110 may, at times, flex to an extreme degree, i.e., more than the anticipated maximum that it was designed for, such that, even if bottom surface 1115 is provided with a convex shape, it may still cause bottom surface 1115 to be removed from body 1110. A solution to this problem is illustrated in FIG. 35G, wherein the lateral ends 1120A and 1120B of housing 805 are provided with radiused portions 1125A and 1125B, respectively adjacent to and including opposite lateral ends of bottom surface 1115. Radiused portions 1125A and 1125B enable housing 805 to sit lower and fit into the concavity created when body 1110 flexes to an extreme degree. In addition, radiused portions 1125A and 1125B provide for more comfortable wear as they eliminate sharp edges 1130A and 1130B shown in FIG. 35F that contact body 1110. FIG. 35H shows how body 1110 will tend to conform to the shape of housing 805 due at least in part to the viscosity of the skin when body 1110 is in a relaxed condition.
  • FIG. 36A shows a cross-section of housing 1100 of prior art sensor device taken along a line perpendicular to the line on which the cross-section shown in FIGS. 35A and 35B was taken. As seen in FIG. 36A, when housing 1100 is placed on a convex portion of body 1110, significant portions of housing 1100, specifically the lateral ends thereof indicated by the arrows in FIG. 36A, are not in contact body 1110. FIGS. 36B-H show a cross-section of housing 805 according to various aspects of the present invention taken along lines D-D shown in FIG. 23. As seen in FIG. 36B, bottom surface 1115 of housing 805 is provided with a generally concave shape adapted to receive the convex portion of body 1110. Referring to FIG. 36C, lateral ends 1130A and 1130B may be provided with radiused portions 1135A and 1135B adjacent to and including opposite lateral ends of bottom surface 1115, which allow housing 805 to rest in closer contact with body 1110, even when body 1110 flexes to an extreme degree, i.e., more than the anticipated maximum that it was designed for, and remove sharp edges 1140A and 1140B shown in FIG. 36B, providing for more comfortable wear. As shown in FIG. 36D, body 1110 will tend to conform to the shape of housing 805 when body 1110 is in a relaxed condition. As shown in FIGS. 36E and 36F, good contact with body 1110 is maintained at the points illustrated by the arrows when body 1110 is flexed in a manner that decreases the convex shape thereof or that creates a convexity therein. Thus, it will be appreciated that it is advantageous to place sensors or sensing elements at the points indicated by the arrows because those points will tend to remain in contact with body 1110. FIGS. 36G and 36H, showing, for example, heat flux skin interface component 835 and skin temperature skin interface component 840 placed at the points indicated by the arrows, illustrate this point. As seen in FIGS. 36G and 36H, there is more than point contact between body 1110 and skin temperature skin interface component 840.
  • FIG. 37 is an isometric view of housing 805 according to an embodiment of the present invention in which bottom surface 1115 has both the generally convex shape shown in FIGS. 35C-H and the generally concave shape shown in FIGS. 36B-H. Specifically, bottom surface 1115, which is the inner surface of housing 805 for mounting adjacent to the body of the wearer, includes a longitudinal axis 1141 and a transverse axis 1142. Bottom surface 1115 has a generally concave shape having an axis of concavity 1143 that is coincident with longitudinal axis 1141, meaning that it runs in a first direction from first lateral end 1144 of inner surface 1115 to second lateral end 1145 of inner surface 1115. Bottom surface 1115 has a generally convex shape having an axis of convexity 1146 that is coincident with transverse axis 1142, meaning that it runs in a second direction from third lateral end 1147 of inner surface 1115 to fourth lateral end 1148 of inner surface 1115. As seen if FIG. 37, the first and second directions, and longitudinal axis 1141 and transverse axis 1142, are generally perpendicular to one another.
  • Referring to FIGS. 38A-D, it will be appreciated that housing 805 having a flat top surface 1150 and flat lateral ends 1130A and 1130B may tend to be jostled and bumped by object 1155, such as a wall or door or the corner or edge of a drawer, cabinet or desk, thereby moving housing 805 on body 1110 because such flat surfaces are not well adapted to deflect object 1155. Movement of housing 805 on body 1110 will detrimentally effect the ability of sensor device 800 to accurately make measurements and collect data. FIGS. 39A-G illustrate various aspects of the present invention that are adapted to deflect object 1155 and substantially prevent movement of housing 805 on body 1110. In addition, the forms shown in FIGS. 39A-G increase the durability of sensor device 800 and make it easier to put on and wear clothing and the like, such as a wetsuit, over sensor device 800. As seen in FIG. 39A, housing 805 may have tapered sides 1160A and 1160B such that the width of housing 805 decreases in the direction from bottom surface 1115 to top surface 1150. Alternatively, referring to FIG. 39B, top surface 1150 of housing 805 may have a convex shape. As a further alternative, as seen in FIG. 39C, housing 805 may be provided with radiused portions 1165A and 1165B that meet with radiused portions 1135A and 1135B such that the lateral ends of housing 805 have a substantially semicircular shape. As shown in FIG. 39D, housing 805 may have both tapered sides 1160A and 1160B and a top surface 1150 with a convex shape. FIG. 39E is a modification of housing 805 shown in FIG. 39E in which the points 1170A and 1170B where radiused portions 1135A and 1135B meet tapered sides 1160A and 1160B, respectively, are themselves radiused. FIG. 39F is a variation of housing 805 shown in FIG. 39E having elongated tapered sides 1160A and 1160B. FIG. 39G shows how the ability of housing 805, such as the embodiment shown in FIG. 39E, to deflect object 1155 may be enhanced by the addition of flexible section 810 having a substantially convex outer surface. In addition, an air channel is provided between flexible section 810 and body 1110 to allow for heat to flow away from body 1110.
  • Referring to FIG. 40, a top plan view of a data input and output, abbreviated I/O, device 1200 is shown. FIG. 41 is a partial cross-sectional view of I/O device 1200 taken along lines A-A in FIG. 40. According to one embodiment of the present invention, I/O device 1200 is in electronic communication with sensor device 1201 shown in FIG. 40 through communications connection 1230, which may comprise a wired connection or a wireless connection as described elsewhere herein. Sensor device 1201 detects human physiological and/or contextual parameters, and may be any one of sensor device 400 shown in FIGS. 12-17, stand alone sensor device 700 shown in FIG. 21, or sensor device 800 shown in FIGS. 22-26. I/O device 1200 includes housing 1205 and LCD 1210 attached to housing 1205. Various alternative display devices may be used instead of an LCD for displaying information, and such displaying of information and display devices are not limited to visual display devices, but may include various tactile or audible displays as described elsewhere herein. LCD 1210 may display information relating to the human physiological and/or contextual parameters detected by sensor device 1201 that is transmitted to I/O device by sensor device 1201 over communications connection 1230. Thus, I/O device 1200 may display the same information and give the same feedback that any of the previously described sensor devices. I/O device 1200 also includes button 1215 and dial 1220. Dial 1220 is moveably mounted within groove 1225 provided in housing 1205 such that dial 1220 is free to rotate about the top surface of housing 1205 in both clockwise and counter-clockwise directions within groove 1225. Button 1215 and dial 1220 may be used to enter or input information into I/O device 1200 for subsequent storage in and use by I/O device 1200 and/or transmission to sensor device 1201. Thus, LCD 1210 may also display information that is entered or input into I/O device 1200, or information generated from such entered or input information. I/O device 1200 may take on any number of forms, including, but not limited to, a watch-like form adapted to be worn on the wrist, a form that may be clipped to or integrated within a bag or clothing, or otherwise easily carried in a pocket or a bag, a form similar to well known commercially available pagers or PDAs, a form that may be removably, such as magnetically, attached to sensor device 1201 or another apparatus such as a car dashboard, or the form of a key fob. I/O device 1200 could also be a separate electronic device such as a weight scale, in which case the weight scale may comprise a sensor that communicates information to sensor device 1201.
  • It will be appreciated that, in the embodiment where sensor device 1201 is stand alone sensor device 700, I/O device 1200 may perform the manual data entry functions indicated by and described in connection with reference numeral 715 in FIG. 21. Furthermore, in this embodiment, I/O device 1200 may be the computing device 750 shown in FIG. 21. As described in connection with FIG. 21, this configuration provides several possibilities for data collection, generation and display. Specifically, sensor device 1201, as described in connection with stand alone sensor device 700 shown in FIG. 21 and the subject of co-pending application Ser. No. 09/923,181 owned by the assignee hereof, may collect and/or generate data indicative of various physiological and/or contextual parameters of the user, data manually input by the user, such as by using button 1215 and dial 1220, and/or data input as a result of device-to-device interaction shown at 720 and 725 in FIG. 21. Sensor device 1201 may then generate derived data and analytical status data which may be transmitted to I/O device 1200 for display. Alternatively, sensor device 1201 may be programmed to generate derived data, which, along with the data collected by sensor device 1201, may be transmitted to I/O device 1200, and I/O device 1200 may be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create analytical status data based on the data indicative of one or more physiological and/or contextual parameters, the data derived therefrom, the data manually input by the user and/or the data input as a result of device-to-device interaction. The derived data and the analytical status data so created may be displayed to the user with LCD 1210. As still a further alternative, the data indicative of various physiological and/or contextual parameters, the manually input data, and/or the data input as a result of device-to-device interaction may be transmitted to I/O device 1200, and I/O device 1200 may be programmed and/or otherwise adapted to include the utilities and algorithms necessary to create derived data and/or analytical status data from the foregoing sources of data, all of which may then be displayed to the user with LCD 1210. I/O device 1200 may also use the information input into it, such as by using button 1215 and dial 1220, to create derived data and/or analytical status data, or may use data sensed by a sensor provided on I/O device 1200 as described elsewhere herein for the same purpose. In addition, the generation of such data may be shared with or offloaded to a separate computing device in electronic communication with I/O device 1200, such as a local PC or a remote server. In each of the foregoing embodiments, I/O device may be in electronic communication with and transmit data to still another device, such as a computing device or an earpiece or tactile communications device worn by a firefighter or other first responder or a runner. In this case, I/O device 1200 acts as a relay of information. In the case of the firefighter or other first responder, the data may indicate an important physiological state, such as level of hydration, as determined by sensor device 1201, and in the case of a runner, the data may indicate caloric expenditure or distance traveled.
  • As known in the art, a number of configurations exist for constructing I/O device 1200 so that button 1215 and dial 1220 may be used to input information into I/O device 1200. Such buttons and dials are commercially available from Duraswitch Industries, Inc. located in Mesa, Ariz. under the names PUSHGATE™ pushbutton and thiNcoder™ ROTOR, respectively. U.S. Pat. No. 5,666,096, the disclosure of which is incorporated herein by reference, is owned by Duraswitch Industries, Inc. and describes the rotary switch technology used in the thiNcoder™ ROTOR switch. The '096 patent describes a rotary switch including a bottom substrate layer and a top membrane layer separated by a non-conductive spacer. The internal surface of the membrane layer carries a set of electrodes which define the spaced contacts of at least one electrical switch. The membrane layer also carries an electrically conductive metallic armature, in the form of a flat circular disc, that is received in an annular opening provided in the spacer. The switch further includes a rotatable actuating knob that carries a coupler in its underside. The coupler is a magnet which may be molded or otherwise entrapped in the knob. The coupler forces the armature against the internal surface of the membrane by means of the magnetic field originating from the coupler. The coupler functions both to create the switch contact pressure as well as to drag the armature from one contact to another when a user rotates the knob. In operation, when the knob is rotated, the coupler rotates with the knob and, by virtue of the magnetic coupling between the coupler and the armature, the armature rotates with the knob as well. As the armature rotates, it moves into and out of shorting contact with the contact or contacts on the membrane. When the armature is in shorting contact with a contact, the corresponding switch is closed. As will be appreciated by those of skill in the art, various encoding schemes are known for converting the actuation of one or more switches into information that may be used by a processor or other device coupled to the switch.
  • Alternatively, U.S. Pat. No. 6,225,980 B1, the disclosure of which is incorporated herein by reference, describes a rotary dial input device for portable computers including an insulating member overlying a printed circuit board, a spine rigidly connected to the printed circuit board, a rotatable dial, a switch ring carried by the dial and a snap ring rigidly connected to the dial. The dial, the switch ring and the snap ring rotate together around the periphery of the spine. The switch ring carries at least two magnets located 1800 apart, and a plurality of Hall effect sensors are mounted on the printed circuit board and lie just under the surface of the insulating material. The position of the magnets relative to any of the Hall effect sensors may be used to generate an output signal based on the position of the dial. The '980 patent also describes a spring-based mechanism for enabling the dial to be moved between first and second vertical positions, wherein the springs biases the dial toward the first vertical position and downward pressure is required to move the dial toward the second vertical position. An additional magnet is included on a flexible arm carried by the switch ring. Upon movement of the dial from the first vertical position to the second vertical position, the magnet is moved in a direction toward another Hall effect sensor mounted on the printed circuit board. This Hall effect sensor produces a signal whenever the dial is depressed, which signal may be used to control the associated portable computer. The '980 patent further states that a momentary switch may be provided, such as in the center of the dial, for producing another computer control signal.
  • According to the '980 patent, the multiple switch rotary dial input device described therein, that generates signals from the rotation of the dial and the depression of the dial and/or a momentary switch, may be used in place of conventional mouse input devices as a mechanism for controlling and entering information into a computer. For example, the '980 patent states that the dial may be rotated to scroll through a list of items appearing on a display device of the computer, and the dial or monetary switch may be depressed to select an identified item. In the preferred embodiment, the dial cannot be depressed while it is being rotated and vice versa.
  • As another example, U.S. Pat. No. 5,959,611, the disclosure of which is incorporated herein by reference, describes a portable computer system including a CPU, an input interface, a display and an input device, wherein the input device comprises a rotary switch or dial and three on/off switches. The rotary switch may be a 16 position, binary coded rotary switch which outputs a four-digit gray code representing the position of the switch. As is known in the art, a gray code is a special binary encoding scheme in which adjacent numbers or positions have codes that differ in only one bit position. The on/of switches may be momentary push button switches positioned so as to surround the rotary switch.
  • The input interface translates the rotational movement of the rotary switch and the depressions of the on/off switches into data appropriately formatted for the CPU. Specifically, four conductors carry a first input signal produced by the rotary switch indicative of its position, and each of three separate conductors carry second input signals generated by depression of each of the on/off switches. The '611 patent states that the first input signal may be used to sequentially identify, through rotation of the dial, information appearing on the display, and the second input signals may be used to select an identified piece of information. The input interface may be implemented using a PIC microcontroller that is programmed to encode the first and second input signals into, for example, an eight bit byte transmitted to the CPU consisting of one byte for each switch depression and every turn of the rotary switch. Such an eight bit byte, according to the '611 patent, consists of six significant bits. Bits 5 and 6 represent the rotary switch turning clockwise and counterclockwise, respectively. If one of those bits is set to one, thereby indicating either a clockwise or counter-clockwise rotation, then bits 1 through 4 represent the gray code input signal. If both of those bits are set to zero, then bits 1 through 4 represent the depression of one of four possible on/off switches, only three of which are actually in use in the device described in the '611 patent. In other words, if any of bits 1 through 4 is set to one, then the corresponding switch was just depressed.
  • As is known in the art, particular portions or zones of a computer display showing a particular character, word or image can be selected, using a mouse or other input device, to cause the computer to perform an action. The '611 patent refers to such zones as hot spots. According to the '611 patent, a user can sequentially identify or step through hot spots provided on the display by rotating the rotary switch in a clockwise direction. Rotation of the rotary switch in a counter-clockwise direction enables the user to step through the hot spots in the reverse order. When the desired hot spot is identified, such as by being made bold or otherwise highlighted, any one of the on/off switches may be depressed to select the identified hot spot, thereby causing the computer to perform an action. Thus, the input device described in the '611 patent may be used to input information into and control a computer much like a conventional mouse.
  • FIG. 42 is a reproduction of FIG. 5 of the '611 patent and is a block diagram illustrating the operation of the software that enables the input device to identify and select hot spots. In FIG. 42, a screen is drawn or redrawn at step 6200. Thereafter, process control proceeds to step 6200 in which the software awaits input from the user, i.e., the eight bit byte of information provided to the CPU from the input interface. When input is received from the user, step 6600 determines if a selection has been made, i.e., whether of the of on/off switches has been depressed. If none of the switches has been depressed, then the input must be rotation of the rotary switch and process control proceeds with step 6800. At step 6800, a determination is made as to whether the rotary switch has been rotated in a clockwise direction. If so, process control proceeds with step 7200 wherein the next hot spot becomes the active hot spot. If the rotary switch has been rotated in a counter-clockwise direction, process control proceeds with step 7000 in which the previous hot spot becomes the current hot spot. After either step 7000 or 7200, process control returns to step 6400 to await additional user input.
  • If at step 6600 a selection was made, process control proceeds with step 7400 to determine if a system command had been invoked. If not, the type of hot spot is checked at step 7600, the relevant code is executed, and the screen is redrawn at step 6200. If, on the other hand, a system command is invoked at step 7400, at step 7800 an execution of the next screen or previous screen, as appropriate, is performed and the appropriate screen is redrawn at step 6200. Thereafter, process control returns to step 6400 to await additional user input. In this manner, the rotation of the rotary switch coupled with operation of the push-button switches controls the hot spots and ultimately controls the information displayed on the display and the actions taken by the computer. Those of ordinary skill in the art will recognize that the process illustrated in FIG. 42 can be implemented in software in a variety of ways.
  • Thus, as is known in the art and as taught by, for example, the '980 and '611 patents, dial 1220 may be used to step through or toggle between or among various input or command or control possibilities presented on LCD 1210 by selectively rotating dial 1220 in either the clockwise or counter-clockwise direction. As dial 1220 is rotated, the various input or command or control possibilities are highlighted. Highlighted items may be selected and a corresponding action commenced by pressing button 1215, or alternatively dial 1220 itself, in which case dial 1220 acts as both a dial and a button as those terms are used herein such that the device in question would be considered to have both a dial and a button. One alternate example of dial 1220 is the knob on the side of a watch that rotates about the side external surface of the watch.
  • As an alternative to dial 1220, one or more buttons, such as an up button and a down button or left and right buttons, may be used to step through or toggle between or among various input or command or possibilities presented on LCD 1210. In this embodiment, button 1215 may still be used to select and commence a highlighted items. As a further alternative, I/O device 1200 may be provided with voice recognition software and voice commands may be used to step through or toggle between or among various input or command or possibilities presented on LCD 1210. Voice commands may also be used to select and commence a highlighted items. As still a further alternate embodiment, voice commands in combination with voice recognition software may be used to directly enter information, such as nutrition information described below, into I/O device 1200.
  • Referring to FIGS. 43A-F, an embodiment of the present invention including I/O device 1200 is shown in which energy related data for an individual is collected or generated by I/O device 1200 and sensor device 1201 and displayed by I/O device 1200 on LCD 1210. As seen in FIGS. 43 A-C, the energy related data may include calories consumed and calories burned by the individual over specific time periods such as a day, a week or a month. In FIG. 43A, this data is presented in a format that provides a comparison to a predetermined goal for each value. The example shown in FIG. 43A shows that a daily goal of 2000 calories consumed was set by the individual and that the individual has consumed 1,483 calories on the day in question, and that a daily goal of 2,400 calories burned was set by the individual and that the individual has burned 2,750 calories on the day in question. Referring to FIGS. 43 B and C, the data is presented in a format referred to as energy balance in which the amount of calories consumed by the individual is compared to the amount of calories expended or burned by the individual for daily, weekly or monthly periods. It will be appreciated that the individual may toggle between the goal based and energy balance formats just described, and among the various time periods within each, by rotating dial 1220 and, in one embodiment, also pressing button 1215. Depending upon the rotation of dial 1220 and, in one embodiment, upon pressing of button 1215, appropriate information is displayed sequentially on LCD 1210. For example, in FIG. 43A, LCD 1210 is shown displaying data in the goal based format for a daily time period. LCD 1210 may be caused to display the data in the goal based format for a weekly or monthly period by progressively rotating dial 1220 in the clockwise direction. Similarly, LCD 1210 may be caused to switch from displaying data in the goal based format shown in FIG. 43A to displaying data in the energy balance format for the various time periods by progressively rotating dial 1220 in the counter-clockwise direction.
  • The calories burned data that is displayed by I/O device 1200 may, according to one embodiment of the present invention, be generated by sensor device 1201 from the physiological and/or contextual parameters it detects and thereafter transmitted to I/O device 1200 for storage, use in appropriate calculations and/or display. The calories burned data may also be generated using data that is input by the user in addition to the detected parameters. Furthermore, the caloric consumption data that is displayed by I/O device 1200 may, according to one embodiment of the present invention, be generated, preferably by I/O device 1200 but also by sensor device 1201, from data input into I/O device 1200 by the individual relating to foods consumed (as described elsewhere herein, caloric consumption data may also be generated using various detected parameters in addition to information that is input manually). Specifically, I/O device 1200 may be provided with access to a user accessible database of foods and corresponding caloric value. Such a database may be provided as part of I/O device 1200 itself, as in the case of the preferred embodiment of the present invention, or I/O device 1200 may be able to access a database stored and maintained on a computing device located separately from the I/O device such as through short or long distance wireless or wired communications. Referring to FIG. 43D, LCD 1210 is shown displaying an ENTER NUTRITION menu screen that may be accessible from, for example, a main menu screen presented on LCD 1210 using dial 1220 and button 1215. When the individual eats a particular food, he or she may enter it into I/O device 1200 for storage and/or use thereby by rotating dial 1220 until the FOOD DATABASE line of the ENTER NUTRITION menu screen shown on LCD 1210 is highlighted and thereafter pressing button 1215 to select same. Once the food database has been selected, the individual is, in this embodiment, presented with the search screen shown on LCD 1210 in FIG. 43E. The individual may sequentially spell out the name of the food consumed by rotating dial 1220 to each letter and selecting the letter by pressing button 1215. When the individual has finished spelling the food in question, he or she rotates dial 1220 until SEARCH is highlighted and then presses button 1215. In response, as shown in FIG. 43 F, I/O device 1200 presents a list on LCD 1210 of foods that match the entered search information. The individual may then select the appropriate food by rotating dial 1220 and pressing button 1215. When this is done, the corresponding caloric information may be displayed to the user on LCD 1210 and will be stored by I/O device 1200 as part of the caloric consumption data for that day. The database may include several sub-entries for each food that correspond to particular serving sizes, such as a 3 oz. slice of pie or a 6 oz. piece of chicken, and the appropriate caloric value associated therewith. As will be appreciated by one of skill in the art, these sub-entries may be presented to the user and selected using dial 1220 and button 1215 in the manner described above. Referring again to FIG. 43D, I/O device may also be used to store a list of favorite foods that are consumed frequently. By selecting the FAVORITE FOODS line from the Enter Nutrition menu screen provided on LCD 1210 and subsequently selecting the appropriate favorite food, both done by using dial 1220 and button 1215, an individual eliminates the need to search through the database as described above. In addition, an individual may add a custom food and associated caloric value to the food database using dial 1220 and button 1215 by selecting the ADD CUSTOM FOOD line from this Enter Nutrition menu screen provided on LCD 1210 and using a subsequently provided alpha-numeric entry screen similar to that shown in FIG. 43E to enter the food name and caloric information. Once entered, this custom food will be accessible from the food database. As will be appreciated to those of skill in the art, the information displayed on LCD 1210 may be shown in list menu or serial menu format.
  • Although FIGS. 43D-F illustrate the use of a database of food information according to one embodiment of the present invention, it will be appreciated that any database of information may be used with I/O device 1200 without departing from the scope of the present invention. For example, the database could store a number of activities, such as walking, running or biking for a particular time period, and the caloric expenditure associated with each. In such a configuration, I/O device 1200 would enable an individual to input and track his or her caloric expenditure over a period of time. Furthermore, it will be appreciated that I/O device 1200 is not limited to receiving and displaying information relating to caloric consumption and expenditure as shown in FIGS. 43A-F. Instead, I/O device may receive and display many different types of information from one or both of sensor device 1201 and the user, including, for example, information relating to sleep states and patterns.
  • It is also possible to enter nutrition information in a considerably simplified manner in any of several potential forms, including single dimensional point systems, single dimensional categorical rating systems, and multi-dimensional categorical rating systems. For a simple example of a single-dimensional point system, the user may select from a 7 point scale, where each point value corresponds to a rough approximation of the relative size of the meal in relation to the user's normal sized meal. For an example of a categorical system, the user may select from the set {tiny, small, medium, large, and super-size} when describing a meal. An example of a multi-dimensional categorical system is the grid system described below.
  • For each of these systems, the users are asked to score each meal (including snacks) according to the choice of scoring system. The user's classification of the meal, as identified by a classification identifier chosen by the user, is used as an input to an algorithm that estimates the caloric content of the meal. The algorithm that does this calculation may take other factors into consideration, including, but not limited to, the time of day, the day of the week, the season, whether the day is a holiday, the user's past meal habits, the raw or derived values from a body monitoring product such as sensor device 1201, demographic information, and trends in the user's reporting of data. The algorithm may be a simple look-up table where each classification identifier is associated with a caloric amount, but can be more complicated as well.
  • Referring to FIG. 43G, an alternate interface 1250 displayed on LCD 1210 for entering nutrition information into I/O device 1200 is shown which simplifies user interaction. In connection with interface 1250, users are provided with a two-dimensional grid-based system based on grid 1255 and are asked to rate each meal, including snacks, according to a grid system based on the size of the meal or snack, shown on the horizontal axis of grid 1255, and the estimated caloric density of the meal or snack (essentially the fat content), shown on the vertical axis of grid 1255. The grid squares are then translated into caloric estimates (or caloric estimate ranges) using any of a variety of algorithms. In one embodiment, the grid squares correspond directly to caloric estimates via a lookup table derived from aggregate population statistics. In another, the corresponding caloric estimates are based on a weighted combination of a user's own previous data and aggregate population statistics. The user may answer a pair of questions instead of directly choosing a grid square. The pair of questions first may ask about the size of the meal, and then may ask about the caloric density.
  • This system of quick caloric entry has been tested and verified in both an in-house pilot study with ten subjects over several months conducted by the assignor of the present application and a brief three-day study of 41 participants. In both studies, the following method was used. For each subject, the data from all of the other subjects was used to generate caloric estimates for each grid category for each meal type. The estimates from that aggregate information were then compared to the computed caloric totals calculated from full diet diary entries. FIG. 43I shows a scatter plot between the estimates of the caloric content based on the present invention and those computed from the full diet diary entries for one of the subjects in the in-house study, and FIG. 43J shows the relationship between the estimates of the caloric content based on the present invention and those computed from the full diet diary entries for the three-day. The correlation between the estimates of the in-house study and the diet diary caloric totals was 0.80, and the estimates of the three-day study and the diet diary caloric totals was 0.57, without any normalization by each subject's basal metabolic rate. This data, taken with the most simple of the embodiments of the system, strongly supports the premise that diet recording using a quick entry system can result in reasonably accurate estimates of a user's daily caloric intake.
  • Referring to FIG. 43H, a further alternate interface 1250 displayed on LCD 1210 for entering nutrition information into I/O device 1200 is shown which simplifies user interaction. In connection with interface 1250, users are provided with a point system based on grid 1255 and are asked to score each meal, including snacks, according to a point system based on the size of the meal (including snacks), shown on the horizontal axis of grid 1255, and the estimated caloric density for the meal (including or snacks), shown on the vertical axis of grid 1255. The points act as categories enabling the user to classify each meal, including any snacks, and thereby associate a caloric amount with the meal. Users may also be given a baseline size and calorie value to be associated with each point level. For example, a 1 may be set to be a meal that is the size of a fist having an estimated calorie value of 300-500 calories, a 2 may be set to be a meal that is either the size of a fist having an estimated calorie value of 500-700 calories, or the size of a fist and a half with a calorie value of 300-500 calories, and so on, with a 7 being a super-size meal that exceeds any of the provided levels. In addition, the meal score may further be weighted, by multiplying the score by a weighting factor, depending on whether it is breakfast, lunch, dinner or a snack. The user can use dial 1220, or alternatively one or more buttons or voice commands, to toggle among the scores or points shown in grid 1255 and button 1215 to select a score or point level. Each point level has associated therewith a caloric value or amount, which may be a range of calories, that is saved for the meal in question. The associated caloric amounts may be a generic values designed to suit the public at large, or may be specific values tailored to particular individuals. It will be appreciated that, depending on the grid 1255, the user, in selecting a point level, may actually be making two selections, one based on the horizontal axis of the grid (size of meal) and the other based on the vertical axis of the grid (caloric density of the meal). In addition, according to a particular embodiment, the I/O device 1200 is programmed to adjust its settings over time based on information that is collected. For example, if a user begins a week weighing 200 pounds and at the end of the week should weigh 197 pounds based on the input nutrition and other information, but instead actually weighs 202 pounds, the problem could be that what the user thinks is a 1 point meal is actually a 2 point meal. To account for this problem, I/O device 1200 can, over time learn and adjust or calibrate its settings and how it does its calculations to personalize itself for the user by, for example, increasing the number of calories associated with a user's classification. This learning process thus increases the accuracy of I/O device 1200. One method for implementing this automatic calibration is to use Bayesian statistics and use an initial prior for the caloric value of the classifications based on aggregate user statistics and then to train it for the given user over time as data is entered into the system. As another embodiment, the system can allow the wearer to input both simplified dietary information (such as the grids shown in FIGS. 43G and H) and full dietary information about the meals that are eaten. The caloric amounts from the full dietary information can easily be calculated and used to train the caloric estimates for each category. In addition, as I/O device learns, adjusts or calibrates, it may also modify the goals of the user and the program he or she is following. As still a further alternative, I/O device 1200 can take the information it has accumulated over time and provide information automatically for a user. For example, if a user forgets to enter a lunch value, I/O device may be programmed to enter the average of a predetermined number of, such as the last ten or even all, lunch values for the missing lunch. This may be done automatically, or only after prompting the user for verification of the values and authorization to do so. Alternatively, I/O device may fill in such gaps by matching that days routine to a previous day's routine, and using the lunch or other missing value from that day, thereby taking advantage of the fact that people tend to be creatures of habit.
  • Another aspect of the invention is that of automatic adaptation of feedback given to the user by sensor device 1201 or I/O device 1200. The feedback given to the user in this invention (e.g. “you might want to run an extra 10 minutes today”) can be given exactly when appropriate by taking advantage of the system's ability to detect contexts and to auto-journal as describe elsewhere herein. For example, feedback for eating might be best given just before a meal, and exercise feedback might be best given right when the user is most likely to exercise. Furthermore, if the system has detected that the user has already jogged that day, then an alternate suggestion can be given. Finally, the user's response to feedback can be utilized to further adapt the choice of the given feedback. If the user never takes exercise suggestions, advice can focus instead on nutrition. If the user tends to respond better to feedback given in the morning, more feedback can be given in the morning. The method of noticing their response would be measured by adherence to the suggestions and by successful maintenance of a healthy eating balance, as well as by noticing the absence of “violent” responses such as hitting a button that turns feed back off, turning the device off, or abruptly taking off the device.
  • There are three main ways in which sensor device 1201 can calibrate itself to the user. First, the device can use an initial training or calibration period where the user performs some additional tasks to train the system. For example, the user can enter in a full diet diary in addition to the quick estimates, allowing the system to learn the user's own definitions for each meal classification. The user might additionally perform a program of activities (such as walking around the block for at least 10 minutes or resting for 20 minutes) in order to calibrate a subsystem for obtaining energy expenditure that may be provided in sensor device 1201 and obtain personalized parameters for the individual that are then used in later use of the system. The subsystem for obtaining energy expenditure may also be calibrated against gold standard data from, for example, a VO2 machine. The second method involves repeating the training procedures (or a subset thereof) every so often. One example of this would be for a glucose level prediction algorithm where, each week (for example), the user performs a finger-prick glucose test to calibrate the prediction system. The third method involved doing continual training while the user is using the system including sensor device 1201. For example, the system described above that utilizes discrepancies in predicted weights between the system's prediction and that reported by a scale to adjust the estimated caloric amounts for each category is an example of this type of training.
  • According to a further aspect of the present invention, the user can be queried to answer questions that the sensor device 1201 or I/O device 1200 can not figure out for itself, or about which it has too much uncertainty. For example, the sensor device 1201 or I/O device 1200 may have enough information to ask the user only a single question about breakfast, but may require more information for a morning snack that the user doesn't have every day. The system can ask the questions specifically when the range of its uncertainty about a quantity is too large, and can thus minimize the input required from the user.
  • According to a further aspect of the present invention, I/O device 1200, sensor device 1201 and a computing device such as a PC or a PDA may be used together as a weight management system. Specifically, I/O device 1200, such as a watch like device, is used to input and track information relating to calories consumed by an individual and sensor device 1201 is used to measure calories burned or expended by the individual. The caloric expenditure information measured by sensor device 1201 is transmitted, by wire or wirelessly, to I/O device 1200. I/O device 1200 then, based on the caloric consumption and caloric expenditure information, displays to the individual a current rate of weight loss or gain and/or an energy balance value on LCD 1210. According to a specific embodiment, sensor device 1201 assumes that the individual is inactive if sensor device 1201 is not being worn, and uses the individual's resting metabolic rate to calculate caloric expenditure during such period.
  • In one embodiment, the individual, for each meal, including snacks, rather than inputting a specific food or foods selected from a database as described in connection with FIGS. 43D-43F, merely classifies each meal according to an indication of the estimated size of the meal (in terms of an estimated caloric value) using classifiers such as small (S), medium (M), large (L) or extra large (XL). Each classifier is assigned a corresponding caloric amount, and I/O device 1200 stores for the meal the caloric amount corresponding to the entered classifier. To enable the individual to enter this information, I/O device 1200 first displays on LCD 1210 a list of each meal possibility, i.e., breakfast, lunch, dinner or snack. The individual is able to toggle among these selections using dial 1220 or one or more buttons, and select one using button 1215. Once the meal classification is selected, I/O device 1200 displays on LCD 1210 a list of the classifiers such as S, M, L, and XL. Again, the individual is able to toggle among these items using dial 1220 or one or more buttons, and select one using button 1215. When one of these classifiers is selected, the corresponding caloric amount is saved for the meal in question and is used to generate the caloric consumption information used by I/O device 1200. I/O device 1200 may be programmed to prompt the individual to enter meal information if the individual has not done so by a certain time or times each day.
  • In a preferred embodiment, the computing device is provided with weight management software that enables the individual to input information relating to foods actually eaten during each meal using a database such as that shown in FIGS. 43D through F. Based on the information that is input, a specific caloric amount is assigned to each meal entry. The individual is also able to enter information relating to weight goals, such as how much weight the individual wants to lose and over what time period the individual wants to lose the weight. Based on this information, a target weight loss rate may be established for achieving the input goal. In this embodiment, the individual, while entering information into I/O device 1200 using the S, M, L, and XL classifier system, also enters information into the computing device using the weight management software for a predetermined time period. Sensor device 1201 is in electronic communication, by wire or wirelessly, with the computing device to enable information to be transmitted from the computing device to sensor device 1201. Specifically, the information that is transmitted from the computing device includes information relating to the weight goals, namely target weight loss amount, time frame and rate, and information relating to the caloric amount associated with each meal eaten by the individual based on the food items input into the computing device. Sensor device 1201 may then transmit the information to I/O device 1200. Alternatively, I/O device 1201 may be in electronic communication, by wire or wirelessly, with the computing device so that the information may be transmitted directly to the I/O device 1200. According to an aspect of the present invention, I/O device 1200 compares the caloric amounts entered for each meal using the S, M, L, and XL classifiers with the caloric amounts entered for each meal using the computing device and database of food information over the predetermined time period, and make adjustments to the caloric amounts that are associated with each of the classifiers so that they more accurately reflect calories actually consumed. Thus, in this specific embodiment, the individual enters nutrition information both using I/O device 1200 and the computing and database for a specified period of time, for example two weeks, after which the entry system on I/O device 1200 is calibrated or adjusted to bring the individual's perception of what should be classified as S, M, L, or XL based on calories in line with more accurate caloric data. After this initial period, the individual only enters nutrition information using I/O device 1200 and the S, M, L, and XL classifiers, and caloric data is recorded for each meal depending on how the meal is classified.
  • In a preferred embodiment, I/O device 1200 is programmed to provide suggestions to the individual, in the form of information displayed on LCD 1210, on how to achieve the individual's weight goals. These suggestions are based on the caloric expenditure and caloric consumption data that is logged by I/O device 1200. For example, if the individual is currently below the target weight loss rate of, for example, 1 pound per week, I/O device 1200 may display a message that instructs the individual to walk for 55 minutes to bring the current weight loss rate up to 1 pound per week. The suggestions may be of many types, including, without limitation, actions for the individual to take, explanations for why the individual is experiencing certain things such as inability to lose weight, feedback regarding the individual progress toward goals, and/or relationships between or among the parameters being measured and/or reported by sensor device 1201 and/or I/O device 1200. The suggestions may self adjust or learn based on the individual's performance toward goals. The substance of the suggestions may come from a number of sources, such as sensor device 1201 and/or I/O device 1200 or a third party source, including a person such as a trainer or health care provider, a computing device such as a treadmill, or a remote computer, such as an Internet source.
  • As noted above, in one embodiment, I/O device 1200 displays a current weight loss or gain rate on display 1200. The current weight loss or gain rate that is displayed on I/O device 1200 may be a daily, weekly or monthly rate, or may be a rate calculated based on the total time remaining until the weight loss target date. I/O device 1200 may be programmed to selectively display each of these rates depending on the desires of the individual, such as by using dial 1220 or one or more buttons to toggle among these various options.
  • FIG. 44 is a block diagram showing the components attached or otherwise coupled to a printed circuit board (not shown) housed within housing 1205 of an embodiment of I/O device 1200. Included among these components is processing unit 1300, which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein. Connected to processing unit 1300 are non-volatile data storage device 1305, such as a flash memory, chip for storing information input and/or transmitted to I/O device 1200, and non-volatile program storage device 1310, such as a FLASH ROM chip, for storing the programs required for operation of I/O device 1200. Also provided is reference database 1315 which may, as described in connection with FIGS. 43D-F, be used to provide user accessible and selectable information for use by I/O device 1200 or sensor device 1201. As is known in the art, reference database 1315 includes a software component for organizing and accessing data, and a memory component for physically storing data. Also connected to processing unit 1300 are one or both of wireless link 1320, such as an RF transceiver, connected to antenna 1325, and hardware interface 1330, such as a USB port, connected to connector 1335. These components are used to implement communications connection 1230 shown in FIG. 40, and may also be used to communicate electronically with a wide variety of devices, such as a treadmill, a weight scale or a transceiving device adapted to act as a data collection and storage hub. Driver 1350 and ringer/buzzer 1345 may also be connected to processing unit 1300 to provide audible and/or tactile feedback to a user.
  • LCD 1210 and backlight 1350 for LCD 1210 are connected to processing unit 1300 through appropriate well known drivers 1355. Battery 1360, which may be disposable or rechargeable, provides power for I/O device 1200 and is connected to processing unit 1300 through voltage regulator 1365. Oscillator 1370 provides the system clock to processing unit 1300, and reset circuit 1375 enables processing unit 1300 to be reset to a standard initial setting. Finally, button 1215 and dial 1220 are electronically connected to processing unit 1300 according to any known means, such as those described in the '980 and '619 patents, which would enable button 1215 and dial 1220 to provide input or command or control signals to processing unit 1300.
  • According to an alternate embodiment of the present invention, I/O device 1200 may be adapted to operate on its own, without being in communication with sensor device 1201. In this embodiment, a user may enter information into I/O device 1200 as described herein and may use I/O device to store and track such information over time. For example, reference database 1315 may store food and activity related information and a user may enter caloric consumption and caloric expenditure or burn information as described in connection with FIGS. 43D-F. The entered information would in this embodiment be stored in data storage device 1305, and processing unit 1300 would be programmed to generate and display the information shown in FIGS. 43A-C. In such an embodiment, RF link 1320, antenna 1325, hardware interface 1330 and connector 1335 would not be required since communication with sensor device 1201 is not necessary, but may be included as optional enhancements. For further added functionality, one or more sensors 1400, such as those described in connection with sensor device 400, stand alone sensor device 700 and sensor device 800, may be, as shown in FIG. 45, attached to, supported by or otherwise coupled to I/O device 1200, enabling it to collect data indicative of physiological and/or contextual parameters. In one specific embodiment, sensor 1400 may be a heart rate sensor in the form of a chest strap. In another specific embodiment, sensor 1400 may be a non-ECG heart parameter sensor such as that described in the '005 patent. Sensor 1400 in this embodiment may be used in connection with heart rate information collected by sensor device 1201, such as ECG information obtained from the upper arm, to make pulse transit time measurements, which, as is known in the art, are an indication of cardiovascular health and have a relationship to blood pressure. Such pulse transit time measurements may also be calibrated against measurement using a traditional blood pressure cuff for increased accuracy. This collected data, other data entered by the user, and/or one or both of derived data and analytical status data generated therefrom, may be displayed to the user using LCD 1210 or some other output/feedback device such as a screen on a treadmill, headphones worn by the user, or an earpiece such as those worn by first responders.
  • According to a further alternate embodiment of the present invention, I/O device 1200 may act as a hub or terminal for collection and, in a specific embodiment, processing data received from a variety of sources. For example, referring to FIG. 46, I/O device 1200 may be used as a hub or terminal in health club 1500 to collect and, in a specific embodiment, process data relating to a user's activities in health club 1500 received from a variety of devices located in health club 1500. In this embodiment, I/O device 1200 may take the form of a watch-like device that is worn by the user on his or her wrist, clipped to the clothing of the user, or otherwise carried by the user. Referring to FIG. 46, I/O device 1200 is in electronic communication with exercise equipment 1505 through communications connection 1230, which may be a wired connection, but which preferably is a wireless connection. Exercise equipment 1505 may be any type of exercise equipment, such as a treadmill or exercise bike, that possesses the ability to generate data relating to the exercise being done and transmit the data to I/O device 1200 over communications connection 1230. I/O device 1200 is thus able to collect and store data relating to exercise activity such as the calories expended during a workout or the duration of the workout. In addition, I/O device 1200 may be programmed to store settings and/or exercise programs for each of the various types of exercise equipment 1505 such that the settings and/or exercise programs may be transmitted over communications connection 1230 to exercise equipment 1505 prior to commencement of a workout for controlling it during the workout. As a further alternative, I/O device 1200 may be provided with an artificial intelligence based program or algorithm that modifies, based on the information collected by I/O device 1200, the exercise program being followed by the user. As still a further alternative, the settings used by and/or exercise programs followed by a user can be set or modified remotely by a trainer or similar individual and be communicated to I/O device from computing device 1515 or through computing device 1515 from a remote source over the Internet, described in detail below. It will be appreciated that I/O device 1200, preferably being portable, is able to collect and store data from a number of different pieces of exercise equipment 1505 that are used by the user as he or she moves around health club 1500, or, as described elsewhere herein, while the user is outside of health club 1500, for example at home or while traveling.
  • As seen in FIG. 46, I/O device 1200 may also be in electronic communication with sensor device 1201 through communications connection 1230, which preferably is a wireless connection, but which may be a wired connection such as with a cradle. Thus, as described in greater detail in connection with FIGS. 41 through 45, I/O device 1200 is able to collect and store data relating to the physiological parameters of the user before, during and after any exercise activity. For low bandwidth applications, methods are known for transmitting electronic signals through the body. Thus, if both I/O device 1200 and sensor device 1201 are in contact with the user's skin, it may be possible to transmit data using the user's body. Similarly, data may also be transmitted in this manner to other devices by the user by touching them. According to an alternate embodiment of the present invention, sensor device 1201 acts as the hub or terminal for collection and, in a specific embodiment, processing data received from a variety of sources, and as such, would replace I/O device 1200 in FIG. 46.
  • According to one aspect of the present invention, I/O device 1200 stores a program or regimen preferably including a set of goals that may be established by set by the user or a third party such as a trainer or care giver. I/O device 1200 communicates with and is programmed to control an apparatus in the environment such as a treadmill or weight machine. Specifically, I/O device 1200 is able to communicate instructions to the apparatus for setting the apparatus up for the desired interaction/result, such as choosing treadmill programs or setting or weight machine weight amounts. While user interacts with the apparatus, I/O device 1200, being in communication with the apparatus, tracks the user's performance, preferably with respect to the program or regimen including goals. The tracking may be based on information received from the apparatus, such as repetitions on a weight machine or distances run on or heart rate measured by a treadmill, and may also be based on parameters being measured by sensor device 1201 or I/O device 1200 such as energy expenditure. I/O device 1200 may also adjust/control the apparatus the user is interacting with to maximize the performance toward the goal, such as by adjusting the treadmill angle and/or resistance to decrease heart rate or energy expenditure rate of the individual. Such adjustment may be important if, for example, the individual is a CVD patient that needs to watch how much they exert themselves. In addition, after the use of the apparatus is complete, I/O device 1200 can adjust the program or regimen so that the next time the user uses the apparatus, the program or regimen will have been adjusted to comply with the progress or lack of progress the person has made. This adjustment could also include free-living exercise and other information that gets collected between periods of use of the apparatus. For example, if the person walked the rest of the week according to their program or regimen, the next time they come to use the apparatus, instead of using the same now outdated program/regimen, the program/regimen is adjusted to meet the user's new capabilities. The principle just described could also apply to interaction with other types of equipment other than exercise equipment, such as medication dispensers, CPAP machines used in sleep therapy, or even a thermostat in the house.
  • Most health clubs include various devices for providing entertainment to users while they are exercising. For example, a health club may include a number of television monitors, with each monitor providing a different channel of programming. Users are able to listen to the audio portions accompanying the programming while exercising by plugging headphones into an access device provided adjacent to each piece of exercise equipment, and may use the access device to select among the audio portions of the various programming channels. Referring to FIG. 46, I/O device 1200 may be in electronic communication through communications connection 1230 with entertainment equipment 1510, which comprises an access device or similar equipment as just described provided adjacent to exercise equipment 1505 that allows a user to select among various entertainment options. In addition, users may be able to choose to view and or listen to a prescribed program such as a health education program or a motivational program. I/O device 1200 and entertainment equipment 1510 may be adapted to enable I/O device 1200 to collect from entertainment equipment 1510 and store data relating to the various entertainment or other programming options selected by the user.
  • In addition, health club 1500 includes computing device 1515, which may be a PC or a server computer or the like. I/O device 1200 is adapted to be in electronic communication with computing device 1515 through communications connection 1230 to enable the data collected, stored and, in a specific embodiment, processed by I/O device 1200 to be transmitted to computing device 1515. For example, a wireless interface device in electronic communication with computing device 1515 could be placed near the front desk of health club 1500. As a user exits health club 1500, he or she could place I/O device 1200 in proximity with the wireless internet device and, either automatically or after a further step such as pressing a button, the data collected, stored and, in a specific embodiment, processed by I/O device 1200 while the user was in health club 1500 would be downloaded from I/O device 1200 and transmitted to computing device 1515. The data transmitted to computing device 1515 may also include data manually entered into I/O device 1200, such as caloric consumption data. As an alternative, the wireless interface device could be replaced by a docking station or a jack device that requires I/O device to be physically coupled thereto to establish an electronic communications path.
  • As seen in FIG. 46, computing device 1515 is in electronic communication with remote server 1520 through the Internet or a similar computer network. Remote server 1520 aggregates data transmitted from computing device 1515 for a number of users and, according to a specific embodiment, from similar devices located at other health clubs. In an alternate embodiment, data may be transmitted directly from I/O device 1200 to remote server 1520, rather than through computing device 1515, by, for example a long range wireless communications protocol such a those used with cell phones or 2-way pagers. Remote server 1520 may include a web server that makes the collected data, such as physiological, exercise activity, and/or caloric consumption data, available to users over the Internet through computing device 1525 under the control of the user, such as a PC, cell phone or PDA. The data may, in one embodiment, be presented to users in a form similar to that described in connection with FIG. 5 through 11. In addition, remote server 1520 may be used to segregate the data collected from entertainment equipment 1510 and, in a specific embodiment, demographic information about the users associated with the data. The segregated data may be used to track the level of use of each programming channel and provide ratings, similar to Nielsen ratings, for each programming channel.
  • Furthermore, I/O device 1200 may also be used to collect data from devices located outside of health club 1500 that have capabilities and functionality that are similar to exercise equipment 1505 or entertainment equipment 1510. For example, a user that normally exercises at health club 1500 may be out of town for a period of time and, while out of town, may exercise at another facility. I/O device 1200 may be used to collect data from exercise and/or entertainment equipment used at the other facility, provided such equipment has capabilities and functionality similar to that of exercise equipment 1505 and entertainment equipment 1510. I/O device 1200 may also be used to collect data when a user is exercising or watching or listening to some sort of programming, as described herein, at home using compatible equipment. In addition, I/O device 1200 can collect relevant information while the user is not at health club 1500 through ways other than from compatible equipment. For example, if a user takes a walk at home, I/O device 1200 could collect data relating to the walk from sensor device 1201 or from manual entry. When the user returns to health club 1500, he or she can transmit the data collected while he or she was away or while exercising or engaging in other activities at home to computing device 1515, thereby eliminating gaps in data collection that otherwise would have occurred while the user was away from health club 1500. By eliminating such gaps, a program being followed by the user or goals set by the user can be more accurately monitored and modified, for example by a personal trainer or though an artificial intelligence program or algorithm employed by I/O device 1200.
  • In one embodiment, I/O device 1200 would store information about the user including demographic information, identification information, musical preferences, and the type of program they are on, such as rehab, cardio, or fat burning. I/O device 1200 may also collect information about the specific room it was in while the person interacted in the club, when they entered and left the room and what machine they used. In one specific embodiment, a wireless system may be utilized in which I/O device 1200 could understand it's own location in the facility through means of triangulating off two other RF transceivers in the facility.
  • According to yet another aspect of the present invention, instead of a space or facility like a health club requiring all the infrastructure for all it's machines to be networked with one another, either wired or wirelessly, and with a central computer to collect information about and control the machines, people can take I/O device 1200 with them as they interact with the space and use it to communicate with the equipment using local (not long distance wireless, or wires), low power communication methods, so when they use equipment such as a treadmill, I/O device 1200 tracks the machine they were on, the use, how they performed, etc. I/O device 1200 may also select entertainment programs they want to watch and/or listen to. At the end of the session in the space or facility, the information can be downloaded to a specified site such as the central computer of the facility and/or a remote server. Thus, the space or facility avoided the need to establish a specific and costly infrastructure to connect up every piece of equipment in the facility. I/O device acts, instead, as an ad-hoc infrastructure as needed.
  • According to one embodiment of the present invention, sensor device 1201, which may be any one of sensor device 400 shown in FIGS. 12-17, stand alone sensor device 700 shown in FIG. 21, or sensor device 800 shown in FIGS. 22-26, includes a plurality of physiological and/or contextual sensors. For example, one particular embodiment of sensor device 400, stand alone sensor device 700, or sensor device 800 includes a 2-axis accelerometer, a heat flux sensor, a GSR sensor, a skin temperature sensor, a near-body ambient temperature sensor, and a receiver for receiving heart rate data from a heart rate sensor on, for example, a chest strap being worn by the user.
  • One aspect of the present invention relates to a sophisticated algorithm development process for creating a wide range of algorithms for generating information relating to a variety of variables from the data received from the plurality of physiological and/or contextual sensors on sensor device 1201. Such variables may include, without limitation, energy expenditure, including resting, active and total values, daily caloric intake, sleep states, including in bed, sleep onset, sleep interruptions, wake, and out of bed, and activity states, including exercising, sitting, traveling in a motor vehicle, and lying down, and the algorithms for generating values for such variables may be based on data from, for example, the 2-axis accelerometer, the heat flux sensor, the GSR sensor, the skin temperature sensor, the near-body ambient temperature sensor, and the heart rate sensor in the embodiment described above.
  • Note that there are several types of algorithms that can be computed. For example, and without limitation, these include algorithms for predicting user characteristics, continual measurements, durative contexts, instantaneous events, and cumulative conditions. User characteristics include permanent and semi-permanent parameters of the wearer, including aspects such as weight, height, and wearer identity. An example of a continual measurement is energy expenditure, which constantly measures, for example on a minute by minute basis, the number of calories of energy expended by the wearer. Durative contexts are behaviors that last some period of time, such as sleeping, driving a car, or jogging. Instantaneous events are those that occur at a fixed or over a very short time period, such as a heart attack or falling down. Cumulative conditions are those where the person's condition can be deduced from their behavior over some previous period of time. For example, if a person hasn't slept in 36 hours and hasn't eaten in 10 hours, it is likely that they are fatigued. Table 3 below shows numerous examples of specific personal characteristics, continual measurements, durative measurements, instantaneous events, and cumulative conditions.
  • TABLE 3
    personal age, sex, weight, gender, athletic ability,
    characteristics conditioning, disease, height, susceptibility to
    disease, activity level, individual detection,
    handedness, metabolic rate, body composition
    continual mood, beat-to-beat variability of heart beats,
    measurements respiration, energy expenditure, blood glucose
    levels, level of ketosis, heart rate, stress levels,
    fatigue levels, alertness levels, blood pressure,
    readiness, strength, endurance, amenability to
    interaction, steps per time period, stillness level,
    body position and orientation, cleanliness, mood or
    affect, approachability, caloric intake, TEF, XEF,
    ‘in the zone’-ness, active energy expenditure,
    carbohydrate intake, fat intake, protein intake,
    hydration levels, truthfulness, sleep quality, sleep
    state, consciousness level, effects of medication,
    dosage prediction, water intake, alcohol intake,
    dizziness, pain, comfort, remaining processing
    power for new stimuli, proper use of the armband,
    interest in a topic, relative exertion, location, blood-
    alcohol level
    durative exercise, sleep, lying down, sitting, standing,
    measurements ambulation, running, walking, biking, stationary
    biking, road biking, lifting weights, aerobic
    exercise, anaerobic exercise, strength-building
    exercise, mind-centering activity, periods of intense
    emotion, relaxing, watching TV, sedentary, REM
    detector, eating, in-the-zone, interruptible, general
    activity detection, sleep stage, heat stress, heat
    stroke, amenable to teaching/learning, bipolar
    decompensation, abnormal events (in heart signal,
    in activity level, measured by the user, etc), startle
    level, highway driving or riding in a car, airplane
    travel, helicopter travel, boredom events, sport
    detection (football, baseball, soccer, etc), studying,
    reading, intoxication, effect of a drug
    instantaneous falling, heart attack, seizure, sleep arousal events,
    events PVCs, blood sugar abnormality, acute stress or
    disorientation, emergency, heart arrhythmia, shock,
    vomiting, rapid blood loss, taking medication,
    swallowing
    cumulative Alzheimer's, weakness or increased likelihood of
    conditions falling, drowsiness, fatigue, existence of ketosis,
    ovulation, pregnancy, disease, illness, fever,
    edema, anemia, having the flu, hypertension,
    mental disorders, acute dehydration, hypothermia,
    being-in-the-zone
  • It will be appreciated that the present invention may be utilized in a method for doing automatic journaling of a wearer's physiological and contextual states. The system can automatically produce a journal of what activities the user was engaged in, what events occurred, how the user's physiological state changed over time, and when the user experienced or was likely to experience certain conditions. For example, the system can produce a record of when the user exercised, drove a car, slept, was in danger of heat stress, or ate, in addition to recording the user's hydration level, energy expenditure level, sleep levels, and alertness levels throughout a day.
  • According to the algorithm development process, linear or non-linear mathematical models or algorithms are constructed that map the data from the plurality of sensors to a desired variable. The process consists of several steps. First, data is collected by subjects wearing sensor device 1201 who are put into situations as close to real world situations as possible (with respect to the parameters being measured), such that the subjects are not endangered and so that the variable that the proposed algorithm is to predict can, at the same time, be reliably measured using highly accurate medical grade lab equipment. This first step provides the following two sets of data that are then used as inputs to the algorithm development process: (i) the raw data from sensor device 1201, and (ii) the data consisting of the gold-standard labels measured with the more accurate lab equipment. For cases in which the variable that the proposed algorithm is to predict relates to context detection, such as traveling in a motor vehicle, the gold-standard data is provided by the subjects themselves, such as through information input manually into sensor device 1201, a PC, or otherwise manually recorded. The collected data, i.e., both the raw data and the corresponding gold standard label data, is then organized into a database and is split into training and test sets.
  • Next, using the data in the training set, a mathematical model is built that relates the raw data to the corresponding gold standard labeled data. Specifically, a variety of machine learning techniques are used to generate two types of algorithms: 1) algorithms known as feature detectors that produce a result that is highly correlated with the lab-measured level (e.g. VO2 level information from a metabolic cart, douglas bag, or doubly labeled water), and 2) algorithms known as context detectors that predict various contexts (e.g., running, exercising, lying down, sleeping, driving) useful for the overall algorithm. A number of well known machine learning techniques may be used in this step, including artificial neural nets, decision trees, memory-based methods, boosting, attribute selection through cross-validation, and stochastic search methods such as simulated annealing and evolutionary computation. After a suitable set of feature and context detectors are found, several well known machine learning methods are used to cross-validate the models using the training data and increase the quality of the models of the data. Techniques used in this phase include, but are not limited to, multilinear regression, locally weighted regression, decision trees, artificial neural networks, stochastic search methods, support vector machines, and model trees.
  • At this stage, the models make predictions on, for example, a minute by minute basis. Inter-minute effects are next taken into account by creating an overall model that integrates the minute by minute predictions. A well known or custom windowing and threshold optimization tool may be used in this step to take advantage of the temporal continuity of the data. Finally, the model's performance can be evaluated on the test set, which has not yet been used in the creation of the algorithm. Performance of the model on the test set is thus a good estimate of the algorithm's expected performance on other unseen data. Finally, the algorithm may undergo live testing on new data for further validation.
  • Further examples of the types of non-linear functions and/or machine learning method that may be used in the present invention include the following: conditionals, case statements, logical processing, probabilistic or logical inference, neural network processing, kernel based methods, memory-based lookup (kNN, SOMs), decision lists, decision-tree prediction, support vector machine prediction, clustering, boosted methods, cascade-correlation, Boltzmann classifier, regression trees, case-based reasoning, Gaussians, Bayes nets, dynamic Bayesian networks, HMMs, Kalman filters, Gaussian processes, algorithmic predictors (e.g. learned by evolutionary computation or other program synthesis tools).
  • Although one can view an algorithm as taking raw sensor values or signals as input, performing computation, and then producing a desired output, it is useful in one preferred embodiment to view the algorithm as a series of derivations that are applied to the raw sensor values. Each derivation produces a signal referred to as a derived channel. The raw sensor values or signals are also referred to as channels, specifically raw channels rather than derived channels. These derivations, also referred to as functions, can be simple or complex but are applied in a predetermined order on the raw values and, possibly, on already existing derived channels. The first derivation must, of course, only take as input raw sensor signals, but subsequent derivations can take as input previously derived channels. Note that one can easily determine, from the order of application of derivations, the particular channels utilized to derive a given derived channel. Also note that inputs that a user provides on an I/O device or in some fashion can also be included as raw signals which can be used by the algorithms. For example, the category chosen to describe a meal can be used by a derivation that computes the caloric estimate for the meal. In one embodiment, the raw signals are first summarized into channels that are sufficient for later derivations and can be efficiently stored. These channels include derivations such as summation, summation of differences, and averages. Note that although summarizing the high-rate data into compressed channels is useful both for compression and for storing useful features, it may be useful to store some or all segments of high rate data as well, depending on the exact details of the application. In one embodiment, these summary channels are then calibrated to take minor measurable differences in manufacturing into account and to result in values in the appropriate scale and in the correct units. For example, if, during the manufacturing process, a particular temperature sensor was determined to have a slight offset, this offset can be applied, resulting in a derived channel expressing temperature in degrees Celsius.
  • For purposes of this description, a derivation or function is linear if it is expressed as a weighted combination of its inputs together with some offset. For example, if FOO and BAR are two raw or derived channels, then all derivations of the form A*FOO+B*BAR+C, where A, B, and C are constants, is a linear derivation. A derivation is non-linear with respect to its inputs if it is not expressed as a weighted sum of the inputs with a constant offset. An example of a nonlinear derivation is as follows: if (FOO>7) then return BAR*9, else return (BAR*3.5+912). A channel is linearly derived if all derivations involved in computing it are linear, and a channel is nonlinearly derived if any of the derivations used in creating it are nonlinear. A channel nonlinearly mediates a derivation if changes in the value of the channel change the computation performed in the derivation, keeping all other inputs constant. According to a preferred embodiment of the present invention, the algorithms that are developed using this process will have the format shown conceptually in FIG. 47. Specifically, the algorithm will take as inputs the channels derived from the sensor data collected by the sensor device from the various sensors and demographic information for the individual as shown in box 1600. The algorithm includes at least one context detector 1605 that produces a weight, shown as W1 through WN, expressing the probability that a given portion of collected data, such as is collected over a minute, was collected while the wearer was in each of several possible contexts. Such contexts may include whether the individual was at rest or active. In addition, for each context, a regression algorithm 1610 is provided where a continuous prediction is computed taking raw or derived channels as input. The individual regressions can be any of a variety of regression equations or methods, including, for example, multivariate linear or polynomial regression, memory based methods, support vector machine regression, neural networks, Gaussian processes, arbitrary procedural functions, etc. Each regression is an estimate of the output of the parameter of interest in the algorithm, for example energy expenditure. Finally, the outputs of each regression algorithm 1610 for each context, shown as A1 through AN, and the weights W1 through WN are combined in a post-processor 1615 which outputs the parameter of interest being measured or predicted by the algorithm, shown in box 1620. In general, the post-processor 1615 can consist of any of many methods for combining the separate contextual predictions, including committee methods, boosting, voting methods, consistency checking, or context based recombination.
  • Referring to FIG. 48, an example algorithm for measuring energy expenditure of an individual is shown conceptually. This example algorithm may be run on sensor device 1201 having at least an accelerometer, a heat flux sensor and a GSR sensor, or I/O 1200 that receives data from such a sensor device. In this example algorithm, the raw data from the sensors is calibrated and numerous values based thereon, i.e., derived channels, are created. In particular, the following derived channels, shown at 1600 in FIG. 48, are computed from the raw signals and the demographic information: (1) longitudinal accelerometer average (LAVE), based on the accelerometer data; (2) transverse accelerometer sum of average differences (TSAD), based on the accelerometer data; (3) heat flux high gain average variance (HFvar), based on heat flux sensor data; (4) vector sum of transverse and longitudinal accelerometer sum of absolute differences or SADs (VSAD), based on the accelerometer data; (5) galvanic skin response low gain (GSR), based on the GSR data; and (6) Basal Metabolic Rate (BMR), based on demographic information. Context detector 1605 consists of a naïve Bayesian classifier that predicts whether the wearer is active or resting using the LAVE, TSAD, and HFvar derived channels. The output is a probabilistic weight (W1 and W2 for the two contexts rest and active). For the rest context, the regression algorithm 1610 is a linear regression combining channels derived from the accelerometer, the heat flux sensor, the user's demographic data, and the galvanic skin response sensor. The equation, obtained through the algorithm design process, is A*VSAD+B*HFvar+C*GSR+D*BMR+E, where A, B, C, D and E are constants. The regression algorithm 1610 for the active context is the same, except that the constants are different. The post-processor 1615 for this example is to add together the weighted results of each contextual regression. If A1 is the result of the rest regression and A2 is the result of the active regression, then the combination is just W1*A1+W2*A2, which is energy expenditure shown at 1620. In another example, a derived channel that calculates whether the wearer is motoring (driving in a car) at the time period in question might also be input into the post-processor 1615. The process by which this derived motoring channel is computed is algorithm 3. The post-processor 1615 in this case might then enforce a constraint that when the wearer is predicted to be driving by algorithm 3, the energy expenditure is limited for that time period to a value equal to some factor (e.g. 1.3) times their minute by minute basal metabolic rate.
  • This algorithm development process may be used to create algorithms to enable sensor device 1201 to detect and measure various parameters, including, without limitation, the following: (i) when an individual is suffering from duress, including states of unconsciousness, fatigue, shock, drowsiness, heat stress and dehydration; and (ii) an individual's state of readiness, health and/or metabolic status, such as in a military environment, including states of dehydration, under-nourishment and lack of sleep. In addition, algorithms may be developed for other purposes, such as filtering, signal clean-up and noise cancellation for signals measured by a sensor device as described herein. As will be appreciated, the actual algorithm or function that is developed using this method will be highly dependent on the specifics of the sensor device used, such as the specific sensors and placement thereof and the overall structure and geometry of the sensor device. Thus, an algorithm developed with one sensor device will not work as well, if at all, on sensor devices that are not substantially structurally identical to the sensor device used to create the algorithm.
  • Another aspect of the present invention relates to the ability of the developed algorithms to handle various kinds of uncertainty. Data uncertainty refers to sensor noise and possible sensor failures. Data uncertainty is when one cannot fully trust the data. Under such conditions, for example, if a sensor, for example an accelerometer, fails, the system might conclude that the wearer is sleeping or resting or that no motion is taking place. Under such conditions it is very hard to conclude if the data is bad or if the model that is predicting and making the conclusion is wrong. When an application involves both model and data uncertainties, it is very important to identify the relative magnitudes of the uncertainties associated with data and the model. An intelligent system would notice that the sensor seems to be producing erroneous data and would either switch to alternate algorithms or would, in some cases, be able to fill the gaps intelligently before making any predictions. Determining when sensors have failed and when data channels are no longer reliable is a non-trivial task because a failed sensor can sometimes result in readings that may seem consistent with some of the other sensors and the data can also fall within the normal operating range of the sensor.
  • Clinical uncertainty refers to the fact that different sensors might indicate seemingly contradictory conclusions. Clinical uncertainty is when one cannot be sure of the conclusion that is drawn from the data. For example, the accelerometers might indicate that the wearer is motionless (leading toward a conclusion of “resting”), the galvanic skin response sensor might provide a very high response (leading toward “active”), and the heat flow sensor might indicate that the wearer is still dispersing substantial heat (leading toward “active”). How should these differing factors be assessed? An inferior system would simply try to vote among the sensors or use similarly unfounded methods to integrate the various readings. The present invention instead weights the important joint probabilities and determines the appropriate most likely conclusion (which might be, for this example, that the wearer is currently performing or has recently performed a low motion activity such as stationary biking).
  • According to a further aspect of the present invention, a sensor device such as sensor device 400 shown in FIGS. 12-17, stand alone sensor device 700 shown in FIG. 21, sensor device 800 shown in FIGS. 22-26 or sensor device 1201 shown in FIG. 40, each of which have a processor and either have one or more sensors or receive signals from one or more sensors, may be used to automatically measure, record, store and/or report a parameter Y relating to the state of a person, preferably a state of the person that cannot be directly measured by the sensors. State parameter Y may be, for example and without limitation, calories consumed, energy expenditure, sleep states, hydration levels, ketosis levels, shock, insulin levels, physical exhaustion and heat exhaustion, among others. The sensor device is able to observe a vector of raw signals consisting of the outputs of certain of the one or more sensors, which may include all of such sensors or a subset of such sensors. As described above, certain signals, referred to as channels, may be derived from the vector of raw sensor signals as well. A vector X of certain of these raw and/or derived channels, referred to herein as the raw and derived channels X, will change in some systematic way depending on or sensitive to the state, event and/or level of either the state parameter Y that is of interest or some indicator of Y, referred to as U, wherein there is a relationship between Y and U such that Y can be obtained from U. According to the present invention, a first algorithm or function f1 is created using the sensor device that takes as inputs the raw and derived channels X and gives an output that predicts and is conditionally dependent on (i) either the state parameter Y or the indicator U, and (ii) some other state parameter(s) Z of the individual. This algorithm or function f1 may be expressed as follows:
  • According to the preferred embodiment, f1 is developed using the algorithm development process described elsewhere herein which uses data, specifically the raw and derived channels X, derived from the signals collected by the sensor device, so-called gold standard data relating to U or Y and Z contemporaneously measured using a method taken to be the correct answer, for example highly accurate medical grade lab equipment, and various machine learning techniques to generate the algorithms from the collected data. The algorithm or function f1 is created under conditions where the indicator U or state parameter Y, whichever the case may be, is present. As will be appreciated, the actual algorithm or function that is developed using this method will be highly dependent on the specifics of the sensor device used, such as the specific sensors and placement thereof and the overall structure and geometry of the sensor device. Thus, an algorithm developed with one sensor device will not work as well, if at all, on sensor devices that are not substantially structurally identical to the sensor device used to create the algorithm.
  • Next, a second algorithm or function f2 is created using the sensor device that takes as inputs the raw and derived channels X and gives an output that predicts and is conditionally dependent on everything output by f1 except either Y or U, whichever the case may be and is conditionally independent of either Y or U, whichever the case may be. The idea is that certain of the raw and derived channels X from the one or more sensors make it possible to explain away or filter out changes in the raw and derived channels X coming from non-Y or non-U related events. This algorithm or function f2 may be expressed as follows:
  • Preferably, f2, like f1, is developed using the algorithm development process referenced above. f2, however, is developed and validated under conditions where U or Y, whichever the case may, is not present. Thus, the gold standard data used to create f2 is data relating to Z only measured using highly accurate medical grade lab equipment.
  • Thus, according to this aspect of the invention, two functions will have been created, one of which, f1, is sensitive to U or Y, the other of which, f2, is insensitive to U or Y. As will be appreciated, there is a relationship between f1 and f2 that will yield either U or Y, whichever the case may be. In other words, there is a function f3 such that f3 (f1, f2)=U or f3 (f1, f2)=Y. For example, U or Y may be obtained by subtracting the data produced by the two functions (U=f1−f2 or Y=f1−f2). In the case where U, rather than Y, is determined from the relationship between f1 and f2, the next step involves obtaining Y from U based on the relationship between Y and U. For example, Y may be some fixed percentage of U such that Y can be obtained by dividing U by some factor.
  • One skilled in the art will appreciate that in the present invention, more than two such functions (e.g. f1, f2, f3 . . . f_n−1) could be combined by a last function f_n in the manner described above. In general, this aspect of the invention requires that a set of functions is combined whose outputs vary from one another in a way that is indicative of the parameter of interest. It will also be appreciated that conditional independence (or dependence) as used here will be defined to be approximate (in)dependence rather than precise (in)dependence.
  • The method just described may, for example, be used to automatically measure and/or report the caloric consumption or intake of a person using the sensor device, such as that person's daily caloric intake, also known as DCI. Automatic measuring and reporting of caloric intake would be advantageous because other non-automated methods, such as keeping diaries and journals of food intake, are hard to maintain and because caloric information for food items is not always reliable or, as in the case of a restaurant, readily available.
  • It is known that total body metabolism is measured as total energy expenditure (TEE) according to the following equation:

