US20090083129A1 - Personalized content delivery using neuro-response priming data - Google Patents

Personalized content delivery using neuro-response priming data Download PDF

Info

Publication number
US20090083129A1
US20090083129A1 US12/234,372 US23437208A US2009083129A1 US 20090083129 A1 US20090083129 A1 US 20090083129A1 US 23437208 A US23437208 A US 23437208A US 2009083129 A1 US2009083129 A1 US 2009083129A1
Authority
US
United States
Prior art keywords
priming
attributes
source material
stimulus
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/234,372
Inventor
Anantha Pradeep
Robert T. Knight
Ramachandran Gurumoorthy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nielsen Co US LLC
Original Assignee
Neurofocus Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neurofocus Inc filed Critical Neurofocus Inc
Priority to US12/234,372 priority Critical patent/US20090083129A1/en
Assigned to NEUROFOCUS, INC. reassignment NEUROFOCUS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GURUMOORTHY, RAMACHANDRAN, KNIGHT, ROBERT T., PRADEEP, ANANTHA
Publication of US20090083129A1 publication Critical patent/US20090083129A1/en
Assigned to TNC (US) HOLDINGS, INC. reassignment TNC (US) HOLDINGS, INC. SECURITY AGREEMENT Assignors: NEUROFOCUS, INC.
Assigned to THE NIELSEN COMPANY (US), LLC., A DELAWARE LIMITED LIABILITY COMPANY reassignment THE NIELSEN COMPANY (US), LLC., A DELAWARE LIMITED LIABILITY COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TNC (US) HOLDINGS INC., A NEW YORK CORPORATION
Assigned to TNC (US) HOLDINGS INC., A NEW YORK CORPORATION reassignment TNC (US) HOLDINGS INC., A NEW YORK CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: NEUROFOCUS, INC.
Assigned to NEUROFOCUS, INC. reassignment NEUROFOCUS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TNC (US) HOLDINGS, INC.
Assigned to CITIBANK, N.A., AS COLLATERAL AGENT FOR THE FIRST LIEN SECURED PARTIES reassignment CITIBANK, N.A., AS COLLATERAL AGENT FOR THE FIRST LIEN SECURED PARTIES SUPPLEMENTAL IP SECURITY AGREEMENT Assignors: THE NIELSEN COMPANY ((US), LLC
Priority to US16/193,930 priority patent/US10963895B2/en
Assigned to THE NIELSEN COMPANY (US), LLC reassignment THE NIELSEN COMPANY (US), LLC RELEASE (REEL 037172 / FRAME 0415) Assignors: CITIBANK, N.A.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change