  • TEE=BMR+AE+TEF+AT,
  • wherein BMR is basal metabolic rate, which is the energy expended by the body during rest such as sleep, AE is activity energy expenditure, which is the energy expended during physical activity, TEF is thermic effect of food, which is the energy expended while digesting and processing the food that is eaten, and AT is adaptive thermogenesis, which is a mechanism by which the body modifies its metabolism to extreme temperatures. It is estimated that it costs humans about 10% of the value of food that is eaten to process the food. TEF is therefore estimated to be 10% of the total calories consumed. Thus, a reliable and practical method of measuring TEF would enable caloric consumption to be measured without the need to manually track or record food related information. Specifically, once TEF is measured, caloric consumption can be accurately estimated by dividing TEF by 0.1 (TEF=0.1* Calories Consumed; Calories Consumed=TEF/0.1).
  • According to a specific embodiment of the present invention relating to the automatic measurement of a state parameter Y as described above, a sensor device as described above may be used to automatically measure and/or record calories consumed by an individual. In this embodiment, the state parameter Y is calories consumed by the individual and the indicator U is TEF. First, the sensor device is used to create f1, which is an algorithm for predicting TEE. f1 is developed and validated on subjects who ate food, in other words, subjects who were performing activity and who were experiencing a TEF effect. As such, f1 is referred to as EE(gorge) to represent that it predicts energy expenditure including eating effects. The gold standard data used to create f1 is a VO2 machine. The function f1, which predicts TEE, is conditionally dependent on and predicts the item U of interest, which is TEF. In addition, f1 is conditionally dependent on and predicts Z which, in this case, is BMR+AE+AT. Next, the sensor device is used to create f2, which is an algorithm for predicting all aspects of TEE except for TEF. f2 is developed and validated on subjects who fasted for a period of time prior to the collection of data, preferably 4-6 hours, to ensure that TEF was not present and was not a factor. Such subjects will be performing physical activity without any TEF effect. As a result, f2 is conditionally dependent to and predicts BMR+AE+AT but is conditionally independent of and does not predict TEF. As such, f2 is referred to as EE(fast) to represent that it predicts energy expenditure not including eating effects. Thus, f1 so developed will be sensitive to TEF and f2 so developed will be insensitive to TEF. As will be appreciated, in this embodiment, the relationship between f1 and f2 that will yield the indicator U, which in this case is TEF, is subtraction. In other words, EE (gorge)−EE (fast)=TEF.
  • Once developed, functions f1 and f2 can be programmed into software stored by the sensor device and executed by the processor of the sensor device. Data from which the raw and derived channels X can be derived can then be collected by the sensor device. The outputs of f1 and f2 using the collected data as inputs can then be subtracted to yield TEF. Once TEF is determined for a period of time such as a day, calories consumed can be obtained for that period by dividing TEF by 0.1, since TEF is estimated to be 10% of the total calories consumed. The caloric consumption data so obtained may be stored, reported and/or used in lieu of the manually collected caloric consumption data utilized in the embodiments described elsewhere herein, such as in connection with FIGS. 43A-43H.
  • Preferably, the sensor device in this embodiment is sensor device 800 shown in FIGS. 22-26 that includes and/or is in communication with a body motion sensor such as an accelerometer adapted to generate data indicative of motion, a skin conductance sensor such as a GSR sensor adapted to generate data indicative of the resistance of the individual's skin to electrical current, a heat flux sensor adapted to generate data indicative of heat flow off the body, a body potential sensor such as an ECG sensor adapted to generate data indicative of the rate or other characteristics of the heart beats of the individual, and a temperature sensor adapted to generate data indicative of a temperature of the individual's skin. In this preferred embodiment, these signals, in addition the demographic information about the wearer, make up the vector of signals from which the raw and derived channels X are derived. Most preferably, this vector of signals includes data indicative of motion, resistance of the individual's skin to electrical current and heat flow off the body.
  • As a limiting case of attempting to estimate TEF as described above, one can imagine the case where the set of additional state parameters Z is zero. This results in measuring TEF directly through the derivational process using linear and non-linear derivations described earlier. In this variation, the algorithmic process is used to predict TEF directly, which must be provided as the gold-standard training data.
  • As an alternative to TEF, any effect of food on the body, such as, for example, drowsiness, urination or an electrical effect, or any other signs of eating, such as stomach sounds, may be used as the indicator U in the method just described for enabling the automatic measurement of caloric consumption. The relationship between U and the state parameter Y, which is calories consumed, may, in these alternative embodiments, be based on some known or developed scientific property or equation or may be based on statistical modeling techniques.
  • As an alternate embodiment, DCI can be estimated by combining measurements of weight taken at different times with estimates of energy expenditure. It is known from the literature that weight change (measured multiple times under the same conditions so as to filter out effects of water retention and the digestive process) is related to energy balance and caloric intake as follows: (Caloric Intake—Energy Expenditure)/K=weight gain in pounds, where K is a constant preferably equal to 3500. Thus, given that an aspect of the present invention relates to a method and apparatus for measuring energy expenditure that may take input from a scale, the caloric intake of a person can be accurately estimated based on the following equation: Caloric Intake=Energy Expenditure+(weight gain in pounds*K). This method requires that the user weigh themselves regularly, but requires no other effort on their part to obtain a measure of caloric intake.
  • Also note also that DCI can be estimated using an algorithm that takes sensor data and attempts to directly estimate the calories consumed by the wearer, using that number of calories as the gold standard and the set of raw and derived channels as the training data. This is just an instance of the algorithmic process described above.
  • Another specific instantiation where the present invention can be utilized relates to detecting when a person is fatigued. Such detection can either be performed in at least two ways. A first way involves accurately measuring parameters such as their caloric intake, hydration levels, sleep, stress, and energy expenditure levels using a sensor device and using the two function (f1 and f2) approach described with respect to TEF and caloric intake estimation to provide an estimate of fatigue. A second way involves directly attempting to model fatigue using the direct derivational approach described in connection with FIGS. 47 and 48. This example illustrates that complex algorithms that predict the wearer's physiologic state can themselves be used as inputs to other more complex algorithms. One potential application for such an embodiment of the present invention would be for first-responders (e.g. firefighters, police, soldiers) where the wearer is subject to extreme conditions and performance matters significantly. In a pilot study, the assignee of the present invention analyzed data from firefighters undergoing training exercises and determined that reasonable measures of heat stress were possible using combinations of calibrated sensor values. For example, if heat flux is too low for too long a period of time but skin temperature continues to rise, the wearer is likely to have a problem. It will be appreciated that algorithms can use both calibrated sensor values and complex derived algorithms.
  • According to an alternate embodiment of the present invention, rather than having the software that implements f1 and f2 and determines U and/or Y therefrom be resident on and executed by the sensor device itself, such software may be resident on and run by a computing device separate from the sensor device. In this embodiment, the computing device receives, by wire or wirelessly, the signals collected by the sensor device from which the set of raw and derived channels X are derived and determines U and/or Y from those signals as described above. This alternate embodiment may be an embodiment wherein the state parameter Y that is determined by the computing device is calories consumed and wherein the indicator is some effect on the body of food, such as TEF. The computing device may display the determined caloric consumption data to the user. In addition, the sensor device may also generate caloric expenditure data as described elsewhere herein which is communicated to the computing device. The computing device may then generate and display information based on the caloric consumption data and the caloric expenditure data, such as energy balance data, goal related data, and rate of weight loss or gain data.
  • The terms and expressions which have been employed herein are used as terms of description and not as limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention claimed. Although particular embodiments of the present invention have been illustrated in the foregoing detailed description, it is to be further understood that the present invention is not to be limited to just the embodiments disclosed, but that they are capable of numerous rearrangements, modifications and substitutions.

Claims (1)

1. An apparatus for measuring a state parameter of an individual, comprising
a processor;
at least two sensors in electronic communication with said processor, at least one of said sensors being a physiological sensor; and
a memory storing software executable by said processor, said software including instructions for:
collecting a plurality of sensor signals from said at least two sensors; and
utilizing a first set of signals based on one or more of said plurality of sensor signals in a first function, said first function determining how a second set of signals based on one or more of said plurality of sensor signals is utilized in one or more second functions, each of said one or more second functions having an output,
wherein one or more of said outputs are used to predict said state parameter of said individual.
US11/930,101 2002-10-09 2007-10-31 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter Abandoned US20080167539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/930,101 US20080167539A1 (en) 2002-10-09 2007-10-31 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41716302P 2002-10-09 2002-10-09
US10/682,293 US8157731B2 (en) 2002-10-09 2003-10-09 Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
US11/930,101 US20080167539A1 (en) 2002-10-09 2007-10-31 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/682,293 Continuation US8157731B2 (en) 2002-10-09 2003-10-09 Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters

Publications (1)

Publication Number Publication Date
US20080167539A1 true US20080167539A1 (en) 2008-07-10

Family

ID=32093978

Family Applications (23)

Application Number Title Priority Date Filing Date
US10/682,293 Expired - Fee Related US8157731B2 (en) 2002-10-09 2003-10-09 Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
US10/682,759 Expired - Fee Related US7285090B2 (en) 2000-06-16 2003-10-09 Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information
US11/925,965 Expired - Fee Related US8708904B2 (en) 2000-06-16 2007-10-28 Device utilizing data of a user's context or activity to determine the user's caloric consumption or expenditure
US11/930,048 Abandoned US20080167537A1 (en) 2002-10-09 2007-10-30 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,036 Abandoned US20080167536A1 (en) 2002-10-09 2007-10-30 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,081 Expired - Fee Related US9165117B2 (en) 2002-10-09 2007-10-30 Method and apparatus for identifying and reporting a physiological condition of an individual utilizing physiological and contextual parameters
US11/930,053 Expired - Fee Related US9033876B2 (en) 2002-10-09 2007-10-30 Method and apparatus for deriving and reporting a physiological status of an individual utilizing physiological parameters and user input
US11/930,100 Abandoned US20080171922A1 (en) 2002-10-09 2007-10-31 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,091 Expired - Fee Related US8641612B2 (en) 2002-10-09 2007-10-31 Method and apparatus for detecting and predicting caloric intake of an individual utilizing physiological and contextual parameters
US11/930,092 Expired - Fee Related US8968196B2 (en) 2002-10-09 2007-10-31 Method and apparatus for deriving and reporting a physiological status of an individual utilizing physiological and contextual parameters
US11/930,101 Abandoned US20080167539A1 (en) 2002-10-09 2007-10-31 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,094 Expired - Fee Related US8852098B2 (en) 2002-10-09 2007-10-31 Method and apparatus for deriving and reporting the thermic effect of food and calories consumed for an individual utilizing physiological parameters
US14/059,117 Abandoned US20140213857A1 (en) 2002-10-09 2013-10-21 System for automatic journaling of a user's context
US14/059,054 Abandoned US20140213855A1 (en) 2002-10-09 2013-10-21 System for automatic journaling of a user's context
US14/059,072 Abandoned US20140213856A1 (en) 2002-10-09 2013-10-21 System for automatic journaling of a user's context
US14/083,389 Abandoned US20140223406A1 (en) 2002-10-09 2013-11-18 Systems and methods for measuring a state parameter
US14/083,401 Abandoned US20140223407A1 (en) 2002-10-09 2013-11-18 Systems and methods for measuring energy expenditure
US14/083,404 Abandoned US20140221770A1 (en) 2002-10-09 2013-11-18 Systems and methods of measuring caloric consumption
US14/083,407 Abandoned US20140222174A1 (en) 2002-10-09 2013-11-18 Wearable apparatus to detect and monitor sleep and other activities
US14/083,397 Abandoned US20140221769A1 (en) 2002-10-09 2013-11-18 Systems and methods for measuring energy expenditure of an individual
US14/136,750 Abandoned US20140221774A1 (en) 2002-10-09 2013-12-20 System to determine stress of an individual
US14/221,506 Abandoned US20140206955A1 (en) 2000-06-16 2014-03-21 Wrist-worn body monitoring device
US14/509,034 Abandoned US20150245797A1 (en) 2002-10-09 2014-10-07 Method and apparatus for deriving and reporting the thermic effect of food and calories consumed for an individual utilizing physiological parameters

Family Applications Before (10)

Application Number Title Priority Date Filing Date
US10/682,293 Expired - Fee Related US8157731B2 (en) 2002-10-09 2003-10-09 Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
US10/682,759 Expired - Fee Related US7285090B2 (en) 2000-06-16 2003-10-09 Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information
US11/925,965 Expired - Fee Related US8708904B2 (en) 2000-06-16 2007-10-28 Device utilizing data of a user's context or activity to determine the user's caloric consumption or expenditure
US11/930,048 Abandoned US20080167537A1 (en) 2002-10-09 2007-10-30 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,036 Abandoned US20080167536A1 (en) 2002-10-09 2007-10-30 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,081 Expired - Fee Related US9165117B2 (en) 2002-10-09 2007-10-30 Method and apparatus for identifying and reporting a physiological condition of an individual utilizing physiological and contextual parameters
US11/930,053 Expired - Fee Related US9033876B2 (en) 2002-10-09 2007-10-30 Method and apparatus for deriving and reporting a physiological status of an individual utilizing physiological parameters and user input
US11/930,100 Abandoned US20080171922A1 (en) 2002-10-09 2007-10-31 Method and apparatus for auto journaling of body states and providing derived physiological states utilizing physiological and/or contextual parameter
US11/930,091 Expired - Fee Related US8641612B2 (en) 2002-10-09 2007-10-31 Method and apparatus for detecting and predicting caloric intake of an individual utilizing physiological and contextual parameters
US11/930,092 Expired - Fee Related US8968196B2 (en) 2002-10-09 2007-10-31 Method and apparatus for deriving and reporting a physiological status of an individual utilizing physiological and contextual parameters

Family Applications After (12)

Application Number Title Priority Date Filing Date
US11/930,094 Expired - Fee Related US8852098B2 (en) 2002-10-09 2007-10-31 Method and apparatus for deriving and reporting the thermic effect of food and calories consumed for an individual utilizing physiological parameters
US14/059,117 Abandoned US20140213857A1 (en) 2002-10-09 2013-10-21 System for automatic journaling of a user's context
US14/059,054 Abandoned US20140213855A1 (en) 2002-10-09 2013-10-21 System for automatic journaling of a user's context
US14/059,072 Abandoned US20140213856A1 (en) 2002-10-09 2013-10-21 System for automatic journaling of a user's context
US14/083,389 Abandoned US20140223406A1 (en) 2002-10-09 2013-11-18 Systems and methods for measuring a state parameter
US14/083,401 Abandoned US20140223407A1 (en) 2002-10-09 2013-11-18 Systems and methods for measuring energy expenditure
US14/083,404 Abandoned US20140221770A1 (en) 2002-10-09 2013-11-18 Systems and methods of measuring caloric consumption
US14/083,407 Abandoned US20140222174A1 (en) 2002-10-09 2013-11-18 Wearable apparatus to detect and monitor sleep and other activities
US14/083,397 Abandoned US20140221769A1 (en) 2002-10-09 2013-11-18 Systems and methods for measuring energy expenditure of an individual
US14/136,750 Abandoned US20140221774A1 (en) 2002-10-09 2013-12-20 System to determine stress of an individual
US14/221,506 Abandoned US20140206955A1 (en) 2000-06-16 2014-03-21 Wrist-worn body monitoring device
US14/509,034 Abandoned US20150245797A1 (en) 2002-10-09 2014-10-07 Method and apparatus for deriving and reporting the thermic effect of food and calories consumed for an individual utilizing physiological parameters

Country Status (11)

Country Link
US (23) US8157731B2 (en)
EP (2) EP1551281A4 (en)
JP (2) JP4975249B2 (en)
KR (2) KR20050062773A (en)
AU (2) AU2003275491A1 (en)
BR (2) BR0315184A (en)
CA (3) CA2501732C (en)
DK (1) DK1551282T3 (en)
ES (1) ES2562933T3 (en)
MX (2) MXPA05003686A (en)
WO (2) WO2004032715A2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245609A1 (en) * 2005-09-20 2008-10-09 Saint-Gobain Glass France Method for Optimizing Acoustic Comfort in a Mobile Vehicle Passenger Compartment
US20110015467A1 (en) * 2009-07-17 2011-01-20 Dothie Pamela Ann Sleep management method and system for improving sleep behaviour of a human or animal in the care of a carer
US20110092791A1 (en) * 2009-10-16 2011-04-21 Oliver Wilder-Smith Accuracy biosensor through pressure compensation
US20110092780A1 (en) * 2009-10-16 2011-04-21 Tao Zhang Biosensor module with automatic power on capability
US20110092790A1 (en) * 2009-10-16 2011-04-21 Oliver Wilder-Smith Biosensor module with leadless contacts
US7980001B2 (en) * 2004-02-27 2011-07-19 The Procter & Gamble Company Fabric conditioning dispenser and methods of use
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US20130046151A1 (en) * 2011-02-14 2013-02-21 The Board Of Regents Of The University Of Texas System System and method for real-time measurement of sleep quality
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
EP2888996A1 (en) * 2013-12-25 2015-07-01 Seiko Epson Corporation Biometric information detecting apparatus
EP2807412A4 (en) * 2012-01-26 2016-01-13 Med El Elektromed Geraete Gmbh Neural monitoring methods and systems for treating pharyngeal disorders
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
EP2916734A4 (en) * 2012-11-09 2016-07-27 Nonin Medical Inc Reactance sensing for improved sensor placement
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US10130277B2 (en) 2014-01-28 2018-11-20 Medibotics Llc Willpower glasses (TM)—a wearable food consumption monitor
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US10772559B2 (en) 2012-06-14 2020-09-15 Medibotics Llc Wearable food consumption monitor
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US20230093990A1 (en) * 2021-09-21 2023-03-30 Arul Shrivastav Singing of brain - music therapy for alzheimer patient
US12123654B2 (en) 2022-11-28 2024-10-22 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a fractal heat sink