Definitions

  • the present disclosure relates to personalized content delivery using neuro-response measurements.
  • FIG. 1 illustrates one example of a system for personalized content delivery.
  • FIG. 2 illustrates examples of stimulus attributes that can be included in a repository.
  • FIG. 3 illustrates examples of data models that can be used with a stimulus and response repository.
  • FIG. 4 illustrates one example of a query that can be used with the personalized content delivery system.
  • FIG. 5 illustrates one example of a report generated using the personalized content delivery system.
  • FIG. 6 illustrates one example of a technique for performing data analysis.
  • FIG. 7 illustrates one example of technique for personalized content delivery.
  • FIG. 8 provides one example of a system that can be used to implement one or more mechanisms.
  • the techniques and mechanisms of the present invention will be described in the context of particular types of data such as central nervous system, autonomic nervous system, and effector data.
  • data such as central nervous system, autonomic nervous system, and effector data.
  • the techniques and mechanisms of the present invention apply to a variety of different types of data.
  • various mechanisms and techniques can be applied to any type of stimuli.
  • numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
  • a system uses a processor in a variety of contexts. However, it will be appreciated that a system can use multiple processors while remaining within the scope of the present invention unless otherwise noted.
  • the techniques and mechanisms of the present invention will sometimes describe a connection between two entities. It should be noted that a connection between two entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities may reside between the two entities.
  • a processor may be connected to memory, but it will be appreciated that a variety of bridges and controllers may reside between the processor and memory. Consequently, a connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
  • a system evaluates source materials such as videos, imagery, web pages, text, etc., in order to determine priming characteristics associated with the source materials.
  • the system also obtains user preferences such as user interests, purchase history, location information, etc.
  • the priming characteristics and user characteristics are blended to obtain blended attributes.
  • the blended attributes are correlated with stimulus material attributes to intelligently and dynamically select stimulus material such as marketing, entertainment, informational materials, etc., for introduction into the source material.
  • the stimulus material may be inserted in real-time or near real-time into the source material for delivery to a user.
  • Conventional systems do not use neuro-behavioral and neuro-physiological response blended manifestations in assessing the user response and do not elicit an individual customized neuro-physiological and/or neuro-behavioral response to the stimulus.
  • Conventional systems also fail to blend multiple datasets, and blended manifestations of multi-modal responses, across multiple datasets, individuals and modalities, to reveal and validate the elicited measures of resonance and priming to allow for intelligent selection of personalized content.
  • stimulus material for particular products, services, and offerings may be particularly effective when a subject is primed for the particular products, services, and offerings and personal preferences are considered and the subject has interests associated with the stimulus material.
  • an advertisement for cleaning supplies may be particularly effective for viewers who have purchased cleaning supplies in the past and have recently watched a scene showing a dirty room
  • an advertisement for a fuel efficient car may be particularly effective for viewers who both identify as environmentalists and have recently viewed a documentary about high oil prices.
  • an audio advertisement for packaged salads may be more effective for female viewers who have listened to a radio program about coronary disease, or a brand image for camping products may be more effective for individuals living in rural areas who have just viewed a mural showing mountain scenery.
  • the techniques and mechanisms of the present invention blend priming characteristics of source materials such as video, audio, web pages, printed materials, etc. with user characteristics such as interests, location, income level, product likes and dislikes, purchase history, etc. to obtain blended attributes.
  • the blended attributes are correlated with stimulus material attributes in order to intelligently select personalized content for individual users.
  • Personalized content can be intelligently and dynamically inserted into source material in real-time or near real-time based on priming levels for particular products and services as well as user preferences. Advertisers can assess the value of particular slots based on priming levels and resonance and access to preferred users.
  • the techniques and mechanisms of the present invention may use a variety of mechanisms such as survey based responses, statistical data, and/or neuro-response measurements such as central nervous system, autonomic nervous system, and effector measurements to improve personalized content delivery.
  • central nervous system measurement mechanisms include Functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG).
  • fMRI Functional Magnetic Resonance Imaging
  • EEG Electroencephalography
  • fMRI measures blood oxygenation in the brain that correlates with increased neural activity.
  • current implementations of fMRI have poor temporal resolution of few seconds.
  • EEG measures electrical activity associated with post synaptic currents occurring in the milliseconds range.
  • Subcranial EEG can measure electrical activity with the most accuracy, as the bone and dermal layers weaken transmission of a wide range of frequencies. Nonetheless, surface EEG provides a wealth of electrophysiological information if analyzed properly. Even portable EEG with dry electrodes provides a large amount of neuro-response information.
  • Autonomic nervous system measurement mechanisms include Galvanic Skin Response (GSR), Electrocardiograms (EKG), pupillary dilation, etc.
  • Effector measurement mechanisms include Electrooculography (EOG), eye tracking, facial emotion encoding, reaction time etc.
  • the techniques and mechanisms of the present invention intelligently blend multiple modes and manifestations of precognitive neural signatures with cognitive neural signatures and post cognitive neurophysiological manifestations to more accurately perform personalized content delivery.
  • autonomic nervous system measures are themselves used to validate central nervous system measures. Effector and behavior responses are blended and combined with other measures.
  • central nervous system, autonomic nervous system, and effector system measurements are aggregated into a measurement that allows personalized content delivery.
  • subjects are exposed to stimulus material and data such as central nervous system, autonomic nervous system, and effector data is collected during exposure.
  • data is collected in order to determine a resonance measure that aggregates multiple component measures that assess resonance data.
  • specific event related potential (ERP) analyses and/or event related power spectral perturbations (ERPSPs) are evaluated for different regions of the brain both before a subject is exposed to stimulus and each time after the subject is exposed to stimulus.
  • pre-stimulus and post-stimulus differential as well as target and distracter differential measurements of ERP time domain components at multiple regions of the brain are determined (DERP).
  • Event related time-frequency analysis of the differential response to assess the attention, emotion and memory retention (DERPSPs) across multiple frequency bands including but not limited to theta, alpha, beta, gamma and high gamma is performed.
  • single trial and/or averaged DERP and/or DERPSPs can be used to enhance the resonance measure and determine priming levels for various products and services.
  • a variety of stimulus materials such as entertainment and marketing materials, media streams, billboards, print advertisements, text streams, music, performances, sensory experiences, etc. can be analyzed.
  • enhanced neuro-response data is generated using a data analyzer that performs both intra-modality measurement enhancements and cross-modality measurement enhancements.
  • brain activity is measured not just to determine the regions of activity, but to determine interactions and types of interactions between various regions.
  • the techniques and mechanisms of the present invention recognize that interactions between neural regions support orchestrated and organized behavior. Attention, emotion, memory, and other abilities are not merely based on one part of the brain but instead rely on network interactions between brain regions.
  • evaluations are calibrated to each subject and synchronized across subjects.
  • templates are created for subjects to create a baseline for measuring pre and post stimulus differentials.
  • stimulus generators are intelligent and adaptively modify specific parameters such as exposure length and duration for each subject being analyzed.
  • a variety of modalities can be used including EEG, GSR, EKG, pupillary dilation, EOG, eye tracking, facial emotion encoding, reaction time, etc.
  • Individual modalities such as EEG are enhanced by intelligently recognizing neural region communication pathways.
  • Cross modality analysis is enhanced using a synthesis and analytical blending of central nervous system, autonomic nervous system, and effector signatures. Synthesis and analysis by mechanisms such as time and phase shifting, correlating, and validating intra-modal determinations allow generation of a composite output characterizing the significance of various data responses to effectively characterize and select personalized content for delivery to a user.
  • FIG. 1 illustrates one example of a system for performing personalized content delivery using central nervous system, autonomic nervous system, and/or effector measures.
  • the personalized content delivery system includes a stimulus presentation device 101 .
  • the stimulus presentation device 101 is merely a display, monitor, screen, etc., that displays stimulus material to a user.
  • the stimulus material may be a media clip, a commercial, pages of text, a brand image, a performance, a magazine advertisement, a movie, an audio presentation, and may even involve particular tastes, smells, textures and/or sounds.
  • the stimuli can involve a variety of senses and occur with or without human supervision. Continuous and discrete modes are supported.
  • the stimulus presentation device 101 also has protocol generation capability to allow intelligent customization of stimuli provided to multiple subjects in different markets.
  • stimulus presentation device 101 could include devices such as televisions, cable consoles, computers and monitors, projection systems, display devices, speakers, tactile surfaces, etc., for presenting the stimuli including but not limited to advertising and entertainment from different networks, local networks, cable channels, syndicated sources, websites, internet content aggregators, portals, service providers, etc.
  • the subjects 103 are connected to data collection devices 105 .
  • the data collection devices 105 may include a variety of neuro-response measurement mechanisms including neurological and neurophysiological measurements systems such as EEG, EOG, GSR, EKG, pupillary dilation, eye tracking, facial emotion encoding, and reaction time devices, etc.
  • neuro-response data includes central nervous system, autonomic nervous system, and effector data.
  • the data collection devices 105 include EEG 111 , EOG 113 , and GSR 115 . In some instances, only a single data collection device is used. Data collection may proceed with or without human supervision.
  • the data collection device 105 collects neuro-response data from multiple sources. This includes a combination of devices such as central nervous system sources (EEG), autonomic nervous system sources (GSR, EKG, pupillary dilation), and effector sources (EOG, eye tracking, facial emotion encoding, reaction time).
  • EEG central nervous system sources
  • GSR autonomic nervous system sources
  • EOG effector sources
  • eye tracking facial emotion encoding
  • reaction time a combination of devices
  • data collected is digitally sampled and stored for later analysis.
  • the data collected could be analyzed in real-time.
  • the digital sampling rates are adaptively chosen based on the neurophysiological and neurological data being measured.
  • the personalized content delivery system includes EEG 111 measurements made using scalp level electrodes, EOG 113 measurements made using shielded electrodes to track eye data, GSR 115 measurements performed using a differential measurement system, a facial muscular measurement through shielded electrodes placed at specific locations on the face, and a facial affect graphic and video analyzer adaptively derived for each individual.
  • the data collection devices are clock synchronized with a stimulus presentation device 101 .
  • the data collection devices 105 also include a condition evaluation subsystem that provides auto triggers, alerts and status monitoring and visualization components that continuously monitor the status of the subject, data being collected, and the data collection instruments.
  • the condition evaluation subsystem may also present visual alerts and automatically trigger remedial actions.
  • the data collection devices include mechanisms for not only monitoring subject neuro-response to stimulus materials, but also include mechanisms for identifying and monitoring the stimulus materials.
  • data collection devices 105 may be synchronized with a set-top box to monitor channel changes. In other examples, data collection devices 105 may be directionally synchronized to monitor when a subject is no longer paying attention to stimulus material.
  • the data collection devices 105 may receive and store stimulus material generally being viewed by the subject, whether the stimulus is a program, a commercial, printed material, or a scene outside a window.
  • the data collected allows analysis of neuro-response information and correlation of the information to actual stimulus material and not mere subject distractions.
  • the personalized content delivery system also includes a data cleanser device 121 .
  • the data cleanser device 121 filters the collected data to remove noise, artifacts, and other irrelevant data using fixed and adaptive filtering, weighted averaging, advanced component extraction (like PCA, ICA), vector and component separation methods, etc. This device cleanses the data by removing both exogenous noise (where the source is outside the physiology of the subject, e.g. a phone ringing while a subject is viewing a video) and endogenous artifacts (where the source could be neurophysiological, e.g. muscle movements, eye blinks, etc.).
  • exogenous noise where the source is outside the physiology of the subject, e.g. a phone ringing while a subject is viewing a video
  • endogenous artifacts where the source could be neurophysiological, e.g. muscle movements, eye blinks, etc.
  • the artifact removal subsystem includes mechanisms to selectively isolate and review the response data and identify epochs with time domain and/or frequency domain attributes that correspond to artifacts such as line frequency, eye blinks, and muscle movements.
  • the artifact removal subsystem then cleanses the artifacts by either omitting these epochs, or by replacing these epoch data with an estimate based on the other clean data (for example, an EEG nearest neighbor weighted averaging approach).
  • the data cleanser device 121 is implemented using hardware, firmware, and/or software. It should be noted that although a data cleanser device 121 is shown located after a data collection device 105 and before priming and preference integration 181 , the data cleanser device 121 like other components may have a location and functionality that varies based on system implementation. For example, some systems may not use any automated data cleanser device whatsoever while in other systems, data cleanser devices may be integrated into individual data collection devices.
  • a survey and interview system 123 collects and integrates user survey and interview responses to combine with neuro-response data to more effectively select content for delivery.
  • the survey and interview system 123 obtains information about user characteristics such as age, gender, income level, location, interests, buying preferences, hobbies, etc.
  • the survey and interview system 123 can also be used to obtain user responses about particular pieces of stimulus material.
  • the priming repository system 131 associates meta-tags with various temporal and spatial locations in stimulus material, such as a television program, movie, video, audio program, print advertisement, etc.
  • stimulus material such as a television program, movie, video, audio program, print advertisement, etc.
  • every second of a show is associated with a set of meta-tags.
  • commercial or advertisement (ad) breaks are provided with a set of meta-tags that identify commercial or advertising content that would be most suitable for a particular break.
  • Pre-break content may identify categories of products and services that are primed at a particular point in a program.
  • the content may also specify the level of priming associated with each category of product or service. For example, a movie may show old house and buildings. Meta-tags may be manually or automatically generated to indicate that commercials for home improvement products would be suitable for a particular advertisement break.
  • meta-tags may include spatial and temporal information indicating where and when particular advertisements should be placed. For example, a documentary about wildlife that shows a blank wall in several scenes may include meta-tags that indicate a banner advertisement for nature oriented vacations may be suitable. The advertisements may be separate from a program or integrated into a program.
  • the priming repository system 131 also identifies scenes eliciting significant audience resonance to particular products and services as well as the level and intensity of resonance. The information in the priming repository system 131 may be manually or automatically generated. In some examples, the priming repository system 131 has data generated by determining resonance characteristics for temporal and spatial locations in stimulus material.
  • a personalization repository system 133 provides information about particular users or groups of users. According to various embodiments, the personalization repository system 133 identifies sets of personal preferences for products and services, audio characteristics, video characteristics, length, channel, delivery mode (television, radio, mobile, internet), emotional content, imagery, attention characteristics.
  • the information may be obtained using historical purchase behavior, demographic based purchasing profiles, user survey inputs, or even neuro-response data etc. For example, response data may show that a user is particularly interested in apparel advertisements. This may correlate directly with a survey response indicating the same interest.
  • the information from a priming repository system 131 may be combined with information from a personalization repository system 133 using a priming and preference blender or integration system 181 .
  • the priming and preference blender weighs and combines components of priming and personalization characteristics to select material and/or insertion points for the material.
  • the material may be marketing, entertainment, informational, etc., personalized for a particular user.
  • neuro-response preferences are blended with conscious, indicated, and/or inferred user preferences to select neurologically effective advertising for presentation to the user.
  • neuro-response data may indicate that beverage advertisements would be suitable for a particular advertisement break.
  • User preferences may indicate that a particular viewer prefers diet sodas.
  • An advertisement for a low calorie beverage may be selected and provided to the particular user.
  • a set of weights and functions use a combination of rule based and fuzzy logic based decision making to determine the areas of maximal overlap between the priming repository system and the personalization repository system. Clustering analysis may be performed to determine clustering of priming based preferences and personalization based preferences along a common normalized dimension, such as a subset or group of individuals.
  • a set of weights and algorithms are used to map preferences in the personalization repository to identified maxima for priming.
  • the personalized content delivery system includes a data analyzer associated with the data cleanser 121 .
  • the data analyzer uses a variety of mechanisms to analyze underlying data in the system to determine resonance.
  • the data analyzer customizes and extracts the independent neurological and neuro-physiological parameters for each individual in each modality, and blends the estimates within a modality as well as across modalities to elicit an enhanced response to the presented stimulus material.
  • the data analyzer aggregates the response measures across subjects in a dataset.
  • neurological and neuro-physiological signatures are measured using time domain analyses and frequency domain analyses.
  • analyses use parameters that are common across individuals as well as parameters that are unique to each individual.
  • the analyses could also include statistical parameter extraction and fuzzy logic based attribute estimation from both the time and frequency components of the synthesized response.
  • statistical parameters used in a blended effectiveness estimate include evaluations of skew, peaks, first and second moments, distribution, as well as fuzzy estimates of attention, emotional engagement and memory retention responses.
  • the data analyzer may include an intra-modality response synthesizer and a cross-modality response synthesizer.
  • the intra-modality response synthesizer is configured to customize and extract the independent neurological and neurophysiological parameters for each individual in each modality and blend the estimates within a modality analytically to elicit an enhanced response to the presented stimuli.
  • the intra-modality response synthesizer also aggregates data from different subjects in a dataset.
  • the cross-modality response synthesizer or fusion device blends different intra-modality responses, including raw signals and signals output.
  • the combination of signals enhances the measures of effectiveness within a modality.
  • the cross-modality response fusion device can also aggregate data from different subjects in a dataset.
  • the data analyzer also includes a composite enhanced effectiveness estimator (CEEE) that combines the enhanced responses and estimates from each modality to provide a blended estimate of the effectiveness.
  • CEEE composite enhanced effectiveness estimator
  • blended estimates are provided for each exposure of a subject to stimulus materials. The blended estimates are evaluated over time to assess resonance characteristics.
  • numerical values are assigned to each blended estimate. The numerical values may correspond to the intensity of neuro-response measurements, the significance of peaks, the change between peaks, etc. Higher numerical values may correspond to higher significance in neuro-response intensity. Lower numerical values may correspond to lower significance or even insignificant neuro-response activity.
  • multiple values are assigned to each blended estimate.
  • blended estimates of neuro-response significance are graphically represented to show changes after repeated exposure.
  • a data analyzer passes data to a resonance estimator that assesses and extracts resonance patterns.
  • the resonance estimator determines entity positions in various stimulus segments and matches position information with eye tracking paths while correlating saccades with neural assessments of attention, memory retention, and emotional engagement.
  • the resonance estimator stores data in the priming repository system.
  • various repositories can be co-located with the rest of the system and the user, or could be implemented in remote locations.
  • the personalized content delivery engine 183 selects from a preset category of ads in real time and delivers the ad that is appropriate for the user through the appropriate delivery channel and modality. According to various embodiments, the engine 183 selects and assembles in a real time, a near real time, or a time delayed manner stimulus material such as marketing, entertainment, and/or informational material by associating priming profiles and user preferences to stimulus material attributes.
  • FIG. 2 illustrates examples of data models that may be user in a personalized content delivery system.
  • a stimulus attributes data model 201 includes a channel 203 , media type 205 , time span 207 , audience 209 , and demographic information 211 .
  • a stimulus purpose data model 213 may include intents 215 and objectives 217 .
  • stimulus purpose data model 213 also includes spatial and temporal information 219 about entities and emerging relationships between entities.
  • another stimulus attributes data model 221 includes creation attributes 223 , ownership attributes 225 , broadcast attributes 227 , and statistical, demographic and/or survey based identifiers 229 for automatically integrating the neuro-physiological and neuro-behavioral response with other attributes and meta-information associated with the stimulus.
  • a stimulus priming data model 231 includes fields for identifying advertisement breaks 233 and scenes 235 that can be associated with various priming levels 237 and audience resonance measurements 239 .
  • the data model 231 provides temporal and spatial information for ads, scenes, events, locations, etc. that may be associated with priming levels and audience resonance measurements.
  • priming levels for a variety of products, services, offerings, etc. are correlated with temporal and spatial information in source material such as a movie, billboard, advertisement, commercial, store shelf, etc.
  • the data model associates with each second of a show a set of meta-tags for pre-break content indicating categories of products and services that are primed. The level of priming associated with each category of product or service at various insertions points may also be provided. Audience resonance measurements and maximal audience resonance measurements for various scenes and advertisement breaks may be maintained and correlated with sets of products, services, offerings, etc.
  • the priming and resonance information may be used to select stimulus content suited for particular levels of priming and resonance.
  • FIG. 3 illustrates examples of data models that can be used for storage of information associated with tracking and measurement of resonance.
  • a dataset data model 301 includes an experiment name 303 and/or identifier, client attributes 305 , a subject pool 307 , logistics information 309 such as the location, date, and time of testing, and stimulus material 311 including stimulus material attributes.
  • a subject attribute data model 315 includes a subject name 317 and/or identifier, contact information 321 , and demographic attributes 319 that may be useful for review of neurological and neuro-physiological data.
  • pertinent demographic attributes include marriage status, employment status, occupation, household income, household size and composition, ethnicity, geographic location, sex, race.
  • Other fields that may be included in data model 315 include subject preferences 323 such as shopping preferences, entertainment preferences, and financial preferences.
  • Shopping preferences include favorite stores, shopping frequency, categories shopped, favorite brands.
  • Entertainment preferences include network/cable/satellite access capabilities, favorite shows, favorite genres, and favorite actors.
  • Financial preferences include favorite insurance companies, preferred investment practices, banking preferences, and favorite online financial instruments.
  • a variety of product and service attributes and preferences may also be included.
  • a variety of subject attributes may be included in a subject attributes data model 315 and data models may be preset or custom generated to suit particular purposes.
  • data models for neuro-feedback association 325 identify experimental protocols 327 , modalities included 329 such as EEG, EOG, GSR, surveys conducted, and experiment design parameters 333 such as segments and segment attributes.
  • Other fields may include experiment presentation scripts, segment length, segment details like stimulus material used, inter-subject variations, intra-subject variations, instructions, presentation order, survey questions used, etc.
  • Other data models may include a data collection data model 337 .
  • the data collection data model 337 includes recording attributes 339 such as station and location identifiers, the data and time of recording, and operator details.
  • equipment attributes 341 include an amplifier identifier and a sensor identifier.
  • Modalities recorded 343 may include modality specific attributes like EEG cap layout, active channels, sampling frequency, and filters used.
  • EOG specific attributes include the number and type of sensors used, location of sensors applied, etc.
  • Eye tracking specific attributes include the type of tracker used, data recording frequency, data being recorded, recording format, etc.
  • data storage attributes 345 include file storage conventions (format, naming convention, dating convention), storage location, archival attributes, expiry attributes, etc.
  • a preset query data model 349 includes a query name 351 and/or identifier, an accessed data collection 353 such as data segments involved (models, databases/cubes, tables, etc.), access security attributes 355 included who has what type of access, and refresh attributes 357 such as the expiry of the query, refresh frequency, etc.
  • Other fields such as push-pull preferences can also be included to identify an auto push reporting driver or a user driven report retrieval system.
  • FIG. 4 illustrates examples of queries that can be performed to obtain data associated with personalized content delivery.
  • queries are defined from general or customized scripting languages and constructs, visual mechanisms, a library of preset queries, diagnostic querying including drill-down diagnostics, and eliciting what if scenarios.
  • subject attributes queries 415 may be configured to obtain data from a neuro-informatics repository using a location 417 or geographic information, session information 421 such as testing times and dates, and demographic attributes 419 .
  • Demographics attributes include household income, household size and status, education level, age of kids, etc.
  • Other queries may retrieve stimulus material based on shopping preferences of subject participants, countenance, physiological assessment, completion status. For example, a user may query for data associated with product categories, products shopped, shops frequented, subject eye correction status, color blindness, subject state, signal strength of measured responses, alpha frequency band ringers, muscle movement assessments, segments completed, etc.
  • Experimental design based queries may obtain data from a neuro-informatics repository based on experiment protocols 427 , product category 429 , surveys included 431 , and stimulus provided 433 . Other fields that may used include the number of protocol repetitions used, combination of protocols used, and usage configuration of surveys.
  • Client and industry based queries may obtain data based on the types of industries included in testing, specific categories tested, client companies involved, and brands being tested.
  • Response assessment based queries 437 may include attention scores 439 , emotion scores, 441 , retention scores 443 , and effectiveness scores 445 .
  • Such queries may obtain materials that elicited particular scores.
  • Response measure profile based queries may use mean measure thresholds, variance measures, number of peaks detected, etc.
  • Group response queries may include group statistics like mean, variance, kurtosis, p-value, etc., group size, and outlier assessment measures.
  • Still other queries may involve testing attributes like test location, time period, test repetition count, test station, and test operator fields. A variety of types and combinations of types of queries can be used to efficiently extract data.
  • FIG. 5 illustrates examples of reports that can be generated.
  • client assessment summary reports 501 include effectiveness measures 503 , component assessment measures 505 , and resonance measures 507 .
  • Effectiveness assessment measures include composite assessment measure(s), industry/category/client specific placement (percentile, ranking, etc.), actionable grouping assessment such as removing material, modifying segments, or fine tuning specific elements, etc, and the evolution of the effectiveness profile over time.
  • component assessment reports include component assessment measures like attention, emotional engagement scores, percentile placement, ranking, etc.
  • Component profile measures include time based evolution of the component measures and profile statistical assessments.
  • reports include the number of times material is assessed, attributes of the multiple presentations used, evolution of the response assessment measures over the multiple presentations, and usage recommendations.
  • client cumulative reports 511 include media grouped reporting 513 of all stimulus assessed, campaign grouped reporting 515 of stimulus assessed, and time/location grouped reporting 517 of stimulus assessed.
  • industry cumulative and syndicated reports 521 include aggregate assessment responses measures 523 , top performer lists 525 , bottom performer lists 527 , outliers 529 , and trend reporting 531 .
  • tracking and reporting includes specific products, categories, companies, brands.
  • FIG. 6 illustrates one example of building a priming repository system for personalized content delivery.
  • stimulus material is provided to multiple subjects.
  • stimulus includes streaming video and audio.
  • subjects view stimulus in their own homes in group or individual settings.
  • verbal and written responses are collected for use without neuro-response measurements.
  • verbal and written responses are correlated with neuro-response measurements.
  • subject neuro-response measurements are collected using a variety of modalities, such as EEG, ERP, EOG, GSR, etc.
  • data is passed through a data cleanser to remove noise and artifacts that may make data more difficult to interpret.
  • the data cleanser removes EEG electrical activity associated with blinking and other endogenous/exogenous artifacts.
  • Data analysis is performed.
  • Data analysis may include intra-modality response synthesis and cross-modality response synthesis to enhance effectiveness measures. It should be noted that in some particular instances, one type of synthesis may be performed without performing other types of synthesis. For example, cross-modality response synthesis may be performed with or without intra-modality synthesis.
  • a stimulus attributes repository is accessed to obtain attributes and characteristics of the stimulus materials, along with purposes, intents, objectives, etc.
  • EEG response data is synthesized to provide an enhanced assessment of effectiveness.
  • EEG measures electrical activity resulting from thousands of simultaneous neural processes associated with different portions of the brain.
  • EEG data can be classified in various bands.
  • brainwave frequencies include delta, theta, alpha, beta, and gamma frequency ranges. Delta waves are classified as those less than 4 Hz and are prominent during deep sleep. Theta waves have frequencies between 3.5 to 7.5 Hz and are associated with memories, attention, emotions, and sensations. Theta waves are typically prominent during states of internal focus.
  • Alpha frequencies reside between 7.5 and 13 Hz and typically peak around 10 Hz. Alpha waves are prominent during states of relaxation. Beta waves have a frequency range between 14 and 30 Hz. Beta waves are prominent during states of motor control, long range synchronization between brain areas, analytical problem solving, judgment, and decision making. Gamma waves occur between 30 and 60 Hz and are involved in binding of different populations of neurons together into a network for the purpose of carrying out a certain cognitive or motor function, as well as in attention and memory. Because the skull and dermal layers attenuate waves in this frequency range, brain waves above 75-80 Hz are difficult to detect and are often not used for stimuli response assessment.
  • the techniques and mechanisms of the present invention recognize that analyzing high gamma band (kappa-band: Above 60 Hz) measurements, in addition to theta, alpha, beta, and low gamma band measurements, enhances neurological attention, emotional engagement and retention component estimates.
  • EEG measurements including difficult to detect high gamma or kappa band measurements are obtained, enhanced, and evaluated.
  • Subject and task specific signature sub-bands in the theta, alpha, beta, gamma and kappa bands are identified to provide enhanced response estimates.
  • high gamma waves can be used in inverse model-based enhancement of the frequency responses to the stimuli.
  • a sub-band may include the 40-45 Hz range within the gamma band.
  • multiple sub-bands within the different bands are selected while remaining frequencies are band pass filtered.
  • multiple sub-band responses may be enhanced, while the remaining frequency responses may be attenuated.
  • An information theory based band-weighting model is used for adaptive extraction of selective dataset specific, subject specific, task specific bands to enhance the effectiveness measure.
  • Adaptive extraction may be performed using fuzzy scaling.
  • Stimuli can be presented and enhanced measurements determined multiple times to determine the variation profiles across multiple presentations. Determining various profiles provides an enhanced assessment of the primary responses as well as the longevity (wear-out) of the marketing and entertainment stimuli.
  • the synchronous response of multiple individuals to stimuli presented in concert is measured to determine an enhanced across subject synchrony measure of effectiveness. According to various embodiments, the synchronous response may be determined for multiple subjects residing in separate locations or for multiple subjects residing in the same location.
  • intra-modality synthesis mechanisms provide enhanced significance data
  • additional cross-modality synthesis mechanisms can also be applied.
  • a variety of mechanisms such as EEG, Eye Tracking, GSR, EOG, and facial emotion encoding are connected to a cross-modality synthesis mechanism.
  • Other mechanisms as well as variations and enhancements on existing mechanisms may also be included.
  • data from a specific modality can be enhanced using data from one or more other modalities.
  • EEG typically makes frequency measurements in different bands like alpha, beta and gamma to provide estimates of significance.
  • significance measures can be enhanced further using information from other modalities.
  • facial emotion encoding measures can be used to enhance the valence of the EEG emotional engagement measure.
  • EOG and eye tracking saccadic measures of object entities can be used to enhance the EEG estimates of significance including but not limited to attention, emotional engagement, and memory retention.
  • a cross-modality synthesis mechanism performs time and phase shifting of data to allow data from different modalities to align.
  • an EEG response will often occur hundreds of milliseconds before a facial emotion measurement changes.
  • Correlations can be drawn and time and phase shifts made on an individual as well as a group basis.
  • saccadic eye movements may be determined as occurring before and after particular EEG responses.
  • time corrected GSR measures are used to scale and enhance the EEG estimates of significance including attention, emotional engagement and memory retention measures.
  • ERP measures are enhanced using EEG time-frequency measures (ERPSP) in response to the presentation of the marketing and entertainment stimuli.
  • ERP EEG time-frequency measures
  • Specific portions are extracted and isolated to identify ERP, DERP and ERPSP analyses to perform.
  • an EEG frequency estimation of attention, emotion and memory retention (ERPSP) is used as a co-factor in enhancing the ERP, DERP and time-domain response analysis.
  • EOG measures saccades to determine the presence of attention to specific objects of stimulus. Eye tracking measures the subject's gaze path, location and dwell on specific objects of stimulus. According to various embodiments, EOG and eye tracking is enhanced by measuring the presence of lambda waves (a neurophysiological index of saccade effectiveness) in the ongoing EEG in the occipital and extra striate regions, triggered by the slope of saccade-onset to estimate the significance of the EOG and eye tracking measures. In particular embodiments, specific EEG signatures of activity such as slow potential shifts and measures of coherence in time-frequency responses at the Frontal Eye Field (FEF) regions that preceded saccade-onset are measured to enhance the effectiveness of the saccadic activity data.
  • FEF Frontal Eye Field
  • GSR typically measures the change in general arousal in response to stimulus presented.
  • GSR is enhanced by correlating EEG/ERP responses and the GSR measurement to get an enhanced estimate of subject engagement.
  • the GSR latency baselines are used in constructing a time-corrected GSR response to the stimulus.
  • the time-corrected GSR response is co-factored with the EEG measures to enhance GSR significance measures.
  • facial emotion encoding uses templates generated by measuring facial muscle positions and movements of individuals expressing various emotions prior to the testing session. These individual specific facial emotion encoding templates are matched with the individual responses to identify subject emotional response. In particular embodiments, these facial emotion encoding measurements are enhanced by evaluating inter-hemispherical asymmetries in EEG responses in specific frequency bands and measuring frequency band interactions. The techniques of the present invention recognize that not only are particular frequency bands significant in EEG responses, but particular frequency bands used for communication between particular areas of the brain are significant. Consequently, these EEG responses enhance the EMG, graphic and video based facial emotion identification.
  • post-stimulus versus pre-stimulus differential measurements of ERP time domain components in multiple regions of the brain are measured at 607 .
  • the differential measures give a mechanism for eliciting responses attributable to the stimulus. For example the messaging response attributable to an advertisement or the brand response attributable to multiple brands is determined using pre-resonance and post-resonance estimates
  • target versus distracter stimulus differential responses are determined for different regions of the brain (DERP).
  • event related time-frequency analysis of the differential response (DERPSPs) are used to assess the attention, emotion and memory retention measures across multiple frequency bands.
  • the multiple frequency bands include theta, alpha, beta, gamma and high gamma or kappa.
  • priming levels and resonance for various products, services, and offerings are determined at different locations in the stimulus material. In some examples, priming levels and resonance are manually determined. In other examples, priming levels and resonance are automatically determined using neuro-response measurements.
  • video streams are modified with different inserted advertisements for various products and services to determine the effectiveness of the inserted advertisements based on priming levels and resonance of the source material.
  • multiple trials are performed to enhance priming and resonance measures.
  • stimulus In some examples, multiple trials are performed to enhance resonance measures.
  • the priming and resonance measures are sent to a priming repository 619 .
  • the priming repository 619 may be used to automatically select advertising suited for particular insertion points such as ad breaks.
  • FIG. 7 illustrates an example of a technique for personalized content delivery.
  • priming characteristics of source material are determined.
  • source material itself includes metatags associated with various spatial and temporal locations indicating the level of priming for various products, services, and offerings.
  • the priming characteristics may be obtained from a personalization repository system or may be obtained dynamically from a data analyzer.
  • preference characteristics are determined.
  • User preferences including user profile information and attributes may be obtained from a personalization repository system. In particular embodiments, the user preferences may identify user interests, purchase patterns, location, income level, gender, preferred products and services, etc.
  • priming and preference information is blended.
  • priming and preference attributes are weighted and blended to allow selection of neurologically effective stimulus material for individual users.
  • priming may indicate that apparel related stimulus material would be effective at a given location in source material.
  • the user has also indicated preferences for particular boutique stores and types of clothing. Stimulus material for related boutique stores may be selected based on attributes of the stimulus material for related boutique stores and a cross correlation to priming characteristics and user preferences.
  • blended attributes are used to select stimulus material such as advertising, offers, informational content, marketing materials, etc.
  • attributes derived from blending priming and preference information is correlated with stimulus material attributes.
  • the stimulus material having the strongest correlation is selected.
  • stimulus material may be a coupon, a banner advertisement, a video stream, an audio clip, a message, etc.
  • the source material may be a web page, a video stream, a sound file, a multimedia presentation, a billboard, etc.
  • existing content may be replaced with the personalized stimulus material.
  • default content is included in source material.
  • a web page may have a default banner advertisement.
  • the default banner advertisement is replaced with a personalized banner advertisement selected using a combination of priming characteristics and personal preferences.
  • the personalized banner advertisement is selected simply using priming characteristics or personal preferences if one or the other is not available.
  • no default content is replaced and stimulus material is directly injected into source material.
  • source material may be a video showing a blank wall, and a banner may be placed on the blank wall.
  • an advertisement stream is injected into a source media stream.
  • FIG. 8 provides one example of a system that can be used to implement one or more mechanisms.
  • the system shown in FIG. 8 may be used to implement a resonance measurement system.
  • a system 800 suitable for implementing particular embodiments of the present invention includes a processor 801 , a memory 803 , an interface 811 , and a bus 815 (e.g., a PCI bus).
  • the processor 801 When acting under the control of appropriate software or firmware, the processor 801 is responsible for such tasks such as pattern generation.
  • Various specially configured devices can also be used in place of a processor 801 or in addition to processor 801 .
  • the complete implementation can also be done in custom hardware.
  • the interface 811 is typically configured to send and receive data packets or data segments over a network.
  • Particular examples of interfaces the device supports include host bus adapter (HBA) interfaces, Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like.
  • HBA host bus adapter
  • the system 800 uses memory 803 to store data, algorithms and program instructions.
  • the program instructions may control the operation of an operating system and/or one or more applications, for example.
  • the memory or memories may also be configured to store received data and process received data.
  • the present invention relates to tangible, machine readable media that include program instructions, state information, etc. for performing various operations described herein.
  • machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks and DVDs; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and random access memory (RAM).
  • program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Educational Technology (AREA)
  • Biomedical Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Developmental Disabilities (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A system evaluates source materials such as videos, imagery, web pages, text, etc., in order to determine priming characteristics associated with the source materials. The system also obtains user preferences such as user interests, purchase history, location information, etc. The priming characteristics and user characteristics are blended to obtain blended attributes. The blended attributes are correlated with stimulus material attributes to intelligently and dynamically select stimulus material such as marketing, entertainment, informational materials, etc., for introduction into the source material. The stimulus material may be inserted in real-time or near real-time into the source material for delivery to a user.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to Provisional Patent Application 60/973,856, (Docket No. 2007NF17) titled Personalized Content Delivery Blending Neurological Assessed Priming And User Preferences, by Anantha Pradeep, Robert T. Knight, and Ramachandran Gurumoorthy, and filed on Sep. 20, 2007, the entirety of which is incorporated by reference for all purposes.
  • TECHNICAL FIELD
  • The present disclosure relates to personalized content delivery using neuro-response measurements.
  • DESCRIPTION OF RELATED ART
  • Conventional systems for delivering personalized content are limited or non-existent. Some conventional systems provide selected content in a rudimentary manner by using demographic information and statistical data. However, conventional systems are subject to semantic, syntactic, metaphorical, cultural, and interpretive errors.
  • Consequently, it is desirable to provide improved methods and apparatus for personalizing content delivery using neuro-response priming data and user preferences.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The disclosure may best be understood by reference to the following description taken in conjunction with the accompanying drawings, which illustrate particular example embodiments.
  • FIG. 1 illustrates one example of a system for personalized content delivery.
  • FIG. 2 illustrates examples of stimulus attributes that can be included in a repository.
  • FIG. 3 illustrates examples of data models that can be used with a stimulus and response repository.
  • FIG. 4 illustrates one example of a query that can be used with the personalized content delivery system.
  • FIG. 5 illustrates one example of a report generated using the personalized content delivery system.
  • FIG. 6 illustrates one example of a technique for performing data analysis.
  • FIG. 7 illustrates one example of technique for personalized content delivery.
  • FIG. 8 provides one example of a system that can be used to implement one or more mechanisms.
  • DESCRIPTION OF PARTICULAR EMBODIMENTS
  • Reference will now be made in detail to some specific examples of the invention including the best modes contemplated by the inventors for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying drawings. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described embodiments. On the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
  • For example, the techniques and mechanisms of the present invention will be described in the context of particular types of data such as central nervous system, autonomic nervous system, and effector data. However, it should be noted that the techniques and mechanisms of the present invention apply to a variety of different types of data. It should be noted that various mechanisms and techniques can be applied to any type of stimuli. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.
  • Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple instantiations of a mechanism unless noted otherwise. For example, a system uses a processor in a variety of contexts. However, it will be appreciated that a system can use multiple processors while remaining within the scope of the present invention unless otherwise noted. Furthermore, the techniques and mechanisms of the present invention will sometimes describe a connection between two entities. It should be noted that a connection between two entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities may reside between the two entities. For example, a processor may be connected to memory, but it will be appreciated that a variety of bridges and controllers may reside between the processor and memory. Consequently, a connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
  • Overview
  • A system evaluates source materials such as videos, imagery, web pages, text, etc., in order to determine priming characteristics associated with the source materials. The system also obtains user preferences such as user interests, purchase history, location information, etc. The priming characteristics and user characteristics are blended to obtain blended attributes. The blended attributes are correlated with stimulus material attributes to intelligently and dynamically select stimulus material such as marketing, entertainment, informational materials, etc., for introduction into the source material. The stimulus material may be inserted in real-time or near real-time into the source material for delivery to a user.
  • Example Embodiments
  • Conventional mechanisms for selecting personalizing content rely on demographic information, statistical information, and survey based response collection. One problem with conventional mechanisms for selecting advertising is that they do not measure the inherent message resonance and priming for various products, services, and offerings that are attributable to the stimulus. They are also prone to semantic, syntactic, metaphorical, cultural, and interpretive errors thereby preventing the accurate and repeatable targeting of the audience.
  • Conventional systems do not use neuro-behavioral and neuro-physiological response blended manifestations in assessing the user response and do not elicit an individual customized neuro-physiological and/or neuro-behavioral response to the stimulus. Conventional systems also fail to blend multiple datasets, and blended manifestations of multi-modal responses, across multiple datasets, individuals and modalities, to reveal and validate the elicited measures of resonance and priming to allow for intelligent selection of personalized content.
  • In these respects, the personalized content delivery system according to the present invention substantially departs from the conventional concepts and designs of the prior art. According to various embodiments, it is recognized that stimulus material for particular products, services, and offerings may be particularly effective when a subject is primed for the particular products, services, and offerings and personal preferences are considered and the subject has interests associated with the stimulus material. For example, an advertisement for cleaning supplies may be particularly effective for viewers who have purchased cleaning supplies in the past and have recently watched a scene showing a dirty room, or an advertisement for a fuel efficient car may be particularly effective for viewers who both identify as environmentalists and have recently viewed a documentary about high oil prices. In still other examples, an audio advertisement for packaged salads may be more effective for female viewers who have listened to a radio program about coronary disease, or a brand image for camping products may be more effective for individuals living in rural areas who have just viewed a mural showing mountain scenery.
  • Consequently, the techniques and mechanisms of the present invention blend priming characteristics of source materials such as video, audio, web pages, printed materials, etc. with user characteristics such as interests, location, income level, product likes and dislikes, purchase history, etc. to obtain blended attributes. The blended attributes are correlated with stimulus material attributes in order to intelligently select personalized content for individual users. Personalized content can be intelligently and dynamically inserted into source material in real-time or near real-time based on priming levels for particular products and services as well as user preferences. Advertisers can assess the value of particular slots based on priming levels and resonance and access to preferred users.
  • According to various embodiments, the techniques and mechanisms of the present invention may use a variety of mechanisms such as survey based responses, statistical data, and/or neuro-response measurements such as central nervous system, autonomic nervous system, and effector measurements to improve personalized content delivery. Some examples of central nervous system measurement mechanisms include Functional Magnetic Resonance Imaging (fMRI) and Electroencephalography (EEG). fMRI measures blood oxygenation in the brain that correlates with increased neural activity. However, current implementations of fMRI have poor temporal resolution of few seconds. EEG measures electrical activity associated with post synaptic currents occurring in the milliseconds range. Subcranial EEG can measure electrical activity with the most accuracy, as the bone and dermal layers weaken transmission of a wide range of frequencies. Nonetheless, surface EEG provides a wealth of electrophysiological information if analyzed properly. Even portable EEG with dry electrodes provides a large amount of neuro-response information.
  • Autonomic nervous system measurement mechanisms include Galvanic Skin Response (GSR), Electrocardiograms (EKG), pupillary dilation, etc. Effector measurement mechanisms include Electrooculography (EOG), eye tracking, facial emotion encoding, reaction time etc.
  • According to various embodiments, the techniques and mechanisms of the present invention intelligently blend multiple modes and manifestations of precognitive neural signatures with cognitive neural signatures and post cognitive neurophysiological manifestations to more accurately perform personalized content delivery. In some examples, autonomic nervous system measures are themselves used to validate central nervous system measures. Effector and behavior responses are blended and combined with other measures. According to various embodiments, central nervous system, autonomic nervous system, and effector system measurements are aggregated into a measurement that allows personalized content delivery.
  • In particular embodiments, subjects are exposed to stimulus material and data such as central nervous system, autonomic nervous system, and effector data is collected during exposure. According to various embodiments, data is collected in order to determine a resonance measure that aggregates multiple component measures that assess resonance data. In particular embodiments, specific event related potential (ERP) analyses and/or event related power spectral perturbations (ERPSPs) are evaluated for different regions of the brain both before a subject is exposed to stimulus and each time after the subject is exposed to stimulus.
  • According to various embodiments, pre-stimulus and post-stimulus differential as well as target and distracter differential measurements of ERP time domain components at multiple regions of the brain are determined (DERP). Event related time-frequency analysis of the differential response to assess the attention, emotion and memory retention (DERPSPs) across multiple frequency bands including but not limited to theta, alpha, beta, gamma and high gamma is performed. In particular embodiments, single trial and/or averaged DERP and/or DERPSPs can be used to enhance the resonance measure and determine priming levels for various products and services.
  • A variety of stimulus materials such as entertainment and marketing materials, media streams, billboards, print advertisements, text streams, music, performances, sensory experiences, etc. can be analyzed. According to various embodiments, enhanced neuro-response data is generated using a data analyzer that performs both intra-modality measurement enhancements and cross-modality measurement enhancements. According to various embodiments, brain activity is measured not just to determine the regions of activity, but to determine interactions and types of interactions between various regions. The techniques and mechanisms of the present invention recognize that interactions between neural regions support orchestrated and organized behavior. Attention, emotion, memory, and other abilities are not merely based on one part of the brain but instead rely on network interactions between brain regions.
  • The techniques and mechanisms of the present invention further recognize that different frequency bands used for multi-regional communication can be indicative of the effectiveness of stimuli. In particular embodiments, evaluations are calibrated to each subject and synchronized across subjects. In particular embodiments, templates are created for subjects to create a baseline for measuring pre and post stimulus differentials. According to various embodiments, stimulus generators are intelligent and adaptively modify specific parameters such as exposure length and duration for each subject being analyzed.
  • A variety of modalities can be used including EEG, GSR, EKG, pupillary dilation, EOG, eye tracking, facial emotion encoding, reaction time, etc. Individual modalities such as EEG are enhanced by intelligently recognizing neural region communication pathways. Cross modality analysis is enhanced using a synthesis and analytical blending of central nervous system, autonomic nervous system, and effector signatures. Synthesis and analysis by mechanisms such as time and phase shifting, correlating, and validating intra-modal determinations allow generation of a composite output characterizing the significance of various data responses to effectively characterize and select personalized content for delivery to a user.
  • FIG. 1 illustrates one example of a system for performing personalized content delivery using central nervous system, autonomic nervous system, and/or effector measures. According to various embodiments, the personalized content delivery system includes a stimulus presentation device 101. In particular embodiments, the stimulus presentation device 101 is merely a display, monitor, screen, etc., that displays stimulus material to a user. The stimulus material may be a media clip, a commercial, pages of text, a brand image, a performance, a magazine advertisement, a movie, an audio presentation, and may even involve particular tastes, smells, textures and/or sounds. The stimuli can involve a variety of senses and occur with or without human supervision. Continuous and discrete modes are supported. According to various embodiments, the stimulus presentation device 101 also has protocol generation capability to allow intelligent customization of stimuli provided to multiple subjects in different markets.
  • According to various embodiments, stimulus presentation device 101 could include devices such as televisions, cable consoles, computers and monitors, projection systems, display devices, speakers, tactile surfaces, etc., for presenting the stimuli including but not limited to advertising and entertainment from different networks, local networks, cable channels, syndicated sources, websites, internet content aggregators, portals, service providers, etc.
  • According to various embodiments, the subjects 103 are connected to data collection devices 105. The data collection devices 105 may include a variety of neuro-response measurement mechanisms including neurological and neurophysiological measurements systems such as EEG, EOG, GSR, EKG, pupillary dilation, eye tracking, facial emotion encoding, and reaction time devices, etc. According to various embodiments, neuro-response data includes central nervous system, autonomic nervous system, and effector data. In particular embodiments, the data collection devices 105 include EEG 111, EOG 113, and GSR 115. In some instances, only a single data collection device is used. Data collection may proceed with or without human supervision.
  • The data collection device 105 collects neuro-response data from multiple sources. This includes a combination of devices such as central nervous system sources (EEG), autonomic nervous system sources (GSR, EKG, pupillary dilation), and effector sources (EOG, eye tracking, facial emotion encoding, reaction time). In particular embodiments, data collected is digitally sampled and stored for later analysis. In particular embodiments, the data collected could be analyzed in real-time. According to particular embodiments, the digital sampling rates are adaptively chosen based on the neurophysiological and neurological data being measured.
  • In one particular embodiment, the personalized content delivery system includes EEG 111 measurements made using scalp level electrodes, EOG 113 measurements made using shielded electrodes to track eye data, GSR 115 measurements performed using a differential measurement system, a facial muscular measurement through shielded electrodes placed at specific locations on the face, and a facial affect graphic and video analyzer adaptively derived for each individual.
  • In particular embodiments, the data collection devices are clock synchronized with a stimulus presentation device 101. In particular embodiments, the data collection devices 105 also include a condition evaluation subsystem that provides auto triggers, alerts and status monitoring and visualization components that continuously monitor the status of the subject, data being collected, and the data collection instruments. The condition evaluation subsystem may also present visual alerts and automatically trigger remedial actions. According to various embodiments, the data collection devices include mechanisms for not only monitoring subject neuro-response to stimulus materials, but also include mechanisms for identifying and monitoring the stimulus materials. For example, data collection devices 105 may be synchronized with a set-top box to monitor channel changes. In other examples, data collection devices 105 may be directionally synchronized to monitor when a subject is no longer paying attention to stimulus material. In still other examples, the data collection devices 105 may receive and store stimulus material generally being viewed by the subject, whether the stimulus is a program, a commercial, printed material, or a scene outside a window. The data collected allows analysis of neuro-response information and correlation of the information to actual stimulus material and not mere subject distractions.
  • According to various embodiments, the personalized content delivery system also includes a data cleanser device 121. In particular embodiments, the data cleanser device 121 filters the collected data to remove noise, artifacts, and other irrelevant data using fixed and adaptive filtering, weighted averaging, advanced component extraction (like PCA, ICA), vector and component separation methods, etc. This device cleanses the data by removing both exogenous noise (where the source is outside the physiology of the subject, e.g. a phone ringing while a subject is viewing a video) and endogenous artifacts (where the source could be neurophysiological, e.g. muscle movements, eye blinks, etc.).
  • The artifact removal subsystem includes mechanisms to selectively isolate and review the response data and identify epochs with time domain and/or frequency domain attributes that correspond to artifacts such as line frequency, eye blinks, and muscle movements. The artifact removal subsystem then cleanses the artifacts by either omitting these epochs, or by replacing these epoch data with an estimate based on the other clean data (for example, an EEG nearest neighbor weighted averaging approach).
  • According to various embodiments, the data cleanser device 121 is implemented using hardware, firmware, and/or software. It should be noted that although a data cleanser device 121 is shown located after a data collection device 105 and before priming and preference integration 181, the data cleanser device 121 like other components may have a location and functionality that varies based on system implementation. For example, some systems may not use any automated data cleanser device whatsoever while in other systems, data cleanser devices may be integrated into individual data collection devices.
  • In particular embodiments, a survey and interview system 123 collects and integrates user survey and interview responses to combine with neuro-response data to more effectively select content for delivery. According to various embodiments, the survey and interview system 123 obtains information about user characteristics such as age, gender, income level, location, interests, buying preferences, hobbies, etc. The survey and interview system 123 can also be used to obtain user responses about particular pieces of stimulus material.
  • According to various embodiments, the priming repository system 131 associates meta-tags with various temporal and spatial locations in stimulus material, such as a television program, movie, video, audio program, print advertisement, etc. In some examples, every second of a show is associated with a set of meta-tags. In other examples, commercial or advertisement (ad) breaks are provided with a set of meta-tags that identify commercial or advertising content that would be most suitable for a particular break.
  • Pre-break content may identify categories of products and services that are primed at a particular point in a program. The content may also specify the level of priming associated with each category of product or service. For example, a movie may show old house and buildings. Meta-tags may be manually or automatically generated to indicate that commercials for home improvement products would be suitable for a particular advertisement break.
  • In some instances, meta-tags may include spatial and temporal information indicating where and when particular advertisements should be placed. For example, a documentary about wildlife that shows a blank wall in several scenes may include meta-tags that indicate a banner advertisement for nature oriented vacations may be suitable. The advertisements may be separate from a program or integrated into a program. According to various embodiments, the priming repository system 131 also identifies scenes eliciting significant audience resonance to particular products and services as well as the level and intensity of resonance. The information in the priming repository system 131 may be manually or automatically generated. In some examples, the priming repository system 131 has data generated by determining resonance characteristics for temporal and spatial locations in stimulus material.
  • A personalization repository system 133 provides information about particular users or groups of users. According to various embodiments, the personalization repository system 133 identifies sets of personal preferences for products and services, audio characteristics, video characteristics, length, channel, delivery mode (television, radio, mobile, internet), emotional content, imagery, attention characteristics. The information may be obtained using historical purchase behavior, demographic based purchasing profiles, user survey inputs, or even neuro-response data etc. For example, response data may show that a user is particularly interested in apparel advertisements. This may correlate directly with a survey response indicating the same interest.
  • The information from a priming repository system 131 may be combined with information from a personalization repository system 133 using a priming and preference blender or integration system 181. According to various embodiments, the priming and preference blender weighs and combines components of priming and personalization characteristics to select material and/or insertion points for the material. The material may be marketing, entertainment, informational, etc., personalized for a particular user.
  • In particular embodiments, neuro-response preferences are blended with conscious, indicated, and/or inferred user preferences to select neurologically effective advertising for presentation to the user. In one particular example, neuro-response data may indicate that beverage advertisements would be suitable for a particular advertisement break. User preferences may indicate that a particular viewer prefers diet sodas. An advertisement for a low calorie beverage may be selected and provided to the particular user. According to various embodiments, a set of weights and functions use a combination of rule based and fuzzy logic based decision making to determine the areas of maximal overlap between the priming repository system and the personalization repository system. Clustering analysis may be performed to determine clustering of priming based preferences and personalization based preferences along a common normalized dimension, such as a subset or group of individuals. In particular embodiments, a set of weights and algorithms are used to map preferences in the personalization repository to identified maxima for priming.
  • According to various embodiments, the personalized content delivery system includes a data analyzer associated with the data cleanser 121. The data analyzer uses a variety of mechanisms to analyze underlying data in the system to determine resonance. According to various embodiments, the data analyzer customizes and extracts the independent neurological and neuro-physiological parameters for each individual in each modality, and blends the estimates within a modality as well as across modalities to elicit an enhanced response to the presented stimulus material. In particular embodiments, the data analyzer aggregates the response measures across subjects in a dataset.
  • According to various embodiments, neurological and neuro-physiological signatures are measured using time domain analyses and frequency domain analyses. Such analyses use parameters that are common across individuals as well as parameters that are unique to each individual. The analyses could also include statistical parameter extraction and fuzzy logic based attribute estimation from both the time and frequency components of the synthesized response.
  • In some examples, statistical parameters used in a blended effectiveness estimate include evaluations of skew, peaks, first and second moments, distribution, as well as fuzzy estimates of attention, emotional engagement and memory retention responses.
  • According to various embodiments, the data analyzer may include an intra-modality response synthesizer and a cross-modality response synthesizer. In particular embodiments, the intra-modality response synthesizer is configured to customize and extract the independent neurological and neurophysiological parameters for each individual in each modality and blend the estimates within a modality analytically to elicit an enhanced response to the presented stimuli. In particular embodiments, the intra-modality response synthesizer also aggregates data from different subjects in a dataset.
  • According to various embodiments, the cross-modality response synthesizer or fusion device blends different intra-modality responses, including raw signals and signals output. The combination of signals enhances the measures of effectiveness within a modality. The cross-modality response fusion device can also aggregate data from different subjects in a dataset.
  • According to various embodiments, the data analyzer also includes a composite enhanced effectiveness estimator (CEEE) that combines the enhanced responses and estimates from each modality to provide a blended estimate of the effectiveness. In particular embodiments, blended estimates are provided for each exposure of a subject to stimulus materials. The blended estimates are evaluated over time to assess resonance characteristics. According to various embodiments, numerical values are assigned to each blended estimate. The numerical values may correspond to the intensity of neuro-response measurements, the significance of peaks, the change between peaks, etc. Higher numerical values may correspond to higher significance in neuro-response intensity. Lower numerical values may correspond to lower significance or even insignificant neuro-response activity. In other examples, multiple values are assigned to each blended estimate. In still other examples, blended estimates of neuro-response significance are graphically represented to show changes after repeated exposure.
  • According to various embodiments, a data analyzer passes data to a resonance estimator that assesses and extracts resonance patterns. In particular embodiments, the resonance estimator determines entity positions in various stimulus segments and matches position information with eye tracking paths while correlating saccades with neural assessments of attention, memory retention, and emotional engagement. In particular embodiments, the resonance estimator stores data in the priming repository system. As with a variety of the components in the system, various repositories can be co-located with the rest of the system and the user, or could be implemented in remote locations.
  • Data from various repositories is blended and passed to a personalized content delivery engine 183. According to various embodiments, the personalized content delivery engine 183 selects from a preset category of ads in real time and delivers the ad that is appropriate for the user through the appropriate delivery channel and modality. According to various embodiments, the engine 183 selects and assembles in a real time, a near real time, or a time delayed manner stimulus material such as marketing, entertainment, and/or informational material by associating priming profiles and user preferences to stimulus material attributes.
  • FIG. 2 illustrates examples of data models that may be user in a personalized content delivery system. According to various embodiments, a stimulus attributes data model 201 includes a channel 203, media type 205, time span 207, audience 209, and demographic information 211. A stimulus purpose data model 213 may include intents 215 and objectives 217. According to various embodiments, stimulus purpose data model 213 also includes spatial and temporal information 219 about entities and emerging relationships between entities.
  • According to various embodiments, another stimulus attributes data model 221 includes creation attributes 223, ownership attributes 225, broadcast attributes 227, and statistical, demographic and/or survey based identifiers 229 for automatically integrating the neuro-physiological and neuro-behavioral response with other attributes and meta-information associated with the stimulus.
  • According to various embodiments, a stimulus priming data model 231 includes fields for identifying advertisement breaks 233 and scenes 235 that can be associated with various priming levels 237 and audience resonance measurements 239. In particular embodiments, the data model 231 provides temporal and spatial information for ads, scenes, events, locations, etc. that may be associated with priming levels and audience resonance measurements. In some examples, priming levels for a variety of products, services, offerings, etc. are correlated with temporal and spatial information in source material such as a movie, billboard, advertisement, commercial, store shelf, etc. In some examples, the data model associates with each second of a show a set of meta-tags for pre-break content indicating categories of products and services that are primed. The level of priming associated with each category of product or service at various insertions points may also be provided. Audience resonance measurements and maximal audience resonance measurements for various scenes and advertisement breaks may be maintained and correlated with sets of products, services, offerings, etc.
  • The priming and resonance information may be used to select stimulus content suited for particular levels of priming and resonance.
  • FIG. 3 illustrates examples of data models that can be used for storage of information associated with tracking and measurement of resonance. According to various embodiments, a dataset data model 301 includes an experiment name 303 and/or identifier, client attributes 305, a subject pool 307, logistics information 309 such as the location, date, and time of testing, and stimulus material 311 including stimulus material attributes.
  • In particular embodiments, a subject attribute data model 315 includes a subject name 317 and/or identifier, contact information 321, and demographic attributes 319 that may be useful for review of neurological and neuro-physiological data. Some examples of pertinent demographic attributes include marriage status, employment status, occupation, household income, household size and composition, ethnicity, geographic location, sex, race. Other fields that may be included in data model 315 include subject preferences 323 such as shopping preferences, entertainment preferences, and financial preferences. Shopping preferences include favorite stores, shopping frequency, categories shopped, favorite brands. Entertainment preferences include network/cable/satellite access capabilities, favorite shows, favorite genres, and favorite actors. Financial preferences include favorite insurance companies, preferred investment practices, banking preferences, and favorite online financial instruments. A variety of product and service attributes and preferences may also be included. A variety of subject attributes may be included in a subject attributes data model 315 and data models may be preset or custom generated to suit particular purposes.
  • According to various embodiments, data models for neuro-feedback association 325 identify experimental protocols 327, modalities included 329 such as EEG, EOG, GSR, surveys conducted, and experiment design parameters 333 such as segments and segment attributes. Other fields may include experiment presentation scripts, segment length, segment details like stimulus material used, inter-subject variations, intra-subject variations, instructions, presentation order, survey questions used, etc. Other data models may include a data collection data model 337. According to various embodiments, the data collection data model 337 includes recording attributes 339 such as station and location identifiers, the data and time of recording, and operator details. In particular embodiments, equipment attributes 341 include an amplifier identifier and a sensor identifier.
  • Modalities recorded 343 may include modality specific attributes like EEG cap layout, active channels, sampling frequency, and filters used. EOG specific attributes include the number and type of sensors used, location of sensors applied, etc. Eye tracking specific attributes include the type of tracker used, data recording frequency, data being recorded, recording format, etc. According to various embodiments, data storage attributes 345 include file storage conventions (format, naming convention, dating convention), storage location, archival attributes, expiry attributes, etc.
  • A preset query data model 349 includes a query name 351 and/or identifier, an accessed data collection 353 such as data segments involved (models, databases/cubes, tables, etc.), access security attributes 355 included who has what type of access, and refresh attributes 357 such as the expiry of the query, refresh frequency, etc. Other fields such as push-pull preferences can also be included to identify an auto push reporting driver or a user driven report retrieval system.
  • FIG. 4 illustrates examples of queries that can be performed to obtain data associated with personalized content delivery. According to various embodiments, queries are defined from general or customized scripting languages and constructs, visual mechanisms, a library of preset queries, diagnostic querying including drill-down diagnostics, and eliciting what if scenarios. According to various embodiments, subject attributes queries 415 may be configured to obtain data from a neuro-informatics repository using a location 417 or geographic information, session information 421 such as testing times and dates, and demographic attributes 419. Demographics attributes include household income, household size and status, education level, age of kids, etc.
  • Other queries may retrieve stimulus material based on shopping preferences of subject participants, countenance, physiological assessment, completion status. For example, a user may query for data associated with product categories, products shopped, shops frequented, subject eye correction status, color blindness, subject state, signal strength of measured responses, alpha frequency band ringers, muscle movement assessments, segments completed, etc. Experimental design based queries may obtain data from a neuro-informatics repository based on experiment protocols 427, product category 429, surveys included 431, and stimulus provided 433. Other fields that may used include the number of protocol repetitions used, combination of protocols used, and usage configuration of surveys.
  • Client and industry based queries may obtain data based on the types of industries included in testing, specific categories tested, client companies involved, and brands being tested. Response assessment based queries 437 may include attention scores 439, emotion scores, 441, retention scores 443, and effectiveness scores 445. Such queries may obtain materials that elicited particular scores.
  • Response measure profile based queries may use mean measure thresholds, variance measures, number of peaks detected, etc. Group response queries may include group statistics like mean, variance, kurtosis, p-value, etc., group size, and outlier assessment measures. Still other queries may involve testing attributes like test location, time period, test repetition count, test station, and test operator fields. A variety of types and combinations of types of queries can be used to efficiently extract data.
  • FIG. 5 illustrates examples of reports that can be generated. According to various embodiments, client assessment summary reports 501 include effectiveness measures 503, component assessment measures 505, and resonance measures 507. Effectiveness assessment measures include composite assessment measure(s), industry/category/client specific placement (percentile, ranking, etc.), actionable grouping assessment such as removing material, modifying segments, or fine tuning specific elements, etc, and the evolution of the effectiveness profile over time. In particular embodiments, component assessment reports include component assessment measures like attention, emotional engagement scores, percentile placement, ranking, etc. Component profile measures include time based evolution of the component measures and profile statistical assessments. According to various embodiments, reports include the number of times material is assessed, attributes of the multiple presentations used, evolution of the response assessment measures over the multiple presentations, and usage recommendations.
  • According to various embodiments, client cumulative reports 511 include media grouped reporting 513 of all stimulus assessed, campaign grouped reporting 515 of stimulus assessed, and time/location grouped reporting 517 of stimulus assessed. According to various embodiments, industry cumulative and syndicated reports 521 include aggregate assessment responses measures 523, top performer lists 525, bottom performer lists 527, outliers 529, and trend reporting 531. In particular embodiments, tracking and reporting includes specific products, categories, companies, brands.
  • FIG. 6 illustrates one example of building a priming repository system for personalized content delivery. At 601, stimulus material is provided to multiple subjects. According to various embodiments, stimulus includes streaming video and audio. In particular embodiments, subjects view stimulus in their own homes in group or individual settings. In some examples, verbal and written responses are collected for use without neuro-response measurements. In other examples, verbal and written responses are correlated with neuro-response measurements. At 603, subject neuro-response measurements are collected using a variety of modalities, such as EEG, ERP, EOG, GSR, etc. At 605, data is passed through a data cleanser to remove noise and artifacts that may make data more difficult to interpret. According to various embodiments, the data cleanser removes EEG electrical activity associated with blinking and other endogenous/exogenous artifacts.
  • According to various embodiments, data analysis is performed. Data analysis may include intra-modality response synthesis and cross-modality response synthesis to enhance effectiveness measures. It should be noted that in some particular instances, one type of synthesis may be performed without performing other types of synthesis. For example, cross-modality response synthesis may be performed with or without intra-modality synthesis.
  • A variety of mechanisms can be used to perform data analysis. In particular embodiments, a stimulus attributes repository is accessed to obtain attributes and characteristics of the stimulus materials, along with purposes, intents, objectives, etc. In particular embodiments, EEG response data is synthesized to provide an enhanced assessment of effectiveness. According to various embodiments, EEG measures electrical activity resulting from thousands of simultaneous neural processes associated with different portions of the brain. EEG data can be classified in various bands. According to various embodiments, brainwave frequencies include delta, theta, alpha, beta, and gamma frequency ranges. Delta waves are classified as those less than 4 Hz and are prominent during deep sleep. Theta waves have frequencies between 3.5 to 7.5 Hz and are associated with memories, attention, emotions, and sensations. Theta waves are typically prominent during states of internal focus.
  • Alpha frequencies reside between 7.5 and 13 Hz and typically peak around 10 Hz. Alpha waves are prominent during states of relaxation. Beta waves have a frequency range between 14 and 30 Hz. Beta waves are prominent during states of motor control, long range synchronization between brain areas, analytical problem solving, judgment, and decision making. Gamma waves occur between 30 and 60 Hz and are involved in binding of different populations of neurons together into a network for the purpose of carrying out a certain cognitive or motor function, as well as in attention and memory. Because the skull and dermal layers attenuate waves in this frequency range, brain waves above 75-80 Hz are difficult to detect and are often not used for stimuli response assessment.
  • However, the techniques and mechanisms of the present invention recognize that analyzing high gamma band (kappa-band: Above 60 Hz) measurements, in addition to theta, alpha, beta, and low gamma band measurements, enhances neurological attention, emotional engagement and retention component estimates. In particular embodiments, EEG measurements including difficult to detect high gamma or kappa band measurements are obtained, enhanced, and evaluated. Subject and task specific signature sub-bands in the theta, alpha, beta, gamma and kappa bands are identified to provide enhanced response estimates. According to various embodiments, high gamma waves (kappa-band) above 80 Hz (typically detectable with sub-cranial EEG and/or magnetoencephalograophy) can be used in inverse model-based enhancement of the frequency responses to the stimuli.
  • Various embodiments of the present invention recognize that particular sub-bands within each frequency range have particular prominence during certain activities. A subset of the frequencies in a particular band is referred to herein as a sub-band. For example, a sub-band may include the 40-45 Hz range within the gamma band. In particular embodiments, multiple sub-bands within the different bands are selected while remaining frequencies are band pass filtered. In particular embodiments, multiple sub-band responses may be enhanced, while the remaining frequency responses may be attenuated.
  • An information theory based band-weighting model is used for adaptive extraction of selective dataset specific, subject specific, task specific bands to enhance the effectiveness measure. Adaptive extraction may be performed using fuzzy scaling. Stimuli can be presented and enhanced measurements determined multiple times to determine the variation profiles across multiple presentations. Determining various profiles provides an enhanced assessment of the primary responses as well as the longevity (wear-out) of the marketing and entertainment stimuli. The synchronous response of multiple individuals to stimuli presented in concert is measured to determine an enhanced across subject synchrony measure of effectiveness. According to various embodiments, the synchronous response may be determined for multiple subjects residing in separate locations or for multiple subjects residing in the same location.
  • Although a variety of synthesis mechanisms are described, it should be recognized that any number of mechanisms can be applied—in sequence or in parallel with or without interaction between the mechanisms.
  • Although intra-modality synthesis mechanisms provide enhanced significance data, additional cross-modality synthesis mechanisms can also be applied. A variety of mechanisms such as EEG, Eye Tracking, GSR, EOG, and facial emotion encoding are connected to a cross-modality synthesis mechanism. Other mechanisms as well as variations and enhancements on existing mechanisms may also be included. According to various embodiments, data from a specific modality can be enhanced using data from one or more other modalities. In particular embodiments, EEG typically makes frequency measurements in different bands like alpha, beta and gamma to provide estimates of significance. However, the techniques of the present invention recognize that significance measures can be enhanced further using information from other modalities.
  • For example, facial emotion encoding measures can be used to enhance the valence of the EEG emotional engagement measure. EOG and eye tracking saccadic measures of object entities can be used to enhance the EEG estimates of significance including but not limited to attention, emotional engagement, and memory retention. According to various embodiments, a cross-modality synthesis mechanism performs time and phase shifting of data to allow data from different modalities to align. In some examples, it is recognized that an EEG response will often occur hundreds of milliseconds before a facial emotion measurement changes. Correlations can be drawn and time and phase shifts made on an individual as well as a group basis. In other examples, saccadic eye movements may be determined as occurring before and after particular EEG responses. According to various embodiments, time corrected GSR measures are used to scale and enhance the EEG estimates of significance including attention, emotional engagement and memory retention measures.
  • Evidence of the occurrence or non-occurrence of specific time domain difference event-related potential components (like the DERP) in specific regions correlates with subject responsiveness to specific stimulus. According to various embodiments, ERP measures are enhanced using EEG time-frequency measures (ERPSP) in response to the presentation of the marketing and entertainment stimuli. Specific portions are extracted and isolated to identify ERP, DERP and ERPSP analyses to perform. In particular embodiments, an EEG frequency estimation of attention, emotion and memory retention (ERPSP) is used as a co-factor in enhancing the ERP, DERP and time-domain response analysis.
  • EOG measures saccades to determine the presence of attention to specific objects of stimulus. Eye tracking measures the subject's gaze path, location and dwell on specific objects of stimulus. According to various embodiments, EOG and eye tracking is enhanced by measuring the presence of lambda waves (a neurophysiological index of saccade effectiveness) in the ongoing EEG in the occipital and extra striate regions, triggered by the slope of saccade-onset to estimate the significance of the EOG and eye tracking measures. In particular embodiments, specific EEG signatures of activity such as slow potential shifts and measures of coherence in time-frequency responses at the Frontal Eye Field (FEF) regions that preceded saccade-onset are measured to enhance the effectiveness of the saccadic activity data.
  • GSR typically measures the change in general arousal in response to stimulus presented. According to various embodiments, GSR is enhanced by correlating EEG/ERP responses and the GSR measurement to get an enhanced estimate of subject engagement. The GSR latency baselines are used in constructing a time-corrected GSR response to the stimulus. The time-corrected GSR response is co-factored with the EEG measures to enhance GSR significance measures.
  • According to various embodiments, facial emotion encoding uses templates generated by measuring facial muscle positions and movements of individuals expressing various emotions prior to the testing session. These individual specific facial emotion encoding templates are matched with the individual responses to identify subject emotional response. In particular embodiments, these facial emotion encoding measurements are enhanced by evaluating inter-hemispherical asymmetries in EEG responses in specific frequency bands and measuring frequency band interactions. The techniques of the present invention recognize that not only are particular frequency bands significant in EEG responses, but particular frequency bands used for communication between particular areas of the brain are significant. Consequently, these EEG responses enhance the EMG, graphic and video based facial emotion identification.
  • According to various embodiments, post-stimulus versus pre-stimulus differential measurements of ERP time domain components in multiple regions of the brain (DERP) are measured at 607. The differential measures give a mechanism for eliciting responses attributable to the stimulus. For example the messaging response attributable to an advertisement or the brand response attributable to multiple brands is determined using pre-resonance and post-resonance estimates
  • At 609, target versus distracter stimulus differential responses are determined for different regions of the brain (DERP). At 611, event related time-frequency analysis of the differential response (DERPSPs) are used to assess the attention, emotion and memory retention measures across multiple frequency bands. According to various embodiments, the multiple frequency bands include theta, alpha, beta, gamma and high gamma or kappa. At 613, priming levels and resonance for various products, services, and offerings are determined at different locations in the stimulus material. In some examples, priming levels and resonance are manually determined. In other examples, priming levels and resonance are automatically determined using neuro-response measurements. According to various embodiments, video streams are modified with different inserted advertisements for various products and services to determine the effectiveness of the inserted advertisements based on priming levels and resonance of the source material.
  • At 617, multiple trials are performed to enhance priming and resonance measures. In some examples, stimulus. In some examples, multiple trials are performed to enhance resonance measures.
  • In particular embodiments, the priming and resonance measures are sent to a priming repository 619. The priming repository 619 may be used to automatically select advertising suited for particular insertion points such as ad breaks.
  • FIG. 7 illustrates an example of a technique for personalized content delivery. At 701, priming characteristics of source material are determined. According to various embodiments, source material itself includes metatags associated with various spatial and temporal locations indicating the level of priming for various products, services, and offerings. The priming characteristics may be obtained from a personalization repository system or may be obtained dynamically from a data analyzer. At 703, preference characteristics are determined. User preferences including user profile information and attributes may be obtained from a personalization repository system. In particular embodiments, the user preferences may identify user interests, purchase patterns, location, income level, gender, preferred products and services, etc. At 705, priming and preference information is blended.
  • According to various embodiments, priming and preference attributes are weighted and blended to allow selection of neurologically effective stimulus material for individual users. In particular embodiments, priming may indicate that apparel related stimulus material would be effective at a given location in source material. The user has also indicated preferences for particular boutique stores and types of clothing. Stimulus material for related boutique stores may be selected based on attributes of the stimulus material for related boutique stores and a cross correlation to priming characteristics and user preferences.
  • At 707, blended attributes are used to select stimulus material such as advertising, offers, informational content, marketing materials, etc. According to various embodiments, attributes derived from blending priming and preference information is correlated with stimulus material attributes. The stimulus material having the strongest correlation is selected. In some embodiments, stimulus material may be a coupon, a banner advertisement, a video stream, an audio clip, a message, etc. The source material may be a web page, a video stream, a sound file, a multimedia presentation, a billboard, etc.
  • At 709, existing content may be replaced with the personalized stimulus material. According to various embodiments, default content is included in source material. For example, a web page may have a default banner advertisement. In particular embodiments, the default banner advertisement is replaced with a personalized banner advertisement selected using a combination of priming characteristics and personal preferences. In some embodiments, the personalized banner advertisement is selected simply using priming characteristics or personal preferences if one or the other is not available. It should be noted that in many instances, no default content is replaced and stimulus material is directly injected into source material. For example, source material may be a video showing a blank wall, and a banner may be placed on the blank wall. In other examples, an advertisement stream is injected into a source media stream.
  • According to various embodiments, various mechanisms such as the data collection mechanisms, the intra-modality synthesis mechanisms, cross-modality synthesis mechanisms, etc. are implemented on multiple devices. However, it is also possible that the various mechanisms be implemented in hardware, firmware, and/or software in a single system. FIG. 8 provides one example of a system that can be used to implement one or more mechanisms. For example, the system shown in FIG. 8 may be used to implement a resonance measurement system.
  • According to particular example embodiments, a system 800 suitable for implementing particular embodiments of the present invention includes a processor 801, a memory 803, an interface 811, and a bus 815 (e.g., a PCI bus). When acting under the control of appropriate software or firmware, the processor 801 is responsible for such tasks such as pattern generation. Various specially configured devices can also be used in place of a processor 801 or in addition to processor 801. The complete implementation can also be done in custom hardware. The interface 811 is typically configured to send and receive data packets or data segments over a network. Particular examples of interfaces the device supports include host bus adapter (HBA) interfaces, Ethernet interfaces, frame relay interfaces, cable interfaces, DSL interfaces, token ring interfaces, and the like.
  • According to particular example embodiments, the system 800 uses memory 803 to store data, algorithms and program instructions. The program instructions may control the operation of an operating system and/or one or more applications, for example. The memory or memories may also be configured to store received data and process received data.
  • Because such information and program instructions may be employed to implement the systems/methods described herein, the present invention relates to tangible, machine readable media that include program instructions, state information, etc. for performing various operations described herein. Examples of machine-readable media include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks and DVDs; magneto-optical media such as optical disks; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (ROM) and random access memory (RAM). Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher level code that may be executed by the computer using an interpreter.
  • Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Therefore, the present embodiments are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (20)

1. A method, comprising:
obtaining priming characteristics associated with source material;
obtaining preference characteristics associated with a user;
blending priming characteristics associated with source material with preference characteristics associated with a user to obtain blended attributes;
correlating the blended attributes with stimulus material attributes to select stimulus material for introduction into the source material.
2. The method of claim 1, wherein priming characteristics are obtained from a priming repository system.
3. The method of claim 1, wherein priming characteristics correlate priming levels for a plurality of products and services to various positions in the source material.
4. The method of claim 3, wherein the various positions include advertisement breaks.
5. The method of claim 1, wherein priming characteristics are determined by exposing a subject to source material and collecting neuro-response data from the subject.
6. The method of claim 5, wherein priming characteristics are determining by measuring subject resonance to the source material, wherein the subject resonance is used to set priming levels for the plurality of products and services.
7. The method of claim 6, wherein subject resonance is measured by obtaining target and distracter event related potential (ERP) measurements to determine differential measurements of ERP time domain components at multiple regions of the brain (DERP).
8. The method of claim 6, wherein subject resonance is further measured by obtaining event related time-frequency analysis of the differential response to assess the attention, emotion and memory retention (DERPSPs) across multiple frequency bands.
9. The method of claim 8, wherein the multiple frequency bands comprise theta, alpha, beta, gamma and high gamma.
10. A system, comprising:
an interface operable to obtain priming characteristics associated with source material and preference characteristics associated with a user;
a processor operable to blend priming characteristics associated with source material with preference characteristics associated with a user to obtain blended attributes, wherein the processor is further operable to correlate the blended attributes with stimulus material attributes to select stimulus material for introduction into the source material.
11. The system of claim 10, wherein priming characteristics are obtained from a priming repository system.
12. The system of claim 10, wherein priming characteristics correlate priming levels for a plurality of products and services to various positions in the source material.
13. The system of claim 12, wherein the various positions include advertisement breaks.
14. The system of claim 10, wherein priming characteristics are determined by exposing a subject to source material and collecting neuro-response data from the subject.
15. The system of claim 14, wherein priming characteristics are determining by measuring subject resonance to the source material, wherein the subject resonance is used to set priming levels for the plurality of products and services.
16. The system of claim 15, wherein subject resonance is measured by obtaining target and distracter event related potential (ERP) measurements to determine differential measurements of ERP time domain components at multiple regions of the brain (DERP).
17. The system of claim 15, wherein subject resonance is further measured by obtaining event related time-frequency analysis of the differential response to assess the attention, emotion and memory retention (DERPSPs) across multiple frequency bands.
18. The system of claim 17, wherein the multiple frequency bands comprise theta, alpha, beta, gamma and high gamma.
19. An apparatus, comprising:
means for obtaining priming characteristics associated with source material;
means for obtaining preference characteristics associated with a user;
means for blending priming characteristics associated with source material with preference characteristics associated with a user to obtain blended attributes;
means for correlating the blended attributes with stimulus material attributes to select stimulus material for introduction into the source material.
20. The apparatus of claim 19, wherein priming characteristics are obtained from a priming repository system.
US12/234,372 2007-09-20 2008-09-19 Personalized content delivery using neuro-response priming data Abandoned US20090083129A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/234,372 US20090083129A1 (en) 2007-09-20 2008-09-19 Personalized content delivery using neuro-response priming data
US16/193,930 US10963895B2 (en) 2007-09-20 2018-11-16 Personalized content delivery using neuro-response priming data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US97385607P 2007-09-20 2007-09-20
US12/234,372 US20090083129A1 (en) 2007-09-20 2008-09-19 Personalized content delivery using neuro-response priming data