Families Citing this family (1044)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266623B1 (en) 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US8280682B2 (en) 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US20100036272A1 (en) * 1996-07-15 2010-02-11 Koninklijke Philips Electronics N.V. Metabolic measure system including a multiple function airway adapter
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US8882666B1 (en) 1998-05-08 2014-11-11 Ideal Life Inc. Personal health monitoring and/or communication system
US7612999B2 (en) * 1998-09-18 2009-11-03 Flo Healthcare Solutions, Llc Mobile clinical workstation
US6811516B1 (en) 1999-10-29 2004-11-02 Brian M. Dugan Methods and apparatus for monitoring and encouraging health and fitness
US7689437B1 (en) * 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
EP1662989B1 (en) 2000-06-16 2014-09-03 BodyMedia, Inc. System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability
US20060122474A1 (en) * 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
EP1702560B1 (en) 2000-06-23 2014-11-19 BodyMedia, Inc. System for monitoring health, wellness and fitness
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US8939831B2 (en) 2001-03-08 2015-01-27 Brian M. Dugan Systems and methods for improving fitness equipment and exercise
US20020160883A1 (en) 2001-03-08 2002-10-31 Dugan Brian M. System and method for improving fitness equipment and exercise
US20070111858A1 (en) * 2001-03-08 2007-05-17 Dugan Brian M Systems and methods for using a video game to achieve an exercise objective
EP1249691A1 (en) * 2001-04-11 2002-10-16 Omron Corporation Electronic clinical thermometer
US7044911B2 (en) * 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US20030107487A1 (en) * 2001-12-10 2003-06-12 Ronen Korman Method and device for measuring physiological parameters at the wrist
EP1511418B1 (en) * 2002-02-07 2009-04-08 Ecole Polytechnique Fédérale de Lausanne (EPFL) Body movement monitoring device
US7035773B2 (en) * 2002-03-06 2006-04-25 Fisher-Rosemount Systems, Inc. Appendable system and devices for data acquisition, analysis and control
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
US8874503B2 (en) * 2002-07-15 2014-10-28 Jmw Productivity, Llc Method, system and apparatus for organizing information for managing life affairs
US20070100666A1 (en) * 2002-08-22 2007-05-03 Stivoric John M Devices and systems for contextual and physiological-based detection, monitoring, reporting, entertainment, and control of other devices
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
JP4975249B2 (en) * 2002-10-09 2012-07-11 ボディーメディア インコーポレイテッド Device for measuring an individual's state parameters using physiological information and / or context parameters
US20090177068A1 (en) 2002-10-09 2009-07-09 Stivoric John M Method and apparatus for providing derived glucose information utilizing physiological and/or contextual parameters
US8882637B2 (en) 2003-01-26 2014-11-11 Precor Incorporated Fitness facility equipment distribution management
US8157706B2 (en) * 2009-10-19 2012-04-17 Precor Incorporated Fitness facility equipment usage control system and method
JP2006517830A (en) * 2003-01-26 2006-08-03 プレコ−ル インコ−ポレイテッド Fitness equipment maintenance tracking and alarm system
DE10305831B4 (en) * 2003-02-12 2007-01-04 Siemens Ag diagnostic device
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
AU2003902187A0 (en) * 2003-05-08 2003-05-22 Aimedics Pty Ltd Patient monitor
US7462149B2 (en) * 2003-05-19 2008-12-09 Alcohol Monitoring Systems, Inc. Method and apparatus for remote blood alcohol monitoring
US8676249B2 (en) * 2003-05-19 2014-03-18 Tahnk Wireless Co., Llc Apparatus and method for increased security of wireless transactions
US7311665B2 (en) * 2003-05-19 2007-12-25 Alcohol Monitoring Systems, Inc. Bio-information sensor monitoring system and method
US8034294B1 (en) 2003-07-15 2011-10-11 Ideal Life, Inc. Medical monitoring/consumables tracking device
US7542796B2 (en) * 2003-07-16 2009-06-02 Biomeridian International, Inc. Methods for obtaining quick, repeatable, and non-invasive bioelectrical signals in living organisms
US8571880B2 (en) * 2003-08-07 2013-10-29 Ideal Life, Inc. Personal health management device, method and system
EP1677674A4 (en) * 2003-08-20 2009-03-25 Philometron Inc Hydration monitoring
US7747671B2 (en) * 2003-08-22 2010-06-29 King I Tech Corporation Data transmission system for linking multiple exercise facilities
WO2005021107A1 (en) * 2003-08-27 2005-03-10 Steffan Klein Personel training system and method
US20050066335A1 (en) * 2003-09-23 2005-03-24 Robert Aarts System and method for exposing local clipboard functionality towards external applications
US7590941B2 (en) * 2003-10-09 2009-09-15 Hewlett-Packard Development Company, L.P. Communication and collaboration system using rich media environments
JP4503262B2 (en) * 2003-10-10 2010-07-14 株式会社デンソー Physical condition management device
US20050085248A1 (en) * 2003-10-15 2005-04-21 Ballay Joseph M. Home system including a portable fob mating with system components
DE102004032812B4 (en) * 2003-11-11 2006-07-20 Dräger Safety AG & Co. KGaA Combination sensor for physiological measurements
JP4857770B2 (en) * 2003-11-18 2012-01-18 ソニー株式会社 INPUT DEVICE, INPUT METHOD, AND ELECTRONIC DEVICE
US20080030317A1 (en) * 2004-01-23 2008-02-07 Bryant Terry K Method of Improving Medical Apparatus in Order to Replace Ancillary Medical Assistance by Employing Audible Verbal Human Sounding Voices to Prompt Therapeutic Usage and Provide Guidance, Measurements, Encouragement and Response, As Needed, to the Patient, By Using Electronic Technology
JP2005219630A (en) * 2004-02-05 2005-08-18 Pioneer Electronic Corp Operation control device, processing control device, operation controlling method, its program, and recording medium recording the program
US8202219B2 (en) * 2004-02-23 2012-06-19 Cyberlogic, Inc. Ultrasonic bone assessment apparatus and method
GB2411719B (en) * 2004-03-04 2008-02-06 Leon Thomas Lee Marsh Hydration monitor
US10806404B2 (en) * 2004-03-05 2020-10-20 Health Outcomes Sciences, Inc. Systems and methods for utilizing wireless physiological sensors
WO2005086725A2 (en) * 2004-03-06 2005-09-22 Calisto Medical, Inc. Methods and devices for non-invasively measuring quantitative information of substances in living organisms
GB0405798D0 (en) * 2004-03-15 2004-04-21 E San Ltd Medical data display
EP1734858B1 (en) * 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
US20050228244A1 (en) * 2004-04-07 2005-10-13 Triage Wireless, Inc. Small-scale, vital-signs monitoring device, system and method
US7676262B1 (en) * 2004-04-20 2010-03-09 Pacesetter, Inc. Methods and devices for determining exercise compliance diagnostics
US7031766B1 (en) * 2004-04-20 2006-04-18 Pacesetter, Inc. Methods and devices for determining exercise diagnostic parameters
US20050240444A1 (en) * 2004-04-26 2005-10-27 Richard Wooten System and method of individualized mass diagnosis and treatment of obesity
US8105207B1 (en) * 2004-05-10 2012-01-31 Michael G. Lannon Exercising apparatus
AU2005246268B2 (en) * 2004-05-14 2009-02-05 Ascensia Diabetes Care Holdings Ag Method and apparatus for implementing patient data download for multiple different meter types
US7346382B2 (en) 2004-07-07 2008-03-18 The Cleveland Clinic Foundation Brain stimulation models, systems, devices, and methods
WO2006006092A1 (en) * 2004-07-07 2006-01-19 Koninklijke Philips Electronics N. V. Wearable device
WO2006006158A1 (en) * 2004-07-09 2006-01-19 Aerotel Medical Systems (1998) Ltd. Wearable device, system and method for measuring vital parameters
US7433853B2 (en) * 2004-07-12 2008-10-07 Cardiac Pacemakers, Inc. Expert system for patient medical information analysis
US7743151B2 (en) * 2004-08-05 2010-06-22 Cardiac Pacemakers, Inc. System and method for providing digital data communications over a wireless intra-body network
US20060069320A1 (en) * 2004-09-08 2006-03-30 Wolff Steven B Body worn sensor and device harness
US9820658B2 (en) 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
US7319385B2 (en) * 2004-09-17 2008-01-15 Nokia Corporation Sensor data sharing
WO2006033104A1 (en) * 2004-09-22 2006-03-30 Shalon Ventures Research, Llc Systems and methods for monitoring and modifying behavior
US20060094935A1 (en) * 2004-10-20 2006-05-04 Coulbourn Instruments, L.L.C. Portable psychophysiology system and method of use
DE602005022927D1 (en) 2004-11-02 2010-09-23 Medtronic Inc DATA-TRANSMISSION TECHNIQUES IN AN IMPLANTABLE MEDICAL DEVICE
US8768446B2 (en) * 2004-11-02 2014-07-01 Medtronic, Inc. Clustering with combined physiological signals
US8024029B2 (en) * 2004-11-02 2011-09-20 Medtronic, Inc. Techniques for user-activated data retention in an implantable medical device
US7917199B2 (en) * 2004-11-02 2011-03-29 Medtronic, Inc. Patient event marking in combination with physiological signals
DE102004056748A1 (en) * 2004-11-24 2006-06-01 Map Medizin-Technologie Gmbh Feedback module
US20060231109A1 (en) * 2004-12-20 2006-10-19 Howell Thomas A Personal and portable bottle
US8326423B2 (en) 2004-12-20 2012-12-04 Cardiac Pacemakers, Inc. Devices and methods for steering electrical stimulation in cardiac rhythm management
US8118740B2 (en) * 2004-12-20 2012-02-21 Ipventure, Inc. Moisture sensor for skin
US10258278B2 (en) 2004-12-20 2019-04-16 Ipventure, Inc. Method and apparatus to sense hydration level of a person
US8734341B2 (en) * 2004-12-20 2014-05-27 Ipventure, Inc. Method and apparatus to sense hydration level of a person
US11013461B2 (en) 2004-12-20 2021-05-25 Ipventure, Inc. Method and apparatus for hydration level of a person
AR047851A1 (en) 2004-12-20 2006-03-01 Giniger Alberto German A NEW MARCAPASOS THAT RESTORES OR PRESERVES THE PHYSIOLOGICAL ELECTRIC DRIVING OF THE HEART AND A METHOD OF APPLICATION
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
FI20055027A (en) * 2005-01-19 2006-07-20 Polar Electro Oy System, performance meter, server and computer program
US20060167387A1 (en) * 2005-01-27 2006-07-27 Horst Buchholz Physical activity monitor
US20060183980A1 (en) * 2005-02-14 2006-08-17 Chang-Ming Yang Mental and physical health status monitoring, analyze and automatic follow up methods and its application on clothing
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US7658196B2 (en) 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8066629B2 (en) 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US8016744B2 (en) 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US7927270B2 (en) 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
EP2286721B1 (en) 2005-03-01 2018-10-24 Masimo Laboratories, Inc. Physiological Parameter Confidence Measure
US7643969B2 (en) 2005-03-04 2010-01-05 Health Outcomes Sciences, Llc Methods and apparatus for providing decision support
WO2006094513A2 (en) * 2005-03-09 2006-09-14 Coloplast A/S A three-dimensional adhesive device having a microelectronic system embedded therein
US8187209B1 (en) * 2005-03-17 2012-05-29 Great Lakes Neurotechnologies Inc Movement disorder monitoring system and method
US7678057B2 (en) * 2005-03-24 2010-03-16 Intelomed, Inc. Device and system that identifies cardiovascular insufficiency
US8423108B2 (en) * 2005-03-24 2013-04-16 Intelomed, Inc. Device and system that identifies cardiovascular insufficiency
WO2006103958A1 (en) 2005-03-25 2006-10-05 Kao Corporation Pet body fat measuring tool
CN103259027A (en) 2005-04-28 2013-08-21 普罗透斯数字保健公司 Pharma-informatics system
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US20060247733A1 (en) * 2005-05-02 2006-11-02 Salah Amer Garment for electrical muscle stimulation of muscles in the upper body and arms and legs
US7827011B2 (en) * 2005-05-03 2010-11-02 Aware, Inc. Method and system for real-time signal classification
US20060282021A1 (en) * 2005-05-03 2006-12-14 Devaul Richard W Method and system for fall detection and motion analysis
DE102005024326B3 (en) * 2005-05-27 2006-09-14 Siemens Ag Method of selecting a processing method for measurement data, especially medical data in a given format
US20060272652A1 (en) * 2005-06-03 2006-12-07 Medtronic Minimed, Inc. Virtual patient software system for educating and treating individuals with diabetes
US20070033074A1 (en) * 2005-06-03 2007-02-08 Medtronic Minimed, Inc. Therapy management system
US20080071580A1 (en) * 2005-06-03 2008-03-20 Marcus Alan O System and method for medical evaluation and monitoring
US20100267520A1 (en) * 2005-06-07 2010-10-21 Samsung Electronics Co., Ltd. Exercise stress estimation method for increasing success rate of exercise prescription
US7818131B2 (en) * 2005-06-17 2010-10-19 Venture Gain, L.L.C. Non-parametric modeling apparatus and method for classification, especially of activity state
US7366548B2 (en) * 2005-06-27 2008-04-29 Lucent Technologies Inc. Method for alerting a mobile unit of a missed call upon movement of the mobile unit
US20070004969A1 (en) * 2005-06-29 2007-01-04 Microsoft Corporation Health monitor
US20070021282A1 (en) * 2005-07-19 2007-01-25 Karp Shaun A Abdominal exercising and strength testing systems
US20070021945A1 (en) * 2005-07-20 2007-01-25 Frank Riskey Systems and methods for use in remote data collection, such as for use with atmospheric data collection devices
US20070034213A1 (en) * 2005-07-22 2007-02-15 Poisner David I Monitoring and analyzing self-reported pain level in hospital patients
US9451895B2 (en) 2005-07-25 2016-09-27 Gal Markel Mobile communication device and other devices with cardiovascular monitoring capability
US20070023210A1 (en) * 2005-07-28 2007-02-01 Caterpillar Inc. Electrical system of a mobile machine
EP1917614A2 (en) * 2005-08-08 2008-05-07 Koninklijke Philips Electronics N.V. Method and apparatus for measurement and communication of physiological parameters
EP2260756A1 (en) * 2005-08-09 2010-12-15 Flore, Ingo Medical measuring device
US8547248B2 (en) 2005-09-01 2013-10-01 Proteus Digital Health, Inc. Implantable zero-wire communications system
WO2007033194A2 (en) * 2005-09-13 2007-03-22 Aware Technologies, Inc. Method and system for proactive telemonitor with real-time activity and physiology classification and diary feature
US20100145158A1 (en) * 2005-10-06 2010-06-10 Hamilton Scott E Pod Connected Data Monitoring System
JP5331289B2 (en) * 2005-10-11 2013-10-30 株式会社日立製作所 Work management support method and work management support system using sensor nodes
JP2007105316A (en) * 2005-10-14 2007-04-26 Konica Minolta Sensing Inc Bioinformation measuring instrument
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
US7911339B2 (en) 2005-10-18 2011-03-22 Apple Inc. Shoe wear-out sensor, body-bar sensing system, unitless activity assessment and associated methods
KR100723307B1 (en) * 2005-10-25 2007-05-30 한국전자통신연구원 Communication device
US7632239B2 (en) * 2005-11-16 2009-12-15 Bioness Neuromodulation Ltd. Sensor device for gait enhancement
FI118674B (en) * 2005-11-22 2008-02-15 Planmeca Oy Hardware in a dental environment and a method for controlling a hardware device
US20090125958A1 (en) * 2005-11-23 2009-05-14 Pak Siripunkaw Method of upgrading a platform in a subscriber gateway device
US7941200B2 (en) * 2005-12-08 2011-05-10 Roche Diagnostics Operations, Inc. System and method for determining drug administration information
US20070135690A1 (en) * 2005-12-08 2007-06-14 Nicholl Richard V Mobile communication device that provides health feedback
KR100759806B1 (en) * 2005-12-08 2007-09-20 한국전자통신연구원 System and method for managing heat stress using the same
US20070135691A1 (en) * 2005-12-12 2007-06-14 General Electric Company Medicament compliance monitoring system, method, and medicament container
EP1797929B1 (en) * 2005-12-16 2010-03-31 2Peak AG Dynamically adaptable program for endurance training
US20070143786A1 (en) * 2005-12-16 2007-06-21 General Electric Company Embedded advertisements and method of advertising
EP1965696A2 (en) * 2005-12-20 2008-09-10 Koninklijke Philips Electronics N.V. Device for detecting and warning of a medical condition
US20070146116A1 (en) * 2005-12-22 2007-06-28 Sony Ericsson Mobile Communications Ab Wireless communications device with integrated user activity module
AT502985B1 (en) * 2005-12-22 2009-05-15 Lechner Wolfgang Dr SYSTEM FOR CONTROLLING A CONTROLLABLE MAGNETIC STRIP
WO2007072395A2 (en) * 2005-12-22 2007-06-28 Koninklijke Philips Electronics N.V. Weight management system using adaptive targets
US11826652B2 (en) 2006-01-04 2023-11-28 Dugan Health, Llc Systems and methods for improving fitness equipment and exercise
WO2007081967A2 (en) * 2006-01-10 2007-07-19 Buzz Holdings, Inc. Healthy city living guide and related functionality for managing health
US7859550B2 (en) * 2006-02-06 2010-12-28 Itaggit, Inc. Item data management over a data network for physical items in the control of a user
US20070197881A1 (en) * 2006-02-22 2007-08-23 Wolf James L Wireless Health Monitor Device and System with Cognition
US8308641B2 (en) * 2006-02-28 2012-11-13 Koninklijke Philips Electronics N.V. Biometric monitor with electronics disposed on or in a neck collar
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US8112293B2 (en) * 2006-03-24 2012-02-07 Ipventure, Inc Medical monitoring system
JP2007272761A (en) * 2006-03-31 2007-10-18 Matsushita Electric Works Ltd Exercise prescription preparation system
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
GB2437250C (en) * 2006-04-18 2012-08-15 Iti Scotland Ltd Method and system for monitoring the condition of livestock
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7558629B2 (en) * 2006-04-28 2009-07-07 Medtronic, Inc. Energy balance therapy for obesity management
US20070255154A1 (en) * 2006-04-28 2007-11-01 Medtronic, Inc. Activity level feedback for managing obesity
JP5324438B2 (en) * 2006-05-01 2013-10-23 バイオネス ニューロモジュレイション リミテッド Improved functional electrical stimulation system
EP2013829A4 (en) 2006-05-02 2010-07-07 Proteus Biomedical Inc Patient customized therapeutic regimens
US7607243B2 (en) * 2006-05-03 2009-10-27 Nike, Inc. Athletic or other performance sensing systems
GB0608829D0 (en) * 2006-05-04 2006-06-14 Husheer Shamus L G In-situ measurement of physical parameters
TWI332827B (en) * 2006-05-05 2010-11-11 Chang Ming Yang Physiological function monitoring system
US8968195B2 (en) 2006-05-12 2015-03-03 Bao Tran Health monitoring appliance
US8323189B2 (en) 2006-05-12 2012-12-04 Bao Tran Health monitoring appliance
US7803117B2 (en) * 2006-05-12 2010-09-28 Suunto Oy Method, device and computer program product for monitoring the physiological state of a person
US7539532B2 (en) 2006-05-12 2009-05-26 Bao Tran Cuffless blood pressure monitoring appliance
US7558622B2 (en) 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US9060683B2 (en) 2006-05-12 2015-06-23 Bao Tran Mobile wireless appliance
EP2020911A4 (en) 2006-05-13 2011-07-27 Tensys Medical Inc Continuous positioning apparatus and methods
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
CN101073494B (en) * 2006-05-18 2010-09-08 周常安 Non-invasive life evidence monitor, monitor system and method
CN101473362B (en) 2006-05-22 2013-09-11 耐克国际有限公司 Watch display using light sources with a translucent cover
US20070282181A1 (en) * 2006-06-01 2007-12-06 Carol Findlay Visual medical sensor indicator
JP5119612B2 (en) * 2006-06-02 2013-01-16 株式会社日立製作所 Metabolism monitoring apparatus and metabolism monitoring system
US20090221936A1 (en) * 2006-06-02 2009-09-03 Mayo Foundation For Medical Education And Research Activity-contingent weight loss system
US7762006B2 (en) * 2006-06-14 2010-07-27 Siestamed, Technologies Medical equipment drying device
US8172882B2 (en) * 2006-06-14 2012-05-08 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US8781568B2 (en) 2006-06-23 2014-07-15 Brian M. Dugan Systems and methods for heart rate monitoring, data transmission, and use
AU2007271741B2 (en) * 2006-07-06 2013-01-31 Biorics Nv Real-time monitoring and control of physical and arousal status of individual organisms
US20080015719A1 (en) * 2006-07-14 2008-01-17 Scott Ziolek Computer-assisted assessment of seat design
JP4811186B2 (en) * 2006-08-07 2011-11-09 日本電産株式会社 Hydrodynamic bearing device
US8930204B1 (en) * 2006-08-16 2015-01-06 Resource Consortium Limited Determining lifestyle recommendations using aggregated personal information
US7966647B1 (en) 2006-08-16 2011-06-21 Resource Consortium Limited Sending personal information to a personal information aggregator
GB0617451D0 (en) * 2006-09-05 2006-10-18 Medical Prediction Ltd
EP2063767A4 (en) 2006-09-05 2014-05-21 Innerscope Res Inc Method and system for determining audience response to a sensory stimulus
US9514436B2 (en) 2006-09-05 2016-12-06 The Nielsen Company (Us), Llc Method and system for predicting audience viewing behavior
US8805759B1 (en) 2006-09-06 2014-08-12 Healthcare Interactive, Inc. System and method for psychographic profiling of targeted populations of individuals
US8632464B2 (en) * 2006-09-11 2014-01-21 DePuy Synthes Products, LLC System and method for monitoring orthopaedic implant data
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8177260B2 (en) * 2006-09-26 2012-05-15 Switch2Health Inc. Coupon redeemable upon completion of a predetermined threshold of physical activity
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US8924248B2 (en) 2006-09-26 2014-12-30 Fitbit, Inc. System and method for activating a device based on a record of physical activity
US8337335B2 (en) * 2006-10-07 2012-12-25 Dugan Brian M Systems and methods for measuring and/or analyzing swing information
US8430770B2 (en) 2006-10-07 2013-04-30 Brian M. Dugan Systems and methods for measuring and/or analyzing swing information
US20080091089A1 (en) * 2006-10-12 2008-04-17 Kenneth Shane Guillory Single use, self-contained surface physiological monitor
US20080146958A1 (en) * 2006-10-12 2008-06-19 Kenneth Shane Guillory Self-contained seizure monitor and method
US20080091090A1 (en) * 2006-10-12 2008-04-17 Kenneth Shane Guillory Self-contained surface physiological monitor with adhesive attachment
US20080097142A1 (en) * 2006-10-20 2008-04-24 Paul Savage Magnetic field generator, method of generating a pulsed sinusoidal magnetic wave and magnetic field generator system
US7707130B2 (en) * 2006-10-23 2010-04-27 Health Care Information Services Llc Real-time predictive computer program, model, and method
KR101611240B1 (en) 2006-10-25 2016-04-11 프로테우스 디지털 헬스, 인코포레이티드 Controlled activation ingestible identifier
US7818083B2 (en) 2006-10-31 2010-10-19 Resurgent Health & Medical, Llc Automated washing system with compliance verification and automated compliance monitoring reporting
US7698770B2 (en) 2006-10-31 2010-04-20 Resurgent Health & Medical, Llc Automated appendage cleaning apparatus with brush
US7659824B2 (en) 2006-10-31 2010-02-09 Resurgent Health & Medical, Llc Sanitizer dispensers with compliance verification
US7459961B2 (en) * 2006-10-31 2008-12-02 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Voltage supply insensitive bias circuits
US7617830B2 (en) * 2006-10-31 2009-11-17 Resurgent Health & Medical, Llc Wash chamber for automated appendage-washing apparatus
US20080180213A1 (en) * 2006-11-07 2008-07-31 Flax Stephen W Digital Intercom Based Data Management System
US7292956B1 (en) * 2006-11-20 2007-11-06 Microsoft Corporation Federated sensing, analysis, summarization, and sharing of data for healthcare
FI20065735A0 (en) * 2006-11-20 2006-11-20 Salla Koski Measurement, monitoring and management system and its constituent equipment
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
EP2096989B1 (en) * 2006-11-23 2012-11-21 Flore, Ingo Medical measuring device
US20080146416A1 (en) * 2006-12-13 2008-06-19 Motorola, Inc. Generation of user activity feedback
WO2008072168A1 (en) * 2006-12-14 2008-06-19 Philips Intellectual Property & Standards Gmbh Monitoring device with at least one sensor
US8157730B2 (en) * 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US20080166992A1 (en) * 2007-01-10 2008-07-10 Camillo Ricordi Mobile emergency alert system
US8078334B2 (en) * 2007-01-23 2011-12-13 Alan Goodrich Unobtrusive system and method for monitoring the physiological condition of a target user of a vehicle
US9024764B2 (en) * 2007-01-25 2015-05-05 Honda Motor Co., Ltd. Method and apparatus for manipulating driver core temperature to enhance driver alertness
US20080294020A1 (en) * 2007-01-25 2008-11-27 Demetrios Sapounas System and method for physlological data readings, transmission and presentation
WO2008095183A2 (en) 2007-02-01 2008-08-07 Proteus Biomedical, Inc. Ingestible event marker systems
US20080189291A1 (en) * 2007-02-01 2008-08-07 Hsu Kent T J System for measuring and displaying vital signs and method therefor
US8956288B2 (en) 2007-02-14 2015-02-17 Proteus Digital Health, Inc. In-body power source having high surface area electrode
US20080320030A1 (en) * 2007-02-16 2008-12-25 Stivoric John M Lifeotype markup language
JP5090013B2 (en) * 2007-02-23 2012-12-05 株式会社日立製作所 Information management system and server
US20090093687A1 (en) * 2007-03-08 2009-04-09 Telfort Valery G Systems and methods for determining a physiological condition using an acoustic monitor
US20080228040A1 (en) * 2007-03-16 2008-09-18 Arthur Solomon Thompson International medical expert diagnosis
JP5309126B2 (en) 2007-03-29 2013-10-09 ニューロフォーカス・インコーポレーテッド System, method, and apparatus for performing marketing and entertainment efficiency analysis
KR100880980B1 (en) * 2007-04-13 2009-02-03 한국정보통신대학교 산학협력단 A method of skin conductance response measurement that is robust again contact area change
US20080255949A1 (en) * 2007-04-13 2008-10-16 Lucid Systems, Inc. Method and System for Measuring Non-Verbal and Pre-Conscious Responses to External Stimuli
US8392253B2 (en) 2007-05-16 2013-03-05 The Nielsen Company (Us), Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
US8628522B2 (en) 2007-05-21 2014-01-14 Estech, Inc. (Endoscopic Technologies, Inc.) Cardiac ablation systems and methods
US8694070B2 (en) 2007-05-22 2014-04-08 Persyst Development Corporation Electrode applicator for quick press on EEG electrode
EP2155056B1 (en) 2007-05-22 2011-03-23 Persyst Development Corporation Method and device for quick press on eeg electrode
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US7884727B2 (en) 2007-05-24 2011-02-08 Bao Tran Wireless occupancy and day-light sensing
US10178965B2 (en) * 2007-06-22 2019-01-15 Ipventure, Inc. Activity monitoring system for pregnant women
FR2919095A1 (en) * 2007-07-19 2009-01-23 Gerard Saulet METHOD FOR STRUCTURING BALANCED AND VARIED MEALS
JP5542051B2 (en) 2007-07-30 2014-07-09 ニューロフォーカス・インコーポレーテッド System, method, and apparatus for performing neural response stimulation and stimulation attribute resonance estimation
CN101108125B (en) * 2007-08-02 2010-06-16 无锡微感科技有限公司 Dynamic monitoring system of body sign
US8043215B2 (en) * 2007-08-07 2011-10-25 Cardiac Pacemakers, Inc. Drug titration utilizing an implantable medical device
US8386313B2 (en) 2007-08-28 2013-02-26 The Nielsen Company (Us), Llc Stimulus placement system using subject neuro-response measurements
US8392255B2 (en) 2007-08-29 2013-03-05 The Nielsen Company (Us), Llc Content based selection and meta tagging of advertisement breaks
US20100222652A1 (en) * 2007-09-07 2010-09-02 Ok Kyung Cho Diagnostic sensor unit
WO2009033625A1 (en) * 2007-09-07 2009-03-19 Flore, Ingo Medical measuring device for bioelectrical impedance measurement
EP3922171A1 (en) 2007-09-14 2021-12-15 Medtronic Monitoring, Inc. Adherent cardiac monitor with advanced sensing capabilities
US8790257B2 (en) 2007-09-14 2014-07-29 Corventis, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
EP2194858B1 (en) 2007-09-14 2017-11-22 Corventis, Inc. Medical device automatic start-up upon contact to patient tissue
EP2194847A1 (en) 2007-09-14 2010-06-16 Corventis, Inc. Adherent device with multiple physiological sensors
US8249686B2 (en) 2007-09-14 2012-08-21 Corventis, Inc. Adherent device for sleep disordered breathing
US20090076346A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Tracking and Security for Adherent Patient Monitor
WO2009036256A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
US20090083129A1 (en) 2007-09-20 2009-03-26 Neurofocus, Inc. Personalized content delivery using neuro-response priming data
PT2192946T (en) 2007-09-25 2022-11-17 Otsuka Pharma Co Ltd In-body device with virtual dipole signal amplification
WO2009042965A1 (en) * 2007-09-26 2009-04-02 Switch2Health Inc. System and method for activating a device based on a record of physical activity
KR20090032339A (en) * 2007-09-27 2009-04-01 한국전자통신연구원 Method and apparatus for service to inquire after old people's health
US8904044B2 (en) * 2007-09-28 2014-12-02 International Business Machines Corporation Adapting compression techniques over data based on context
US8327395B2 (en) 2007-10-02 2012-12-04 The Nielsen Company (Us), Llc System providing actionable insights based on physiological responses from viewers of media
US8777862B2 (en) 2007-10-12 2014-07-15 Tensys Medical, Inc. Apparatus and methods for non-invasively measuring a patient's arterial blood pressure
US8812123B2 (en) * 2007-10-17 2014-08-19 Intelect Medical, Inc. Patient programmer with input and sensing capabilities
US20090106071A1 (en) * 2007-10-18 2009-04-23 Rextide Inc. Goal Achievement Manager
US7731659B2 (en) * 2007-10-18 2010-06-08 Lifescan Scotland Limited Method for predicting a user's future glycemic state
US7695434B2 (en) * 2007-10-19 2010-04-13 Lifescan Scotland, Ltd. Medical device for predicting a user's future glycemic state
US20090112849A1 (en) * 2007-10-24 2009-04-30 Searete Llc Selecting a second content based on a user's reaction to a first content of at least two instances of displayed content
US9513699B2 (en) * 2007-10-24 2016-12-06 Invention Science Fund I, LL Method of selecting a second content based on a user's reaction to a first content
US8112407B2 (en) * 2007-10-24 2012-02-07 The Invention Science Fund I, Llc Selecting a second content based on a user's reaction to a first content
US8126867B2 (en) * 2007-10-24 2012-02-28 The Invention Science Fund I, Llc Returning a second content based on a user's reaction to a first content
US9582805B2 (en) 2007-10-24 2017-02-28 Invention Science Fund I, Llc Returning a personalized advertisement
US8234262B2 (en) * 2007-10-24 2012-07-31 The Invention Science Fund I, Llc Method of selecting a second content based on a user's reaction to a first content of at least two instances of displayed content
US20090112694A1 (en) * 2007-10-24 2009-04-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Targeted-advertising based on a sensed physiological response by a person to a general advertisement
US9183582B2 (en) 2007-10-26 2015-11-10 Zazzle Inc. Tiling process for digital image retrieval
US9147213B2 (en) 2007-10-26 2015-09-29 Zazzle Inc. Visualizing a custom product in situ
WO2009059246A1 (en) 2007-10-31 2009-05-07 Emsense Corporation Systems and methods providing en mass collection and centralized processing of physiological responses from viewers
US8108911B2 (en) 2007-11-01 2012-01-31 Comcast Cable Holdings, Llc Method and system for directing user between captive and open domains
WO2009076245A2 (en) * 2007-12-10 2009-06-18 Bayer Healthcare Llc Method and system for automatic time adjustment for an analyte-testing device
US8187163B2 (en) 2007-12-10 2012-05-29 Ethicon Endo-Surgery, Inc. Methods for implanting a gastric restriction device
KR100966590B1 (en) * 2007-12-11 2010-06-29 한국전자통신연구원 Method and system for collaborating of physiological signal measure devices
FI20075910A0 (en) * 2007-12-14 2007-12-14 Polar Electro Oy Electronic device, arrangement, and method for estimating dehydration
US8180442B2 (en) * 2007-12-14 2012-05-15 Greatbatch Ltd. Deriving patient activity information from sensed body electrical information
US8100870B2 (en) 2007-12-14 2012-01-24 Ethicon Endo-Surgery, Inc. Adjustable height gastric restriction devices and methods
US20090157113A1 (en) * 2007-12-18 2009-06-18 Ethicon Endo-Surgery, Inc. Wearable elements for implantable restriction systems
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US20090287109A1 (en) * 2008-05-14 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
US9672471B2 (en) 2007-12-18 2017-06-06 Gearbox Llc Systems, devices, and methods for detecting occlusions in a biological subject including spectral learning
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US8280484B2 (en) 2007-12-18 2012-10-02 The Invention Science Fund I, Llc System, devices, and methods for detecting occlusions in a biological subject
US8142452B2 (en) 2007-12-27 2012-03-27 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
US8377079B2 (en) 2007-12-27 2013-02-19 Ethicon Endo-Surgery, Inc. Constant force mechanisms for regulating restriction devices
EP2116181B1 (en) 2007-12-28 2017-09-13 Löwenstein Medical Technology S.A. Device for recording biodata
WO2009091187A2 (en) * 2008-01-15 2009-07-23 Lg Electronics Inc. Bio-disc
US8382667B2 (en) * 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US11272874B2 (en) * 2008-01-25 2022-03-15 Flint Hills Scientific, Llc Contingent cardio-protection for epilepsy patients
US8337389B2 (en) 2008-01-28 2012-12-25 Ethicon Endo-Surgery, Inc. Methods and devices for diagnosing performance of a gastric restriction system
US8591395B2 (en) 2008-01-28 2013-11-26 Ethicon Endo-Surgery, Inc. Gastric restriction device data handling devices and methods
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US20090192541A1 (en) * 2008-01-28 2009-07-30 Ethicon Endo-Surgery, Inc. Methods and devices for predicting performance of a gastric restriction system
GB2490834B (en) * 2008-02-06 2013-05-29 Hmicro Inc Wireless communications systems using multiple radios
US8221439B2 (en) 2008-02-07 2012-07-17 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using kinetic motion
US7844342B2 (en) 2008-02-07 2010-11-30 Ethicon Endo-Surgery, Inc. Powering implantable restriction systems using light
US8114345B2 (en) 2008-02-08 2012-02-14 Ethicon Endo-Surgery, Inc. System and method of sterilizing an implantable medical device
US9220889B2 (en) 2008-02-11 2015-12-29 Intelect Medical, Inc. Directional electrode devices with locating features
US8019440B2 (en) 2008-02-12 2011-09-13 Intelect Medical, Inc. Directional lead assembly
US8057492B2 (en) 2008-02-12 2011-11-15 Ethicon Endo-Surgery, Inc. Automatically adjusting band system with MEMS pump
US8591532B2 (en) 2008-02-12 2013-11-26 Ethicon Endo-Sugery, Inc. Automatically adjusting band system
US9037266B2 (en) 2008-02-21 2015-05-19 Innara Health, Inc. Enhanced therapeutic stimulus for non-nutritive suck entrainment system and method
US11234607B2 (en) 2008-02-21 2022-02-01 Innara Health, Inc. Methods of using an enhanced therapeutic stimulus for non-nutritive suck entrainment system
US8034065B2 (en) 2008-02-26 2011-10-11 Ethicon Endo-Surgery, Inc. Controlling pressure in adjustable restriction devices
ES2636844T3 (en) 2008-03-05 2017-10-09 Proteus Biomedical, Inc. Ingestible multimode communication systems and markers, and methods to use them
US8233995B2 (en) 2008-03-06 2012-07-31 Ethicon Endo-Surgery, Inc. System and method of aligning an implantable antenna
EE00831U1 (en) 2008-03-06 2009-07-15 O� KSI Konsult A method of tracking an individual's energy use
US8187162B2 (en) 2008-03-06 2012-05-29 Ethicon Endo-Surgery, Inc. Reorientation port
WO2009114548A1 (en) 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
US8182424B2 (en) * 2008-03-19 2012-05-22 Microsoft Corporation Diary-free calorimeter
US8437822B2 (en) * 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US20090243878A1 (en) * 2008-03-31 2009-10-01 Camillo Ricordi Radio frequency transmitter and receiver system and apparatus
US8976007B2 (en) 2008-08-09 2015-03-10 Brian M. Dugan Systems and methods for providing biofeedback information to a cellular telephone and for using such information
WO2009146214A1 (en) 2008-04-18 2009-12-03 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
WO2009131664A2 (en) * 2008-04-21 2009-10-29 Carl Frederick Edman Metabolic energy monitoring system
US7659482B2 (en) * 2008-04-22 2010-02-09 International Business Machines Corporation Adapter card electromagnetic compatibility shielding
US8146613B2 (en) 2008-04-29 2012-04-03 Resurgent Health & Medical, Llc Wash chamber for surgical environment
US20090276229A1 (en) * 2008-04-30 2009-11-05 Martin Grigorov Methods of monitoring the effect of nutritional products
US20090281448A1 (en) * 2008-05-10 2009-11-12 Neural Signals, Inc. Wireless Skin Surface Potential Sensing System and Method
DE102008023328A1 (en) * 2008-05-13 2009-11-19 Biotronik Crm Patent Ag Handset for a patient
US9272153B2 (en) 2008-05-15 2016-03-01 Boston Scientific Neuromodulation Corporation VOA generation system and method using a fiber specific analysis
DE102008058968A1 (en) * 2008-06-21 2009-12-31 Dräger Medical AG & Co. KG Apparatus for predicting a body temperature of a patient
US20090318773A1 (en) * 2008-06-24 2009-12-24 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Involuntary-response-dependent consequences
US8437825B2 (en) 2008-07-03 2013-05-07 Cercacor Laboratories, Inc. Contoured protrusion for improving spectroscopic measurement of blood constituents
EP3427660A1 (en) 2008-07-08 2019-01-16 Proteus Digital Health, Inc. Ingestible event marker data framework
US8515509B2 (en) 2008-08-04 2013-08-20 Cercacor Laboratories, Inc. Multi-stream emitter for noninvasive measurement of blood constituents
US20100084125A1 (en) * 2008-08-18 2010-04-08 Goldstein Albert M Microclimate control system
US20100056873A1 (en) * 2008-08-27 2010-03-04 Allen Paul G Health-related signaling via wearable items
ATE508690T1 (en) 2008-10-16 2011-05-15 Hoffmann La Roche ANALYZER WITH USER-FRIENDLY MENU CONTROL
TWI543746B (en) * 2008-10-20 2016-08-01 王唯工 A tie and run type of physiological parameters detecting device
JP5092020B2 (en) * 2008-11-04 2012-12-05 株式会社日立製作所 Information processing system and information processing apparatus
EP2345893B1 (en) 2008-11-04 2016-05-04 Panasonic Healthcare Holdings Co., Ltd. Measurement device, measurement method, and program
KR101040109B1 (en) * 2008-11-18 2011-06-09 한국철도기술연구원 measuring system of train ride comfort using bioelectrical signals
JP5185785B2 (en) * 2008-11-19 2013-04-17 オムロンヘルスケア株式会社 Health condition judgment device
EP2358266A4 (en) * 2008-11-20 2012-10-03 Bodymedia Inc Method and apparatus for determining critical care parameters
TWI416927B (en) * 2008-11-28 2013-11-21 Inventec Corp Portable electric device using calories calculation
EP2358270A4 (en) 2008-12-11 2014-08-13 Proteus Digital Health Inc Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
TWI503101B (en) 2008-12-15 2015-10-11 Proteus Digital Health Inc Body-associated receiver and method
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US20100167801A1 (en) * 2008-12-31 2010-07-01 Microsoft Corporation Kids personal health records fed into video games
CN102341031A (en) 2009-01-06 2012-02-01 普罗秋斯生物医学公司 Ingestion-related biofeedback and personalized medical therapy method and system
EP2210557A1 (en) 2009-01-21 2010-07-28 Koninklijke Philips Electronics N.V. Determining energy expenditure of a user
KR20100087551A (en) * 2009-01-28 2010-08-05 한국과학기술연구원 Apparatus for calculating calorie balance by classfying user's activity
US8031838B2 (en) 2009-01-29 2011-10-04 The Invention Science Fund I, Llc Diagnostic delivery service
US8130904B2 (en) 2009-01-29 2012-03-06 The Invention Science Fund I, Llc Diagnostic delivery service
US8649510B2 (en) * 2009-01-30 2014-02-11 Devilbiss Healthcare, Llc Device having coded output of operational data
US20100201526A1 (en) * 2009-02-06 2010-08-12 Marjan Hafezi Pregnancy Belt
EP3127476A1 (en) 2009-02-25 2017-02-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
EP2226092B1 (en) * 2009-03-03 2016-06-15 Courage + Khazaka electronic GmbH System for measuring changes in skin parameters
DE102009011381A1 (en) * 2009-03-05 2010-09-09 Flore, Ingo, Dr. Diagnostic measuring device
EP2408362A1 (en) 2009-03-06 2012-01-25 Kaalujuhtija Oü Method of monitoring energy consumption of an individual in an information system
US8374690B2 (en) * 2009-03-10 2013-02-12 Ari Licensing Apparatus for determining health of an individual
JP4931089B2 (en) * 2009-03-13 2012-05-16 エンパイア テクノロジー ディベロップメント エルエルシー HEALTH DIAGNOSIS SYSTEM, HEALTH DIAGNOSIS DEVICE AND METHOD THEREOF
US9198605B2 (en) * 2009-03-20 2015-12-01 Christine Contant Eating utensil to monitor and regulate dietary intake
US20100250325A1 (en) 2009-03-24 2010-09-30 Neurofocus, Inc. Neurological profiles for market matching and stimulus presentation
JP4739439B2 (en) * 2009-04-02 2011-08-03 株式会社タニタ Body motion detection device and body motion detection method
US8454437B2 (en) 2009-07-17 2013-06-04 Brian M. Dugan Systems and methods for portable exergaming
JP2010258687A (en) * 2009-04-23 2010-11-11 Fujitsu Ltd Wireless communication apparatus
US8784342B2 (en) * 2009-04-30 2014-07-22 The Invention Science Fund I Llc Shape sensing clothes to inform the wearer of a condition
US7992217B2 (en) * 2009-04-30 2011-08-09 The Invention Science Fund I, Llc Shape changing material
CA2760738C (en) * 2009-05-12 2015-07-14 Needit Aps Automatic parking disc
US20100295674A1 (en) * 2009-05-21 2010-11-25 Silverplus, Inc. Integrated health management console
KR100931829B1 (en) * 2009-06-02 2009-12-15 주식회사 두성기술 Pacer apparatus
US20140287384A1 (en) * 2009-06-30 2014-09-25 Jeffery Boyes Method, system and apparatus for improved nutritional analysis
US20110009708A1 (en) * 2009-06-30 2011-01-13 Jeffery Boyes System and apparatus for improved nutrition analysis
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
CN102470264B (en) * 2009-07-31 2015-11-25 皇家飞利浦电子股份有限公司 For providing the method and system of drill program to object
US20110035365A1 (en) * 2009-08-06 2011-02-10 Raytheon Company Distributed Knowledge Storage
US20110035349A1 (en) * 2009-08-07 2011-02-10 Raytheon Company Knowledge Management Environment
EP2284747A1 (en) * 2009-08-12 2011-02-16 F. Hoffmann-La Roche AG Method of recording data for keeping diary of a medical testing or therapy
US20110045736A1 (en) * 2009-08-20 2011-02-24 Charles Randy Wooten Effect Generating Device in Response to User Actions
US8303500B2 (en) * 2009-08-21 2012-11-06 Fazal Raheman Prescription zero: a non-pharmaceutical prescription device for prescribing, administering, monitoring, measuring and motivating a therapeutic lifestyle regimen for prevention and treatment of chronic diseases
US10987015B2 (en) 2009-08-24 2021-04-27 Nielsen Consumer Llc Dry electrodes for electroencephalography
WO2011025865A1 (en) 2009-08-27 2011-03-03 The Cleveland Clinic Foundation System and method to estimate region of tissue activation
US8827870B2 (en) * 2009-10-02 2014-09-09 Precor Incorporated Exercise guidance system
US7955219B2 (en) * 2009-10-02 2011-06-07 Precor Incorporated Exercise community system
US8849682B2 (en) * 2009-10-05 2014-09-30 Cardiac Pacemakers, Inc. Adaptive data storage and download in a medical device
SG10201406557TA (en) * 2009-10-13 2014-12-30 Nestec Sa Systems for evaluating dietary intake and methods of using same
US8790259B2 (en) 2009-10-22 2014-07-29 Corventis, Inc. Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
US9560984B2 (en) 2009-10-29 2017-02-07 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US20110106750A1 (en) 2009-10-29 2011-05-05 Neurofocus, Inc. Generating ratings predictions using neuro-response data
US20110105919A1 (en) * 2009-10-30 2011-05-05 Mohammed Naji Medical device
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
US8854060B2 (en) * 2009-11-06 2014-10-07 BIOTRONIK CRIM Patent AG Physiological measurement instrument
US8117054B2 (en) * 2009-11-20 2012-02-14 Palo Alto Research Center Incorporated Method for estimating task stress factors from temporal work patterns
US8666672B2 (en) * 2009-11-21 2014-03-04 Radial Comm Research L.L.C. System and method for interpreting a user's psychological state from sensed biometric information and communicating that state to a social networking site
WO2011068997A1 (en) 2009-12-02 2011-06-09 The Cleveland Clinic Foundation Reversing cognitive-motor impairments in patients having a neuro-degenerative disease using a computational modeling approach to deep brain stimulation programming
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US8335992B2 (en) 2009-12-04 2012-12-18 Nellcor Puritan Bennett Llc Visual indication of settings changes on a ventilator graphical user interface
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
EP2515747A2 (en) * 2009-12-23 2012-10-31 DELTA, Dansk Elektronik, Lys & Akustik A monitoring system
US8221292B2 (en) * 2010-01-25 2012-07-17 Precor Incorporated User status notification system
JP5841951B2 (en) 2010-02-01 2016-01-13 プロテウス デジタル ヘルス, インコーポレイテッド Data collection system
US8348840B2 (en) * 2010-02-04 2013-01-08 Robert Bosch Gmbh Device and method to monitor, assess and improve quality of sleep
US20110225008A1 (en) * 2010-03-09 2011-09-15 Respira Dv, Llc Self-Similar Medical Communications System
US9075910B2 (en) * 2010-03-11 2015-07-07 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
US8380810B2 (en) * 2010-03-16 2013-02-19 Nokia Corporation Method and apparatus providing for output of a content package based at least in part on a content category selection and one or more contextual characteristics
WO2011119832A1 (en) * 2010-03-26 2011-09-29 University Of Virginia Patent Foundation Method, system, and computer program product for improving the accuracy of glucose sensors using insulin delivery observation in diabetes
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
JP5626623B2 (en) * 2010-04-09 2014-11-19 株式会社ハッピーリス Remote diagnostic system
WO2011133548A2 (en) 2010-04-19 2011-10-27 Innerscope Research, Inc. Short imagery task (sit) research method
US9872637B2 (en) 2010-04-21 2018-01-23 The Rehabilitation Institute Of Chicago Medical evaluation system and method using sensors in mobile devices
US20110264760A1 (en) * 2010-04-21 2011-10-27 Nokia Corporation Method and apparatus providing for output of a content package by an application based at least in part on a content type selection and one or more contextual characteristics
WO2011140113A1 (en) * 2010-05-03 2011-11-10 Lark Technologies, Inc. System and method for providing sleep quality feedback
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
TW201143712A (en) * 2010-06-03 2011-12-16 Tyson Biores Inc Methods, devices, and systems for health management
US20130080185A1 (en) * 2011-09-23 2013-03-28 Affectiva, Inc. Clinical analysis using electrodermal activity
US9351654B2 (en) 2010-06-08 2016-05-31 Alivecor, Inc. Two electrode apparatus and methods for twelve lead ECG
US8509882B2 (en) 2010-06-08 2013-08-13 Alivecor, Inc. Heart monitoring system usable with a smartphone or computer
KR101142753B1 (en) * 2010-06-08 2012-05-04 한양대학교 산학협력단 Apparatus to estimate intention of user and method to estimate intention of user thereof
EP2580710B1 (en) 2010-06-14 2016-11-09 Boston Scientific Neuromodulation Corporation Programming interface for spinal cord neuromodulation
US10335060B1 (en) * 2010-06-19 2019-07-02 Dp Technologies, Inc. Method and apparatus to provide monitoring
US20120010473A1 (en) * 2010-07-06 2012-01-12 Sullivan Timothy Knuten Health and Wellness Tracker
US9002440B2 (en) 2010-07-08 2015-04-07 Intelomed, Inc. System and method for characterizing circulatory blood flow
AU2011274478B2 (en) 2010-07-08 2016-01-14 Intelomed, Inc. System and method for characterizing circulatory blood flow
US8878667B2 (en) * 2010-07-22 2014-11-04 Oxfordian, Llc Wireless biosensor network for point of care preparedness for critical patients
US20150186631A1 (en) * 2010-07-30 2015-07-02 Philip J. Bruno Computer keyboard with articulated ultrasonic user proximity sensor
US9557824B2 (en) * 2010-07-30 2017-01-31 Philip J. Bruno Computer keyboard with ultrasonic user proximity sensor
WO2012036327A1 (en) * 2010-09-15 2012-03-22 엘지전자 주식회사 Schedule display method and device in mobile communication terminal
KR101090386B1 (en) * 2010-09-17 2011-12-07 주식회사 인피니트헬스케어 Apparatus for evaluating radiation therapy plan and method therefor
US9295424B2 (en) * 2010-09-21 2016-03-29 Somaxis Incorporated Systems for assessing and optimizing muscular performance
US9017256B2 (en) * 2010-09-22 2015-04-28 Milieu Institute, Llc System and method for physiological monitoring
WO2015179868A2 (en) 2014-05-23 2015-11-26 Dacadoo Ag Automated health data acquisition, processing and communication system
EP2622568A4 (en) 2010-09-29 2014-04-02 Dacadoo Ag Automated health data acquisition, processing and communication system
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US8849610B2 (en) 2010-09-30 2014-09-30 Fitbit, Inc. Tracking user physical activity with multiple devices
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US20120084248A1 (en) * 2010-09-30 2012-04-05 Microsoft Corporation Providing suggestions based on user intent
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US10216893B2 (en) 2010-09-30 2019-02-26 Fitbit, Inc. Multimode sensor devices
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8781791B2 (en) 2010-09-30 2014-07-15 Fitbit, Inc. Touchscreen with dynamically-defined areas having different scanning modes
US8775120B2 (en) 2010-09-30 2014-07-08 Fitbit, Inc. Method of data synthesis
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8744804B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US8751194B2 (en) 2010-09-30 2014-06-10 Fitbit, Inc. Power consumption management of display in portable device based on prediction of user input
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US9310909B2 (en) * 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US9253168B2 (en) 2012-04-26 2016-02-02 Fitbit, Inc. Secure pairing of devices via pairing facilitator-intermediary device
US9188460B2 (en) 2010-09-30 2015-11-17 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8812259B2 (en) 2010-09-30 2014-08-19 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US8615377B1 (en) 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US8768648B2 (en) 2010-09-30 2014-07-01 Fitbit, Inc. Selection of display power mode based on sensor data
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US20120094600A1 (en) 2010-10-19 2012-04-19 Welch Allyn, Inc. Platform for patient monitoring
US9011292B2 (en) 2010-11-01 2015-04-21 Nike, Inc. Wearable device assembly having athletic functionality
US8814754B2 (en) 2010-11-01 2014-08-26 Nike, Inc. Wearable device having athletic functionality
US8974349B2 (en) 2010-11-01 2015-03-10 Nike, Inc. Wearable device assembly having athletic functionality
KR101773309B1 (en) 2010-11-01 2017-08-31 나이키 이노베이트 씨.브이. Wearable device assembly having athletic functionality
CN102462491A (en) * 2010-11-03 2012-05-23 苏州大学 Intelligent wireless human body blood pressure monitoring system, monitor and monitoring method
US11334034B2 (en) 2010-11-19 2022-05-17 Google Llc Energy efficiency promoting schedule learning algorithms for intelligent thermostat
ES2398866B1 (en) * 2010-12-21 2014-01-27 Universidad De Murcia DEVICE THAT INCLUDES A SENSOR OF POSITION AND BODY ACTIVITY, A SENSOR OF PERIPHERAL TEMPERATURE AND A SENSOR OF LIGHT TO OFFER INFORMATION OF THE STATE OF THE CIRCADIAN SYSTEM.
US20120165616A1 (en) * 2010-12-27 2012-06-28 Nir Geva Portable monitoring unit and a method for monitoring a monitored person
US20120271121A1 (en) * 2010-12-29 2012-10-25 Basis Science, Inc. Integrated Biometric Sensing and Display Device
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US9439599B2 (en) 2011-03-11 2016-09-13 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
US8761880B2 (en) 2011-03-14 2014-06-24 Cardiac Pacemakers, Inc. His capture verification using electro-mechanical delay
US9610506B2 (en) 2011-03-28 2017-04-04 Brian M. Dugan Systems and methods for fitness and video games
US9533228B2 (en) 2011-03-28 2017-01-03 Brian M. Dugan Systems and methods for fitness and video games
US20120253489A1 (en) 2011-03-28 2012-10-04 Dugan Brian M Systems and methods for fitness and video games
CA2828298A1 (en) 2011-03-29 2012-10-04 Boston Scientific Neuromodulation Corporation System and method for leadwire location
US9626650B2 (en) 2011-04-14 2017-04-18 Elwha Llc Cost-effective resource apportionment technologies suitable for facilitating therapies
US10445846B2 (en) 2011-04-14 2019-10-15 Elwha Llc Cost-effective resource apportionment technologies suitable for facilitating therapies
JP2012226564A (en) * 2011-04-20 2012-11-15 Sony Corp Information processing apparatus, information processing method, and program
US9016640B2 (en) 2011-04-22 2015-04-28 Rks Design, Inc. Instrument retention assembly
US8884809B2 (en) * 2011-04-29 2014-11-11 The Invention Science Fund I, Llc Personal electronic device providing enhanced user environmental awareness
US9151834B2 (en) 2011-04-29 2015-10-06 The Invention Science Fund I, Llc Network and personal electronic devices operatively coupled to micro-impulse radars
US9103899B2 (en) 2011-04-29 2015-08-11 The Invention Science Fund I, Llc Adaptive control of a personal electronic device responsive to a micro-impulse radar
WO2012146957A1 (en) * 2011-04-29 2012-11-01 Koninklijke Philips Electronics N.V. An apparatus for use in a fall detector or fall detection system, and a method of operating the same
US9000973B2 (en) * 2011-04-29 2015-04-07 The Invention Science Fund I, Llc Personal electronic device with a micro-impulse radar
US8771186B2 (en) 2011-05-17 2014-07-08 Welch Allyn, Inc. Device configuration for supporting a patient oxygenation test
US9592389B2 (en) 2011-05-27 2017-03-14 Boston Scientific Neuromodulation Corporation Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information
US8947226B2 (en) 2011-06-03 2015-02-03 Brian M. Dugan Bands for measuring biometric information
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
US20120315382A1 (en) 2011-06-10 2012-12-13 Aliphcom Component protective overmolding using protective external coatings
US20120316458A1 (en) * 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
US20130194066A1 (en) * 2011-06-10 2013-08-01 Aliphcom Motion profile templates and movement languages for wearable devices
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US20120316896A1 (en) * 2011-06-10 2012-12-13 Aliphcom Personal advisor system using data-capable band
US20120313746A1 (en) * 2011-06-10 2012-12-13 Aliphcom Device control using sensory input
EP2718914A4 (en) * 2011-06-10 2015-03-25 Aliphcom Wellness application for data-capable band
US20130198694A1 (en) * 2011-06-10 2013-08-01 Aliphcom Determinative processes for wearable devices
US20120316932A1 (en) * 2011-06-10 2012-12-13 Aliphcom Wellness application for data-capable band
US20120316456A1 (en) * 2011-06-10 2012-12-13 Aliphcom Sensory user interface
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
CA2795978A1 (en) * 2011-06-10 2012-12-10 Aliphcom General health and wellness management method and apparatus for a wellness application using data associated with a data-capable band
US20120316455A1 (en) * 2011-06-10 2012-12-13 Aliphcom Wearable device and platform for sensory input
US9089270B2 (en) * 2011-06-29 2015-07-28 Lg Electronics Inc. Terminal and control method thereof
US9962083B2 (en) 2011-07-05 2018-05-08 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9526455B2 (en) * 2011-07-05 2016-12-27 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US10108783B2 (en) 2011-07-05 2018-10-23 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health of employees using mobile devices
US9710788B2 (en) 2011-07-05 2017-07-18 Saudi Arabian Oil Company Computer mouse system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
EP2729058B1 (en) 2011-07-05 2019-03-13 Saudi Arabian Oil Company Floor mat system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9256711B2 (en) 2011-07-05 2016-02-09 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for providing health information to employees via augmented reality display
US9844344B2 (en) 2011-07-05 2017-12-19 Saudi Arabian Oil Company Systems and method to monitor health of employee when positioned in association with a workstation
US9492120B2 (en) 2011-07-05 2016-11-15 Saudi Arabian Oil Company Workstation for monitoring and improving health and productivity of employees
WO2013004706A1 (en) 2011-07-06 2013-01-10 Quentiq AG System and method for personal stress analysis
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9192326B2 (en) 2011-07-13 2015-11-24 Dp Technologies, Inc. Sleep monitoring system
CN108261547A (en) 2011-07-15 2018-07-10 纽斯尔特科学公司 For adjusting the composition of metabolic pathway and method
TWI498106B (en) * 2011-07-20 2015-09-01 Crystalvue Medical Corp Non-invasive detecting apparatus and operating method thereof
MX340001B (en) 2011-07-21 2016-06-20 Proteus Digital Health Inc Mobile communication device, system, and method.
US9201812B2 (en) 2011-07-25 2015-12-01 Aliphcom Multiple logical representations of audio functions in a wireless audio transmitter that transmits audio data at different data rates
US20130035579A1 (en) 2011-08-02 2013-02-07 Tan Le Methods for modeling neurological development and diagnosing a neurological impairment of a patient
US8751008B2 (en) 2011-08-09 2014-06-10 Boston Scientific Neuromodulation Corporation Remote control data management with correlation of patient condition to stimulation settings and/or with clinical mode providing a mismatch between settings and interface data
US10115093B2 (en) * 2011-08-26 2018-10-30 Elwha Llc Food printing goal implementation substrate structure ingestible material preparation system and method
US9997006B2 (en) 2011-08-26 2018-06-12 Elwha Llc Treatment system and method for ingestible product dispensing system and method
US10121218B2 (en) 2012-06-12 2018-11-06 Elwha Llc Substrate structure injection treatment system and method for ingestible product system and method
US10192037B2 (en) 2011-08-26 2019-01-29 Elwah LLC Reporting system and method for ingestible product preparation system and method
US10239256B2 (en) 2012-06-12 2019-03-26 Elwha Llc Food printing additive layering substrate structure ingestible material preparation system and method
US10026336B2 (en) 2011-08-26 2018-07-17 Elwha Llc Refuse intelligence acquisition system and method for ingestible product preparation system and method
US20130330447A1 (en) 2012-06-12 2013-12-12 Elwha LLC, a limited liability company of the State of Delaware Substrate Structure Deposition Treatment System And Method For Ingestible Product System and Method
EP2750602A4 (en) * 2011-08-31 2015-06-24 Striiv Inc Life pattern detection
US9299036B2 (en) 2011-08-31 2016-03-29 Striiv, Inc. Life pattern detection
WO2013040459A2 (en) * 2011-09-16 2013-03-21 Heathloop, Inc. Healthcare pre-visit and follow-up system
US10463300B2 (en) * 2011-09-19 2019-11-05 Dp Technologies, Inc. Body-worn monitor
US11344460B1 (en) 2011-09-19 2022-05-31 Dp Technologies, Inc. Sleep quality optimization using a controlled sleep surface
US20130081079A1 (en) * 2011-09-23 2013-03-28 Sony Corporation Automated environmental feedback control of display system using configurable remote module
TWI486147B (en) * 2011-10-04 2015-06-01 Univ Nat Taiwan Science Tech Real-time physiological signal measurement and feedback system
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
EP2766834B1 (en) 2011-10-13 2022-04-20 Masimo Corporation Medical monitoring hub