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/193,930 Continuation US10963895B2 (en) 2007-09-20 2018-11-16 Personalized content delivery using neuro-response priming data

Publications (1)

Publication Number Publication Date
US20090083129A1 true US20090083129A1 (en) 2009-03-26

Family

ID=40472711

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/234,372 Abandoned US20090083129A1 (en) 2007-09-20 2008-09-19 Personalized content delivery using neuro-response priming data
US16/193,930 Active 2029-01-19 US10963895B2 (en) 2007-09-20 2018-11-16 Personalized content delivery using neuro-response priming data

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/193,930 Active 2029-01-19 US10963895B2 (en) 2007-09-20 2018-11-16 Personalized content delivery using neuro-response priming data

Country Status (1)

Country Link
US (2) US20090083129A1 (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257834A1 (en) * 2005-05-10 2006-11-16 Lee Linda M Quantitative EEG as an identifier of learning modality
US20070055169A1 (en) * 2005-09-02 2007-03-08 Lee Michael J Device and method for sensing electrical activity in tissue
US20080214902A1 (en) * 2007-03-02 2008-09-04 Lee Hans C Apparatus and Method for Objectively Determining Human Response to Media
US20080221472A1 (en) * 2007-03-07 2008-09-11 Lee Hans C Method and system for measuring and ranking a positive or negative response to audiovisual or interactive media, products or activities using physiological signals
US20080222671A1 (en) * 2007-03-08 2008-09-11 Lee Hans C Method and system for rating media and events in media based on physiological data
US20080222670A1 (en) * 2007-03-07 2008-09-11 Lee Hans C Method and system for using coherence of biological responses as a measure of performance of a media
US20080221969A1 (en) * 2007-03-07 2008-09-11 Emsense Corporation Method And System For Measuring And Ranking A "Thought" Response To Audiovisual Or Interactive Media, Products Or Activities Using Physiological Signals
US20080221400A1 (en) * 2007-03-08 2008-09-11 Lee Hans C Method and system for measuring and ranking an "engagement" response to audiovisual or interactive media, products, or activities using physiological signals
US20090024448A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Protocol generator and presenter device for analysis of marketing and entertainment effectiveness
US20090030930A1 (en) * 2007-05-01 2009-01-29 Neurofocus Inc. Neuro-informatics repository system
US20090030303A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Audience response analysis using simultaneous electroencephalography (eeg) and functional magnetic resonance imaging (fmri)
US20090030287A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Incented response assessment at a point of transaction
US20090036756A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Neuro-response stimulus and stimulus attribute resonance estimator
US20090036755A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Entity and relationship assessment and extraction using neuro-response measurements
US20090062629A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Stimulus placement system using subject neuro-response measurements
US20090063256A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Consumer experience portrayal effectiveness assessment system
US20090062681A1 (en) * 2007-08-29 2009-03-05 Neurofocus, Inc. Content based selection and meta tagging of advertisement breaks
US20090070798A1 (en) * 2007-03-02 2009-03-12 Lee Hans C System and Method for Detecting Viewer Attention to Media Delivery Devices
US20090069652A1 (en) * 2007-09-07 2009-03-12 Lee Hans C Method and Apparatus for Sensing Blood Oxygen
US20090082643A1 (en) * 2007-09-20 2009-03-26 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using magnetoencephalography
US20090094627A1 (en) * 2007-10-02 2009-04-09 Lee Hans C Providing Remote Access to Media, and Reaction and Survey Data From Viewers of the Media
US20090133047A1 (en) * 2007-10-31 2009-05-21 Lee Hans C Systems and Methods Providing Distributed Collection and Centralized Processing of Physiological Responses from Viewers
US20090150919A1 (en) * 2007-11-30 2009-06-11 Lee Michael J Correlating Media Instance Information With Physiological Responses From Participating Subjects
US20090253996A1 (en) * 2007-03-02 2009-10-08 Lee Michael J Integrated Sensor Headset
US20090328089A1 (en) * 2007-05-16 2009-12-31 Neurofocus Inc. Audience response measurement and tracking system
US20100183279A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing video with embedded media
US20100186032A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing alternate media for video decoders
US20100186031A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing personalized media in video
US20100250325A1 (en) * 2009-03-24 2010-09-30 Neurofocus, Inc. Neurological profiles for market matching and stimulus presentation
US20100292545A1 (en) * 2009-05-14 2010-11-18 Advanced Brain Monitoring, Inc. Interactive psychophysiological profiler method and system
US20110046502A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US20110046503A1 (en) * 2009-08-24 2011-02-24 Neurofocus, Inc. Dry electrodes for electroencephalography
US20110077996A1 (en) * 2009-09-25 2011-03-31 Hyungil Ahn Multimodal Affective-Cognitive Product Evaluation
US20110106621A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Intracluster content management using neuro-response priming data
US20110119129A1 (en) * 2009-11-19 2011-05-19 Neurofocus, Inc. Advertisement exchange using neuro-response data
US20110119124A1 (en) * 2009-11-19 2011-05-19 Neurofocus, Inc. Multimedia advertisement exchange
US20110161011A1 (en) * 2008-03-05 2011-06-30 New York University Computer-accessible medium, system and method for assessing effect of a stimulus using intersubject correlation
US20110225049A1 (en) * 2010-03-12 2011-09-15 Yahoo! Inc. Emoticlips
US20110223571A1 (en) * 2010-03-12 2011-09-15 Yahoo! Inc. Emotional web
US20110225021A1 (en) * 2010-03-12 2011-09-15 Yahoo! Inc. Emotional mapping
US20110237971A1 (en) * 2010-03-25 2011-09-29 Neurofocus, Inc. Discrete choice modeling using neuro-response data
US20120010474A1 (en) * 2007-10-23 2012-01-12 Mindmetic Ltd. Method, system and computer program for automated interpretation of measurements in response to stimuli
US20120290409A1 (en) * 2011-05-11 2012-11-15 Neurofocus, Inc. Marketing material enhanced wait states
US20120303466A1 (en) * 2011-05-27 2012-11-29 WowYow, Inc. Shape-Based Advertising for Electronic Visual Media
US8347326B2 (en) 2007-12-18 2013-01-01 The Nielsen Company (US) Identifying key media events and modeling causal relationships between key events and reported feelings
US8392254B2 (en) 2007-08-28 2013-03-05 The Nielsen Company (Us), Llc Consumer experience assessment system
US8392251B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Location aware presentation of stimulus material
US8392250B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Neuro-response evaluated stimulus in virtual reality environments
US8392253B2 (en) 2007-05-16 2013-03-05 The Nielsen Company (Us), Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
US8396744B2 (en) 2010-08-25 2013-03-12 The Nielsen Company (Us), Llc Effective virtual reality environments for presentation of marketing materials
CN103190902A (en) * 2012-01-06 2013-07-10 无极技术公司 Methods and systems for determining, monitoring, and analyzing personalized response variables using brain wave frequency data and interactive multimedia display
US8655437B2 (en) 2009-08-21 2014-02-18 The Nielsen Company (Us), Llc Analysis of the mirror neuron system for evaluation of stimulus
US8655428B2 (en) 2010-05-12 2014-02-18 The Nielsen Company (Us), Llc Neuro-response data synchronization
US8989835B2 (en) 2012-08-17 2015-03-24 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US9223297B2 (en) 2013-02-28 2015-12-29 The Nielsen Company (Us), Llc Systems and methods for identifying a user of an electronic device
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9292858B2 (en) 2012-02-27 2016-03-22 The Nielsen Company (Us), Llc Data collection system for aggregating biologically based measures in asynchronous geographically distributed public environments
US9320450B2 (en) 2013-03-14 2016-04-26 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US9451303B2 (en) 2012-02-27 2016-09-20 The Nielsen Company (Us), Llc Method and system for gathering and computing an audience's neurologically-based reactions in a distributed framework involving remote storage and computing
US9454646B2 (en) 2010-04-19 2016-09-27 The Nielsen Company (Us), Llc Short imagery task (SIT) research method
US9485534B2 (en) 2012-04-16 2016-11-01 The Nielsen Company (Us), Llc Methods and apparatus to detect user attentiveness to handheld computing devices
US9519909B2 (en) 2012-03-01 2016-12-13 The Nielsen Company (Us), Llc Methods and apparatus to identify users of handheld computing devices
WO2017009696A1 (en) 2015-07-15 2017-01-19 Slovenská Poľnohospodárska Univerzita V Nitre Method of gathering and/or processing of neuromarketing data and system for realization thereof
US9560984B2 (en) 2009-10-29 2017-02-07 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9622702B2 (en) 2014-04-03 2017-04-18 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US9672535B2 (en) 2008-12-14 2017-06-06 Brian William Higgins System and method for communicating information
US9886981B2 (en) 2007-05-01 2018-02-06 The Nielsen Company (Us), Llc Neuro-feedback based stimulus compression device
US9936250B2 (en) 2015-05-19 2018-04-03 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
US20180092558A1 (en) * 2012-05-25 2018-04-05 Emotiv, Inc. System and method for providing and aggregating biosignals and action data
US10108264B2 (en) * 2015-03-02 2018-10-23 Emotiv, Inc. System and method for embedded cognitive state metric system
US10108601B2 (en) * 2013-09-19 2018-10-23 Infosys Limited Method and system for presenting personalized content
US10169713B2 (en) 2017-03-08 2019-01-01 International Business Machines Corporation Real-time analysis of predictive audience feedback during content creation
US10806400B2 (en) 2013-07-30 2020-10-20 Emotiv Inc. Wearable system for detecting and measuring biosignals
US10939182B2 (en) 2018-01-31 2021-03-02 WowYow, Inc. Methods and apparatus for media search, characterization, and augmented reality provision
US10963895B2 (en) 2007-09-20 2021-03-30 Nielsen Consumer Llc Personalized content delivery using neuro-response priming data
US11006876B2 (en) 2018-12-21 2021-05-18 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
US11006878B2 (en) 2019-04-04 2021-05-18 Hi Llc Modulation of mental state of a user using a non-invasive brain interface system and method
US11132625B1 (en) 2020-03-04 2021-09-28 Hi Llc Systems and methods for training a neurome that emulates the brain of a user
US20210334831A1 (en) * 2020-04-23 2021-10-28 ESD Technologies, Inc. System and method of identifying audience demographics and delivering relative content to audience
US11172869B2 (en) 2019-04-26 2021-11-16 Hi Llc Non-invasive system and method for product formulation assessment based on product-elicited brain state measurements
CN114663700A (en) * 2022-03-10 2022-06-24 支付宝(杭州)信息技术有限公司 Virtual resource pushing method, device and equipment
US11481788B2 (en) 2009-10-29 2022-10-25 Nielsen Consumer Llc Generating ratings predictions using neuro-response data
US11553870B2 (en) 2011-08-02 2023-01-17 Emotiv Inc. Methods for modeling neurological development and diagnosing a neurological impairment of a patient
US11553871B2 (en) 2019-06-04 2023-01-17 Lab NINE, Inc. System and apparatus for non-invasive measurement of transcranial electrical signals, and method of calibrating and/or using same for various applications
US11684304B2 (en) 2019-06-11 2023-06-27 Hi Llc Non-invasive systems and methods for the detection and modulation of a user's mental state through awareness of priming effects

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12114989B2 (en) 2018-12-04 2024-10-15 Brainvivo Ltd. Apparatus and method for utilizing a brain feature activity map database to characterize content
US20240016438A1 (en) * 2022-07-13 2024-01-18 Brainvivo Ltd. Segmenting audiences using brain type information

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901215A (en) * 1971-08-20 1975-08-26 Erwin Roy John Method of testing the senses and cognition of subjects
US4894777A (en) * 1986-07-28 1990-01-16 Canon Kabushiki Kaisha Operator mental condition detector
US5243517A (en) * 1988-08-03 1993-09-07 Westinghouse Electric Corp. Method and apparatus for physiological evaluation of short films and entertainment materials
US5406956A (en) * 1993-02-11 1995-04-18 Francis Luca Conte Method and apparatus for truth detection
US6099319A (en) * 1998-02-24 2000-08-08 Zaltman; Gerald Neuroimaging as a marketing tool
US6120440A (en) * 1990-09-11 2000-09-19 Goknar; M. Kemal Diagnostic method
US6173260B1 (en) * 1997-10-29 2001-01-09 Interval Research Corporation System and method for automatic classification of speech based upon affective content
US6228038B1 (en) * 1997-04-14 2001-05-08 Eyelight Research N.V. Measuring and processing data in reaction to stimuli
US6236885B1 (en) * 1999-06-30 2001-05-22 Capita Research Group Inc. System for correlating in a display stimuli and a test subject's response to the stimuli
US6254536B1 (en) * 1995-08-02 2001-07-03 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
US6280198B1 (en) * 1999-01-29 2001-08-28 Scientific Learning Corporation Remote computer implemented methods for cognitive testing
US6286005B1 (en) * 1998-03-11 2001-09-04 Cannon Holdings, L.L.C. Method and apparatus for analyzing data and advertising optimization
US6289234B1 (en) * 1998-12-02 2001-09-11 Siemens Aktiengesellschaft Method for time-resolved and location-resolved presentation of functional brain activities with magnetic resonance and apparatus for the implementation of the method
US6292688B1 (en) * 1996-02-28 2001-09-18 Advanced Neurotechnologies, Inc. Method and apparatus for analyzing neurological response to emotion-inducing stimuli
US6334778B1 (en) * 1994-04-26 2002-01-01 Health Hero Network, Inc. Remote psychological diagnosis and monitoring system
US6398643B1 (en) * 1999-09-30 2002-06-04 Allan G. S. Knowles Promotional gaming device
US20020072952A1 (en) * 2000-12-07 2002-06-13 International Business Machines Corporation Visual and audible consumer reaction collection
US20020077534A1 (en) * 2000-12-18 2002-06-20 Human Bionics Llc Method and system for initiating activity based on sensed electrophysiological data
US6422999B1 (en) * 1999-05-13 2002-07-23 Daniel A. Hill Method of measuring consumer reaction
US6453194B1 (en) * 2000-03-29 2002-09-17 Daniel A. Hill Method of measuring consumer reaction while participating in a consumer activity
US20030013981A1 (en) * 2000-06-26 2003-01-16 Alan Gevins Neurocognitive function EEG measurement method and system
US6520905B1 (en) * 1998-02-26 2003-02-18 Eastman Kodak Company Management of physiological and psychological state of an individual using images portable biosensor device
US20030036955A1 (en) * 2001-08-16 2003-02-20 Fujitsu Limited Advertising server, method, program and recording medium
US20030059750A1 (en) * 2000-04-06 2003-03-27 Bindler Paul R. Automated and intelligent networked-based psychological services
US6545685B1 (en) * 1999-01-14 2003-04-08 Silicon Graphics, Inc. Method and system for efficient edge blending in high fidelity multichannel computer graphics displays
US20030100998A2 (en) * 2001-05-15 2003-05-29 Carnegie Mellon University (Pittsburgh, Pa) And Psychogenics, Inc. (Hawthorne, Ny) Systems and methods for monitoring behavior informatics
US20030104865A1 (en) * 2001-12-04 2003-06-05 Yuri Itkis Wireless wagering system
US6585521B1 (en) * 2001-12-21 2003-07-01 Hewlett-Packard Development Company, L.P. Video indexing based on viewers' behavior and emotion feedback
US20040005143A1 (en) * 2002-07-02 2004-01-08 Hitachi, Ltd. Video recording/playback system and method for generating video data
US6688890B2 (en) * 2001-02-09 2004-02-10 M-Tec Ag Device, method and computer program product for measuring a physical or physiological activity by a subject and for assessing the psychosomatic state of the subject
US20040098298A1 (en) * 2001-01-24 2004-05-20 Yin Jia Hong Monitoring responses to visual stimuli
US6754524B2 (en) * 2000-08-28 2004-06-22 Research Foundation Of The City University Of New York Method for detecting deception
US6788882B1 (en) * 1998-04-17 2004-09-07 Timesurf, L.L.C. Systems and methods for storing a plurality of video streams on re-writable random-access media and time-and channel- based retrieval thereof
US6792304B1 (en) * 1998-05-15 2004-09-14 Swinburne Limited Mass communication assessment system
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US20050076359A1 (en) * 1999-12-21 2005-04-07 Andrew Pierson Modifying commercials for multi-speed playback
US20050079474A1 (en) * 2003-10-14 2005-04-14 Kenneth Lowe Emotional state modification method and system
US6904408B1 (en) * 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US20050143629A1 (en) * 2003-06-20 2005-06-30 Farwell Lawrence A. Method for a classification guilty knowledge test and integrated system for detection of deception and information
US20050154290A1 (en) * 2001-06-15 2005-07-14 Daniel Langleben Functional brain imaging for detecting and assessing deception and concealed recognition, and cognitive/emotional response to information
US20050177058A1 (en) * 2004-02-11 2005-08-11 Nina Sobell System and method for analyzing the brain wave patterns of one or more persons for determining similarities in response to a common set of stimuli, making artistic expressions and diagnosis
US20060035707A1 (en) * 2001-06-15 2006-02-16 Igt Virtual leash for personal gaming device
US20060129458A1 (en) * 2000-10-12 2006-06-15 Maggio Frank S Method and system for interacting with on-demand video content
US20060168630A1 (en) * 2004-04-02 2006-07-27 Davies Colin J System for providing visible messages during pvr trick mode playback
US7177675B2 (en) * 2000-02-09 2007-02-13 Cns Response, Inc Electroencephalography based systems and methods for selecting therapies and predicting outcomes
US20070066916A1 (en) * 2005-09-16 2007-03-22 Imotions Emotion Technology Aps System and method for determining human emotion by analyzing eye properties
US20070066874A1 (en) * 2005-09-14 2007-03-22 Vaughn Cook Methods and devices for analyzing and comparing physiological parameter measurements
US20080040740A1 (en) * 2001-04-03 2008-02-14 Prime Research Alliance E, Inc. Alternative Advertising in Prerecorded Media
US7340060B2 (en) * 2005-10-26 2008-03-04 Black Box Intelligence Limited System and method for behavioural modelling
US20080065468A1 (en) * 2006-09-07 2008-03-13 Charles John Berg Methods for Measuring Emotive Response and Selection Preference
US20080091512A1 (en) * 2006-09-05 2008-04-17 Marci Carl D Method and system for determining audience response to a sensory stimulus
US20080097854A1 (en) * 2006-10-24 2008-04-24 Hello-Hello, Inc. Method for Creating and Analyzing Advertisements
US20080125110A1 (en) * 2005-08-04 2008-05-29 Swisscom Mobile Ag Method and system of human perception in combination with mobile communications systems
US20080152300A1 (en) * 2006-12-22 2008-06-26 Guideworks, Llc Systems and methods for inserting advertisements during commercial skip
US20080214902A1 (en) * 2007-03-02 2008-09-04 Lee Hans C Apparatus and Method for Objectively Determining Human Response to Media
US20080222670A1 (en) * 2007-03-07 2008-09-11 Lee Hans C Method and system for using coherence of biological responses as a measure of performance of a media
US20080222671A1 (en) * 2007-03-08 2008-09-11 Lee Hans C Method and system for rating media and events in media based on physiological data
US20090024049A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Cross-modality synthesis of central nervous system, autonomic nervous system, and effector data
US20090024475A1 (en) * 2007-05-01 2009-01-22 Neurofocus Inc. Neuro-feedback based stimulus compression device
US20090024449A1 (en) * 2007-05-16 2009-01-22 Neurofocus Inc. Habituation analyzer device utilizing central nervous system, autonomic nervous system and effector system measurements
US20090025023A1 (en) * 2007-06-06 2009-01-22 Neurofocus Inc. Multi-market program and commercial response monitoring system using neuro-response measurements
US20090030287A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Incented response assessment at a point of transaction
US20090030303A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Audience response analysis using simultaneous electroencephalography (eeg) and functional magnetic resonance imaging (fmri)
US20090030930A1 (en) * 2007-05-01 2009-01-29 Neurofocus Inc. Neuro-informatics repository system
US20090036755A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Entity and relationship assessment and extraction using neuro-response measurements
US20090036756A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Neuro-response stimulus and stimulus attribute resonance estimator
US20090063255A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Consumer experience assessment system
US20090063256A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Consumer experience portrayal effectiveness assessment system
US20090062681A1 (en) * 2007-08-29 2009-03-05 Neurofocus, Inc. Content based selection and meta tagging of advertisement breaks
US20090062629A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Stimulus placement system using subject neuro-response measurements
US20090082643A1 (en) * 2007-09-20 2009-03-26 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using magnetoencephalography
US20090238089A1 (en) * 2008-03-18 2009-09-24 Kitajima Katsuya Ethernet transmission method, transmission apparatus and system
US20100004977A1 (en) * 2006-09-05 2010-01-07 Innerscope Research Llc Method and System For Measuring User Experience For Interactive Activities
US7689272B2 (en) * 2001-06-07 2010-03-30 Lawrence Farwell Method for brain fingerprinting, measurement, assessment and analysis of brain function
US7698238B2 (en) * 2004-04-01 2010-04-13 Sony Deutschland Gmbh Emotion controlled system for processing multimedia data
US20100145215A1 (en) * 2008-12-09 2010-06-10 Neurofocus, Inc. Brain pattern analyzer using neuro-response data
US20100186031A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing personalized media in video
US20100183279A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing video with embedded media
US20100186032A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing alternate media for video decoders
US20100198042A1 (en) * 2006-12-08 2010-08-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V Dry electrode cap for electro-encephalography
US20100249636A1 (en) * 2009-03-27 2010-09-30 Neurofocus, Inc. Personalized stimulus placement in video games
US20100249538A1 (en) * 2009-03-24 2010-09-30 Neurofocus, Inc. Presentation measure using neurographics
US20100250325A1 (en) * 2009-03-24 2010-09-30 Neurofocus, Inc. Neurological profiles for market matching and stimulus presentation
US7865394B1 (en) * 2000-04-17 2011-01-04 Alterian, LLC Multimedia messaging method and system
US20110047121A1 (en) * 2009-08-21 2011-02-24 Neurofocus, Inc. Analysis of the mirror neuron system for evaluation of stimulus
US20110046473A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Eeg triggered fmri signal acquisition
US20110046503A1 (en) * 2009-08-24 2011-02-24 Neurofocus, Inc. Dry electrodes for electroencephalography
US20110046504A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US20110059422A1 (en) * 2005-12-14 2011-03-10 Manabu Masaoka Physiological and cognitive feedback device, system, and method for evaluating a response of a user in an interactive language learning advertisement
US7917366B1 (en) * 2000-03-24 2011-03-29 Exaudios Technologies System and method for determining a personal SHG profile by voice analysis
US20110105937A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Analysis of controlled and automatic attention for introduction of stimulus material
US20110106750A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Generating ratings predictions using neuro-response data
US20110106621A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Intracluster content management using neuro-response priming data