CN103890676B (en) * 2011-10-21 2016-09-21 谷歌公司 For the thermostat controlling HVAC system and the method producing timetable for thermostat
US20170344726A1 (en) * 2011-11-03 2017-11-30 Omada Health, Inc. Method and system for supporting a health regimen
US10561376B1 (en) 2011-11-03 2020-02-18 Dp Technologies, Inc. Method and apparatus to use a sensor in a body-worn device
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
FI124367B (en) * 2011-11-11 2014-07-31 Firstbeat Technologies Oy Procedures and systems for mapping a person's physiological state
US20130120106A1 (en) * 2011-11-16 2013-05-16 Motorola Mobility, Inc. Display device, corresponding systems, and methods therefor
US9055927B2 (en) 2011-11-25 2015-06-16 Persyst Development Corporation User interface for artifact removal in an EEG
US8666484B2 (en) 2011-11-25 2014-03-04 Persyst Development Corporation Method and system for displaying EEG data
CN104039221B (en) 2011-11-26 2016-03-16 珀西斯特发展公司 For detecting and removing the method and system of EEG pseudomorphism
KR20130065846A (en) * 2011-12-02 2013-06-20 삼성전자주식회사 Apparatus and method for sharing users' emotion
FI127205B (en) 2011-12-05 2018-01-31 Suunto Oy Customizable microcontroller-based device and corresponding software products and systems
DE102011088817A1 (en) * 2011-12-16 2013-06-20 Robert Bosch Gmbh Device designed to measure vital parameters of a patient
US9311825B2 (en) 2011-12-22 2016-04-12 Senstream, Inc. Biometric sensing and processing apparatus for mobile gaming, education, and wellness applications
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
TW201328660A (en) * 2012-01-06 2013-07-16 Advanced Mediwatch Co Ltd A real-time exercise coaching system
US11026600B2 (en) 2012-01-09 2021-06-08 Invensense, Inc. Activity classification in a multi-axis activity monitor device
CA2861333C (en) 2012-01-19 2017-12-05 Nike Innovate C.V. Multi-activity platform and interface
US9069648B2 (en) * 2012-01-25 2015-06-30 Martin Kelly Jones Systems and methods for delivering activity based suggestive (ABS) messages
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9451303B2 (en) 2012-02-27 2016-09-20 The Nielsen Company (Us), Llc Method and system for gathering and computing an audience's neurologically-based reactions in a distributed framework involving remote storage and computing
US9292858B2 (en) 2012-02-27 2016-03-22 The Nielsen Company (Us), Llc Data collection system for aggregating biologically based measures in asynchronous geographically distributed public environments
US9367668B2 (en) 2012-02-28 2016-06-14 Precor Incorporated Dynamic fitness equipment user interface adjustment
US9459597B2 (en) 2012-03-06 2016-10-04 DPTechnologies, Inc. Method and apparatus to provide an improved sleep experience by selecting an optimal next sleep state for a user
US9198454B2 (en) 2012-03-08 2015-12-01 Nusirt Sciences, Inc. Compositions, methods, and kits for regulating energy metabolism
US9375142B2 (en) 2012-03-15 2016-06-28 Siemens Aktiengesellschaft Learning patient monitoring and intervention system
KR20130111713A (en) * 2012-04-02 2013-10-11 삼성전자주식회사 Apparatus and method for measuring body signal
US10791986B1 (en) 2012-04-05 2020-10-06 Dp Technologies, Inc. Sleep sound detection system and use
US9681836B2 (en) 2012-04-23 2017-06-20 Cyberonics, Inc. Methods, systems and apparatuses for detecting seizure and non-seizure states
US8939919B2 (en) 2012-04-26 2015-01-27 Innara Health, Inc. Enhanced therapeutic stimulus system and methods of use
ES2904273T3 (en) * 2012-04-26 2022-04-04 Innara Health Inc Procedures for using an enhanced therapeutic stimulus for the non-nutritive sucking training system
RU2485572C1 (en) * 2012-05-10 2013-06-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" (ФГБОУ ВПО "ВГУ") Method of optimising computer management
WO2013173079A1 (en) * 2012-05-16 2013-11-21 Innovate, Inc. Ecg-enabled personal emergency response systems
US10172562B2 (en) * 2012-05-21 2019-01-08 Lg Electronics Inc. Mobile terminal with health care function and method of controlling the mobile terminal
US9867548B2 (en) * 2012-05-25 2018-01-16 Emotiv, Inc. System and method for providing and aggregating biosignals and action data
US20130317318A1 (en) * 2012-05-25 2013-11-28 Qualcomm Incorporated Methods and devices for acquiring electrodermal activity
US8533182B1 (en) * 2012-05-31 2013-09-10 David P. Charboneau Apparatuses, systems, and methods for efficient graph pattern matching and querying
CN103445777B (en) * 2012-06-01 2015-12-02 中国人民解放军第四军医大学 The monitoring method of sleep and fatigue monitoring class watch device and normalization dingus
US9814426B2 (en) 2012-06-14 2017-11-14 Medibotics Llc Mobile wearable electromagnetic brain activity monitor
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US20160317060A1 (en) * 2013-05-23 2016-11-03 Medibotics Llc Finger Ring with Electromagnetic Energy Sensor for Monitoring Food Consumption
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US9582035B2 (en) * 2014-02-25 2017-02-28 Medibotics Llc Wearable computing devices and methods for the wrist and/or forearm
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US20140180595A1 (en) * 2012-12-26 2014-06-26 Fitbit, Inc. Device state dependent user interface management
US9044149B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. Heart rate data collection
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
US9483308B2 (en) * 2012-06-29 2016-11-01 Intel Corporation Performance of predicted actions
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
WO2014025624A1 (en) 2012-08-04 2014-02-13 Boston Scientific Neuromodulation Corporation Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices
US10956956B2 (en) 2012-08-17 2021-03-23 Ebay Inc. System, method, and computer readable medium for recommendations based on wearable sensors
AU2013308906B2 (en) 2012-08-28 2016-07-21 Boston Scientific Neuromodulation Corporation Point-and-click programming for deep brain stimulation using real-time monopolar review trendlines
US11185241B2 (en) 2014-03-05 2021-11-30 Whoop, Inc. Continuous heart rate monitoring and interpretation
EP2892421A1 (en) 2012-09-04 2015-07-15 Whoop, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
US20140072935A1 (en) * 2012-09-07 2014-03-13 Tina M. Herron Method of Regulating Caloric Intake
EP2892429B1 (en) * 2012-09-10 2019-07-24 Koninklijke Philips N.V. Device and method to improve dependability of physiological parameter measurements
US20140081659A1 (en) 2012-09-17 2014-03-20 Depuy Orthopaedics, Inc. Systems and methods for surgical and interventional planning, support, post-operative follow-up, and functional recovery tracking
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
WO2014047570A1 (en) 2012-09-21 2014-03-27 Md Revolution, Inc. Systems and methods for developing and implementing personalized health and wellness programs
US20140088372A1 (en) * 2012-09-25 2014-03-27 Google Inc. Information processing method
US20150170531A1 (en) * 2012-10-08 2015-06-18 Lark Technologies, Inc. Method for communicating wellness-related communications to a user
WO2014063160A1 (en) * 2012-10-19 2014-04-24 Basis Science, Inc. Detection of emotional states
KR101911218B1 (en) 2012-10-30 2018-10-24 삼성전자주식회사 Method and apparatus for calculating amount of exercise
US9792412B2 (en) 2012-11-01 2017-10-17 Boston Scientific Neuromodulation Corporation Systems and methods for VOA model generation and use
US20140129243A1 (en) * 2012-11-08 2014-05-08 Aliphcom General health and wellness management method and apparatus for a wellness application using data associated with a data-capable band
WO2014074913A1 (en) 2012-11-08 2014-05-15 Alivecor, Inc. Electrocardiogram signal detection
US9943517B2 (en) 2012-11-13 2018-04-17 Nusirt Sciences, Inc. Compositions and methods for increasing energy metabolism
WO2014091311A2 (en) * 2012-11-13 2014-06-19 Dacadoo Ag Health band
CN103815966A (en) * 2012-11-19 2014-05-28 深圳迈瑞生物医疗电子股份有限公司 Physiological parameter processing device and method
US9526437B2 (en) 2012-11-21 2016-12-27 i4c Innovations Inc. Animal health and wellness monitoring using UWB radar
US9865176B2 (en) 2012-12-07 2018-01-09 Koninklijke Philips N.V. Health monitoring system
US9278255B2 (en) 2012-12-09 2016-03-08 Arris Enterprises, Inc. System and method for activity recognition
US10212986B2 (en) 2012-12-09 2019-02-26 Arris Enterprises Llc System, apparel, and method for identifying performance of workout routines
US20140171753A1 (en) * 2012-12-14 2014-06-19 Leo MONTEJO Portable medical monitoring system with cloud connection and global access
US9311382B2 (en) 2012-12-14 2016-04-12 Apple Inc. Method and apparatus for personal characterization data collection using sensors
US9474876B1 (en) 2012-12-14 2016-10-25 DPTechnologies, Inc. Sleep aid efficacy
JP6268186B2 (en) * 2012-12-20 2018-01-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light sensing device for sensing ambient light intensity
US9220430B2 (en) 2013-01-07 2015-12-29 Alivecor, Inc. Methods and systems for electrode placement
US8827906B2 (en) 2013-01-15 2014-09-09 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9098991B2 (en) 2013-01-15 2015-08-04 Fitbit, Inc. Portable monitoring devices and methods of operating the same
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
CA2898865C (en) 2013-01-21 2020-02-25 Innara Health, Inc. Handheld cordless non-nutritive suck assessment device
EP2948046B1 (en) * 2013-01-22 2019-05-15 Arizona Board of Regents on behalf of Arizona State University Portable metabolic analyzer system
US10244986B2 (en) 2013-01-23 2019-04-02 Avery Dennison Corporation Wireless sensor patches and methods of manufacturing
EP3753483A1 (en) 2013-01-24 2020-12-23 Irhythm Technologies, Inc. Physiological monitoring device
EP2928364A4 (en) 2013-01-28 2015-11-11 Valencell Inc Physiological monitoring devices having sensing elements decoupled from body motion
US10463273B2 (en) * 2013-02-01 2019-11-05 Halo Wearables, Llc Hydration monitor
US9149189B2 (en) 2013-03-04 2015-10-06 Hello, Inc. User or patient monitoring methods using one or more analysis tools
US9532716B2 (en) 2013-03-04 2017-01-03 Hello Inc. Systems using lifestyle database analysis to provide feedback
US9398854B2 (en) 2013-03-04 2016-07-26 Hello Inc. System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison
US9204798B2 (en) 2013-03-04 2015-12-08 Hello, Inc. System for monitoring health, wellness and fitness with feedback
US9848776B2 (en) * 2013-03-04 2017-12-26 Hello Inc. Methods using activity manager for monitoring user activity
US9553486B2 (en) 2013-03-04 2017-01-24 Hello Inc. Monitoring system and device with sensors that is remotely powered
US9420856B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with adjacent magnets magnetized in different directions
US9330561B2 (en) 2013-03-04 2016-05-03 Hello Inc. Remote communication systems and methods for communicating with a building gateway control to control building systems and elements
US9704209B2 (en) 2013-03-04 2017-07-11 Hello Inc. Monitoring system and device with sensors and user profiles based on biometric user information
US9357922B2 (en) 2013-03-04 2016-06-07 Hello Inc. User or patient monitoring systems with one or more analysis tools
US9432091B2 (en) 2013-03-04 2016-08-30 Hello Inc. Telemetry system with wireless power receiver and monitoring devices
US9345403B2 (en) 2013-03-04 2016-05-24 Hello Inc. Wireless monitoring system with activity manager for monitoring user activity
US9320434B2 (en) 2013-03-04 2016-04-26 Hello Inc. Patient monitoring systems and messages that send alerts to patients only when the patient is awake
US9392939B2 (en) 2013-03-04 2016-07-19 Hello Inc. Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison
US9406220B2 (en) 2013-03-04 2016-08-02 Hello Inc. Telemetry system with tracking receiver devices
US9424508B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with magnets having first and second polarities
US9634921B2 (en) 2013-03-04 2017-04-25 Hello Inc. Wearable device coupled by magnets positioned in a frame in an interior of the wearable device with at least one electronic circuit
US9530089B2 (en) 2013-03-04 2016-12-27 Hello Inc. Wearable device with overlapping ends coupled by magnets of a selected width, length and depth
US9662015B2 (en) 2013-03-04 2017-05-30 Hello Inc. System or device with wearable devices having one or more sensors with assignment of a wearable device user identifier to a wearable device user
US9055791B2 (en) 2013-03-04 2015-06-16 Hello Inc. Wearable device with overlapping ends coupled by magnets operating with a selectable strength
US9427189B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring system and device with sensors that are responsive to skin pigmentation
US9345404B2 (en) 2013-03-04 2016-05-24 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
US9526422B2 (en) 2013-03-04 2016-12-27 Hello Inc. System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system
US9737214B2 (en) 2013-03-04 2017-08-22 Hello Inc. Wireless monitoring of patient exercise and lifestyle
US9298882B2 (en) 2013-03-04 2016-03-29 Hello Inc. Methods using patient monitoring devices with unique patient IDs and a telemetry system
US9445651B2 (en) 2013-03-04 2016-09-20 Hello Inc. Wearable device with overlapping ends coupled by magnets
US9159223B2 (en) 2013-03-04 2015-10-13 Hello, Inc. User monitoring device configured to be in communication with an emergency response system or team
US9420857B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with interior frame
US9407097B2 (en) 2013-03-04 2016-08-02 Hello Inc. Methods using wearable device with unique user ID and telemetry system
US9361572B2 (en) 2013-03-04 2016-06-07 Hello Inc. Wearable device with magnets positioned at opposing ends and overlapped from one side to another
US9582748B2 (en) 2013-03-04 2017-02-28 Hello Inc. Base charging station for monitoring device
US9436903B2 (en) 2013-03-04 2016-09-06 Hello Inc. Wearable device with magnets with a defined distance between adjacent magnets
US9430938B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring device with selectable wireless communication
US9339188B2 (en) 2013-03-04 2016-05-17 James Proud Methods from monitoring health, wellness and fitness with feedback
US9367793B2 (en) 2013-03-04 2016-06-14 Hello Inc. Wearable device with magnets distanced from exterior surfaces of the wearable device
US9427160B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with overlapping ends coupled by magnets positioned in the wearable device by an undercut
US10304325B2 (en) 2013-03-13 2019-05-28 Arris Enterprises Llc Context health determination system
EP2969058B1 (en) 2013-03-14 2020-05-13 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US10149617B2 (en) 2013-03-15 2018-12-11 i4c Innovations Inc. Multiple sensors for monitoring health and wellness of an animal
US9720443B2 (en) 2013-03-15 2017-08-01 Nike, Inc. Wearable device assembly having athletic functionality
JP6550370B2 (en) 2013-03-15 2019-07-24 ニューサート サイエンシーズ, インコーポレイテッド Leucine and Nicotinic Acid to Reduce Lipid Levels
WO2014145927A1 (en) 2013-03-15 2014-09-18 Alivecor, Inc. Systems and methods for processing and analyzing medical data
US11744481B2 (en) 2013-03-15 2023-09-05 Otsuka Pharmaceutical Co., Ltd. System, apparatus and methods for data collection and assessing outcomes
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9594354B1 (en) 2013-04-19 2017-03-14 Dp Technologies, Inc. Smart watch extended system
CN104161497A (en) * 2013-05-17 2014-11-26 黄首征 Isolated skin temperature collection device
US9750433B2 (en) 2013-05-28 2017-09-05 Lark Technologies, Inc. Using health monitor data to detect macro and micro habits with a behavioral model
CN105247524A (en) * 2013-05-31 2016-01-13 皇家飞利浦有限公司 System and method for automatically uploading, downloading, and updating data such as sleep study data
WO2014197582A1 (en) 2013-06-04 2014-12-11 Intelomed, Inc Hemodynamic risk severity based upon detection and quantification of cardiac dysrhythmia behavior using a pulse volume waveform
KR101501661B1 (en) * 2013-06-10 2015-03-12 한국과학기술연구원 Wearable electromyogram sensor system
CA2915060A1 (en) 2013-06-11 2014-12-18 Intelomed, Inc. Methods and systems for predicting hypovolemic hypotensive conditions resulting from bradycardia behavior using a pulse volume waveform
US9560156B1 (en) 2013-06-19 2017-01-31 Match.Com, L.L.C. System and method for coaching a user on a website
US9610030B2 (en) 2015-01-23 2017-04-04 Hello Inc. Room monitoring device and sleep analysis methods
US10058290B1 (en) 2013-06-21 2018-08-28 Fitbit, Inc. Monitoring device with voice interaction
US20160192876A1 (en) * 2015-01-02 2016-07-07 Hello Inc. Room monitoring device and sleep analysis
US9993166B1 (en) 2013-06-21 2018-06-12 Fitbit, Inc. Monitoring device using radar and measuring motion with a non-contact device
US10009581B2 (en) 2015-01-02 2018-06-26 Fitbit, Inc. Room monitoring device
US10004451B1 (en) 2013-06-21 2018-06-26 Fitbit, Inc. User monitoring system
US20160220198A1 (en) 2013-06-21 2016-08-04 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
US20160213323A1 (en) * 2015-01-23 2016-07-28 Hello Inc. Room monitoring methods
US10512407B2 (en) 2013-06-24 2019-12-24 Fitbit, Inc. Heart rate data collection
US9247911B2 (en) 2013-07-10 2016-02-02 Alivecor, Inc. Devices and methods for real-time denoising of electrocardiograms
EP3033002A4 (en) 2013-08-12 2017-04-05 Intelomed, Inc Methods for monitoring and analyzing cardiovascular states
US9421420B2 (en) * 2013-08-23 2016-08-23 Futurewei Technologies, Inc. Wellness/exercise management method and system by wellness/exercise mode based on context-awareness platform on smartphone
CA2965941C (en) 2013-09-20 2020-01-28 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
WO2015044722A1 (en) 2013-09-24 2015-04-02 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
US20150094545A1 (en) * 2013-10-01 2015-04-02 Covidien Lp Automated at-rest status sensing
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US9396643B2 (en) 2013-10-23 2016-07-19 Quanttus, Inc. Biometric authentication
US10478075B2 (en) 2013-10-25 2019-11-19 Qualcomm Incorporated System and method for obtaining bodily function measurements using a mobile device
WO2015065925A1 (en) * 2013-10-28 2015-05-07 Aliphcom Data-capable band management in an integrated application and network communication data environment
WO2015063900A1 (en) * 2013-10-30 2015-05-07 富士通株式会社 Biological sensing system, biological sensing method, and biological sensing program
US10296724B2 (en) * 2013-10-30 2019-05-21 Tansu MEHMET Method for preparing a customized exercise strategy
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
AU2014347366B2 (en) * 2013-11-08 2019-10-31 Performance Lab Technologies Limited Automated prescription of activity based on physical activity data
US20150140527A1 (en) * 2013-11-19 2015-05-21 Microsoft Corporation Providing Interventions by Leveraging Popular Computer Resources
TW201520960A (en) * 2013-11-25 2015-06-01 財團法人資訊工業策進會 Health improvement system and method and computer-readable recording medium thereof
CN114089813A (en) 2013-11-29 2022-02-25 普罗克西有限公司 Wearable computing device
US9722472B2 (en) 2013-12-11 2017-08-01 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for harvesting human energy in the workplace
US9420956B2 (en) 2013-12-12 2016-08-23 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US8882643B1 (en) * 2013-12-17 2014-11-11 Mary S. Calkins Method and system for functional training
US9403047B2 (en) 2013-12-26 2016-08-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
CN103767710B (en) * 2013-12-31 2015-12-30 歌尔声学股份有限公司 Human motion state monitors method and apparatus
US20150190072A1 (en) * 2014-01-07 2015-07-09 JayBird LLC Systems and methods for displaying and interacting with data from an activity monitoring device
US10929753B1 (en) 2014-01-20 2021-02-23 Persyst Development Corporation System and method for generating a probability value for an event
TWM479113U (en) * 2014-02-13 2014-06-01 Cheng Uei Prec Ind Co Ltd Heartbeat detecting bracelet
US10429888B2 (en) 2014-02-25 2019-10-01 Medibotics Llc Wearable computer display devices for the forearm, wrist, and/or hand
US10466741B2 (en) 2014-02-25 2019-11-05 Medibotics Dual-display smart watch with proximal and distal (analog and electronic) displays
US11990019B2 (en) 2014-02-27 2024-05-21 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
EP3110507B1 (en) 2014-02-27 2020-11-18 NuSirt Sciences, Inc. Compositions and methods for the reduction or prevention of hepatic steatosis
US11288346B1 (en) * 2014-03-03 2022-03-29 Charles Schwab & Co., Inc. System and method for authenticating users using weak authentication techniques, with differences for different features
US20150254992A1 (en) * 2014-03-06 2015-09-10 Maneesh SETHI Memory-enhancing and habit-training methods and devices
US20160063890A1 (en) * 2014-03-06 2016-03-03 Maneesh SETHI Method for training behavior
US10433612B2 (en) 2014-03-10 2019-10-08 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US20170105632A1 (en) * 2014-03-12 2017-04-20 Kaipo Chen Smart home-care health device
JP6215094B2 (en) * 2014-03-13 2017-10-18 日本光電工業株式会社 Biological information measurement display device
US9293023B2 (en) 2014-03-18 2016-03-22 Jack Ke Zhang Techniques for emergency detection and emergency alert messaging
US8952818B1 (en) 2014-03-18 2015-02-10 Jack Ke Zhang Fall detection apparatus with floor and surface elevation learning capabilites
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
JP6330413B2 (en) * 2014-03-27 2018-05-30 セイコーエプソン株式会社 Exercise presentation apparatus, exercise presentation method, and exercise presentation program
US10380323B2 (en) 2014-03-28 2019-08-13 Jesse Israel Kinbarovsky System and method for providing audiovisual feedback
US20150279174A1 (en) * 2014-03-31 2015-10-01 Elwha LLC, a limited liability company of the State of Delaware Quantified-Self and Fabricator Machines and Circuits Reflexively Related to Big-Data Analytics User Interface Systems, Machines and Circuits
US20150279177A1 (en) * 2014-03-31 2015-10-01 Elwha LLC, a limited liability company of the State of Delaware Quantified-self machines and circuits reflexively related to fabricator, big-data analytics and user interfaces, and supply machines and circuits
US20150279175A1 (en) * 2014-03-31 2015-10-01 Elwha Llc Quantified-self machines and circuits reflexively related to big data analytics user interface systems, machines and circuits
US20150279173A1 (en) * 2014-03-31 2015-10-01 Elwha LLC, a limited liability company of the State of Delaware Quantified-self machines and circuits reflexively related to big data analytics user interface systems, machines and circuits
US20150279176A1 (en) * 2014-03-31 2015-10-01 Elwha Llc Quantified-Self and Fabricator Machines and Circuits Reflexively Related to Big-Data Analytics User Interface Systems, Machines and Circuits
US9922307B2 (en) 2014-03-31 2018-03-20 Elwha Llc Quantified-self machines, circuits and interfaces reflexively related to food
US20150277397A1 (en) * 2014-03-31 2015-10-01 Elwha LLC, a limited liability company of the State of Delaware Quantified-Self Machines and Circuits Reflexively Related to Food Fabricator Machines and Circuits
US20150272195A1 (en) * 2014-03-31 2015-10-01 Elwha LLC, a limited liability company of the State of Delaware Quantified-self machines and circuits reflexively related to food fabricator machines and circuits
US20150278455A1 (en) * 2014-03-31 2015-10-01 Elwha Llc Quantified-self machines and circuits reflexively related to big-data analytics systems and associated fabrication machines and circuits
US10318123B2 (en) 2014-03-31 2019-06-11 Elwha Llc Quantified-self machines, circuits and interfaces reflexively related to food fabricator machines and circuits
US20150279178A1 (en) * 2014-03-31 2015-10-01 Elwha Llc Quantified-self machines and circuits reflexively related to fabricator, big-data analytics and user interfaces, and supply machines and circuits
US10127361B2 (en) 2014-03-31 2018-11-13 Elwha Llc Quantified-self machines and circuits reflexively related to kiosk systems and associated food-and-nutrition machines and circuits
US10060788B2 (en) * 2014-04-07 2018-08-28 Physical Enterprises Inc. Systems and methods for monitoring physiological parameters
US9449365B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Personalized scaling of graphical indicators
US9449409B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Graphical indicators in analog clock format
US10898075B2 (en) * 2014-04-25 2021-01-26 Halo Wearables, Llc Wearable stress-testing device
PL3138031T3 (en) * 2014-04-28 2023-04-11 Yeda Research And Development Co., Ltd. Method and apparatus for predicting response to food
US11963792B1 (en) 2014-05-04 2024-04-23 Dp Technologies, Inc. Sleep ecosystem
US9288298B2 (en) 2014-05-06 2016-03-15 Fitbit, Inc. Notifications regarding interesting or unusual activity detected from an activity monitoring device
US11925271B2 (en) 2014-05-09 2024-03-12 Sleepnea Llc Smooch n' snore [TM]: devices to create a plurality of adjustable acoustic and/or thermal zones in a bed
US10179064B2 (en) 2014-05-09 2019-01-15 Sleepnea Llc WhipFlash [TM]: wearable environmental control system for predicting and cooling hot flashes
US20150331447A1 (en) * 2014-05-15 2015-11-19 Kabushiki Kaisha Toshiba Substrate device comprising a reinforcing member
US10523622B2 (en) 2014-05-21 2019-12-31 Match Group, Llc System and method for user communication in a network
AR100013A1 (en) * 2014-05-23 2016-09-07 Univ Nac Del Litoral PROCEDURE FOR THE MONITORING, QUANTIFICATION AND EVALUATION OF PASTORING AND RUMING ACTIVITIES CARRIED OUT BY RUMINANTS AND DEVICE TO EXECUTE IT
JP2015223220A (en) * 2014-05-26 2015-12-14 株式会社東芝 Band and electronic apparatus
WO2015191445A1 (en) 2014-06-09 2015-12-17 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
TWI620544B (en) * 2014-06-11 2018-04-11 廣達電腦股份有限公司 Heart rate measurement machine and method thereof
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
KR101519793B1 (en) 2014-06-24 2015-05-12 현대자동차주식회사 Network system for vehicle and data transmission method of a different kind communication controller in the same system
US9603569B2 (en) 2014-07-11 2017-03-28 Verily Life Sciences Llc Positioning a wearable device for data collection
US10383550B2 (en) * 2014-07-17 2019-08-20 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
US10279200B2 (en) * 2014-07-17 2019-05-07 Elwha Llc Monitoring and treating pain with epidermal electronics
US20160015280A1 (en) * 2014-07-17 2016-01-21 Elwha Llc Epidermal electronics to monitor repetitive stress injuries and arthritis
US10099053B2 (en) * 2014-07-17 2018-10-16 Elwha Llc Epidermal electronics to monitor repetitive stress injuries and arthritis
US10390755B2 (en) * 2014-07-17 2019-08-27 Elwha Llc Monitoring body movement or condition according to motion regimen with conformal electronics
US10279201B2 (en) * 2014-07-17 2019-05-07 Elwha Llc Monitoring and treating pain with epidermal electronics
US9959388B2 (en) 2014-07-24 2018-05-01 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for providing electrical stimulation therapy feedback
US10265528B2 (en) 2014-07-30 2019-04-23 Boston Scientific Neuromodulation Corporation Systems and methods for electrical stimulation-related patient population volume analysis and use
US10272247B2 (en) 2014-07-30 2019-04-30 Boston Scientific Neuromodulation Corporation Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming
WO2016028525A1 (en) 2014-08-18 2016-02-25 Hancock Medical, Inc. Portable pap device with humidification
USD762222S1 (en) * 2014-08-21 2016-07-26 Novo Nordisk A/S Injector display with graphical user interface
CH710008A1 (en) * 2014-08-21 2016-02-29 Myotest Sa Method and system for automatic selection of physical exercises.
US10595776B1 (en) * 2014-09-09 2020-03-24 Vital Connect, Inc. Determining energy expenditure using a wearable device
US9953041B2 (en) * 2014-09-12 2018-04-24 Verily Life Sciences Llc Long-term data storage service for wearable device data
WO2016041073A1 (en) * 2014-09-17 2016-03-24 2352409 Ontario Inc. Device and method for monitoring fat balance
US9952675B2 (en) 2014-09-23 2018-04-24 Fitbit, Inc. Methods, systems, and apparatuses to display visibility changes responsive to user gestures
WO2016054079A1 (en) 2014-09-29 2016-04-07 Zyomed Corp. Systems and methods for blood glucose and other analyte detection and measurement using collision computing
EP3204112A1 (en) 2014-10-07 2017-08-16 Boston Scientific Neuromodulation Corporation Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US20160117937A1 (en) * 2014-10-27 2016-04-28 Bloom Technologies NV System and method for providing biometric and context based messaging
JP2018504148A (en) 2014-10-31 2018-02-15 アイリズム・テクノロジーズ・インコーポレイテッドiRhythm Technologies,Inc. Wireless biological monitoring device and system
AU2015345999A1 (en) * 2014-11-11 2017-06-08 Global Stress Index Pty Ltd A system and a method for generating stress level and stress resilience level information for an individual
US9652222B1 (en) * 2014-11-13 2017-05-16 Marvell International Ltd. Prototyping apparatus with built-in programming facility and corresponding methods
US9949663B1 (en) * 2014-11-13 2018-04-24 Ori Diagnostic Instruments, LLC Apparatus and method for the analysis of the change of body composition and hydration status and for dynamic indirect individualized measurement of components of the human energy metabolism
FR3028742B1 (en) * 2014-11-24 2016-12-30 Inst Nat Sante Rech Med VIBROTACTILE STIMULATION DEVICE
EP3227850A1 (en) * 2014-12-04 2017-10-11 Koninklijke Philips N.V. Dynamic wearable device behavior based on family history
US9747654B2 (en) 2014-12-09 2017-08-29 Cerner Innovation, Inc. Virtual home safety assessment framework
US9197082B1 (en) 2014-12-09 2015-11-24 Jack Ke Zhang Techniques for power source management using a wrist-worn device
US9737212B2 (en) * 2014-12-26 2017-08-22 Intel Corporation Electronic device system to display biometric feedback
US20220148095A1 (en) * 2014-12-30 2022-05-12 Johnson Health Tech, Co., Ltd. Exercise apparatus with exercise use verification function and verifying method
US11995725B2 (en) * 2014-12-30 2024-05-28 Johnson Health Tech Co., Ltd. Exercise apparatus with exercise use verification function and verifying method
US10032227B2 (en) * 2014-12-30 2018-07-24 Johnson Health Tech Co., Ltd. Exercise apparatus with exercise use verification function and verifying method
ES2575712B1 (en) * 2014-12-30 2017-04-28 Informática El Corte Inglés, S.A. Unit for capturing, storing and processing biomedical parameters
US10258828B2 (en) 2015-01-16 2019-04-16 Icon Health & Fitness, Inc. Controls for an exercise device
JP6497097B2 (en) * 2015-02-05 2019-04-10 セイコーエプソン株式会社 Vaporization calorimeter, biological information measuring device, and electronic device
US20160262691A1 (en) * 2015-02-06 2016-09-15 Lakshya JAIN Method and system for pain monitoring and management in pediatric patients
US10101429B2 (en) * 2015-02-25 2018-10-16 Battelle Memorial Institute Acoustic transmission device and process for tracking selected hosts
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US10108264B2 (en) 2015-03-02 2018-10-23 Emotiv, Inc. System and method for embedded cognitive state metric system
US11883188B1 (en) 2015-03-16 2024-01-30 Dp Technologies, Inc. Sleep surface sensor based sleep analysis system
CN105996984B (en) * 2015-03-24 2019-07-12 菲特比特公司 It is detected using the sitting period of wearable electronics
CN104706334B (en) * 2015-03-30 2017-08-11 京东方科技集团股份有限公司 A kind of display panel and display device with health monitoring function
JP2018513722A (en) * 2015-04-09 2018-05-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Vital sign monitoring system
EP3081152B1 (en) * 2015-04-17 2022-12-07 Nokia Technologies Oy Electrode for a user wearable apparatus
MY174755A (en) * 2015-04-23 2020-05-13 Univ Malaya Artificial intelligence for behavioural change
JP6210085B2 (en) * 2015-04-27 2017-10-11 Tdk株式会社 Biological information measuring device
US9300925B1 (en) 2015-05-04 2016-03-29 Jack Ke Zhang Managing multi-user access to controlled locations in a facility
JP6498325B2 (en) 2015-05-13 2019-04-10 アライヴコア・インコーポレーテッド Discrepancy monitoring
US9936250B2 (en) 2015-05-19 2018-04-03 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
TWI603717B (en) * 2015-05-21 2017-11-01 博晶醫電股份有限公司 Stamina monitoring method and device
EP3268082B1 (en) 2015-05-26 2019-04-17 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US10780283B2 (en) 2015-05-26 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation
US9392946B1 (en) 2015-05-28 2016-07-19 Fitbit, Inc. Heart rate sensor with high-aspect-ratio photodetector element
WO2016198985A1 (en) * 2015-06-11 2016-12-15 Koninklijke Philips N.V. System and method for estimating circadian phase
WO2016201500A1 (en) 2015-06-15 2016-12-22 Medibio Limited Method and system for monitoring stress conditions
EP3307165A4 (en) 2015-06-15 2019-01-02 Medibio Limited Method and system for assessing mental state
CN107836097A (en) * 2015-06-16 2018-03-23 标准创新公司 For strengthening the sensor interacted acquisition and analysis platform with equipment of being grown up
US20160375248A1 (en) 2015-06-29 2016-12-29 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters based on stimulation target region, effects, or side effects
WO2017003947A1 (en) 2015-06-29 2017-01-05 Boston Scientific Neuromodulation Corporation Systems and methods for selecting stimulation parameters by targeting and steering
US10292369B1 (en) 2015-06-30 2019-05-21 Vium, Inc. Non-contact detection of physiological characteristics of experimental animals
WO2017007808A1 (en) * 2015-07-06 2017-01-12 Children's Medical Center Corporation Seizure prediction based on comparison of biological information across wake and sleep periods
US10067564B2 (en) 2015-08-11 2018-09-04 Disney Enterprises, Inc. Identifying hand gestures based on muscle movement in the arm
GB201515177D0 (en) * 2015-08-26 2015-10-07 Future Solutions London Ltd An apparatus for regulating biological rhythms
US10953305B2 (en) 2015-08-26 2021-03-23 Icon Health & Fitness, Inc. Strength exercise mechanisms
KR102612874B1 (en) 2015-08-31 2023-12-12 마시모 코오퍼레이션 Wireless patient monitoring systems and methods
KR102406157B1 (en) * 2015-09-03 2022-06-10 삼성전자주식회사 User equipment and sleep managing method
US10067112B2 (en) 2015-09-30 2018-09-04 Battelle Memorial Institute Autonomous sensor fish to support advanced hydropower development
US20170098040A1 (en) * 2015-10-06 2017-04-06 Scale Down Weight management system and method
EP3359252B1 (en) 2015-10-09 2020-09-09 Boston Scientific Neuromodulation Corporation System and methods for clinical effects mapping for directional stimulations leads
EP3366213A4 (en) * 2015-10-24 2019-05-01 Shenzhen Medica Technology Development Co., Ltd. Sleep evaluation display method and apparatus, and evaluation device
KR20170049279A (en) * 2015-10-28 2017-05-10 엘지전자 주식회사 Mobile terminal
RU2626672C2 (en) 2015-11-11 2017-07-31 Самсунг Электроникс Ко., Лтд. Device (versions) and method for eating habits automated monitoring
US20170142065A1 (en) * 2015-11-18 2017-05-18 International Business Machines Corporation System, method, and recording medium for an emotional firewall for deleterious information
CA3003885A1 (en) 2015-11-18 2017-05-26 Global Specimen Solutions, Inc. Distributed systems for secure storage and retrieval of encrypted biological specimen data
US10332418B2 (en) 2015-11-23 2019-06-25 International Business Machines Corporation Personalized vitamin supplement
EP3380997A4 (en) 2015-11-24 2019-09-11 dacadoo ag Automated health data acquisition, processing and communication system and method
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
EP3178379A1 (en) * 2015-12-09 2017-06-14 Rythm Method and device for bioelectric physiological signal acquisition and processing
US11074826B2 (en) * 2015-12-10 2021-07-27 Rlt Ip Ltd Frameworks and methodologies configured to enable real-time adaptive delivery of skills training data based on monitoring of user performance via performance monitoring hardware
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
US10568525B1 (en) 2015-12-14 2020-02-25 Fitbit, Inc. Multi-wavelength pulse oximetry
US10236920B2 (en) 2015-12-15 2019-03-19 Battelle Memorial Institute Signal transmitter and methods for transmitting signals from animals
US11278004B2 (en) 2015-12-15 2022-03-22 Battelle Memorial Institute Transmitters for animals and methods for transmitting from animals
FR3045309B1 (en) * 2015-12-16 2018-02-02 Universite De Technologies De Troyes METHOD FOR THE AUTOMATIC DETERMINATION OF THE I &lt; O DICHOTOMY INDEX OF AN INDIVIDUAL
US11062807B1 (en) * 2015-12-23 2021-07-13 Massachusetts Mutual Life Insurance Company Systems and methods for determining biometric parameters using non-invasive techniques
AU2017206723B2 (en) 2016-01-11 2021-11-25 Bioness Inc. Systems and apparatus for gait modulation and methods of use
WO2017138598A1 (en) * 2016-02-11 2017-08-17 糧三 齋藤 Cancer prevention/improvement advice device
US20170258390A1 (en) * 2016-02-12 2017-09-14 Newton Howard Early Detection Of Neurodegenerative Disease
US11504038B2 (en) * 2016-02-12 2022-11-22 Newton Howard Early detection of neurodegenerative disease
US10080530B2 (en) 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
US10086233B2 (en) * 2016-03-15 2018-10-02 Athlios, Inc. Fitness equipment with anthropometric data enhanced workout generator
US10293211B2 (en) 2016-03-18 2019-05-21 Icon Health & Fitness, Inc. Coordinated weight selection
US10561894B2 (en) 2016-03-18 2020-02-18 Icon Health & Fitness, Inc. Treadmill with removable supports
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
WO2017162465A1 (en) 2016-03-24 2017-09-28 Koninklijke Philips N.V. Method and apparatus for monitoring urination of a subject
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
US11793458B2 (en) * 2016-03-30 2023-10-24 Intel Corporation Tracking caloric expenditure using sensor driven fingerprints
US10716942B2 (en) 2016-04-25 2020-07-21 Boston Scientific Neuromodulation Corporation System and methods for directional steering of electrical stimulation
US10433739B2 (en) 2016-04-29 2019-10-08 Fitbit, Inc. Multi-channel photoplethysmography sensor
US10203751B2 (en) 2016-05-11 2019-02-12 Microsoft Technology Licensing, Llc Continuous motion controls operable using neurological data
US9864431B2 (en) 2016-05-11 2018-01-09 Microsoft Technology Licensing, Llc Changing an application state using neurological data
CN106037688B (en) * 2016-05-11 2019-05-21 南京邮电大学 A kind of the elderly's dietary recommendation system and method based on Intelligent bracelet
US10252109B2 (en) 2016-05-13 2019-04-09 Icon Health & Fitness, Inc. Weight platform treadmill
CN109310348B (en) 2016-05-19 2022-01-25 汉考克医药公司 Posture obstructive sleep apnea detection system
US20180358119A1 (en) * 2016-06-03 2018-12-13 FOURTH FRONTIER TECHNOLOGIES, Pvt. Ltd. Method and system for continuous monitoring of health parameters during exercise
US9811992B1 (en) 2016-06-06 2017-11-07 Microsoft Technology Licensing, Llc. Caregiver monitoring system
US9869973B2 (en) * 2016-06-10 2018-01-16 Apple Inc. Scheduling device for customizable electronic notifications
US10248302B2 (en) 2016-06-10 2019-04-02 Apple Inc. Scheduling customizable electronic notifications
US10776456B2 (en) 2016-06-24 2020-09-15 Boston Scientific Neuromodulation Corporation Systems and methods for visual analytics of clinical effects
US10441844B2 (en) 2016-07-01 2019-10-15 Icon Health & Fitness, Inc. Cooling systems and methods for exercise equipment
US10471299B2 (en) 2016-07-01 2019-11-12 Icon Health & Fitness, Inc. Systems and methods for cooling internal exercise equipment components
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11471085B2 (en) * 2016-07-11 2022-10-18 Strive Tech Inc. Algorithms for detecting athletic fatigue, and associated methods
US20180025378A1 (en) * 2016-07-21 2018-01-25 Adobe Systems Incorporated Fatigue Control in Dissemination of Digital Marketing Content
US10187121B2 (en) 2016-07-22 2019-01-22 Proteus Digital Health, Inc. Electromagnetic sensing and detection of ingestible event markers
US20180028069A1 (en) * 2016-07-29 2018-02-01 VivaLnk Inc. Wearable thermometer patch for accurate measurement of human skin temperature
US10531639B2 (en) 2016-08-25 2020-01-14 Battelle Memorial Institute Systems and methods for monitoring organisms within an aquatic environment
US10182729B2 (en) * 2016-08-31 2019-01-22 Medtronics, Inc. Systems and methods for monitoring hemodynamic status
US10350404B2 (en) 2016-09-02 2019-07-16 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and directing stimulation of neural elements
US10839712B2 (en) * 2016-09-09 2020-11-17 International Business Machines Corporation Monitoring learning performance using neurofeedback
US20180070850A1 (en) * 2016-09-15 2018-03-15 Karen S. Stafford Apparatus and method for detecting body composition and correlating it with cognitive efficiency
US10780282B2 (en) 2016-09-20 2020-09-22 Boston Scientific Neuromodulation Corporation Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
DE102016011700A1 (en) 2016-09-28 2018-03-29 Personal Medsystems Gmbh Monitoring of biosignals, in particular electrocardiograms
US10500473B2 (en) 2016-10-10 2019-12-10 Icon Health & Fitness, Inc. Console positioning
US10376736B2 (en) 2016-10-12 2019-08-13 Icon Health & Fitness, Inc. Cooling an exercise device during a dive motor runway condition
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
AU2017341910B2 (en) 2016-10-14 2020-05-14 Boston Scientific Neuromodulation Corporation Systems and methods for closed-loop determination of stimulation parameter settings for an electrical simulation system
JP6112591B1 (en) * 2016-10-20 2017-04-12 ジャパンモード株式会社 Creative crop supply system
US9852600B1 (en) * 2016-10-20 2017-12-26 Ion Co., Ltd. Safety monitoring system using intelligent walking stick
JP7300795B2 (en) 2016-10-26 2023-06-30 メッドレスポンド インコーポレイテッド Systems and methods for synthetic interaction with users and devices
US10575775B2 (en) 2016-10-31 2020-03-03 Motorola Solutions, Inc. Method and apparatus for monitoring hydration using a portable communication device
US10661114B2 (en) 2016-11-01 2020-05-26 Icon Health & Fitness, Inc. Body weight lift mechanism on treadmill
TWI646997B (en) 2016-11-01 2019-01-11 美商愛康運動與健康公司 Distance sensor for console positioning
US10293830B2 (en) 2016-11-07 2019-05-21 Honeywell International Inc. Systems and methods for recognizing and analyzing emotional states of a vehicle operator
CN108074001A (en) * 2016-11-10 2018-05-25 松下知识产权经营株式会社 Seat prompt system and seat reminding method
US10238301B2 (en) 2016-11-15 2019-03-26 Avidhrt, Inc. Vital monitoring device, system, and method
US10878947B2 (en) * 2016-11-18 2020-12-29 International Business Machines Corporation Triggered sensor data capture in a mobile device environment
TWI680782B (en) 2016-12-05 2020-01-01 美商愛康運動與健康公司 Offsetting treadmill deck weight during operation
US20180160959A1 (en) * 2016-12-12 2018-06-14 Timothy James Wilde Modular electronic lie and emotion detection systems, methods, and devices
US10856741B2 (en) * 2016-12-14 2020-12-08 Vital Connect, Inc. Core body temperature detection device
WO2018111065A1 (en) * 2016-12-15 2018-06-21 Pacheco Navarro Diana Model for the specification of school paths
EP3515548B1 (en) 2017-01-03 2021-03-17 Boston Scientific Neuromodulation Corporation Systems and methods for selecting mri-compatible stimulation parameters
ES2821752T3 (en) 2017-01-10 2021-04-27 Boston Scient Neuromodulation Corp Systems and procedures for creating stimulation programs based on user-defined areas or volumes
US11185270B1 (en) * 2017-02-03 2021-11-30 Yongwu Yang Wearable device and method for monitoring muscle tension and other physiological data
KR200483102Y1 (en) * 2017-02-10 2017-04-06 유정시스템(주) Wrist watch type band for automobile driver
US10226632B2 (en) * 2017-02-21 2019-03-12 International Business Machines Corporation Methods and systems for controlling implantable medical devices using wearable technology
US11024064B2 (en) 2017-02-24 2021-06-01 Masimo Corporation Augmented reality system for displaying patient data
EP3585254B1 (en) * 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
US10111615B2 (en) 2017-03-11 2018-10-30 Fitbit, Inc. Sleep scoring based on physiological information
US10625082B2 (en) 2017-03-15 2020-04-21 Boston Scientific Neuromodulation Corporation Visualization of deep brain stimulation efficacy
WO2018187090A1 (en) 2017-04-03 2018-10-11 Boston Scientific Neuromodulation Corporation Systems and methods for estimating a volume of activation using a compressed database of threshold values
US11051706B1 (en) 2017-04-07 2021-07-06 Fitbit, Inc. Multiple source-detector pair photoplethysmography (PPG) sensor
JP3225990U (en) * 2017-04-19 2020-04-23 ナショナル サイエンス アンド テクノロジー デヴェロップメント エージェンシー A system for recording, analyzing and providing real-time alerts of accident risk or need for assistance based on continuous sensor signals
US20180322253A1 (en) * 2017-05-05 2018-11-08 International Business Machines Corporation Sensor Based Monitoring
CN110809804B (en) 2017-05-08 2023-10-27 梅西莫股份有限公司 System for pairing a medical system with a network controller using an adapter
US11510607B2 (en) 2017-05-15 2022-11-29 Bloom Technologies NV Systems and methods for monitoring fetal wellbeing
US10699247B2 (en) 2017-05-16 2020-06-30 Under Armour, Inc. Systems and methods for providing health task notifications
US20190000384A1 (en) * 2017-06-30 2019-01-03 Myant Inc. Method for sensing of biometric data and use thereof for determining emotional state of a user
US10709339B1 (en) * 2017-07-03 2020-07-14 Senstream, Inc. Biometric wearable for continuous heart rate and blood pressure monitoring
WO2019009084A1 (en) * 2017-07-05 2019-01-10 ソニー株式会社 Information processing device, information processing method, and program
CN109199409B (en) * 2017-07-06 2021-06-29 新华网股份有限公司 Method and device for acquiring human body fatigue value
WO2019012471A1 (en) * 2017-07-12 2019-01-17 Rajlakshmi Borthakur Iot based wearable device, system and method for the measurement of meditation and mindfulness
AU2018301355B2 (en) 2017-07-14 2020-10-01 Boston Scientific Neuromodulation Corporation Systems and methods for estimating clinical effects of electrical stimulation
JP7005975B2 (en) * 2017-07-14 2022-01-24 セイコーエプソン株式会社 Portable electronic devices
US11622684B2 (en) * 2017-07-19 2023-04-11 Endotronix, Inc. Physiological monitoring system
CN110996766B (en) 2017-07-19 2023-11-28 布鲁姆技术公司 Monitoring uterine activity and assessing risk of premature labor
US11497449B2 (en) 2017-07-21 2022-11-15 Equine Smartbit, LLC Oral and saliva based equine ID drug monitoring system
EP3634569A1 (en) 2017-08-15 2020-04-15 Boston Scientific Neuromodulation Corporation Systems and methods for controlling electrical stimulation using multiple stimulation fields
US20190057190A1 (en) * 2017-08-16 2019-02-21 Wipro Limited Method and system for providing context based medical instructions to a patient
TWI756672B (en) 2017-08-16 2022-03-01 美商愛康有限公司 System for opposing axial impact loading in a motor
US11687800B2 (en) 2017-08-30 2023-06-27 P Tech, Llc Artificial intelligence and/or virtual reality for activity optimization/personalization
US20190272466A1 (en) * 2018-03-02 2019-09-05 University Of Southern California Expert-driven, technology-facilitated intervention system for improving interpersonal relationships
US10657118B2 (en) 2017-10-05 2020-05-19 Adobe Inc. Update basis for updating digital content in a digital medium environment
US10733262B2 (en) 2017-10-05 2020-08-04 Adobe Inc. Attribute control for updating digital content in a digital medium environment
US11069444B2 (en) * 2017-10-11 2021-07-20 International Business Machines Corporation Personal assistant computing system monitoring
US10685375B2 (en) 2017-10-12 2020-06-16 Adobe Inc. Digital media environment for analysis of components of content in a digital marketing campaign
US11551257B2 (en) 2017-10-12 2023-01-10 Adobe Inc. Digital media environment for analysis of audience segments in a digital marketing campaign
US20190114680A1 (en) * 2017-10-13 2019-04-18 Adobe Systems Incorporated Customized Placement of Digital Marketing Content in a Digital Video
US11544743B2 (en) 2017-10-16 2023-01-03 Adobe Inc. Digital content control based on shared machine learning properties
US10795647B2 (en) 2017-10-16 2020-10-06 Adobe, Inc. Application digital content control using an embedded machine learning module
US10492725B2 (en) * 2017-10-29 2019-12-03 Orlando Efrain Abreu Oramas Method and system of facilitating monitoring of an individual based on at least one wearable device
US10853766B2 (en) 2017-11-01 2020-12-01 Adobe Inc. Creative brief schema
US10991012B2 (en) 2017-11-01 2021-04-27 Adobe Inc. Creative brief-based content creation
KR102004052B1 (en) * 2017-11-09 2019-07-25 재단법인대구경북과학기술원 Apparatus and method for predicting physical stability
KR102056696B1 (en) * 2017-11-09 2019-12-17 숭실대학교 산학협력단 Terminal device for generating user behavior data, Method for generating user behavior data and recording medium
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment
US10729965B2 (en) 2017-12-22 2020-08-04 Icon Health & Fitness, Inc. Audible belt guide in a treadmill
KR102500766B1 (en) 2017-12-29 2023-02-17 삼성전자주식회사 Apparatus for measuring biological signal and operating method thereof
JP7039313B2 (en) * 2018-02-14 2022-03-22 オムロン株式会社 Wireless communication devices, sensor devices and wearable devices
US11457855B2 (en) 2018-03-12 2022-10-04 Persyst Development Corporation Method and system for utilizing empirical null hypothesis for a biological time series
US11219416B2 (en) 2018-03-12 2022-01-11 Persyst Development Corporation Graphically displaying evoked potentials
EP3782165A1 (en) 2018-04-19 2021-02-24 Masimo Corporation Mobile patient alarm display
US11285329B2 (en) 2018-04-27 2022-03-29 Boston Scientific Neuromodulation Corporation Systems and methods for visualizing and programming electrical stimulation
WO2019210202A1 (en) 2018-04-27 2019-10-31 Boston Scientific Neuromodulation Corporation Multi-mode electrical stimulation systems and methods of making and using
US11341523B1 (en) 2018-04-27 2022-05-24 Block, Inc. Person-to-person gift offers based on user actions
US11488195B1 (en) 2018-04-27 2022-11-01 Block, Inc. Reward offer redemption for payment cards
US11494782B1 (en) 2018-04-27 2022-11-08 Block, Inc. Equity offers based on user actions
US10898119B2 (en) 2018-05-24 2021-01-26 International Business Machines Corporation Coordinating activities responsive to physiologic signals
KR102554695B1 (en) 2018-06-01 2023-07-13 칼디오 링 테크놀로지스, 아이엔씨. Blood pressure measurement device and method
CN109077723A (en) * 2018-07-05 2018-12-25 青岛大学附属医院 Based on the information acquisition system and method in the nursing in neurology remotely controlled
JP2021192131A (en) * 2018-08-30 2021-12-16 ソニーグループ株式会社 Information processing device and information processing method
WO2020047669A1 (en) * 2018-09-05 2020-03-12 Cardiai Technologies Ltd. Health monitoring system having portable health monitoring devices and method therefor
WO2020055225A1 (en) * 2018-09-13 2020-03-19 VEGA GAMBOA, Geraldina Remote communication system and method for personal security and assistance with an alert-emitting system
US20210338158A1 (en) 2018-10-02 2021-11-04 WearOptimo Pty Ltd Measurement system
WO2020069567A1 (en) 2018-10-02 2020-04-09 WearOptimo Pty Ltd Electrode arrangement
JP7340600B2 (en) * 2018-10-04 2023-09-07 オニオ アーエス Sensor, method for estimating the core temperature of a living body, and method for using the sensor
KR20210070324A (en) * 2018-10-04 2021-06-14 오니오 에이에스 Sensor systems and methods for continuous wireless monitoring and analysis of heart sounds, circulatory effects and core temperatures in organisms
US20200113518A1 (en) * 2018-10-12 2020-04-16 Joshua Mollohan System for facilitating monitoring of fitness devices
US11382534B1 (en) 2018-10-15 2022-07-12 Dp Technologies, Inc. Sleep detection and analysis system
EP3657810A1 (en) * 2018-11-21 2020-05-27 Telefonica Innovacion Alpha S.L Electronic device, method and system for inferring the impact of the context on user's wellbeing
KR102696363B1 (en) * 2018-12-04 2024-08-20 삼성전자주식회사 Method for guiding measurement of bio signal in wearable device
CN109674459A (en) * 2018-12-24 2019-04-26 深圳和而泰数据资源与云技术有限公司 A kind of method and device of data processing
CN109787966B (en) * 2018-12-29 2020-12-01 北京金山安全软件有限公司 Monitoring method and device based on wearable device and electronic device
US11715563B1 (en) * 2019-01-07 2023-08-01 Massachusetts Mutual Life Insurance Company Systems and methods for evaluating location data
CN113366390B (en) * 2019-01-29 2024-02-20 Asml荷兰有限公司 Determination method in semiconductor manufacturing process
US10568570B1 (en) 2019-02-14 2020-02-25 Trungram Gyaltrul Sherpa Methods and systems for providing a preferred fitness state of a user
ES2972869T3 (en) * 2019-02-14 2024-06-17 Braun Gmbh System to evaluate the use of a manually planned mobile consumer product
US11998802B2 (en) * 2019-02-19 2024-06-04 Firstbeat Analytics Oy Method and apparatus for assessing acclimatization to environmental conditions and to assess fitness level taking into account the environmental conditions and the level of acclimatization
US11533818B2 (en) 2019-03-12 2022-12-20 Battelle Memorial Institute Sensor assemblies and methods for emulating interaction of entities within water systems
US20200302825A1 (en) 2019-03-21 2020-09-24 Dan Sachs Automated selection and titration of sensory stimuli to induce a target pattern of autonomic nervous system activity
WO2020219802A1 (en) 2019-04-24 2020-10-29 The Research Foundation For The State University Of New York System and method for tracking human behavior real-time with single magnetometer sensor and magnets
CN112420167A (en) 2019-08-20 2021-02-26 阿里巴巴集团控股有限公司 Image report generation method, device and equipment
US11612226B1 (en) 2019-09-25 2023-03-28 Apple Inc. Cases for electronic devices
US11017902B2 (en) * 2019-10-25 2021-05-25 Wise IOT Solutions System and method for processing human related data including physiological signals to make context aware decisions with distributed machine learning at edge and cloud
CN115066203A (en) 2020-01-13 2022-09-16 梅西莫股份有限公司 Wearable device with physiological parameter monitoring
US11246524B2 (en) 2020-02-12 2022-02-15 Irhythm Technologies, Inc. Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
JP2023516405A (en) 2020-03-02 2023-04-19 スリープ ナンバー コーポレイション Bed with user situation sensing features
US11730379B2 (en) 2020-03-20 2023-08-22 Masimo Corporation Remote patient management and monitoring systems and methods
US11638523B2 (en) * 2020-03-30 2023-05-02 Danny Rittman Push-button and touch-activated vital signs monitoring devices and methods of mapping disease hot spots and providing proximity alerts
GB2594328B (en) * 2020-04-24 2024-04-10 Novosound Ltd Secure ultrasound system
FI129235B (en) 2020-05-12 2021-10-15 Oura Health Oy Method for optimizing training based on body temperature variations
US11672934B2 (en) 2020-05-12 2023-06-13 Covidien Lp Remote ventilator adjustment
CN111544853A (en) * 2020-05-13 2020-08-18 广东高驰运动科技有限公司 Physical index evaluation method and equipment in running exercise
WO2021262552A1 (en) * 2020-06-22 2021-12-30 Owlet Baby Care Inc. Monitoring device
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
TWI782303B (en) * 2020-08-03 2022-11-01 李正達 Artificial intelligence mental stress detection device
EP4192334A1 (en) 2020-08-06 2023-06-14 Irhythm Technologies, Inc. Adhesive physiological monitoring device
KR20230047456A (en) 2020-08-06 2023-04-07 아이리듬 테크놀로지스, 아이엔씨 Electrical Components for Physiological Monitoring Devices
WO2022040268A1 (en) * 2020-08-19 2022-02-24 Arc Global, Llc Proximal vs. distal skin temperature based disease prediction
US20230335287A1 (en) * 2020-08-28 2023-10-19 Emerja Corporation Systems and methods for measuring, learning, and using emergent properties of complex adaptive systems
US20220071563A1 (en) * 2020-09-08 2022-03-10 LEDO Network, Inc. Wearable health monitoring system
US11763919B1 (en) 2020-10-13 2023-09-19 Vignet Incorporated Platform to increase patient engagement in clinical trials through surveys presented on mobile devices
CN112634598A (en) * 2020-12-17 2021-04-09 西南大学 Wireless data acquisition device, acquisition method, self-adaption method and use method
RU2764052C1 (en) * 2021-01-27 2022-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "left ascending spiral" exercise
RU2765532C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "forced turn" exercise
RU2765534C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "zoom climb" exercise
RU2765533C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "dive" exercise
RU2765535C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "speed acceleration" exercise
RU2764053C1 (en) * 2021-01-27 2022-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "turn" exercise
RU2765537C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "landing using a radio complex" exercise
RU2765674C1 (en) * 2021-01-27 2022-02-01 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "aerobatics complex" exercise
RU2765531C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "speed bleedoff" exercise
RU2764054C1 (en) * 2021-01-27 2022-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "right descending spiral" exercise
RU2765530C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "horizontal flight" exercise
RU2765536C1 (en) * 2021-01-27 2022-01-31 Федеральное государственное автономное образовательное учреждение высшего образования "Южно-Уральский государственный университет (национальный исследовательский университет)" ФГАОУ ВО "ЮУрГУ (НИУ)" Method for standardising the flight load of a helicopter pilot when performing the "landing using instrument landing systems" exercise
EP4304456A1 (en) * 2021-03-12 2024-01-17 Tata Industries Limited System and method of measuring and estimating human health parameters
US12118598B2 (en) 2021-03-30 2024-10-15 Zazzle Inc. Generating and using tokens to request services and access to a product collaboration platform
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
US11829239B2 (en) 2021-11-17 2023-11-28 Adobe Inc. Managing machine learning model reconstruction
WO2023089638A1 (en) * 2021-11-22 2023-05-25 Avantari Technologies Private Limited A device for tracking the mindfulness of a user and a method thereof
WO2023106885A1 (en) * 2021-12-09 2023-06-15 삼성전자 주식회사 Electronic device comprising plurality of temperature sensors
WO2023108168A1 (en) * 2021-12-10 2023-06-15 Lifeq B.V. Self-controlling wearable device
CN114467796B (en) * 2021-12-14 2023-05-02 深圳先进技术研究院 Automatic change action testing arrangement
US20230335236A1 (en) * 2022-04-14 2023-10-19 BioSero Inc. Data Services Modeling and Manager for Transformation and Contextualization of Data in Automated Performance of Workflows
CN116172552B (en) * 2023-03-03 2024-03-22 上海睿触科技有限公司 Noninvasive glucometer and blood glucose detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US20020027164A1 (en) * 2000-09-07 2002-03-07 Mault James R. Portable computing apparatus particularly useful in a weight management program
US20040102931A1 (en) * 2001-02-20 2004-05-27 Ellis Michael D. Modular personal network systems and methods