Family Cites Families (441)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1012757A (en) 1908-05-11 1911-12-26 Westinghouse Air Brake Co Brake-pipe-vent-valve device.
US1006824A (en) 1910-04-02 1911-10-24 Walter Martin Braly Alarm-actuating mechanism for incubators.
US1014062A (en) 1911-05-27 1912-01-09 Harry H Hughes Method of producing zinc oxid.
US2549836A (en) 1946-06-14 1951-04-24 Archibald R Mcintyre Electrode-carrying headgear for electroencephalographic analysis
US3490439A (en) 1965-07-30 1970-01-20 Dale R Rolston Electrode holder for use with an electroencephalograph
US3572322A (en) 1968-10-11 1971-03-23 Hoffmann La Roche Transducer assembly
US3753433A (en) 1971-01-18 1973-08-21 Aquarius Electronics Electroencephalophone and feedback system
US3735753A (en) 1971-11-09 1973-05-29 Humetrics Corp Head harness for eeg electrodes
US3880144A (en) 1973-03-12 1975-04-29 David B Coursin Method for stimulation and recording of neurophysiologic data
US3998213A (en) 1975-04-08 1976-12-21 Bio-Volt Corporation Self-adjustable holder for automatically positioning electroencephalographic electrodes
US4075657A (en) 1977-03-03 1978-02-21 Weinblatt Lee S Eye movement monitoring apparatus
US4145122A (en) 1977-05-31 1979-03-20 Colorado Seminary Method and apparatus for monitoring the position of the eye
US4149716A (en) 1977-06-24 1979-04-17 Scudder James D Bionic apparatus for controlling television games
US4411273A (en) 1978-01-30 1983-10-25 Roy John E System and method for electrode pair derivations in electroencephalography
US4201224A (en) 1978-12-29 1980-05-06 Roy John E Electroencephalographic method and system for the quantitative description of patient brain states
US4279258A (en) 1980-03-26 1981-07-21 Roy John E Rapid automatic electroencephalographic evaluation
US4417592A (en) 1981-05-11 1983-11-29 Roy John E Digital electroencephalographic instrument and method
USRE34015E (en) 1981-05-15 1992-08-04 The Children's Medical Center Corporation Brain electrical activity mapping
US4537198A (en) 1983-05-03 1985-08-27 Sue Corbett Electrode cap
US4802484A (en) 1983-06-13 1989-02-07 Ernest H. Friedman Method and apparatus to monitor asymmetric and interhemispheric brain functions
US4846190A (en) 1983-08-23 1989-07-11 John Erwin R Electroencephalographic system data display
US4557270A (en) 1983-08-23 1985-12-10 New York University Electroencephalographic system for intra-operative open-heart surgery
US4610259A (en) 1983-08-31 1986-09-09 Cns, Inc. EEG signal analysis system
US4613951A (en) 1984-10-11 1986-09-23 Hewlett-Packard Company Time interval measuring apparatus and method
US4686999A (en) 1985-04-10 1987-08-18 Tri Fund Research Corporation Multi-channel ventilation monitor and method
US4632122A (en) 1985-04-24 1986-12-30 Johansson Nils E Method and apparatus for conducting brain function diagnostic test
US4683892A (en) 1985-04-24 1987-08-04 Johansson Nils E Method and apparatus for conducting brain function diagnostic test
KR940000853B1 (en) 1985-07-30 1994-02-03 스윈버언 리미티트 Electroencephalographic attention monitor
US4626904A (en) 1985-11-12 1986-12-02 Control Data Corporation Meter for passively logging the presence and identity of TV viewers
US4695879A (en) 1986-02-07 1987-09-22 Weinblatt Lee S Television viewer meter
US4859050A (en) 1986-04-04 1989-08-22 Applied Science Group, Inc. Method and system for generating a synchronous display of a visual presentation and the looking response of many viewers
US4885687A (en) 1986-05-08 1989-12-05 Regents Of The University Of Minnesota Trackig instrumentation for measuring human motor control
US5052401A (en) 1986-08-06 1991-10-01 Westinghouse Electric Corp. Product detector for a steady visual evoked potential stimulator and product detector
US4967038A (en) 1986-12-16 1990-10-30 Sam Techology Inc. Dry electrode brain wave recording system
US4736751A (en) 1986-12-16 1988-04-12 Eeg Systems Laboratory Brain wave source network location scanning method and system
US5038782A (en) 1986-12-16 1991-08-13 Sam Technology, Inc. Electrode system for brain wave detection
US5137027A (en) 1987-05-01 1992-08-11 Rosenfeld Joel P Method for the analysis and utilization of P300 brain waves
US4800888A (en) 1987-08-17 1989-01-31 Hzi Research Center Inc. Enhanced electrode headset
US4973149A (en) 1987-08-19 1990-11-27 Center For Innovative Technology Eye movement detector
US4913160A (en) 1987-09-30 1990-04-03 New York University Electroencephalographic system and method using factor structure of the evoked potentials
US4870579A (en) 1987-10-01 1989-09-26 Neonics, Inc. System and method of predicting subjective reactions
US5010891A (en) 1987-10-09 1991-04-30 Biometrak Corporation Cerebral biopotential analysis system and method
US5083571A (en) 1988-04-18 1992-01-28 New York University Use of brain electrophysiological quantitative data to classify and subtype an individual into diagnostic categories by discriminant and cluster analysis
US4987903A (en) 1988-11-14 1991-01-29 William Keppel Method and apparatus for identifying and alleviating semantic memory deficiencies
US5003986A (en) 1988-11-17 1991-04-02 Kenneth D. Pool, Jr. Hierarchial analysis for processing brain stem signals to define a prominent wave
US5649114A (en) 1989-05-01 1997-07-15 Credit Verification Corporation Method and system for selective incentive point-of-sale marketing in response to customer shopping histories
US5226177A (en) 1990-03-27 1993-07-06 Viewfacts, Inc. Real-time wireless audience response system
US5740035A (en) 1991-07-23 1998-04-14 Control Data Corporation Self-administered survey systems, methods and devices
US5273037A (en) 1991-08-01 1993-12-28 Itil Turan M Electrode assembly for EEG headset
JPH0546743A (en) 1991-08-09 1993-02-26 Matsushita Electric Ind Co Ltd Personal identification device
US5291888A (en) 1991-08-26 1994-03-08 Electrical Geodesics, Inc. Head sensor positioning network
WO1995018565A1 (en) 1991-09-26 1995-07-13 Sam Technology, Inc. Non-invasive neurocognitive testing method and system
US5295491A (en) 1991-09-26 1994-03-22 Sam Technology, Inc. Non-invasive human neurocognitive performance capability testing method and system
US5724987A (en) 1991-09-26 1998-03-10 Sam Technology, Inc. Neurocognitive adaptive computer-aided training method and system
US5213338A (en) 1991-09-30 1993-05-25 Brotz Gregory R Brain wave-directed amusement device
AU667199B2 (en) 1991-11-08 1996-03-14 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
US5339826A (en) 1991-12-09 1994-08-23 Westinghouse Electric Corp. Method for training material evaluation with method of EEG spectral estimation
US6850252B1 (en) 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US7497828B1 (en) 1992-01-10 2009-03-03 Wilk Ultrasound Of Canada, Inc. Ultrasonic medical device and associated method
US5331544A (en) 1992-04-23 1994-07-19 A. C. Nielsen Company Market research method and system for collecting retail store and shopper market research data
US5450855A (en) 1992-05-13 1995-09-19 Rosenfeld; J. Peter Method and system for modification of condition with neural biofeedback using left-right brain wave asymmetry
US5961332A (en) 1992-09-08 1999-10-05 Joao; Raymond Anthony Apparatus for processing psychological data and method of use thereof
US5293867A (en) 1992-09-24 1994-03-15 Oommen Kalarickal J Method and apparatus for marking electrode locations for electroencephalographic procedure
FI98337C (en) 1992-11-30 1997-06-10 Risto Juhani Ilmoniemi Method and apparatus for distinguishing between brain excitation responses and spontaneous function and different components of signals measured from the heart
US5550928A (en) 1992-12-15 1996-08-27 A.C. Nielsen Company Audience measurement system and method
US5345281A (en) 1992-12-17 1994-09-06 John Taboada Eye tracking system and method
US5474082A (en) 1993-01-06 1995-12-12 Junker; Andrew Brain-body actuated system
US5436830A (en) 1993-02-01 1995-07-25 Zaltman; Gerald Metaphor elicitation method and apparatus
US5392788A (en) 1993-02-03 1995-02-28 Hudspeth; William J. Method and device for interpreting concepts and conceptual thought from brainwave data and for assisting for diagnosis of brainwave disfunction
US5363858A (en) 1993-02-11 1994-11-15 Francis Luca Conte Method and apparatus for multifaceted electroencephalographic response analysis (MERA)
WO1995015533A1 (en) 1993-11-30 1995-06-08 Burke Raymond R Computer system for allowing a consumer to purchase packaged goods at home
WO1995017711A1 (en) 1993-12-23 1995-06-29 Diacom Technologies, Inc. Method and apparatus for implementing user feedback
US5513649A (en) 1994-03-22 1996-05-07 Sam Technology, Inc. Adaptive interference canceler for EEG movement and eye artifacts
US5617855A (en) 1994-09-01 1997-04-08 Waletzky; Jeremy P. Medical testing device and associated method
US5518007A (en) 1994-12-01 1996-05-21 Becker; Joseph H. Electrode locator
US5676148A (en) 1995-03-31 1997-10-14 Siemens Medical Systems Inc. Method and system for doppler ultrasound audio dealiasing
FR2732792B1 (en) 1995-04-06 1997-06-06 Benkel Gerard ELECTRONIC COMPETITION SYSTEM AND IMPLEMENTATION METHOD
US5726701A (en) 1995-04-20 1998-03-10 Intel Corporation Method and apparatus for stimulating the responses of a physically-distributed audience
US5720619A (en) 1995-04-24 1998-02-24 Fisslinger; Johannes Interactive computer assisted multi-media biofeedback system
US8574074B2 (en) 2005-09-30 2013-11-05 Sony Computer Entertainment America Llc Advertising impression determination
US5812642A (en) 1995-07-12 1998-09-22 Leroy; David J. Audience response monitor and analysis system and method
US5736986A (en) 1995-07-14 1998-04-07 Sever, Jr.; Frank Virtual reality mental conditioning medium
AU7606696A (en) 1995-11-07 1997-05-29 Seiko Communications Systems, Inc. Selective advertisement presentation
US6170018B1 (en) 1995-11-27 2001-01-02 Sun Microsystems, Inc. Remote procedure calling using an existing descriptor mechanism
US5802220A (en) 1995-12-15 1998-09-01 Xerox Corporation Apparatus and method for tracking facial motion through a sequence of images
US5774591A (en) 1995-12-15 1998-06-30 Xerox Corporation Apparatus and method for recognizing facial expressions and facial gestures in a sequence of images
US5995868A (en) 1996-01-23 1999-11-30 University Of Kansas System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US5676138A (en) 1996-03-15 1997-10-14 Zawilinski; Kenneth Michael Emotional response analyzer system with multimedia display
US5787187A (en) 1996-04-01 1998-07-28 Sandia Corporation Systems and methods for biometric identification using the acoustic properties of the ear canal
US5771897A (en) 1996-04-08 1998-06-30 Zufrin; Alexander Method of and apparatus for quantitative evaluation of current changes in a functional state of human organism
US5848396A (en) 1996-04-26 1998-12-08 Freedom Of Information, Inc. Method and apparatus for determining behavioral profile of a computer user
WO1997040745A1 (en) 1996-04-30 1997-11-06 Caballe Jean Louis System for collecting and processing biometrical information
US5802208A (en) 1996-05-06 1998-09-01 Lucent Technologies Inc. Face recognition using DCT-based feature vectors
US5995941A (en) 1996-09-16 1999-11-30 Maquire; John Data correlation and analysis tool
JP2918499B2 (en) 1996-09-17 1999-07-12 株式会社エイ・ティ・アール人間情報通信研究所 Face image information conversion method and face image information conversion device
US5800351A (en) 1996-10-04 1998-09-01 Rest Technologies, Inc. Electrode supporting head set
US6016475A (en) 1996-10-08 2000-01-18 The Regents Of The University Of Minnesota System, method, and article of manufacture for generating implicit ratings based on receiver operating curves
US6394953B1 (en) 2000-02-25 2002-05-28 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
US5842199A (en) 1996-10-18 1998-11-24 Regents Of The University Of Minnesota System, method and article of manufacture for using receiver operating curves to evaluate predictive utility
US20050010475A1 (en) 1996-10-25 2005-01-13 Ipf, Inc. Internet-based brand management and marketing communication instrumentation network for deploying, installing and remotely programming brand-building server-side driven multi-mode virtual Kiosks on the World Wide Web (WWW), and methods of brand marketing communication between brand marketers and consumers using the same
US5762611A (en) 1996-11-12 1998-06-09 The United States Of America As Represented By The Secretary Of The Navy Evaluation of a subject's interest in education, training and other materials using brain activity patterns
US6958710B2 (en) 2002-12-24 2005-10-25 Arbitron Inc. Universal display media exposure measurement
US7630757B2 (en) 1997-01-06 2009-12-08 Flint Hills Scientific Llc System for the prediction, rapid detection, warning, prevention, or control of changes in activity states in the brain of a subject
US6435878B1 (en) 1997-02-27 2002-08-20 Bci, Llc Interactive computer program for measuring and analyzing mental ability
US5729205A (en) 1997-03-07 1998-03-17 Hyundai Motor Company Automatic transmission system of an emergency signal and a method thereof using a driver's brain wave
US20050097594A1 (en) 1997-03-24 2005-05-05 O'donnell Frank Systems and methods for awarding affinity points based upon remote control usage
US20010013009A1 (en) 1997-05-20 2001-08-09 Daniel R. Greening System and method for computer-based marketing
US5945863A (en) 1997-06-18 1999-08-31 Applied Micro Circuits Corporation Analog delay circuit
US5817029A (en) 1997-06-26 1998-10-06 Sam Technology, Inc. Spatial measurement of EEG electrodes
JP3413065B2 (en) 1997-07-03 2003-06-03 松下電器産業株式会社 Program information processing device
US6052619A (en) 1997-08-07 2000-04-18 New York University Brain function scan system
US6370513B1 (en) 1997-08-08 2002-04-09 Parasoft Corporation Method and apparatus for automated selection, organization, and recommendation of items
US5974262A (en) 1997-08-15 1999-10-26 Fuller Research Corporation System for generating output based on involuntary and voluntary user input without providing output information to induce user to alter involuntary input
US6032129A (en) 1997-09-06 2000-02-29 International Business Machines Corporation Customer centric virtual shopping experience with actors agents and persona
US6182113B1 (en) 1997-09-16 2001-01-30 International Business Machines Corporation Dynamic multiplexing of hyperlinks and bookmarks
KR100281650B1 (en) 1997-11-13 2001-02-15 정선종 EEG analysis method for discrimination of positive / negative emotional state
US5892566A (en) 1998-01-20 1999-04-06 Bullwinkel; Paul E. Fiber optic eye-tracking system
US5983129A (en) 1998-02-19 1999-11-09 Cowan; Jonathan D. Method for determining an individual's intensity of focused attention and integrating same into computer program
US6315569B1 (en) 1998-02-24 2001-11-13 Gerald Zaltman Metaphor elicitation technique with physiological function monitoring
EP1060617B1 (en) 1998-03-04 2004-05-06 United Video Properties Inc. Program guide system with monitoring of advertisement usage and user activities
US6185534B1 (en) 1998-03-23 2001-02-06 Microsoft Corporation Modeling emotion and personality in a computer user interface
JP4287053B2 (en) 1998-05-12 2009-07-01 ニールセン メディア リサーチ インコーポレイテッド Audience rating system for digital TV
US6757556B2 (en) 1998-05-26 2004-06-29 Ineedmd. Com Electrode sensor
US6128521A (en) 1998-07-10 2000-10-03 Physiometrix, Inc. Self adjusting headgear appliance using reservoir electrodes
US6190314B1 (en) 1998-07-15 2001-02-20 International Business Machines Corporation Computer input device with biosensors for sensing user emotions
US6171239B1 (en) 1998-08-17 2001-01-09 Emory University Systems, methods, and devices for controlling external devices by signals derived directly from the nervous system
US6236975B1 (en) 1998-09-29 2001-05-22 Ignite Sales, Inc. System and method for profiling customers for targeted marketing
US6154669A (en) 1998-11-06 2000-11-28 Capita Systems, Inc. Headset for EEG measurements
US6708051B1 (en) 1998-11-10 2004-03-16 Compumedics Limited FMRI compatible electrode and electrode placement techniques
KR100291596B1 (en) 1998-11-12 2001-06-01 정선종 Emotional Positive / Negative State Discrimination Method Using Asymmetry of Left / Right Brain Activity
US6453241B1 (en) 1998-12-23 2002-09-17 Rosetta Inpharmatics, Inc. Method and system for analyzing biological response signal data
AU767533B2 (en) 1999-01-27 2003-11-13 Compumedics Limited Vigilance monitoring system
US7966078B2 (en) 1999-02-01 2011-06-21 Steven Hoffberg Network media appliance system and method
US6161030A (en) 1999-02-05 2000-12-12 Advanced Brain Monitoring, Inc. Portable EEG electrode locator headgear
US6577329B1 (en) 1999-02-25 2003-06-10 International Business Machines Corporation Method and system for relevance feedback through gaze tracking and ticker interfaces
US7120880B1 (en) 1999-02-25 2006-10-10 International Business Machines Corporation Method and system for real-time determination of a subject's interest level to media content
US6358201B1 (en) 1999-03-02 2002-03-19 Doc L. Childre Method and apparatus for facilitating physiological coherence and autonomic balance
US8943527B2 (en) 1999-03-30 2015-01-27 Tivo Inc. Audience measurement system
US6299308B1 (en) 1999-04-02 2001-10-09 Cybernet Systems Corporation Low-cost non-imaging eye tracker system for computer control
US6175753B1 (en) 1999-07-02 2001-01-16 Baltimore Biomedical, Inc. Methods and mechanisms for quick-placement electroencephalogram (EEG) electrodes
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
US6374143B1 (en) 1999-08-18 2002-04-16 Epic Biosonics, Inc. Modiolar hugging electrode array
EP1087618A3 (en) 1999-09-27 2003-12-17 Be Here Corporation Opinion feedback in presentation imagery
JP3894691B2 (en) 1999-10-18 2007-03-22 株式会社国際電気通信基礎技術研究所 Data input device using palate plate
US20010032140A1 (en) 1999-12-14 2001-10-18 Hoffman Roger P. Virtual sales agent
US6330470B1 (en) 1999-12-17 2001-12-11 Electrical Geodesics, Inc. Method for localizing electrical activity in the body
US6594521B2 (en) 1999-12-17 2003-07-15 Electrical Geodesics, Inc. Method for localizing electrical activity in the body
US6652283B1 (en) 1999-12-30 2003-11-25 Cerego, Llc System apparatus and method for maximizing effectiveness and efficiency of learning retaining and retrieving knowledge and skills
US6510340B1 (en) 2000-01-10 2003-01-21 Jordan Neuroscience, Inc. Method and apparatus for electroencephalography
US6301492B1 (en) 2000-01-20 2001-10-09 Electrocore Technologies, Llc Device for performing microelectrode recordings through the central channel of a deep-brain stimulation electrode
US6678685B2 (en) 2000-01-26 2004-01-13 Familytime.Com, Inc. Integrated household management system and method
US6868525B1 (en) 2000-02-01 2005-03-15 Alberti Anemometer Llc Computer graphic display visualization system and method
US6973342B1 (en) 2000-03-02 2005-12-06 Advanced Neuromodulation Systems, Inc. Flexible bio-probe assembly
GB2360581A (en) 2000-03-15 2001-09-26 Television Monitoring Services Quantification of brand exposure on screen
EP1139240A3 (en) 2000-03-28 2003-11-05 Kenji Mimura Design method and design evaluation method, and equipment thereof
EP1275253A2 (en) 2000-03-31 2003-01-15 United Video Properties, Inc. Systems and methods for improved audience measuring
JP2001290767A (en) 2000-04-07 2001-10-19 Sharp Corp Information communication system, information terminal device, and program recording medium
US7164967B2 (en) 2000-05-04 2007-01-16 Iguana Robotics, Inc. Biomorphic rhythmic movement controller
US6510333B1 (en) 2000-05-16 2003-01-21 Mark J. Licata Sensor for biopotential measurements
DE60108745T2 (en) 2000-05-19 2005-07-07 The Nutrasweet Co., Chicago Preparation of N- [N- (3,3-dimethylbutyl) -L-α-aspartyl] -L-phenylalanine 1-methyl ester by Oxazolidinonderivate
US7689437B1 (en) 2000-06-16 2010-03-30 Bodymedia, Inc. System for monitoring health, wellness and fitness
US8495679B2 (en) 2000-06-30 2013-07-23 Thomson Licensing Method and apparatus for delivery of television programs and targeted de-coupled advertising
US20070050256A1 (en) 2000-06-30 2007-03-01 Jay Walker Method and apparatus for compensating participation in marketing research
US20020065826A1 (en) 2000-07-19 2002-05-30 Bell Christopher Nathan Systems and processes for measuring, evaluating and reporting audience response to audio, video, and other content
JP3824848B2 (en) 2000-07-24 2006-09-20 シャープ株式会社 Communication apparatus and communication method
AUPQ896000A0 (en) 2000-07-24 2000-08-17 Seeing Machines Pty Ltd Facial image processing system
AU2001283371A1 (en) 2000-08-15 2002-02-25 The Regents Of The University Of California Method and apparatus for reducing contamination of an electrical signal
AU2001282449A1 (en) 2000-08-16 2002-02-25 Nizan Yaniv Applications of the biofeedback technique
US7197470B1 (en) 2000-10-11 2007-03-27 Buzzmetrics, Ltd. System and method for collection analysis of electronic discussion methods
US6488617B1 (en) 2000-10-13 2002-12-03 Universal Hedonics Method and device for producing a desired brain state
US20020053076A1 (en) 2000-10-30 2002-05-02 Mark Landesmann Buyer-driven targeting of purchasing entities
US20020055857A1 (en) 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
US20030233278A1 (en) 2000-11-27 2003-12-18 Marshall T. Thaddeus Method and system for tracking and providing incentives for tasks and activities and other behavioral influences related to money, individuals, technology and other assets
US9047609B2 (en) 2000-11-29 2015-06-02 Noatak Software Llc Method and system for dynamically incorporating advertising content into multimedia environments
US20020155878A1 (en) 2000-12-12 2002-10-24 Unipower Solutions Usa, Inc. Advertising games and method
KR100401012B1 (en) 2000-12-15 2003-10-30 김연경 A music providing system having music selecting function by human feeling and a music providing method using thereof
US9785953B2 (en) 2000-12-20 2017-10-10 International Business Machines Corporation System and method for generating demand groups
JP4678943B2 (en) 2000-12-22 2011-04-27 富士通株式会社 New product initial input amount prediction method, new product initial input amount prediction device, and recording medium
US20020103429A1 (en) 2001-01-30 2002-08-01 Decharms R. Christopher Methods for physiological monitoring, training, exercise and regulation
US7150715B2 (en) 2001-02-05 2006-12-19 Collura Thomas F Network enabled biofeedback administration
TW519486B (en) 2001-02-05 2003-02-01 Univ California EEG feedback control in sound therapy for tinnitus
JP3644502B2 (en) 2001-02-06 2005-04-27 ソニー株式会社 Content receiving apparatus and content presentation control method
US8751310B2 (en) 2005-09-30 2014-06-10 Sony Computer Entertainment America Llc Monitoring advertisement impressions
JP2002244686A (en) 2001-02-13 2002-08-30 Hitachi Ltd Voice processing method, and telephone and repeater station using the same
US6597953B2 (en) 2001-02-20 2003-07-22 Neuropace, Inc. Furcated sensing and stimulation lead
GB2373347B (en) 2001-03-07 2006-11-22 Touch Clarity Ltd Control system to actuate a robotic operating system
US20020178440A1 (en) 2001-03-28 2002-11-28 Philips Electronics North America Corp. Method and apparatus for automatically selecting an alternate item based on user behavior
US20020143627A1 (en) 2001-03-30 2002-10-03 Jonathan Barsade Network banner advertisement system and method
US20030163815A1 (en) 2001-04-06 2003-08-28 Lee Begeja Method and system for personalized multimedia delivery service
US6662052B1 (en) 2001-04-19 2003-12-09 Nac Technologies Inc. Method and system for neuromodulation therapy using external stimulator with wireless communication capabilites
US20020156842A1 (en) 2001-04-23 2002-10-24 Envivio System for audio-visual media customization according to receiver attributes
US20020188216A1 (en) 2001-05-03 2002-12-12 Kayyali Hani Akram Head mounted medical device
US20020169665A1 (en) 2001-05-10 2002-11-14 The Procter & Gamble Company In-channel marketing and product testing system
CN1287729C (en) 2001-05-29 2006-12-06 生殖健康技术公司 System for detection and analysis of material uterine, material and fetal cardiac and fetal brain activity
EP1395176B1 (en) 2001-06-13 2008-10-15 Compumedics Limited Method for monitoring consciousness
US7552066B1 (en) 2001-07-05 2009-06-23 The Retail Pipeline Integration Group, Inc. Method and system for retail store supply chain sales forecasting and replenishment shipment determination
GB2379016A (en) 2001-07-27 2003-02-26 Hewlett Packard Co Portable apparatus monitoring reaction of user to music
US20030044050A1 (en) 2001-08-28 2003-03-06 International Business Machines Corporation System and method for biometric identification and response
US6832110B2 (en) 2001-09-05 2004-12-14 Haim Sohmer Method for analysis of ongoing and evoked neuro-electrical activity
US7113916B1 (en) 2001-09-07 2006-09-26 Hill Daniel A Method of facial coding monitoring for the purpose of gauging the impact and appeal of commercially-related stimuli
US20030065524A1 (en) 2001-10-01 2003-04-03 Daniela Giacchetti Virtual beauty consultant
US20030063222A1 (en) 2001-10-03 2003-04-03 Sony Corporation System and method for establishing TV setting based on viewer mood
US6665560B2 (en) 2001-10-04 2003-12-16 International Business Machines Corporation Sleep disconnect safety override for direct human-computer neural interfaces for the control of computer controlled functions
US20030081834A1 (en) 2001-10-31 2003-05-01 Vasanth Philomin Intelligent TV room
US8561095B2 (en) 2001-11-13 2013-10-15 Koninklijke Philips N.V. Affective television monitoring and control in response to physiological data
US7840250B2 (en) 2001-11-13 2010-11-23 Electrical Geodesics, Inc. Method for neural current imaging
US6712468B1 (en) 2001-12-12 2004-03-30 Gregory T. Edwards Techniques for facilitating use of eye tracking data
US8014847B2 (en) 2001-12-13 2011-09-06 Musc Foundation For Research Development Systems and methods for detecting deception by measuring brain activity
US7086075B2 (en) 2001-12-21 2006-08-01 Bellsouth Intellectual Property Corporation Method and system for managing timed responses to A/V events in television programming
US6798461B2 (en) 2002-01-10 2004-09-28 Shmuel Shapira Video system for integrating observer feedback with displayed images
US7003139B2 (en) 2002-02-19 2006-02-21 Eastman Kodak Company Method for using facial expression to determine affective information in an imaging system
JP2003242157A (en) 2002-02-20 2003-08-29 Honda Motor Co Ltd Computer system for searching commodities according to customer's characteristic
US7471987B2 (en) 2002-03-08 2008-12-30 Arbitron, Inc. Determining location of an audience member having a portable media monitor
US20030177488A1 (en) 2002-03-12 2003-09-18 Smith Geoff S. Systems and methods for media audience measurement
EP1487998B1 (en) 2002-03-20 2007-06-06 Novartis AG Methods for diagnosing and treating schizophrenia
US20030204412A1 (en) 2002-04-29 2003-10-30 John Brier Apparatus and method for providing on-line customized nutrition, fitness, and lifestyle plans based upon a user profile and goals
US8099325B2 (en) 2002-05-01 2012-01-17 Saytam Computer Services Limited System and method for selective transmission of multimedia based on subscriber behavioral model
US7614066B2 (en) 2002-05-03 2009-11-03 Time Warner Interactive Video Group Inc. Use of multiple embedded messages in program signal streams
US20040001616A1 (en) 2002-06-27 2004-01-01 Srinivas Gutta Measurement of content ratings through vision and speech recognition
NZ538377A (en) 2002-07-22 2006-09-29 Mediaone Network Inc Internet based delivery system for delivering auxiliary content such as advertisements
US20040092809A1 (en) 2002-07-26 2004-05-13 Neurion Inc. Methods for measurement and analysis of brain activity
US7460827B2 (en) 2002-07-26 2008-12-02 Arbitron, Inc. Radio frequency proximity detection and identification system and method
US7020508B2 (en) 2002-08-22 2006-03-28 Bodymedia, Inc. Apparatus for detecting human physiological and contextual information
US7222071B2 (en) 2002-09-27 2007-05-22 Arbitron Inc. Audio data receipt/exposure measurement with code monitoring and signature extraction
JP4359810B2 (en) 2002-10-01 2009-11-11 ソニー株式会社 User terminal, data processing method, program, and data processing system
US20040068431A1 (en) 2002-10-07 2004-04-08 Gartner, Inc. Methods and systems for evaluation of business performance
JP4975249B2 (en) 2002-10-09 2012-07-11 ボディーメディア インコーポレイテッド Device for measuring an individual's state parameters using physiological information and / or context parameters
US20040073129A1 (en) 2002-10-15 2004-04-15 Ssi Corporation EEG system for time-scaling presentations
EP1558129B1 (en) 2002-10-15 2009-11-25 Medtronic, Inc. Phase shifting of neurological signals in a medical device system
FR2845883B1 (en) 2002-10-18 2005-08-05 Centre Nat Rech Scient METHOD AND DEVICE FOR REAL-TIME MEDICAL OR COGNITIVE FOLLOW-UP BY ANALYZING BRAIN ELECTROMAGNETIC ACTIVITY OF AN INDIVIDUAL, APPLYING THE METHOD FOR CHARACTERIZING AND DIFFERENTIATING PHYSIOLOGICAL OR PATHOLOGICAL CONDITIONS
AU2003284584A1 (en) 2002-11-22 2004-06-18 Matsushita Electric Industrial Co., Ltd. Operation history utilization system and method thereof
US7233684B2 (en) 2002-11-25 2007-06-19 Eastman Kodak Company Imaging method and system using affective information
KR20050084096A (en) 2002-12-04 2005-08-26 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Stereo signal communication using bluetooth transceivers in earpieces
US7483835B2 (en) 2002-12-23 2009-01-27 Arbitron, Inc. AD detection using ID code and extracted signature
KR100519758B1 (en) 2003-01-22 2005-10-07 삼성전자주식회사 Method and apparatus for evaluating human stress using PPG
EP1590037B1 (en) 2003-01-27 2011-03-09 Compumedics USA, Inc. Online source reconstruction for eeg/meg and ecg/mcg
US8292433B2 (en) 2003-03-21 2012-10-23 Queen's University At Kingston Method and apparatus for communication between humans and devices
US20040219184A1 (en) 2003-03-25 2004-11-04 The Regents Of The University Of California Growth of large patterned arrays of neurons on CCD chips using plasma deposition methods
US7130673B2 (en) 2003-04-08 2006-10-31 Instrumentarium Corp. Method of positioning electrodes for central nervous system monitoring and sensing pain reactions of a patient
US20040210159A1 (en) 2003-04-15 2004-10-21 Osman Kibar Determining a psychological state of a subject
US7706871B2 (en) 2003-05-06 2010-04-27 Nellcor Puritan Bennett Llc System and method of prediction of response to neurological treatment using the electroencephalogram
US20040236623A1 (en) 2003-05-20 2004-11-25 Vijoy Gopalakrishnan Methods and systems for constructing and maintaining sample panels
US20050033154A1 (en) 2003-06-03 2005-02-10 Decharms Richard Christopher Methods for measurement of magnetic resonance signal perturbations
US6993380B1 (en) 2003-06-04 2006-01-31 Cleveland Medical Devices, Inc. Quantitative sleep analysis method and system
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US6950698B2 (en) 2003-07-02 2005-09-27 Instrumentarium Corp. Method of positioning electrodes for central nervous system monitoring
WO2005008914A1 (en) 2003-07-10 2005-01-27 University Of Florida Research Foundation, Inc. Mobile care-giving and intelligent assistance device
US20050113649A1 (en) 2003-07-28 2005-05-26 Bergantino Paul V. Method and apparatus for managing a user's health
US7394385B2 (en) 2003-07-31 2008-07-01 Wellcare Systems, Inc. Comprehensive monitoring system
JP2005051654A (en) 2003-07-31 2005-02-24 Sony Corp Content reproducing method, content playback, content recording method and content recording media
US8200775B2 (en) 2005-02-01 2012-06-12 Newsilike Media Group, Inc Enhanced syndication
US7592908B2 (en) 2003-08-13 2009-09-22 Arbitron, Inc. Universal display exposure monitor using personal locator service
AU2003263033A1 (en) 2003-08-29 2005-04-14 Nielsen Media Research, Inc. Audio based methods and apparatus for detecting a channel change event
US7577655B2 (en) 2003-09-16 2009-08-18 Google Inc. Systems and methods for improving the ranking of news articles
US20050071865A1 (en) 2003-09-30 2005-03-31 Martins Fernando C. M. Annotating meta-data with user responses to digital content
US20050071462A1 (en) 2003-09-30 2005-03-31 Ibm Corporation Creating user metric patterns
US7496400B2 (en) 2003-10-17 2009-02-24 Ge Healthcare Finland Oy Sensor arrangement
US7206625B2 (en) 2003-10-23 2007-04-17 Vivosonic Inc. Method and apparatus for the collection of physiological electrical potentials
US20050107716A1 (en) 2003-11-14 2005-05-19 Media Lab Europe Methods and apparatus for positioning and retrieving information from a plurality of brain activity sensors
EP1687978A1 (en) 2003-11-17 2006-08-09 Koninklijke Philips Electronics N.V. Commercial insertion into video streams based on surrounding program content
JP2005160805A (en) 2003-12-03 2005-06-23 Mitsubishi Electric Corp Individual recognition device and attribute determination device
US8196168B1 (en) 2003-12-10 2012-06-05 Time Warner, Inc. Method and apparatus for exchanging preferences for replaying a program on a personal video recorder
US20050132401A1 (en) 2003-12-10 2005-06-16 Gilles Boccon-Gibod Method and apparatus for exchanging preferences for replaying a program on a personal video recorder
US7895625B1 (en) 2003-12-24 2011-02-22 Time Warner, Inc. System and method for recommending programming to television viewing communities
US7988557B2 (en) 2004-01-02 2011-08-02 Interactive Productline Ab Method for playing games using brain waves
US20080177197A1 (en) 2007-01-22 2008-07-24 Lee Koohyoung Method and apparatus for quantitatively evaluating mental states based on brain wave signal processing system
US8301218B2 (en) 2004-01-08 2012-10-30 Neurosky, Inc. Contoured electrode
GB2410359A (en) 2004-01-23 2005-07-27 Sony Uk Ltd Display
US20050216243A1 (en) 2004-03-02 2005-09-29 Simon Graham Computer-simulated virtual reality environments for evaluation of neurobehavioral performance
US8788372B2 (en) 2004-03-08 2014-07-22 Sap Aktiengesellschaft Method and system for classifying retail products and services using characteristic-based grouping structures
US7420464B2 (en) 2004-03-15 2008-09-02 Arbitron, Inc. Methods and systems for gathering market research data inside and outside commercial establishments
US7463143B2 (en) 2004-03-15 2008-12-09 Arbioran Methods and systems for gathering market research data within commercial establishments
US20050203798A1 (en) 2004-03-15 2005-09-15 Jensen James M. Methods and systems for gathering market research data
US8229469B2 (en) 2004-03-15 2012-07-24 Arbitron Inc. Methods and systems for mapping locations of wireless transmitters for use in gathering market research data
US7463144B2 (en) 2004-03-19 2008-12-09 Arbitron, Inc. Gathering data concerning publication usage
US20050273017A1 (en) 2004-03-26 2005-12-08 Evian Gordon Collective brain measurement system and method
US8738763B2 (en) 2004-03-26 2014-05-27 The Nielsen Company (Us), Llc Research data gathering with a portable monitor and a stationary device
US8135606B2 (en) 2004-04-15 2012-03-13 Arbitron, Inc. Gathering data concerning publication usage and exposure to products and/or presence in commercial establishment
US20050240956A1 (en) 2004-04-22 2005-10-27 Kurt Smith Method and apparatus for enhancing wellness
US7463917B2 (en) 2004-04-28 2008-12-09 Medtronic, Inc. Electrodes for sustained delivery of energy
JP2005315802A (en) 2004-04-30 2005-11-10 Olympus Corp User support device
US7281022B2 (en) 2004-05-15 2007-10-09 International Business Machines Corporation System, method, and service for segmenting a topic into chatter and subtopics
US7529690B2 (en) 2004-05-22 2009-05-05 Altaf Hadi System and method for delivering real time remote buying, selling, meeting, and interacting in a virtual reality environment
WO2005117693A1 (en) 2004-05-27 2005-12-15 Children's Medical Center Corporation Patient-specific seizure onset detection system
US7565193B2 (en) 2004-06-14 2009-07-21 Cephos Corp. Questions and control paradigms for detecting deception by measuring brain activity
EP2260760B1 (en) 2004-06-18 2014-08-27 Neuronetrix Solutions, LLC Evoked response testing method for neurological disorders
JP2006006355A (en) 2004-06-22 2006-01-12 Sony Corp Processor for biological information and video and sound reproducing device
US20050289582A1 (en) 2004-06-24 2005-12-29 Hitachi, Ltd. System and method for capturing and using biometrics to review a product, service, creative work or thing
US20080027345A1 (en) 2004-06-25 2008-01-31 Olympus Corporation Electrode Apparatus For Detecting Brain Waves And Package
US7359894B1 (en) 2004-06-30 2008-04-15 Google Inc. Methods and systems for requesting and providing information in a social network
US7756879B2 (en) 2004-07-23 2010-07-13 Jeffrey Parsons System and method for estimating user ratings from user behavior and providing recommendations
US7895075B2 (en) 2004-08-12 2011-02-22 Cable Television Advertising Group Llc Method and apparatus for determining an effective media channel to use for advertisement
EP1838270B1 (en) 2004-08-25 2009-07-22 Motorika Limited Motor training with brain plasticity
US20180146879A9 (en) 2004-08-30 2018-05-31 Kalford C. Fadem Biopotential Waveform Data Fusion Analysis and Classification Method
US7623823B2 (en) 2004-08-31 2009-11-24 Integrated Media Measurement, Inc. Detecting and measuring exposure to media content items
US8010460B2 (en) 2004-09-02 2011-08-30 Linkedin Corporation Method and system for reputation evaluation of online users in a social networking scheme
WO2006029022A2 (en) 2004-09-03 2006-03-16 Arbitron Inc. Out-of-home advertising inventory ratings methods and systems
US20070005752A1 (en) 2005-06-29 2007-01-04 Jitendra Chawla Methods and apparatuses for monitoring attention of a user during a collaboration session
US8335785B2 (en) 2004-09-28 2012-12-18 Hewlett-Packard Development Company, L.P. Ranking results for network search query
US7391835B1 (en) 2004-09-29 2008-06-24 Sun Microsystems, Inc. Optimizing synchronization between monitored computer system signals
JP4284538B2 (en) 2004-10-19 2009-06-24 ソニー株式会社 Playback apparatus and playback method
US20060168613A1 (en) 2004-11-29 2006-07-27 Wood Leslie A Systems and processes for use in media and/or market research
DE102004063249A1 (en) 2004-12-23 2006-07-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sensor system and method for the capacitive measurement of electromagnetic signals of biological origin
US8788044B2 (en) 2005-01-21 2014-07-22 Michael Sasha John Systems and methods for tissue stimulation in medical treatment
US7249708B2 (en) 2005-02-04 2007-07-31 The Procter & Gamble Company Household management systems and methods
US20060176289A1 (en) 2005-02-05 2006-08-10 Summerbrook Media Incorporated Advertisement comprehension in mobile media
JP2006227994A (en) 2005-02-18 2006-08-31 Olympus Corp Image retrieving/displaying apparatus, image retrieving/displaying method and program
US8235725B1 (en) 2005-02-20 2012-08-07 Sensory Logic, Inc. Computerized method of assessing consumer reaction to a business stimulus employing facial coding
US9165280B2 (en) 2005-02-22 2015-10-20 International Business Machines Corporation Predictive user modeling in user interface design
US7922670B2 (en) 2005-02-24 2011-04-12 Warren Jones System and method for quantifying and mapping visual salience
US20060218046A1 (en) 2005-03-22 2006-09-28 Cerado, Inc. Method and system of allocating a sales representative
US20070214471A1 (en) 2005-03-23 2007-09-13 Outland Research, L.L.C. System, method and computer program product for providing collective interactive television experiences
JP2006305334A (en) 2005-03-30 2006-11-09 Advanced Telecommunication Research Institute International Answer acquisition apparatus and evaluation analysis apparatus
US7720351B2 (en) 2005-04-04 2010-05-18 Gutman Levitan Preservation and improvement of television advertising in digital environment
US8001015B2 (en) 2005-04-29 2011-08-16 Mercatus Technologies Inc. Systems and methods for managing and displaying dynamic and static content
US20060257834A1 (en) 2005-05-10 2006-11-16 Lee Linda M Quantitative EEG as an identifier of learning modality
US20060259360A1 (en) 2005-05-16 2006-11-16 Manyworlds, Inc. Multiple Attribute and Behavior-based Advertising Process
US8024022B2 (en) 2005-05-25 2011-09-20 Alfred E. Mann Foundation For Scientific Research Hermetically sealed three-dimensional electrode array
CA2613579A1 (en) 2005-07-01 2007-01-11 Gary Mcnabb Method, system and apparatus for entraining global regulatory bio-networks to evoke optimized self-organizing autonomous adaptive capacities
US20070048707A1 (en) 2005-08-09 2007-03-01 Ray Caamano Device and method for determining and improving present time emotional state of a person
US20070038516A1 (en) 2005-08-13 2007-02-15 Jeff Apple Systems, methods, and computer program products for enabling an advertiser to measure user viewing of and response to an advertisement
EP1758398A1 (en) 2005-08-23 2007-02-28 Syneola SA Multilevel semiotic and fuzzy logic user and metadata interface means for interactive multimedia system having cognitive adaptive capability
EP1921986A4 (en) 2005-09-02 2011-11-30 Emsense Corp A device and method for sensing electrical activity in tissue
US20070060830A1 (en) 2005-09-12 2007-03-15 Le Tan Thi T Method and system for detecting and classifying facial muscle movements
US7865235B2 (en) 2005-09-12 2011-01-04 Tan Thi Thai Le Method and system for detecting and classifying the mental state of a subject
US20070067305A1 (en) 2005-09-21 2007-03-22 Stephen Ives Display of search results on mobile device browser with background process
WO2007041597A2 (en) 2005-10-03 2007-04-12 Teletech Holdings, Inc. Virtual retail assistant
US20070078700A1 (en) 2005-10-04 2007-04-05 Olaf Lenzmann Systems and methods to facilitate product market management
US7797186B2 (en) 2005-10-18 2010-09-14 Donnelly Andrew Dybus Method and system for gathering and recording real-time market survey and other data from radio listeners and television viewers utilizing telephones including wireless cell phones
JP4191718B2 (en) 2005-10-24 2008-12-03 株式会社TanaーX Product display shelf system and purchasing behavior analysis program
US7551952B2 (en) 2005-10-26 2009-06-23 Sam Technology, Inc. EEG electrode headset
US20070112460A1 (en) 2005-11-01 2007-05-17 Daniel Kiselik Method and system for facilitating individualized packaging and follow-up capability on a mass scale
US20060256133A1 (en) 2005-11-05 2006-11-16 Outland Research Gaze-responsive video advertisment display
US20070106170A1 (en) 2005-11-10 2007-05-10 Conopco, Inc., D/B/A Unilever Apparatus and method for acquiring a signal
US8311622B2 (en) 2005-12-01 2012-11-13 Neba Health LLC Systems and methods for analyzing and assessing depression and other mood disorders using electroencephalographic (EEG) measurements
US20080086356A1 (en) 2005-12-09 2008-04-10 Steve Glassman Determining advertisements using user interest information and map-based location information
US20070135727A1 (en) 2005-12-12 2007-06-14 Juha Virtanen Detection of artifacts in bioelectric signals
US8613024B2 (en) 2005-12-13 2013-12-17 United Video Properties, Inc. Cross-platform predictive popularity ratings for use in interactive television applications
US8527320B2 (en) 2005-12-20 2013-09-03 Arbitron, Inc. Methods and systems for initiating a research panel of persons operating under a group agreement
US20070150281A1 (en) 2005-12-22 2007-06-28 Hoff Todd M Method and system for utilizing emotion to search content
US20070150916A1 (en) 2005-12-28 2007-06-28 James Begole Using sensors to provide feedback on the access of digital content
US20090030780A1 (en) 2006-01-03 2009-01-29 Ds-Iq, Inc. Measuring effectiveness of marketing campaigns presented on media devices in public places using audience exposure data
US8689253B2 (en) 2006-03-03 2014-04-01 Sharp Laboratories Of America, Inc. Method and system for configuring media-playing sets
WO2008129356A2 (en) 2006-03-13 2008-10-30 Imotions-Emotion Technology A/S Visual attention and emotional response detection and display system
WO2007109745A2 (en) 2006-03-22 2007-09-27 Emotiv Systems, Pty Ltd. Electrode and electrode headset
US8190251B2 (en) 2006-03-24 2012-05-29 Medtronic, Inc. Method and apparatus for the treatment of movement disorders
RU2008142544A (en) 2006-03-28 2010-05-10 Конинклейке Филипс Электроникс Н.В. (Nl) SYSTEM AND METHOD FOR PROVIDING RECIPE RECOMMENDATIONS
JP5649303B2 (en) 2006-03-30 2015-01-07 エスアールアイ インターナショナルSRI International Method and apparatus for annotating media streams
US20070244977A1 (en) 2006-04-18 2007-10-18 Quixote Atkins Dynamic e-mail system and method
US7641341B2 (en) 2006-05-10 2010-01-05 Weinblatt Lee S Use of saccadic eye motion to indicate the level of human interest in response to visual stimuli
WO2007131526A1 (en) 2006-05-15 2007-11-22 Joost N.V. Method of associating program content data in a digital television network
KR200422399Y1 (en) 2006-05-18 2006-07-26 고려대학교 산학협력단 Apparatus for feedback according to emotional state
US7454313B2 (en) 2006-05-30 2008-11-18 Honeywell International Inc. Hierarchical workload monitoring for optimal subordinate tasking
WO2007147069A2 (en) 2006-06-14 2007-12-21 Advanced Brain Monitoring, Inc. Method for measuring central venous pressure or respiratory effort
US20080043013A1 (en) 2006-06-19 2008-02-21 Kimberly-Clark Worldwide, Inc System for designing shopping environments
US20080027347A1 (en) 2006-06-23 2008-01-31 Neuro Vista Corporation, A Delaware Corporation Minimally Invasive Monitoring Methods
US20080091463A1 (en) 2006-06-28 2008-04-17 Ravi Shakamuri Method for online health management
US20120245978A1 (en) 2006-07-12 2012-09-27 Arbitron, Inc. System and method for determinimg contextual characteristics of media exposure data
US7930199B1 (en) 2006-07-21 2011-04-19 Sensory Logic, Inc. Method and report assessing consumer reaction to a stimulus by matching eye position with facial coding
CA2657762C (en) 2006-07-25 2015-07-21 Novavision, Inc. Dynamic stimuli for visual field testing and therapy
US20090138356A1 (en) 2006-08-24 2009-05-28 Skygrid, Inc. Systems and methods for content delivery
US20110072553A1 (en) 2006-09-07 2011-03-31 Peter Chi Fai Ho Headgear Assembly
US20080065721A1 (en) 2006-09-12 2008-03-13 Brian John Cragun Proximity-based web page content placement mechanism
US20130124623A1 (en) 2006-09-12 2013-05-16 Adobe Systems Incorporated Attention tracking in an online conference
US7885706B2 (en) 2006-09-20 2011-02-08 New York University System and device for seizure detection
EP2067101A1 (en) 2006-09-21 2009-06-10 WRH Marketing AG Printed product and method for the production thereof
EP2068768A4 (en) 2006-09-25 2014-01-08 Corassist Cardiovascular Ltd Method and system for improving diastolic function of the heart
WO2008055078A2 (en) 2006-10-27 2008-05-08 Vivometrics, Inc. Identification of emotional states using physiological responses
US20080109840A1 (en) 2006-11-07 2008-05-08 Sbc Knowledge Ventures, L.P. System and method for advertisement skipping
US7892764B2 (en) 2006-11-21 2011-02-22 Legacy Emanuel Hospital & Health Center System for seizure suppression
US8381244B2 (en) 2006-11-21 2013-02-19 Abacast, Inc. Content injection system and methodology
US20080133724A1 (en) 2006-11-30 2008-06-05 Clark Bryan W Integrated grocery selection and delivery based on queued recipes
AU2007327315B2 (en) 2006-12-01 2013-07-04 Rajiv Khosla Method and system for monitoring emotional state changes
US20080147742A1 (en) 2006-12-13 2008-06-19 Chris Allen Method and system for evaluating evaluators
US8359209B2 (en) 2006-12-19 2013-01-22 Hartford Fire Insurance Company System and method for predicting and responding to likelihood of volatility
US20080204273A1 (en) 2006-12-20 2008-08-28 Arbitron,Inc. Survey data acquisition
EP2139390B1 (en) 2006-12-22 2017-08-23 Neuro-Insight Pty. Ltd. A method for evaluating the effectiveness of commercial communication
US8768718B2 (en) 2006-12-27 2014-07-01 Cardiac Pacemakers, Inc. Between-patient comparisons for risk stratification of future heart failure decompensation
EP2111593A2 (en) 2007-01-26 2009-10-28 Information Resources, Inc. Analytic platform
US9767473B2 (en) 2007-02-09 2017-09-19 International Business Machines Corporation Method and apparatus for economic exploitation of waiting time of customers at call centers, contact centers or into interactive voice response (IVR) systems
US20090253996A1 (en) 2007-03-02 2009-10-08 Lee Michael J Integrated Sensor Headset
US20090088610A1 (en) 2007-03-02 2009-04-02 Lee Hans C Measuring Physiological Response to Media for Viewership Modeling
US20090070798A1 (en) 2007-03-02 2009-03-12 Lee Hans C System and Method for Detecting Viewer Attention to Media Delivery Devices
US20080218472A1 (en) 2007-03-05 2008-09-11 Emotiv Systems Pty., Ltd. Interface to convert mental states and facial expressions to application input
WO2008109694A1 (en) 2007-03-06 2008-09-12 Emotiv Systems Pty Ltd Electrode and electrode headset
US20080295126A1 (en) 2007-03-06 2008-11-27 Lee Hans C Method And System For Creating An Aggregated View Of User Response Over Time-Variant Media Using Physiological Data
WO2008109699A2 (en) 2007-03-06 2008-09-12 Emotiv Systems Pty Ltd Electrode headset
US8473044B2 (en) 2007-03-07 2013-06-25 The Nielsen Company (Us), Llc Method and system for measuring and ranking a positive or negative response to audiovisual or interactive media, products or activities using physiological signals
US20080221969A1 (en) 2007-03-07 2008-09-11 Emsense Corporation Method And System For Measuring And Ranking A "Thought" Response To Audiovisual Or Interactive Media, Products Or Activities Using Physiological Signals
US8764652B2 (en) 2007-03-08 2014-07-01 The Nielson Company (US), LLC. Method and system for measuring and ranking an “engagement” response to audiovisual or interactive media, products, or activities using physiological signals
US20080249865A1 (en) 2007-04-03 2008-10-09 Robert Lee Angell Recipe and project based marketing and guided selling in a retail store environment
CN102317964B (en) 2007-04-06 2016-04-06 盖亚软件Ip有限公司 A kind of method of content delivering system and distributing contents
US20080255949A1 (en) 2007-04-13 2008-10-16 Lucid Systems, Inc. Method and System for Measuring Non-Verbal and Pre-Conscious Responses to External Stimuli
US8601386B2 (en) 2007-04-20 2013-12-03 Ingenio Llc Methods and systems to facilitate real time communications in virtual reality
US8126220B2 (en) 2007-05-03 2012-02-28 Hewlett-Packard Development Company L.P. Annotating stimulus based on determined emotional response
US8392253B2 (en) 2007-05-16 2013-03-05 The Nielsen Company (Us), Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
WO2008141340A1 (en) 2007-05-16 2008-11-20 Neurofocus, Inc. Audience response measurement and tracking system
US8099315B2 (en) 2007-06-05 2012-01-17 At&T Intellectual Property I, L.P. Interest profiles for audio and/or video streams
JP2008301971A (en) 2007-06-06 2008-12-18 Fujitsu Component Ltd Brain wave detector
AU2008267762B2 (en) 2007-06-22 2014-01-16 Wenco International Mining Systems Limited Scalp potential measuring method and apparatus
US8027518B2 (en) 2007-06-25 2011-09-27 Microsoft Corporation Automatic configuration of devices based on biometric data
WO2009011820A2 (en) 2007-07-13 2009-01-22 Wahrheit, Llc System and method for determining relative preferences for marketing, financial, internet, and other commercial applications
US7865916B2 (en) 2007-07-20 2011-01-04 James Beser Audience determination for monetizing displayable content
US8141002B2 (en) 2007-07-20 2012-03-20 International Business Machines Corporation System and method for visual representation of a social network connection quality
US20090030762A1 (en) 2007-07-26 2009-01-29 Lee Hans C Method and system for creating a dynamic and automated testing of user response
US8065203B1 (en) 2007-08-01 2011-11-22 Sas Institute Inc. Computer-implemented systems and methods for product attribute estimations
JP2010536479A (en) 2007-08-23 2010-12-02 マサチューセッツ インスティテュート オブ テクノロジー Method and apparatus for reducing the number of channels in an epileptic seizure detector based on EEG
US20090062679A1 (en) 2007-08-27 2009-03-05 Microsoft Corporation Categorizing perceptual stimuli by detecting subconcious responses
US20090062680A1 (en) 2007-09-04 2009-03-05 Brain Train Artifact detection and correction system for electroencephalograph neurofeedback training methodology
US8229145B2 (en) 2007-09-05 2012-07-24 Avaya Inc. Method and apparatus for configuring a handheld audio device using ear biometrics
US9824367B2 (en) 2007-09-07 2017-11-21 Adobe Systems Incorporated Measuring effectiveness of marketing campaigns across multiple channels
US8376952B2 (en) 2007-09-07 2013-02-19 The Nielsen Company (Us), Llc. Method and apparatus for sensing blood oxygen
US20090083129A1 (en) 2007-09-20 2009-03-26 Neurofocus, Inc. Personalized content delivery using neuro-response priming data
HUE027777T2 (en) 2007-10-23 2016-10-28 Mindmetic Ltd Method, system and computer program for automated interpretation of measurements in response to stimuli
US10664889B2 (en) 2008-04-01 2020-05-26 Certona Corporation System and method for combining and optimizing business strategies
US8219438B1 (en) 2008-06-30 2012-07-10 Videomining Corporation Method and system for measuring shopper response to products based on behavior and facial expression
JP5028431B2 (en) 2009-01-07 2012-09-19 株式会社日立製作所 Network relay device and packet distribution method
US20100215289A1 (en) 2009-02-24 2010-08-26 Neurofocus, Inc. Personalized media morphing
US20100214318A1 (en) 2009-02-24 2010-08-26 Neurofocus, Inc. Neurologically informed morphing
US8335715B2 (en) 2009-11-19 2012-12-18 The Nielsen Company (Us), Llc. Advertisement exchange using neuro-response data
US8335716B2 (en) 2009-11-19 2012-12-18 The Nielsen Company (Us), Llc. Multimedia advertisement exchange
US20110270620A1 (en) 2010-03-17 2011-11-03 Neurofocus, Inc. Neurological sentiment tracking system
US20110237971A1 (en) 2010-03-25 2011-09-29 Neurofocus, Inc. Discrete choice modeling using neuro-response data
US20110282749A1 (en) 2010-05-10 2011-11-17 Neurofocus, Inc. Methods and apparatus for providing advocacy as advertisement
US20110276504A1 (en) 2010-05-10 2011-11-10 Neurofocus, Inc. Methods and apparatus for providing remuneration for advocacy
US20110282231A1 (en) 2010-05-12 2011-11-17 Neurofocus, Inc. Mechanisms for collecting electroencephalography data
US8655428B2 (en) 2010-05-12 2014-02-18 The Nielsen Company (Us), Llc Neuro-response data synchronization
CN102259559A (en) 2010-05-27 2011-11-30 鸿富锦精密工业(深圳)有限公司 Castor assembly
US8392250B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Neuro-response evaluated stimulus in virtual reality environments
US8392251B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Location aware presentation of stimulus material
US8396744B2 (en) 2010-08-25 2013-03-12 The Nielsen Company (Us), Llc Effective virtual reality environments for presentation of marketing materials
US20120072289A1 (en) 2010-09-16 2012-03-22 Neurofocus, Inc. Biometric aware content presentation
US20120083668A1 (en) 2010-09-30 2012-04-05 Anantha Pradeep Systems and methods to modify a characteristic of a user device based on a neurological and/or physiological measurement
US20120084139A1 (en) 2010-10-01 2012-04-05 Anantha Pradeep Systems and methods to match a representative with a commercial property based on neurological and/or physiological response data
US20120108995A1 (en) 2010-10-27 2012-05-03 Neurofocus, Inc. Neuro-response post-purchase assessment
US20120284332A1 (en) 2010-11-03 2012-11-08 Anantha Pradeep Systems and methods for formatting a presentation in webpage based on neuro-response data
US20120284112A1 (en) 2010-11-03 2012-11-08 Anantha Pradeep Systems and methods for social network and location based advocacy with neurological feedback
US20120130800A1 (en) 2010-11-24 2012-05-24 Anantha Pradeep Systems and methods for assessing advertising effectiveness using neurological data
US20120290409A1 (en) 2011-05-11 2012-11-15 Neurofocus, Inc. Marketing material enhanced wait states
US20130124365A1 (en) 2011-11-10 2013-05-16 Anantha Pradeep Dynamic merchandising connection system
US20130152506A1 (en) 2011-12-15 2013-06-20 Anantha Pradeep Dynamic package personalization system