Family Cites Families (392)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870034A (en) * 1973-03-26 1975-03-11 Cyborg Corp Personal galvanic skin response monitoring instrument
IT1041291B (en) 1975-08-21 1980-01-10 Raggiotti G BODY TEMPERATURE CONTROL AND INDICATION DEVICE
US4052979A (en) 1975-12-04 1977-10-11 Mary Ann Scherr Jewelry and bracelet heartbeat monitor
US4151831A (en) 1976-11-15 1979-05-01 Safetime Monitors, Inc. Fertility indicator
US4148304A (en) 1976-11-29 1979-04-10 Bmd Development Trust Device for measuring ovulation
US4129125A (en) 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4192000A (en) 1977-07-14 1980-03-04 Calorie Counter Limited Partnership Electronic calorie counter
US4380802A (en) * 1978-05-18 1983-04-19 Gpd Inc. Electronic calorie counter
IT1162556B (en) * 1979-07-06 1987-04-01 Pirelli INDIVIDUAL MICROCLIMATE INDEX METER
US4312358A (en) * 1979-07-23 1982-01-26 Texas Instruments Incorporated Instrument for measuring and computing heart beat, body temperature and other physiological and exercise-related parameters
JPS56118630A (en) 1980-02-23 1981-09-17 Sharp Corp Electronic clinical thermometer
USRE32758E (en) 1980-05-12 1988-10-04 New Mexico State University Foundation, Inc. Method for remotely monitoring the long term deep body temperature in female mammals
US4407295A (en) 1980-10-16 1983-10-04 Dna Medical, Inc. Miniature physiological monitor with interchangeable sensors
AT371326B (en) * 1981-06-16 1983-06-27 Wiener Innovationsges MEASURING PROBE FOR MONITORING A CHILD DURING BIRTH
EP0077073B1 (en) 1981-10-13 1989-08-09 Radiometer A/S Method for transcutaneous measurement of a blood parameter and an electrochemical measuring electrode device for carrying out the method
US4531527A (en) 1982-04-23 1985-07-30 Survival Technology, Inc. Ambulatory monitoring system with real time analysis and telephone transmission
US4509531A (en) 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
US4608987A (en) 1982-12-03 1986-09-02 Physioventures, Inc. Apparatus for transmitting ECG data
US4557273A (en) 1982-12-27 1985-12-10 Stoller Kenneth P Method and apparatus for detecting ovulation
US4981139A (en) 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4622979A (en) 1984-03-02 1986-11-18 Cardiac Monitoring, Inc. User-worn apparatus for monitoring and recording electrocardiographic data and method of operation
US5016213A (en) 1984-08-20 1991-05-14 Dilts Robert B Method and apparatus for controlling an electrical device using electrodermal response
DE3509503C2 (en) 1985-03-16 1987-02-12 Hermann-Josef Dr. 5300 Bonn Frohn Device for measuring a body parameter
US5040541A (en) 1985-04-01 1991-08-20 Thermonetics Corporation Whole body calorimeter
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US5111818A (en) 1985-10-08 1992-05-12 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US5007427A (en) 1987-05-07 1991-04-16 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US4819860A (en) 1986-01-09 1989-04-11 Lloyd D. Lillie Wrist-mounted vital functions monitor and emergency locator
US4757453A (en) 1986-03-25 1988-07-12 Nasiff Roger E Body activity monitor using piezoelectric transducers on arms and legs
US4951197A (en) * 1986-05-19 1990-08-21 Amc Of America Weight loss management system
US4828257A (en) 1986-05-20 1989-05-09 Powercise International Corporation Electronically controlled exercise system
US4672977A (en) * 1986-06-10 1987-06-16 Cherne Industries, Inc. Lung sound cancellation method and apparatus
US4803625A (en) 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US4827943A (en) 1986-09-23 1989-05-09 Advanced Medical Technologies, Inc. Portable, multi-channel, physiological data monitoring system
GB8708038D0 (en) 1987-04-03 1987-05-07 Simpson H W Measurement of physical parameter of body tissue
JPS63272092A (en) * 1987-04-30 1988-11-09 Yoshiaki Arata Forming method for superpowered composite laser beam
US5072458A (en) 1987-05-07 1991-12-17 Capintec, Inc. Vest for use in an ambulatory physiological evaluation system including cardiac monitoring
US4883063A (en) * 1987-05-29 1989-11-28 Electric Power Research Institute, Inc. Personal monitor and process for heat and work stress
US5167228A (en) * 1987-06-26 1992-12-01 Brigham And Women's Hospital Assessment and modification of endogenous circadian phase and amplitude
GB8726933D0 (en) 1987-11-18 1987-12-23 Cadell T E Telemetry system
DE3802479A1 (en) 1988-01-28 1989-08-10 Uebe Thermometer Gmbh Method and device for determining the ovulation period of humans or animals by means of electric detection of the deviation in body temperature
US4966154A (en) 1988-02-04 1990-10-30 Jonni Cooper Multiple parameter monitoring system for hospital patients
US4917108A (en) 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US5178155A (en) 1988-06-29 1993-01-12 Mault James R Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US5038792A (en) 1988-06-29 1991-08-13 Mault James R Oxygen consumption meter
US5179958A (en) 1988-06-29 1993-01-19 Mault James R Respiratory calorimeter with bidirectional flow monitor
US6247647B1 (en) * 1988-09-19 2001-06-19 Symbol Technologies, Inc. Scan pattern generator convertible between multiple and single line patterns
US4891756A (en) 1988-09-26 1990-01-02 Williams Iii William B Nutritional microcomputer and method
EP0404932A4 (en) 1989-01-13 1993-01-27 The Scott Fetzer Company Apparatus and method for controlling and monitoring the exercise session for remotely located patients
US5511553A (en) 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5027824A (en) 1989-12-01 1991-07-02 Edmond Dougherty Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances
US5823975A (en) 1990-02-21 1998-10-20 Stark; John G. Local monitoring system for an instrumented orthopedic restraining device and method therefor
US5929782A (en) 1990-02-21 1999-07-27 Stark; John G. Communication system for an instrumented orthopedic restraining device and method therefor
US5052375A (en) 1990-02-21 1991-10-01 John G. Stark Instrumented orthopedic restraining device and method of use
IL94421A (en) * 1990-05-17 1993-04-04 Israel State Accelerometer
WO1992012490A1 (en) * 1991-01-11 1992-07-23 Health Innovations, Inc. Method and apparatus to control diet and weight using human behavior modification techniques
US5148002A (en) 1991-03-14 1992-09-15 Kuo David D Multi-functional garment system
JP3053455B2 (en) 1991-05-17 2000-06-19 三菱電機株式会社 Comfort evaluation system and comfort evaluation / control system
US5224479A (en) 1991-06-21 1993-07-06 Topy Enterprises Limited ECG diagnostic pad
US5135311A (en) * 1991-07-03 1992-08-04 University Of New Mexico Convective calorimeter apparatus and method
GB9117015D0 (en) 1991-08-07 1991-09-18 Software Solutions Ltd Operation of computer systems
US5335664A (en) 1991-09-17 1994-08-09 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
US5476103A (en) * 1991-10-10 1995-12-19 Neurocom International, Inc. Apparatus and method for assessment and biofeedback training of leg coordination and strength skills
US5353793A (en) * 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
FI95535C (en) 1991-12-09 1996-02-26 Polar Electro Oy Device for measuring heartbeat
US6400996B1 (en) * 1999-02-01 2002-06-04 Steven M. Hoffberg Adaptive pattern recognition based control system and method
US6850252B1 (en) * 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US5875108A (en) * 1991-12-23 1999-02-23 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
JP3144030B2 (en) 1992-02-24 2001-03-07 東陶機器株式会社 Health management network system
FI92139C (en) 1992-02-28 1994-10-10 Matti Myllymaeki Monitoring device for the health condition, which is attached to the wrist
US5616505A (en) * 1992-03-27 1997-04-01 Abbott Laboratories Haptens tracers, immunogens and antibodies for 3-phenyl-1-adamantaneacetic acids
US5360436A (en) * 1992-04-03 1994-11-01 Intermedics, Inc. Cardiac pacing responsive to multiple activity types
US5305244B2 (en) 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
US5263491A (en) 1992-05-12 1993-11-23 William Thornton Ambulatory metabolic monitor
US5285398A (en) 1992-05-15 1994-02-08 Mobila Technology Inc. Flexible wearable computer
US5491651A (en) 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
IT1255065B (en) 1992-05-22 1995-10-17 Rotolo Giuseppe ELECTRODE POSITIONING DEVICE FOR ELECTROCARDIOGRAPHY
EP0600081A4 (en) * 1992-06-22 1995-03-01 Health Risk Management Inc Health care management system.
US7758503B2 (en) * 1997-01-27 2010-07-20 Lynn Lawrence A Microprocessor system for the analysis of physiologic and financial datasets
DK170548B1 (en) 1992-11-02 1995-10-23 Verner Rasmussen Garment for use in recording electrocardiographic measurements using a monitoring device
US5960403A (en) 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US6168563B1 (en) 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
US5879163A (en) 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US5832448A (en) 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US6968375B1 (en) * 1997-03-28 2005-11-22 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5897493A (en) 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5951300A (en) 1997-03-10 1999-09-14 Health Hero Network Online system and method for providing composite entertainment and health information
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5913310A (en) 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
EP0602459B1 (en) 1992-12-16 1999-11-03 Siemens Medical Systems, Inc. System for monitoring patient location and data
AU6271394A (en) 1993-02-23 1994-09-14 General Hospital Corporation, The A computer system and method for measuring an analyte concentration with an affinity assay
DE69413585T2 (en) 1993-03-31 1999-04-29 Siemens Medical Systems, Inc., Iselin, N.J. Apparatus and method for providing dual output signals in a telemetry transmitter
US5888172A (en) 1993-04-26 1999-03-30 Brunswick Corporation Physical exercise video system
US5524618A (en) 1993-06-02 1996-06-11 Pottgen; Paul A. Method and apparatus for measuring heat flow
DE4329898A1 (en) * 1993-09-04 1995-04-06 Marcus Dr Besson Wireless medical diagnostic and monitoring device
FI100941B (en) 1993-09-14 1998-03-31 Internat Business Innovations Health monitoring device attached to the body
US5523742A (en) 1993-11-18 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Motion sensor
US5433223A (en) * 1993-11-18 1995-07-18 Moore-Ede; Martin C. Method for predicting alertness and bio-compatibility of work schedule of an individual
US5555490A (en) 1993-12-13 1996-09-10 Key Idea Development, L.L.C. Wearable personal computer system
US5660176A (en) 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5435315A (en) 1994-01-28 1995-07-25 Mcphee; Ron J. Physical fitness evalution system
US5704350A (en) 1994-03-25 1998-01-06 Nutritec Corporation Nutritional microcomputer and method
US5515865A (en) 1994-04-22 1996-05-14 The United States Of America As Represented By The Secretary Of The Army Sudden Infant Death Syndrome (SIDS) monitor and stimulator
AU2365695A (en) 1994-04-26 1995-11-16 Raya Systems, Inc. Modular microprocessor-based diagnostic measurement system for psychological conditions
DE4415896A1 (en) * 1994-05-05 1995-11-09 Boehringer Mannheim Gmbh Analysis system for monitoring the concentration of an analyte in the blood of a patient
US5652570A (en) * 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US5729203A (en) * 1994-06-28 1998-03-17 Colin Corporation Emergency call system
IL110419A (en) 1994-07-24 1997-04-15 Slp Scient Lab Prod Ltd Compositions for disposable bio-medical electrodes
US5500532A (en) * 1994-08-18 1996-03-19 Arizona Board Of Regents Personal electronic dosimeter
US5908027A (en) * 1994-08-22 1999-06-01 Alaris Medical Systems, Inc. Tonometry system for monitoring blood pressure
US5566679A (en) 1994-08-31 1996-10-22 Omniglow Corporation Methods for managing the Reproductive status of an animal using color heat mount detectors
DE69533819T2 (en) * 1994-09-07 2005-10-27 Omron Healthcare Co., Ltd. Measuring device for measuring the amount of work which is arranged to display the amount of work to be performed later
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5827180A (en) 1994-11-07 1998-10-27 Lifemasters Supported Selfcare Method and apparatus for a personal health network
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US6266623B1 (en) 1994-11-21 2001-07-24 Phatrat Technology, Inc. Sport monitoring apparatus for determining loft time, speed, power absorbed and other factors such as height
US5636146A (en) * 1994-11-21 1997-06-03 Phatrat Technology, Inc. Apparatus and methods for determining loft time and speed
US6539336B1 (en) 1996-12-12 2003-03-25 Phatrat Technologies, Inc. Sport monitoring system for determining airtime, speed, power absorbed and other factors such as drop distance
US5559497A (en) 1994-11-28 1996-09-24 Hong; Chia-Ping Body temperature sensing and alarming device
US5697791A (en) 1994-11-29 1997-12-16 Nashner; Lewis M. Apparatus and method for assessment and biofeedback training of body coordination skills critical and ball-strike power and accuracy during athletic activitites
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
US5778882A (en) 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5959611A (en) * 1995-03-06 1999-09-28 Carnegie Mellon University Portable computer system with ergonomic input device
US5617477A (en) 1995-03-08 1997-04-01 Interval Research Corporation Personal wearable communication system with enhanced low frequency response
US7384410B2 (en) * 1995-03-13 2008-06-10 Cardinal Health 303, Inc. System and method for managing patient care
US5645068A (en) 1995-03-20 1997-07-08 Bioscan, Inc. Methods and apparatus for ambulatory and non-ambulatory monitoring of physiological data using digital flash storage
AUPN236595A0 (en) 1995-04-11 1995-05-11 Rescare Limited Monitoring of apneic arousals
US5832296A (en) 1995-04-26 1998-11-03 Interval Research Corp. Wearable context sensitive user interface for interacting with plurality of electronic devices of interest to the user
US5730140A (en) 1995-04-28 1998-03-24 Fitch; William Tecumseh S. Sonification system using synthesized realistic body sounds modified by other medically-important variables for physiological monitoring
US5581238A (en) 1995-05-12 1996-12-03 Chang; Mei-Hui Pacifier with fever heat alarm device
EP0778001B1 (en) * 1995-05-12 2004-04-07 Seiko Epson Corporation Apparatus for diagnosing condition of living organism and control unit
US5990772A (en) * 1995-06-02 1999-11-23 Duraswitch Industries, Inc. Pushbutton switch with magnetically coupled armature
US5523730C1 (en) 1995-06-02 2002-01-15 Van Anthony J Zeeland Switch with mangnetically-coupled armature
US5666096A (en) 1995-06-02 1997-09-09 Van Zeeland; Anthony J. Switch with magnetically-coupled armature
JPH0956705A (en) * 1995-06-15 1997-03-04 Matsushita Electric Works Ltd Consumption calorimeter
US5752976A (en) 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5663703A (en) 1995-07-12 1997-09-02 Sony Corporation Silent wrist pager with tactile alarm
US6001065A (en) 1995-08-02 1999-12-14 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
JP3562469B2 (en) * 1995-09-13 2004-09-08 セイコーエプソン株式会社 Health condition management device
JPH09114955A (en) 1995-10-18 1997-05-02 Seiko Epson Corp Pitch meter
US6436036B1 (en) * 1995-11-01 2002-08-20 Weight Watchers (Uk) Limited Process for controlling body weight
US5738104A (en) 1995-11-08 1998-04-14 Salutron, Inc. EKG based heart rate monitor
US5701894A (en) * 1995-11-09 1997-12-30 Del Mar Avionics Modular physiological computer-recorder
US5803915A (en) * 1995-12-07 1998-09-08 Ohmeda Inc. System for detection of probe dislodgement
US6059692A (en) 1996-12-13 2000-05-09 Hickman; Paul L. Apparatus for remote interactive exercise and health equipment
WO1997022295A1 (en) * 1995-12-18 1997-06-26 Seiko Epson Corporation Health care device and exercise supporting device
US5778345A (en) * 1996-01-16 1998-07-07 Mccartney; Michael J. Health data processing system
US20010044588A1 (en) 1996-02-22 2001-11-22 Mault James R. Monitoring system
US5836300A (en) * 1996-03-11 1998-11-17 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6135107A (en) * 1996-03-11 2000-10-24 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6208900B1 (en) * 1996-03-28 2001-03-27 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing using header mounted pressure wave transducer
US5853005A (en) 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
US6030342A (en) * 1996-06-12 2000-02-29 Seiko Epson Corporation Device for measuring calorie expenditure and device for measuring body temperature
ATE267034T1 (en) 1996-07-02 2004-06-15 Graber Products Inc ELECTRONIC EXERCISE SYSTEM
US6265978B1 (en) 1996-07-14 2001-07-24 Atlas Researches, Ltd. Method and apparatus for monitoring states of consciousness, drowsiness, distress, and performance
US5741217A (en) 1996-07-30 1998-04-21 Gero; Jeffrey Biofeedback apparatus
US5989157A (en) * 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
US5719743A (en) 1996-08-15 1998-02-17 Xybernaut Corporation Torso worn computer which can stand alone
US5884198A (en) 1996-08-16 1999-03-16 Ericsson, Inc. Body conformal portable radio and method of constructing the same
US6364834B1 (en) 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US5855550A (en) 1996-11-13 1999-01-05 Lai; Joseph Method and system for remotely monitoring multiple medical parameters
US5771001A (en) 1996-11-18 1998-06-23 Cobb; Marlon J. Personal alarm system
US5726631A (en) 1996-11-26 1998-03-10 Lin; Wen-Juei Structure kick-activated wearable alarm for infants
US6198394B1 (en) * 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6298218B1 (en) 1996-12-18 2001-10-02 Clubcom, Inc. Combined advertising and entertainment system network
US6050950A (en) * 1996-12-18 2000-04-18 Aurora Holdings, Llc Passive/non-invasive systemic and pulmonary blood pressure measurement
US6070098A (en) * 1997-01-11 2000-05-30 Circadian Technologies, Inc. Method of and apparatus for evaluation and mitigation of microsleep events
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5868671A (en) 1997-01-28 1999-02-09 Hewlett-Packard Company Multiple ECG electrode strip
GB2322952A (en) 1997-02-05 1998-09-09 Gakken Combined baby monitor and audio-visual device
US6102856A (en) 1997-02-12 2000-08-15 Groff; Clarence P Wearable vital sign monitoring system
US5865733A (en) 1997-02-28 1999-02-02 Spacelabs Medical, Inc. Wireless optical patient monitoring apparatus
US5959529A (en) * 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6148233A (en) 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
EP0969897B1 (en) 1997-03-17 2010-08-18 Adidas AG Physiologic signs feedback system
EP0973437A4 (en) * 1997-03-31 2001-03-07 Telecom Medical Inc Patient monitoring apparatus
US5902250A (en) 1997-03-31 1999-05-11 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
US6050924A (en) * 1997-04-28 2000-04-18 Shea; Michael J. Exercise system
US7056265B1 (en) * 1997-04-28 2006-06-06 Shea Michael J Exercise system
US6248065B1 (en) 1997-04-30 2001-06-19 Health Hero Network, Inc. Monitoring system for remotely querying individuals
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
US5857939A (en) * 1997-06-05 1999-01-12 Talking Counter, Inc. Exercise device with audible electronic monitor
US6251048B1 (en) 1997-06-05 2001-06-26 Epm Develoment Systems Corporation Electronic exercise monitor
IL121079A0 (en) * 1997-06-15 1997-11-20 Spo Medical Equipment Ltd Physiological stress detector device and method
JPH114820A (en) * 1997-06-18 1999-01-12 Ee D K:Kk Health caring device
US5857967A (en) 1997-07-09 1999-01-12 Hewlett-Packard Company Universally accessible healthcare devices with on the fly generation of HTML files
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US5813766A (en) 1997-08-12 1998-09-29 Chen; Mei-Yen Finger temperature indicating ring
US6138079A (en) 1997-08-18 2000-10-24 Putnam; John M. Device for calculating fluid loss from a body during exercise
US20020013538A1 (en) * 1997-09-30 2002-01-31 David Teller Method and apparatus for health signs monitoring
US5839901A (en) * 1997-10-01 1998-11-24 Karkanen; Kip M. Integrated weight loss control method
US5931791A (en) * 1997-11-05 1999-08-03 Instromedix, Inc. Medical patient vital signs-monitoring apparatus
US6035223A (en) * 1997-11-19 2000-03-07 Nellcor Puritan Bennett Inc. Method and apparatus for determining the state of an oximetry sensor
IL122875A0 (en) 1998-01-08 1998-08-16 S L P Ltd An integrated sleep apnea screening system
US6225980B1 (en) * 1998-02-06 2001-05-01 Carnegie Mellon University Multi-functional, rotary dial input device for portable computers
US6101407A (en) 1998-02-13 2000-08-08 Eastman Kodak Company Method and system for remotely viewing and configuring output from a medical imaging device
US6366871B1 (en) 1999-03-03 2002-04-02 Card Guard Scientific Survival Ltd. Personal ambulatory cellular health monitor for mobile patient
US7222054B2 (en) 1998-03-03 2007-05-22 Card Guard Scientific Survival Ltd. Personal ambulatory wireless health monitor
US6024699A (en) * 1998-03-13 2000-02-15 Healthware Corporation Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
US6013007A (en) * 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6579231B1 (en) 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
FI109843B (en) * 1998-04-09 2002-10-15 Ist Oy Real estate automation control system controlled by human physiological signals
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
IL124900A0 (en) 1998-06-14 1999-01-26 Tapuz Med Tech Ltd Apron for performing ecg tests and additional examinations
US7854684B1 (en) 1998-06-24 2010-12-21 Samsung Electronics Co., Ltd. Wearable device
US6024575A (en) * 1998-06-29 2000-02-15 Paul C. Ulrich Arrangement for monitoring physiological signals
US6190314B1 (en) * 1998-07-15 2001-02-20 International Business Machines Corporation Computer input device with biosensors for sensing user emotions
DE19832361A1 (en) 1998-07-20 2000-02-03 Noehte Steffen Body function monitor measures bodily conditions, determines environmental stresses, pauses and computes probabilities, before pronouncing on criticality with high confidence level
US6154668A (en) 1998-08-06 2000-11-28 Medtronics Inc. Ambulatory recorder having a real time and non-real time processors
US6240323B1 (en) * 1998-08-11 2001-05-29 Conmed Corporation Perforated size adjustable biomedical electrode
US6558320B1 (en) 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6527674B1 (en) * 1998-09-18 2003-03-04 Conetex, Inc. Interactive programmable fitness interface system
US6420959B1 (en) * 1998-09-18 2002-07-16 Timex Group B.V. Multi-level user interface for a multimode device
US7801740B1 (en) * 1998-09-22 2010-09-21 Ronald Peter Lesser Software device to facilitate creation of medical records, medical letters, and medical information for billing purposes
AU1198100A (en) * 1998-09-23 2000-04-10 Keith Bridger Physiological sensing device
US6306088B1 (en) 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US5912865A (en) * 1998-10-19 1999-06-15 U.S.A. Technologies Inc. Watch case with positioning means
US6377162B1 (en) 1998-11-25 2002-04-23 Ge Medical Systems Global Technology Company, Llc Medical diagnostic field service method and apparatus
US6176241B1 (en) * 1998-12-04 2001-01-23 Saul Blau System and method for cardiorespiratory conditioning
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US7073129B1 (en) * 1998-12-18 2006-07-04 Tangis Corporation Automated selection of appropriate information based on a computer user's context
US6466232B1 (en) * 1998-12-18 2002-10-15 Tangis Corporation Method and system for controlling presentation of information to a user based on the user's condition
US6398727B1 (en) * 1998-12-23 2002-06-04 Baxter International Inc. Method and apparatus for providing patient care
US6307384B2 (en) 1999-01-07 2001-10-23 Honeywell International Inc. Micropower capacitance-based proximity sensor
JP4046883B2 (en) 1999-02-09 2008-02-13 株式会社タニタ Body fat scale and health management system
IL128815A0 (en) * 1999-03-03 2000-01-31 S L P Ltd A nocturnal muscle activity monitoring system
US6821249B2 (en) 1999-03-08 2004-11-23 Board Of Regents, The University Of Texas Temperature monitoring of congestive heart failure patients as an indicator of worsening condition
US6454707B1 (en) 1999-03-08 2002-09-24 Samuel W. Casscells, III Method and apparatus for predicting mortality in congestive heart failure patients
DE19911766A1 (en) 1999-03-16 2000-09-28 Fidelak Michael Method to measure sports medicine and sports specific parameters, e.g. speed, distance, position, pulse or ECG; involves using GPS antenna, sensors for body parameters and evaluation unit
US6302844B1 (en) 1999-03-31 2001-10-16 Walker Digital, Llc Patient care delivery system
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6336900B1 (en) 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6385473B1 (en) 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device
US6454708B1 (en) 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6450953B1 (en) 1999-04-15 2002-09-17 Nexan Limited Portable signal transfer unit
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6755783B2 (en) 1999-04-16 2004-06-29 Cardiocom Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6675041B2 (en) * 1999-05-18 2004-01-06 Physi-Cal Enterprises Lp Electronic apparatus and method for monitoring net calorie intake
US6069552A (en) * 1999-06-02 2000-05-30 Duraswitch Industries, Inc. Directionally sensitive switch
US6312612B1 (en) 1999-06-09 2001-11-06 The Procter & Gamble Company Apparatus and method for manufacturing an intracutaneous microneedle array
US6371123B1 (en) 1999-06-11 2002-04-16 Izex Technology, Inc. System for orthopedic treatment protocol and method of use thereof
JP2003503693A (en) * 1999-06-23 2003-01-28 エリアフ ルビンスタイン、 Heat alarm system
DE19929328A1 (en) 1999-06-26 2001-01-04 Daimlerchrysler Aerospace Ag Device for long-term medical monitoring of people
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US6312363B1 (en) 1999-07-08 2001-11-06 Icon Health & Fitness, Inc. Systems and methods for providing an improved exercise device with motivational programming
CA2376011C (en) 1999-07-21 2010-01-19 Daniel David Physiological measuring system comprising a garment in the form of a sleeve or glove and sensing apparatus incorporated in the garment
DE60016842T2 (en) * 1999-07-23 2005-05-25 Matsushita Electric Industrial Co., Ltd., Kadoma Home-based health monitoring system
US6221011B1 (en) * 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6468222B1 (en) * 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
US6147618A (en) 1999-09-15 2000-11-14 Ilife Systems, Inc. Apparatus and method for reducing power consumption in physiological condition monitors
US6339720B1 (en) * 1999-09-20 2002-01-15 Fernando Anzellini Early warning apparatus for acute Myocardial Infarction in the first six hours of pain
EP1217942A1 (en) 1999-09-24 2002-07-03 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6493578B1 (en) * 1999-09-29 2002-12-10 Defeo Michael Portable tension and stress detector and method
AU8007600A (en) 1999-10-08 2001-04-23 Healthetech, Inc. Monitoring caloric expenditure rate and caloric diet
US20020107433A1 (en) * 1999-10-08 2002-08-08 Mault James R. System and method of personal fitness training using interactive television
US20020062069A1 (en) 1999-10-08 2002-05-23 Mault James R. System and method of integrated calorie management using interactive television
JP2004513669A (en) * 1999-10-08 2004-05-13 ヘルセテック インコーポレイテッド Integrated calorie management system
US6527711B1 (en) 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
FI114282B (en) 1999-11-05 2004-09-30 Polar Electro Oy Method, Arrangement and Heart Rate Monitor for Heartbeat Detection
US6524239B1 (en) * 1999-11-05 2003-02-25 Wcr Company Apparatus for non-instrusively measuring health parameters of a subject and method of use thereof
US6440066B1 (en) * 1999-11-16 2002-08-27 Cardiac Intelligence Corporation Automated collection and analysis patient care system and method for ordering and prioritizing multiple health disorders to identify an index disorder
JP3356745B2 (en) * 1999-12-07 2002-12-16 ヤーマン株式会社 Calorie calculator
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US7454002B1 (en) 2000-01-03 2008-11-18 Sportbrain, Inc. Integrating personal data capturing functionality into a portable computing device and a wireless communication device
US6611783B2 (en) 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7676384B2 (en) 2000-01-18 2010-03-09 Medigenesis, Inc. System and method for the automated presentation of system data to, and interaction with, a computer maintained database
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
US20010037060A1 (en) * 2000-02-08 2001-11-01 Thompson Richard P. Web site for glucose monitoring
US6551251B2 (en) 2000-02-14 2003-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passive fetal heart monitoring system
US6895263B2 (en) * 2000-02-23 2005-05-17 Medtronic Minimed, Inc. Real time self-adjusting calibration algorithm
US6440067B1 (en) * 2000-02-28 2002-08-27 Altec, Inc. System and method for remotely monitoring functional activities
IT1321144B1 (en) * 2000-03-01 2003-12-30 Technogym Srl EXPERT SYSTEM FOR INTERACTIVE EXCHANGE OF INFORMATION BETWEEN A USER AND A DEDICATED INFORMATION SYSTEM.
DE60113073T2 (en) * 2000-03-10 2006-08-31 Smiths Detection Inc., Pasadena CONTROL FOR AN INDUSTRIAL PROCESS WITH ONE OR MULTIPLE MULTIDIMENSIONAL VARIABLES
JP3846844B2 (en) * 2000-03-14 2006-11-15 株式会社東芝 Body-mounted life support device
US20020087649A1 (en) * 2000-03-16 2002-07-04 Horvitz Eric J. Bounded-deferral policies for reducing the disruptiveness of notifications
US8024415B2 (en) * 2001-03-16 2011-09-20 Microsoft Corporation Priorities generation and management
US6305071B1 (en) * 2000-03-30 2001-10-23 Duraswitch Industries, Inc. Method for converting a flat panel switch
US6687685B1 (en) * 2000-04-07 2004-02-03 Dr. Red Duke, Inc. Automated medical decision making utilizing bayesian network knowledge domain modeling
US6610012B2 (en) 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
EP1296591B1 (en) 2000-04-17 2018-11-14 Adidas AG Systems for ambulatory monitoring of physiological signs
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6746371B1 (en) * 2000-04-28 2004-06-08 International Business Machines Corporation Managing fitness activity across diverse exercise machines utilizing a portable computer system
US6506152B1 (en) * 2000-05-09 2003-01-14 Robert P. Lackey Caloric energy balance monitor
US6514200B1 (en) 2000-05-17 2003-02-04 Brava, Llc Patient compliance monitor
US6482158B2 (en) 2000-05-19 2002-11-19 Healthetech, Inc. System and method of ultrasonic mammography
US6712615B2 (en) 2000-05-22 2004-03-30 Rolf John Martin High-precision cognitive performance test battery suitable for internet and non-internet use
US7485095B2 (en) 2000-05-30 2009-02-03 Vladimir Shusterman Measurement and analysis of trends in physiological and/or health data
US6389308B1 (en) * 2000-05-30 2002-05-14 Vladimir Shusterman System and device for multi-scale analysis and representation of electrocardiographic data
US7024369B1 (en) * 2000-05-31 2006-04-04 International Business Machines Corporation Balancing the comprehensive health of a user
JP2001344352A (en) 2000-05-31 2001-12-14 Toshiba Corp Life assisting device, life assisting method and advertisement information providing method
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US7689437B1 (en) 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
EP1702560B1 (en) * 2000-06-23 2014-11-19 BodyMedia, Inc. System for monitoring health, wellness and fitness
JP2002015068A (en) * 2000-06-29 2002-01-18 Matsushita Electric Works Ltd Measurement/diagnosis system with the use of health care equipment, using communication network, and measurement/diagnosis method with the use of health care equipment, using communication network
WO2002002006A1 (en) * 2000-07-05 2002-01-10 Seely Andrew J E Method and apparatus for multiple patient parameter variability analysis and display
EP1316010A4 (en) * 2000-08-09 2004-11-24 Clinical Care Systems Inc Method and system for a distributed analytical and diagnostic software over the intranet and internet environment
US6690959B2 (en) 2000-09-01 2004-02-10 Medtronic, Inc. Skin-mounted electrodes with nano spikes
JP2002095637A (en) * 2000-09-26 2002-04-02 Kireicom:Kk Portable terminal and electronic device
US6665559B2 (en) * 2000-10-06 2003-12-16 Ge Medical Systems Information Technologies, Inc. Method and apparatus for perioperative assessment of cardiovascular risk
US20020133378A1 (en) 2000-10-13 2002-09-19 Mault James R. System and method of integrated calorie management
US6904408B1 (en) * 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US6678548B1 (en) * 2000-10-20 2004-01-13 The Trustees Of The University Of Pennsylvania Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
JP2004515291A (en) 2000-10-26 2004-05-27 ヘルセテック インコーポレイテッド Activity and condition monitor supported by the body
US20020055857A1 (en) 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
US7330818B1 (en) 2000-11-09 2008-02-12 Lifespan Interactive: Medical Information Management. Llc. Health and life expectancy management system
US7844666B2 (en) * 2000-12-12 2010-11-30 Microsoft Corporation Controls and displays for acquiring preferences, inspecting behavior, and guiding the learning and decision policies of an adaptive communications prioritization and routing system
US7171331B2 (en) 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
US20020077534A1 (en) * 2000-12-18 2002-06-20 Human Bionics Llc Method and system for initiating activity based on sensed electrophysiological data
US20020169634A1 (en) * 2000-12-26 2002-11-14 Kenzo Nishi Healthcare system, healthcare apparatus, server and healthcare method
US6392515B1 (en) * 2000-12-27 2002-05-21 Duraswitch Industries, Inc. Magnetic switch with multi-wide actuator
US20020013717A1 (en) * 2000-12-28 2002-01-31 Masahiro Ando Exercise body monitor with functions to verify individual policy holder and wear of the same, and a business model for a discounted insurance premium for policy holder wearing the same
US6669600B2 (en) * 2000-12-29 2003-12-30 Richard D. Warner Computerized repetitive-motion exercise logger and guide system
US6532381B2 (en) * 2001-01-11 2003-03-11 Ge Medical Systems Information Technologies, Inc. Patient monitor for determining a probability that a patient has acute cardiac ischemia
US20020165443A1 (en) * 2001-01-25 2002-11-07 Yasuhiro Mori Vital signs detection system, vital signs detection method, vital signs processing apparatus, and health control method
US6964023B2 (en) * 2001-02-05 2005-11-08 International Business Machines Corporation System and method for multi-modal focus detection, referential ambiguity resolution and mood classification using multi-modal input
JP2002224065A (en) 2001-02-07 2002-08-13 Nippon Colin Co Ltd Cardiac sound detecting device and cardiac sound detecting method
US6584344B2 (en) 2001-02-22 2003-06-24 Polar Electro Oy Method and apparatus for measuring heart rate
US6834436B2 (en) * 2001-02-23 2004-12-28 Microstrain, Inc. Posture and body movement measuring system
WO2002071017A2 (en) * 2001-03-02 2002-09-12 Healthetech, Inc. A system and method of metabolic rate measurement
WO2002069803A1 (en) * 2001-03-06 2002-09-12 Microstone Co., Ltd. Body motion detector
US6611206B2 (en) * 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US20020180973A1 (en) * 2001-04-04 2002-12-05 Mackinnon Nicholas B. Apparatus and methods for measuring and controlling illumination for imaging objects, performances and the like
US7191183B1 (en) 2001-04-10 2007-03-13 Rgi Informatics, Llc Analytics and data warehousing infrastructure and services
US6808473B2 (en) 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US6635015B2 (en) * 2001-04-20 2003-10-21 The Procter & Gamble Company Body weight management system
US6751626B2 (en) * 2001-05-03 2004-06-15 International Business Machines Corporation Method, system, and program for mining data in a personal information manager database
US6533731B2 (en) 2001-05-15 2003-03-18 Lifecheck, Llc Method and apparatus for measuring heat flow
EP1395664A4 (en) * 2001-05-15 2004-11-03 Psychogenics Inc Systems and methods for monitoring behavior informatics
US20060235280A1 (en) 2001-05-29 2006-10-19 Glenn Vonk Health care management system and method
GB0113212D0 (en) * 2001-05-31 2001-07-25 Oxford Biosignals Ltd Patient condition display
US6656125B2 (en) * 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
KR200244874Y1 (en) 2001-06-01 2001-11-16 이종길 Portable diet monitoring apparatus
US6605044B2 (en) * 2001-06-28 2003-08-12 Polar Electro Oy Caloric exercise monitor
CA2452376A1 (en) * 2001-07-02 2003-01-16 Battelle Memorial Institute Intelligent microsensor module
US20030013072A1 (en) * 2001-07-03 2003-01-16 Thomas Richard Todd Processor adjustable exercise apparatus
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
US20030032871A1 (en) * 2001-07-18 2003-02-13 New England Medical Center Hospitals, Inc. Adjustable coefficients to customize predictive instruments
US6544212B2 (en) * 2001-07-31 2003-04-08 Roche Diagnostics Corporation Diabetes management system
WO2003013335A2 (en) * 2001-08-03 2003-02-20 Vega Research Lab, Llc Method and apparatus for determining metabolic factors from an electrocardiogram
US20030040002A1 (en) 2001-08-08 2003-02-27 Ledley Fred David Method for providing current assessments of genetic risk
US20030058111A1 (en) * 2001-09-27 2003-03-27 Koninklijke Philips Electronics N.V. Computer vision based elderly care monitoring system
US20030069510A1 (en) 2001-10-04 2003-04-10 Semler Herbert J. Disposable vital signs monitor
US20030082168A1 (en) * 2001-10-22 2003-05-01 Inna Yegorova Compositions and methods for facilitating weight loss
US6755795B2 (en) 2001-10-26 2004-06-29 Koninklijke Philips Electronics N.V. Selectively applied wearable medical sensors
US20030083559A1 (en) 2001-10-31 2003-05-01 Thompson David L. Non-contact monitor
US6949052B2 (en) * 2001-11-27 2005-09-27 Peter Millington Exercise equipment locator
US20050101841A9 (en) 2001-12-04 2005-05-12 Kimberly-Clark Worldwide, Inc. Healthcare networks with biosensors
US6955542B2 (en) * 2002-01-23 2005-10-18 Aquatech Fitness Corp. System for monitoring repetitive movement
US7034691B1 (en) * 2002-01-25 2006-04-25 Solvetech Corporation Adaptive communication methods and systems for facilitating the gathering, distribution and delivery of information related to medical care
US20030152607A1 (en) 2002-02-13 2003-08-14 Mault James R. Caloric management system and method with voice recognition
US20030176797A1 (en) * 2002-03-12 2003-09-18 Fernando Anzellini Thrombust; implantable delivery system sensible to self diagnosis of acute myocardial infarction for thrombolysis in the first minutes of chest pain
US20050226310A1 (en) * 2002-03-20 2005-10-13 Sanyo Electric Co., Ltd. Adhesive clinical thermometer pad and temperature measuring pad
US7024370B2 (en) * 2002-03-26 2006-04-04 P) Cis, Inc. Methods and apparatus for early detection of health-related events in a population
US6817979B2 (en) * 2002-06-28 2004-11-16 Nokia Corporation System and method for interacting with a user's virtual physiological model via a mobile terminal
US20040172290A1 (en) * 2002-07-15 2004-09-02 Samuel Leven Health monitoring device
US6992580B2 (en) * 2002-07-25 2006-01-31 Motorola, Inc. Portable communication device and corresponding method of operation
US7234064B2 (en) * 2002-08-16 2007-06-19 Hx Technologies, Inc. Methods and systems for managing patient authorizations relating to digital medical data
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7194298B2 (en) * 2002-10-02 2007-03-20 Medicale Intelligence Inc. Method and apparatus for trend detection in an electrocardiogram monitoring signal
JP4975249B2 (en) * 2002-10-09 2012-07-11 ボディーメディア インコーポレイテッド Device for measuring an individual's state parameters using physiological information and / or context parameters
US20040122702A1 (en) 2002-12-18 2004-06-24 Sabol John M. Medical data processing system and method
JP4341243B2 (en) 2002-12-27 2009-10-07 カシオ計算機株式会社 Tape printer and scale used therefor
US7290134B2 (en) 2002-12-31 2007-10-30 Broadcom Corporation Encapsulation mechanism for packet processing
US20040230549A1 (en) * 2003-02-03 2004-11-18 Unique Logic And Technology, Inc. Systems and methods for behavioral modification and behavioral task training integrated with biofeedback and cognitive skills training
US7331870B2 (en) * 2003-05-16 2008-02-19 Healing Rhythms, Llc Multiplayer biofeedback interactive gaming environment
EP1690210A2 (en) 2003-07-07 2006-08-16 Metatomix, Inc. Surveillance, monitoring and real-time events platform
US20050099294A1 (en) 2003-08-05 2005-05-12 Bogner James T. System for managing conditions
EP1670547B1 (en) * 2003-08-18 2008-11-12 Cardiac Pacemakers, Inc. Patient monitoring system
EP1677674A4 (en) * 2003-08-20 2009-03-25 Philometron Inc Hydration monitoring
US11033821B2 (en) * 2003-09-02 2021-06-15 Jeffrey D. Mullen Systems and methods for location based games and employment of the same on location enabled devices
BRPI0414345A (en) 2003-09-12 2006-11-07 Bodymedia Inc method and apparatus for measuring heart-related parameters
US20070293781A1 (en) 2003-11-04 2007-12-20 Nathaniel Sims Respiration Motion Detection and Health State Assesment System
FI117654B (en) * 2003-11-20 2006-12-29 Polar Electro Oy Electronic wrist unit
US8589174B2 (en) * 2003-12-16 2013-11-19 Adventium Enterprises Activity monitoring
US10417298B2 (en) 2004-12-02 2019-09-17 Insignio Technologies, Inc. Personalized content processing and delivery system and media
EP1734858B1 (en) * 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
US8359338B2 (en) 2004-07-30 2013-01-22 Carefusion 303, Inc. System and method for managing medical databases for patient care devices
DE202005009919U1 (en) 2005-06-24 2005-09-01 Harting Electronics Gmbh & Co. Kg Connector for use with electronic circuit board has series of contact modules that have screening contacts
US7647285B2 (en) 2005-11-04 2010-01-12 Microsoft Corporation Tools for health and wellness
US8160977B2 (en) * 2006-12-11 2012-04-17 Poulin Christian D Collaborative predictive model building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724025A (en) * 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US20020027164A1 (en) * 2000-09-07 2002-03-07 Mault James R. Portable computing apparatus particularly useful in a weight management program
US20040102931A1 (en) * 2001-02-20 2004-05-27 Ellis Michael D. Modular personal network systems and methods

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980001B2 (en) * 2004-02-27 2011-07-19 The Procter & Gamble Company Fabric conditioning dispenser and methods of use
US8390455B2 (en) 2005-02-08 2013-03-05 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8358210B2 (en) 2005-02-08 2013-01-22 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8542122B2 (en) 2005-02-08 2013-09-24 Abbott Diabetes Care Inc. Glucose measurement device and methods using RFID
US20080245609A1 (en) * 2005-09-20 2008-10-09 Saint-Gobain Glass France Method for Optimizing Acoustic Comfort in a Mobile Vehicle Passenger Compartment
US7848908B2 (en) * 2005-09-20 2010-12-07 Saint-Gobain Glass France Method for optimizing acoustic comfort in a mobile vehicle passenger compartment
US8398538B2 (en) 2009-07-17 2013-03-19 Sharp Kabushiki Kaisha Sleep management method and system for improving sleep behaviour of a human or animal in the care of a carer
US20110015467A1 (en) * 2009-07-17 2011-01-20 Dothie Pamela Ann Sleep management method and system for improving sleep behaviour of a human or animal in the care of a carer
US20110092790A1 (en) * 2009-10-16 2011-04-21 Oliver Wilder-Smith Biosensor module with leadless contacts
US8965479B2 (en) 2009-10-16 2015-02-24 Affectiva, Inc. Biosensor with electrodes and pressure compensation
US8396530B1 (en) 2009-10-16 2013-03-12 Affectiva, Inc. Method for biosensor usage with pressure compensation
US20110092791A1 (en) * 2009-10-16 2011-04-21 Oliver Wilder-Smith Accuracy biosensor through pressure compensation
US8311605B2 (en) 2009-10-16 2012-11-13 Affectiva, Inc. Biosensor with pressure compensation
US20110092780A1 (en) * 2009-10-16 2011-04-21 Tao Zhang Biosensor module with automatic power on capability
US8774893B2 (en) 2009-10-16 2014-07-08 Affectiva, Inc. Biosensor module with leadless contacts
US20130046151A1 (en) * 2011-02-14 2013-02-21 The Board Of Regents Of The University Of Texas System System and method for real-time measurement of sleep quality
US10213152B2 (en) * 2011-02-14 2019-02-26 The Board Of Regents Of The University Of Texas System System and method for real-time measurement of sleep quality
EP3739250B1 (en) * 2012-01-26 2023-03-29 MED-EL Elektromedizinische Geräte GmbH Neural monitoring systems for treating pharyngeal disorders
EP2807412A4 (en) * 2012-01-26 2016-01-13 Med El Elektromed Geraete Gmbh Neural monitoring methods and systems for treating pharyngeal disorders
US10463266B2 (en) 2012-01-26 2019-11-05 Med-El Elektromedizinische Geraete Gmbh Neural monitoring methods and systems for treating pharyngeal disorders
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US10772559B2 (en) 2012-06-14 2020-09-15 Medibotics Llc Wearable food consumption monitor
US10624583B2 (en) 2012-11-09 2020-04-21 Nonin Medical, Inc. Reactance sensing for improved sensor placement
EP2916734A4 (en) * 2012-11-09 2016-07-27 Nonin Medical Inc Reactance sensing for improved sensor placement
US9011365B2 (en) 2013-03-12 2015-04-21 Medibotics Llc Adjustable gastrointestinal bifurcation (AGB) for reduced absorption of unhealthy food
US9456916B2 (en) 2013-03-12 2016-10-04 Medibotics Llc Device for selectively reducing absorption of unhealthy food
US9067070B2 (en) 2013-03-12 2015-06-30 Medibotics Llc Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
EP2888996A1 (en) * 2013-12-25 2015-07-01 Seiko Epson Corporation Biometric information detecting apparatus
US10130277B2 (en) 2014-01-28 2018-11-20 Medibotics Llc Willpower glasses (TM)—a wearable food consumption monitor
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US20230093990A1 (en) * 2021-09-21 2023-03-30 Arul Shrivastav Singing of brain - music therapy for alzheimer patient
US12123654B2 (en) 2022-11-28 2024-10-22 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a fractal heat sink