Patent Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901215A (en) * 1971-08-20 1975-08-26 Erwin Roy John Method of testing the senses and cognition of subjects
US4894777A (en) * 1986-07-28 1990-01-16 Canon Kabushiki Kaisha Operator mental condition detector
US5243517A (en) * 1988-08-03 1993-09-07 Westinghouse Electric Corp. Method and apparatus for physiological evaluation of short films and entertainment materials
US6120440A (en) * 1990-09-11 2000-09-19 Goknar; M. Kemal Diagnostic method
US5406956A (en) * 1993-02-11 1995-04-18 Francis Luca Conte Method and apparatus for truth detection
US6334778B1 (en) * 1994-04-26 2002-01-01 Health Hero Network, Inc. Remote psychological diagnosis and monitoring system
US6254536B1 (en) * 1995-08-02 2001-07-03 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
US6292688B1 (en) * 1996-02-28 2001-09-18 Advanced Neurotechnologies, Inc. Method and apparatus for analyzing neurological response to emotion-inducing stimuli
US6228038B1 (en) * 1997-04-14 2001-05-08 Eyelight Research N.V. Measuring and processing data in reaction to stimuli
US6173260B1 (en) * 1997-10-29 2001-01-09 Interval Research Corporation System and method for automatic classification of speech based upon affective content
US6099319A (en) * 1998-02-24 2000-08-08 Zaltman; Gerald Neuroimaging as a marketing tool
US6520905B1 (en) * 1998-02-26 2003-02-18 Eastman Kodak Company Management of physiological and psychological state of an individual using images portable biosensor device
US6286005B1 (en) * 1998-03-11 2001-09-04 Cannon Holdings, L.L.C. Method and apparatus for analyzing data and advertising optimization
US20010020236A1 (en) * 1998-03-11 2001-09-06 Cannon Mark E. Method and apparatus for analyzing data and advertising optimization
US6788882B1 (en) * 1998-04-17 2004-09-07 Timesurf, L.L.C. Systems and methods for storing a plurality of video streams on re-writable random-access media and time-and channel- based retrieval thereof
US6792304B1 (en) * 1998-05-15 2004-09-14 Swinburne Limited Mass communication assessment system
US6289234B1 (en) * 1998-12-02 2001-09-11 Siemens Aktiengesellschaft Method for time-resolved and location-resolved presentation of functional brain activities with magnetic resonance and apparatus for the implementation of the method
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US6545685B1 (en) * 1999-01-14 2003-04-08 Silicon Graphics, Inc. Method and system for efficient edge blending in high fidelity multichannel computer graphics displays
US6280198B1 (en) * 1999-01-29 2001-08-28 Scientific Learning Corporation Remote computer implemented methods for cognitive testing
US6422999B1 (en) * 1999-05-13 2002-07-23 Daniel A. Hill Method of measuring consumer reaction
US6236885B1 (en) * 1999-06-30 2001-05-22 Capita Research Group Inc. System for correlating in a display stimuli and a test subject's response to the stimuli
US6398643B1 (en) * 1999-09-30 2002-06-04 Allan G. S. Knowles Promotional gaming device
US20050076359A1 (en) * 1999-12-21 2005-04-07 Andrew Pierson Modifying commercials for multi-speed playback
US7177675B2 (en) * 2000-02-09 2007-02-13 Cns Response, Inc Electroencephalography based systems and methods for selecting therapies and predicting outcomes
US7917366B1 (en) * 2000-03-24 2011-03-29 Exaudios Technologies System and method for determining a personal SHG profile by voice analysis
US6453194B1 (en) * 2000-03-29 2002-09-17 Daniel A. Hill Method of measuring consumer reaction while participating in a consumer activity
US20030059750A1 (en) * 2000-04-06 2003-03-27 Bindler Paul R. Automated and intelligent networked-based psychological services
US7865394B1 (en) * 2000-04-17 2011-01-04 Alterian, LLC Multimedia messaging method and system
US20030013981A1 (en) * 2000-06-26 2003-01-16 Alan Gevins Neurocognitive function EEG measurement method and system
US6754524B2 (en) * 2000-08-28 2004-06-22 Research Foundation Of The City University Of New York Method for detecting deception
US20060129458A1 (en) * 2000-10-12 2006-06-15 Maggio Frank S Method and system for interacting with on-demand video content
US6904408B1 (en) * 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US20020072952A1 (en) * 2000-12-07 2002-06-13 International Business Machines Corporation Visual and audible consumer reaction collection
US20020077534A1 (en) * 2000-12-18 2002-06-20 Human Bionics Llc Method and system for initiating activity based on sensed electrophysiological data
US20040098298A1 (en) * 2001-01-24 2004-05-20 Yin Jia Hong Monitoring responses to visual stimuli
US6688890B2 (en) * 2001-02-09 2004-02-10 M-Tec Ag Device, method and computer program product for measuring a physical or physiological activity by a subject and for assessing the psychosomatic state of the subject
US20080040740A1 (en) * 2001-04-03 2008-02-14 Prime Research Alliance E, Inc. Alternative Advertising in Prerecorded Media
US20030100998A2 (en) * 2001-05-15 2003-05-29 Carnegie Mellon University (Pittsburgh, Pa) And Psychogenics, Inc. (Hawthorne, Ny) Systems and methods for monitoring behavior informatics
US7689272B2 (en) * 2001-06-07 2010-03-30 Lawrence Farwell Method for brain fingerprinting, measurement, assessment and analysis of brain function
US20050154290A1 (en) * 2001-06-15 2005-07-14 Daniel Langleben Functional brain imaging for detecting and assessing deception and concealed recognition, and cognitive/emotional response to information
US20060035707A1 (en) * 2001-06-15 2006-02-16 Igt Virtual leash for personal gaming device
US20030036955A1 (en) * 2001-08-16 2003-02-20 Fujitsu Limited Advertising server, method, program and recording medium
US20030104865A1 (en) * 2001-12-04 2003-06-05 Yuri Itkis Wireless wagering system
US6585521B1 (en) * 2001-12-21 2003-07-01 Hewlett-Packard Development Company, L.P. Video indexing based on viewers' behavior and emotion feedback
US20040005143A1 (en) * 2002-07-02 2004-01-08 Hitachi, Ltd. Video recording/playback system and method for generating video data
US20050143629A1 (en) * 2003-06-20 2005-06-30 Farwell Lawrence A. Method for a classification guilty knowledge test and integrated system for detection of deception and information
US20050079474A1 (en) * 2003-10-14 2005-04-14 Kenneth Lowe Emotional state modification method and system
US20050177058A1 (en) * 2004-02-11 2005-08-11 Nina Sobell System and method for analyzing the brain wave patterns of one or more persons for determining similarities in response to a common set of stimuli, making artistic expressions and diagnosis
US7698238B2 (en) * 2004-04-01 2010-04-13 Sony Deutschland Gmbh Emotion controlled system for processing multimedia data
US20060168630A1 (en) * 2004-04-02 2006-07-27 Davies Colin J System for providing visible messages during pvr trick mode playback
US20080125110A1 (en) * 2005-08-04 2008-05-29 Swisscom Mobile Ag Method and system of human perception in combination with mobile communications systems
US20070066874A1 (en) * 2005-09-14 2007-03-22 Vaughn Cook Methods and devices for analyzing and comparing physiological parameter measurements
US20070066916A1 (en) * 2005-09-16 2007-03-22 Imotions Emotion Technology Aps System and method for determining human emotion by analyzing eye properties
US7340060B2 (en) * 2005-10-26 2008-03-04 Black Box Intelligence Limited System and method for behavioural modelling
US20110059422A1 (en) * 2005-12-14 2011-03-10 Manabu Masaoka Physiological and cognitive feedback device, system, and method for evaluating a response of a user in an interactive language learning advertisement
US20100004977A1 (en) * 2006-09-05 2010-01-07 Innerscope Research Llc Method and System For Measuring User Experience For Interactive Activities
US20080091512A1 (en) * 2006-09-05 2008-04-17 Marci Carl D Method and system for determining audience response to a sensory stimulus
US20080065468A1 (en) * 2006-09-07 2008-03-13 Charles John Berg Methods for Measuring Emotive Response and Selection Preference
US20080097854A1 (en) * 2006-10-24 2008-04-24 Hello-Hello, Inc. Method for Creating and Analyzing Advertisements
US20100198042A1 (en) * 2006-12-08 2010-08-05 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V Dry electrode cap for electro-encephalography
US20080152300A1 (en) * 2006-12-22 2008-06-26 Guideworks, Llc Systems and methods for inserting advertisements during commercial skip
US20080214902A1 (en) * 2007-03-02 2008-09-04 Lee Hans C Apparatus and Method for Objectively Determining Human Response to Media
US20080222670A1 (en) * 2007-03-07 2008-09-11 Lee Hans C Method and system for using coherence of biological responses as a measure of performance of a media
US20080222671A1 (en) * 2007-03-08 2008-09-11 Lee Hans C Method and system for rating media and events in media based on physiological data
US20090030717A1 (en) * 2007-03-29 2009-01-29 Neurofocus, Inc. Intra-modality synthesis of central nervous system, autonomic nervous system, and effector data
US20090024447A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous sytem, and effector data
US20090024448A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Protocol generator and presenter device for analysis of marketing and entertainment effectiveness
US20090024049A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Cross-modality synthesis of central nervous system, autonomic nervous system, and effector data
US20090030930A1 (en) * 2007-05-01 2009-01-29 Neurofocus Inc. Neuro-informatics repository system
US20090024475A1 (en) * 2007-05-01 2009-01-22 Neurofocus Inc. Neuro-feedback based stimulus compression device
US20090024449A1 (en) * 2007-05-16 2009-01-22 Neurofocus Inc. Habituation analyzer device utilizing central nervous system, autonomic nervous system and effector system measurements
US20090030303A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Audience response analysis using simultaneous electroencephalography (eeg) and functional magnetic resonance imaging (fmri)
US20090030287A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Incented response assessment at a point of transaction
US20090025023A1 (en) * 2007-06-06 2009-01-22 Neurofocus Inc. Multi-market program and commercial response monitoring system using neuro-response measurements
US20090036756A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Neuro-response stimulus and stimulus attribute resonance estimator
US20090036755A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Entity and relationship assessment and extraction using neuro-response measurements
US20090063255A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Consumer experience assessment system
US20090063256A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Consumer experience portrayal effectiveness assessment system
US20090062629A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Stimulus placement system using subject neuro-response measurements
US20090062681A1 (en) * 2007-08-29 2009-03-05 Neurofocus, Inc. Content based selection and meta tagging of advertisement breaks
US20090082643A1 (en) * 2007-09-20 2009-03-26 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using magnetoencephalography
US20090238089A1 (en) * 2008-03-18 2009-09-24 Kitajima Katsuya Ethernet transmission method, transmission apparatus and system
US20100145215A1 (en) * 2008-12-09 2010-06-10 Neurofocus, Inc. Brain pattern analyzer using neuro-response data
US20100186031A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing personalized media in video
US20100183279A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing video with embedded media
US20100186032A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing alternate media for video decoders
US20100249538A1 (en) * 2009-03-24 2010-09-30 Neurofocus, Inc. Presentation measure using neurographics
US20100250325A1 (en) * 2009-03-24 2010-09-30 Neurofocus, Inc. Neurological profiles for market matching and stimulus presentation
US20100249636A1 (en) * 2009-03-27 2010-09-30 Neurofocus, Inc. Personalized stimulus placement in video games
US20110046473A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Eeg triggered fmri signal acquisition
US20110046504A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US20110046502A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US20110047121A1 (en) * 2009-08-21 2011-02-24 Neurofocus, Inc. Analysis of the mirror neuron system for evaluation of stimulus
US20110046503A1 (en) * 2009-08-24 2011-02-24 Neurofocus, Inc. Dry electrodes for electroencephalography
US20110105937A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Analysis of controlled and automatic attention for introduction of stimulus material
US20110106750A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Generating ratings predictions using neuro-response data
US20110106621A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Intracluster content management using neuro-response priming data