Also Published As

Publication number Publication date
US9165117B2 (en) 2015-10-20
MXPA05003686A (en) 2005-06-17
US9033876B2 (en) 2015-05-19
EP1551281A2 (en) 2005-07-13
EP1551282A2 (en) 2005-07-13
US20080171919A1 (en) 2008-07-17
ES2562933T3 (en) 2016-03-09
DK1551282T3 (en) 2016-02-22
US8641612B2 (en) 2014-02-04
WO2004034221A9 (en) 2004-06-17
US8968196B2 (en) 2015-03-03
US8708904B2 (en) 2014-04-29
US20140221769A1 (en) 2014-08-07
US20140221770A1 (en) 2014-08-07
US20080171921A1 (en) 2008-07-17
EP1551282B1 (en) 2015-11-18
MXPA05003688A (en) 2005-09-30
US20140213857A1 (en) 2014-07-31
US20140213855A1 (en) 2014-07-31
US20140223406A1 (en) 2014-08-07
US20140223407A1 (en) 2014-08-07
US20080167536A1 (en) 2008-07-10
US20080171920A1 (en) 2008-07-17
US20080167538A1 (en) 2008-07-10
KR20050062773A (en) 2005-06-27
CA2817028A1 (en) 2004-04-22
US20150245797A1 (en) 2015-09-03
US7285090B2 (en) 2007-10-23
CA2501899A1 (en) 2004-04-22
US20080167537A1 (en) 2008-07-10
JP4813058B2 (en) 2011-11-09
AU2003291637A1 (en) 2004-05-04
BR0315229A (en) 2005-08-30
WO2004034221A2 (en) 2004-04-22
AU2003275491A1 (en) 2004-05-04
JP2006501961A (en) 2006-01-19
KR20050055072A (en) 2005-06-10
US20140206955A1 (en) 2014-07-24
US20080161654A1 (en) 2008-07-03
JP2006501965A (en) 2006-01-19
BR0315184A (en) 2005-08-30
AU2003275491A8 (en) 2004-05-04
US8852098B2 (en) 2014-10-07
US20080171922A1 (en) 2008-07-17
US8157731B2 (en) 2012-04-17
CA2501899C (en) 2010-06-01
AU2003291637A8 (en) 2004-05-04
WO2004034221A3 (en) 2005-01-13
EP1551282A4 (en) 2007-11-14
US20140213856A1 (en) 2014-07-31
US20040133081A1 (en) 2004-07-08
WO2004032715A3 (en) 2004-07-15
CA2501732C (en) 2013-07-30
WO2004032715A2 (en) 2004-04-22
US20040152957A1 (en) 2004-08-05
CA2501732A1 (en) 2004-04-22
JP4975249B2 (en) 2012-07-11
EP1551281A4 (en) 2007-11-21
US20140222174A1 (en) 2014-08-07
US20080161655A1 (en) 2008-07-03
US20140221774A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US9033876B2 (en) Method and apparatus for deriving and reporting a physiological status of an individual utilizing physiological parameters and user input
US7959567B2 (en) Device to enable quick entry of caloric content
US8870766B2 (en) Apparatus for providing derived glucose information utilizing non-invasive physiological sensors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: JB IP ACQUISITION LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALIPHCOM, LLC;BODYMEDIA, INC.;REEL/FRAME:049805/0582

Effective date: 20180205

AS Assignment

Owner name: J FITNESS LLC, NEW YORK

Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0718

Effective date: 20180205

Owner name: J FITNESS LLC, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:JB IP ACQUISITION, LLC;REEL/FRAME:049825/0907

Effective date: 20180205

Owner name: J FITNESS LLC, NEW YORK

Free format text: UCC FINANCING STATEMENT;ASSIGNOR:JAWBONE HEALTH HUB, INC.;REEL/FRAME:049825/0659

Effective date: 20180205

AS Assignment

Owner name: ALIPHCOM LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BLACKROCK ADVISORS, LLC;REEL/FRAME:050005/0095

Effective date: 20190529

AS Assignment

Owner name: J FITNESS LLC, NEW YORK

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:JAWBONE HEALTH HUB, INC.;JB IP ACQUISITION, LLC;REEL/FRAME:050067/0286

Effective date: 20190808