Cited By (191)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257834A1 (en) * 2005-05-10 2006-11-16 Lee Linda M Quantitative EEG as an identifier of learning modality
US10506941B2 (en) 2005-08-09 2019-12-17 The Nielsen Company (Us), Llc Device and method for sensing electrical activity in tissue
US11638547B2 (en) 2005-08-09 2023-05-02 Nielsen Consumer Llc Device and method for sensing electrical activity in tissue
US20070055169A1 (en) * 2005-09-02 2007-03-08 Lee Michael J Device and method for sensing electrical activity in tissue
US9351658B2 (en) 2005-09-02 2016-05-31 The Nielsen Company (Us), Llc Device and method for sensing electrical activity in tissue
US20080214902A1 (en) * 2007-03-02 2008-09-04 Lee Hans C Apparatus and Method for Objectively Determining Human Response to Media
US9215996B2 (en) 2007-03-02 2015-12-22 The Nielsen Company (Us), Llc Apparatus and method for objectively determining human response to media
US20090070798A1 (en) * 2007-03-02 2009-03-12 Lee Hans C System and Method for Detecting Viewer Attention to Media Delivery Devices
US20090253996A1 (en) * 2007-03-02 2009-10-08 Lee Michael J Integrated Sensor Headset
US20080221969A1 (en) * 2007-03-07 2008-09-11 Emsense Corporation Method And System For Measuring And Ranking A "Thought" Response To Audiovisual Or Interactive Media, Products Or Activities Using Physiological Signals
US8473044B2 (en) 2007-03-07 2013-06-25 The Nielsen Company (Us), Llc Method and system for measuring and ranking a positive or negative response to audiovisual or interactive media, products or activities using physiological signals
US8973022B2 (en) 2007-03-07 2015-03-03 The Nielsen Company (Us), Llc Method and system for using coherence of biological responses as a measure of performance of a media
US8230457B2 (en) 2007-03-07 2012-07-24 The Nielsen Company (Us), Llc. Method and system for using coherence of biological responses as a measure of performance of a media
US20080222670A1 (en) * 2007-03-07 2008-09-11 Lee Hans C Method and system for using coherence of biological responses as a measure of performance of a media
US20080221472A1 (en) * 2007-03-07 2008-09-11 Lee Hans C Method and system for measuring and ranking a positive or negative response to audiovisual or interactive media, products or activities using physiological signals
US20080221400A1 (en) * 2007-03-08 2008-09-11 Lee Hans C Method and system for measuring and ranking an "engagement" response to audiovisual or interactive media, products, or activities using physiological signals
US8764652B2 (en) 2007-03-08 2014-07-01 The Nielson Company (US), LLC. Method and system for measuring and ranking an “engagement” response to audiovisual or interactive media, products, or activities using physiological signals
US20080222671A1 (en) * 2007-03-08 2008-09-11 Lee Hans C Method and system for rating media and events in media based on physiological data
US8782681B2 (en) 2007-03-08 2014-07-15 The Nielsen Company (Us), Llc Method and system for rating media and events in media based on physiological data
US8484081B2 (en) 2007-03-29 2013-07-09 The Nielsen Company (Us), Llc Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous system, and effector data
US11250465B2 (en) 2007-03-29 2022-02-15 Nielsen Consumer Llc Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous sytem, and effector data
US8473345B2 (en) 2007-03-29 2013-06-25 The Nielsen Company (Us), Llc Protocol generator and presenter device for analysis of marketing and entertainment effectiveness
US20090030717A1 (en) * 2007-03-29 2009-01-29 Neurofocus, Inc. Intra-modality synthesis of central nervous system, autonomic nervous system, and effector data
US20090024448A1 (en) * 2007-03-29 2009-01-22 Neurofocus, Inc. Protocol generator and presenter device for analysis of marketing and entertainment effectiveness
US11790393B2 (en) 2007-03-29 2023-10-17 Nielsen Consumer Llc Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous system, and effector data
US10679241B2 (en) 2007-03-29 2020-06-09 The Nielsen Company (Us), Llc Analysis of marketing and entertainment effectiveness using central nervous system, autonomic nervous system, and effector data
US9886981B2 (en) 2007-05-01 2018-02-06 The Nielsen Company (Us), Llc Neuro-feedback based stimulus compression device
US8386312B2 (en) 2007-05-01 2013-02-26 The Nielsen Company (Us), Llc Neuro-informatics repository system
US20090030930A1 (en) * 2007-05-01 2009-01-29 Neurofocus Inc. Neuro-informatics repository system
US11049134B2 (en) 2007-05-16 2021-06-29 Nielsen Consumer Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
US10580031B2 (en) 2007-05-16 2020-03-03 The Nielsen Company (Us), Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
US20090328089A1 (en) * 2007-05-16 2009-12-31 Neurofocus Inc. Audience response measurement and tracking system
US8392253B2 (en) 2007-05-16 2013-03-05 The Nielsen Company (Us), Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
US20090030303A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Audience response analysis using simultaneous electroencephalography (eeg) and functional magnetic resonance imaging (fmri)
US20090030287A1 (en) * 2007-06-06 2009-01-29 Neurofocus Inc. Incented response assessment at a point of transaction
US8494905B2 (en) 2007-06-06 2013-07-23 The Nielsen Company (Us), Llc Audience response analysis using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)
US20090036755A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Entity and relationship assessment and extraction using neuro-response measurements
US20090036756A1 (en) * 2007-07-30 2009-02-05 Neurofocus, Inc. Neuro-response stimulus and stimulus attribute resonance estimator
US8533042B2 (en) 2007-07-30 2013-09-10 The Nielsen Company (Us), Llc Neuro-response stimulus and stimulus attribute resonance estimator
US11763340B2 (en) 2007-07-30 2023-09-19 Nielsen Consumer Llc Neuro-response stimulus and stimulus attribute resonance estimator
US11244345B2 (en) 2007-07-30 2022-02-08 Nielsen Consumer Llc Neuro-response stimulus and stimulus attribute resonance estimator
US10733625B2 (en) 2007-07-30 2020-08-04 The Nielsen Company (Us), Llc Neuro-response stimulus and stimulus attribute resonance estimator
US20090062629A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Stimulus placement system using subject neuro-response measurements
US10937051B2 (en) 2007-08-28 2021-03-02 The Nielsen Company (Us), Llc Stimulus placement system using subject neuro-response measurements
US8386313B2 (en) 2007-08-28 2013-02-26 The Nielsen Company (Us), Llc Stimulus placement system using subject neuro-response measurements
US20090063256A1 (en) * 2007-08-28 2009-03-05 Neurofocus, Inc. Consumer experience portrayal effectiveness assessment system
US8392254B2 (en) 2007-08-28 2013-03-05 The Nielsen Company (Us), Llc Consumer experience assessment system
US10127572B2 (en) 2007-08-28 2018-11-13 The Nielsen Company, (US), LLC Stimulus placement system using subject neuro-response measurements
US8635105B2 (en) 2007-08-28 2014-01-21 The Nielsen Company (Us), Llc Consumer experience portrayal effectiveness assessment system
US11488198B2 (en) 2007-08-28 2022-11-01 Nielsen Consumer Llc Stimulus placement system using subject neuro-response measurements
US11023920B2 (en) 2007-08-29 2021-06-01 Nielsen Consumer Llc Content based selection and meta tagging of advertisement breaks
US20090062681A1 (en) * 2007-08-29 2009-03-05 Neurofocus, Inc. Content based selection and meta tagging of advertisement breaks
US11610223B2 (en) 2007-08-29 2023-03-21 Nielsen Consumer Llc Content based selection and meta tagging of advertisement breaks
US8392255B2 (en) 2007-08-29 2013-03-05 The Nielsen Company (Us), Llc Content based selection and meta tagging of advertisement breaks
US10140628B2 (en) 2007-08-29 2018-11-27 The Nielsen Company, (US), LLC Content based selection and meta tagging of advertisement breaks
US8376952B2 (en) 2007-09-07 2013-02-19 The Nielsen Company (Us), Llc. Method and apparatus for sensing blood oxygen
US20090069652A1 (en) * 2007-09-07 2009-03-12 Lee Hans C Method and Apparatus for Sensing Blood Oxygen
US8494610B2 (en) 2007-09-20 2013-07-23 The Nielsen Company (Us), Llc Analysis of marketing and entertainment effectiveness using magnetoencephalography
US20090082643A1 (en) * 2007-09-20 2009-03-26 Neurofocus, Inc. Analysis of marketing and entertainment effectiveness using magnetoencephalography
US10963895B2 (en) 2007-09-20 2021-03-30 Nielsen Consumer Llc Personalized content delivery using neuro-response priming data
US20090094286A1 (en) * 2007-10-02 2009-04-09 Lee Hans C System for Remote Access to Media, and Reaction and Survey Data From Viewers of the Media
US9894399B2 (en) 2007-10-02 2018-02-13 The Nielsen Company (Us), Llc Systems and methods to determine media effectiveness
US8151292B2 (en) 2007-10-02 2012-04-03 Emsense Corporation System for remote access to media, and reaction and survey data from viewers of the media
US9571877B2 (en) 2007-10-02 2017-02-14 The Nielsen Company (Us), Llc Systems and methods to determine media effectiveness
US9021515B2 (en) 2007-10-02 2015-04-28 The Nielsen Company (Us), Llc Systems and methods to determine media effectiveness
US8332883B2 (en) 2007-10-02 2012-12-11 The Nielsen Company (Us), Llc Providing actionable insights based on physiological responses from viewers of media
US8327395B2 (en) 2007-10-02 2012-12-04 The Nielsen Company (Us), Llc System providing actionable insights based on physiological responses from viewers of media
US20090094627A1 (en) * 2007-10-02 2009-04-09 Lee Hans C Providing Remote Access to Media, and Reaction and Survey Data From Viewers of the Media
US20090094628A1 (en) * 2007-10-02 2009-04-09 Lee Hans C System Providing Actionable Insights Based on Physiological Responses From Viewers of Media
US20090094629A1 (en) * 2007-10-02 2009-04-09 Lee Hans C Providing Actionable Insights Based on Physiological Responses From Viewers of Media
US8560360B2 (en) * 2007-10-23 2013-10-15 Mindmetric Ltd. Method, system and computer program for automated interpretation of measurements in response to stimuli
US20120010474A1 (en) * 2007-10-23 2012-01-12 Mindmetic Ltd. Method, system and computer program for automated interpretation of measurements in response to stimuli
US11250447B2 (en) 2007-10-31 2022-02-15 Nielsen Consumer Llc Systems and methods providing en mass collection and centralized processing of physiological responses from viewers
US20090133047A1 (en) * 2007-10-31 2009-05-21 Lee Hans C Systems and Methods Providing Distributed Collection and Centralized Processing of Physiological Responses from Viewers
US9521960B2 (en) 2007-10-31 2016-12-20 The Nielsen Company (Us), Llc Systems and methods providing en mass collection and centralized processing of physiological responses from viewers
US10580018B2 (en) 2007-10-31 2020-03-03 The Nielsen Company (Us), Llc Systems and methods providing EN mass collection and centralized processing of physiological responses from viewers
US20090150919A1 (en) * 2007-11-30 2009-06-11 Lee Michael J Correlating Media Instance Information With Physiological Responses From Participating Subjects
US8793715B1 (en) 2007-12-18 2014-07-29 The Nielsen Company (Us), Llc Identifying key media events and modeling causal relationships between key events and reported feelings
US8347326B2 (en) 2007-12-18 2013-01-01 The Nielsen Company (US) Identifying key media events and modeling causal relationships between key events and reported feelings
US9179858B2 (en) * 2008-03-05 2015-11-10 New York University Computer-accessible medium, system and method for assessing effect of a stimulus using intersubject correlation
US9867576B2 (en) 2008-03-05 2018-01-16 New York University Computer-accessible medium, system and method for assessing effect of a stimulus using intersubject correlation
US20110161011A1 (en) * 2008-03-05 2011-06-30 New York University Computer-accessible medium, system and method for assessing effect of a stimulus using intersubject correlation
US9672535B2 (en) 2008-12-14 2017-06-06 Brian William Higgins System and method for communicating information
US20100186031A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing personalized media in video
US9826284B2 (en) 2009-01-21 2017-11-21 The Nielsen Company (Us), Llc Methods and apparatus for providing alternate media for video decoders
US8270814B2 (en) 2009-01-21 2012-09-18 The Nielsen Company (Us), Llc Methods and apparatus for providing video with embedded media
US20100183279A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing video with embedded media
US8464288B2 (en) 2009-01-21 2013-06-11 The Nielsen Company (Us), Llc Methods and apparatus for providing personalized media in video
US20100186032A1 (en) * 2009-01-21 2010-07-22 Neurofocus, Inc. Methods and apparatus for providing alternate media for video decoders
US8955010B2 (en) 2009-01-21 2015-02-10 The Nielsen Company (Us), Llc Methods and apparatus for providing personalized media in video
US9357240B2 (en) 2009-01-21 2016-05-31 The Nielsen Company (Us), Llc Methods and apparatus for providing alternate media for video decoders
US8977110B2 (en) 2009-01-21 2015-03-10 The Nielsen Company (Us), Llc Methods and apparatus for providing video with embedded media
US20100250325A1 (en) * 2009-03-24 2010-09-30 Neurofocus, Inc. Neurological profiles for market matching and stimulus presentation
US11704681B2 (en) 2009-03-24 2023-07-18 Nielsen Consumer Llc Neurological profiles for market matching and stimulus presentation
US20100292545A1 (en) * 2009-05-14 2010-11-18 Advanced Brain Monitoring, Inc. Interactive psychophysiological profiler method and system
US20110046502A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US20110046504A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US8655437B2 (en) 2009-08-21 2014-02-18 The Nielsen Company (Us), Llc Analysis of the mirror neuron system for evaluation of stimulus
US10987015B2 (en) 2009-08-24 2021-04-27 Nielsen Consumer Llc Dry electrodes for electroencephalography
US20110046503A1 (en) * 2009-08-24 2011-02-24 Neurofocus, Inc. Dry electrodes for electroencephalography
US20110077996A1 (en) * 2009-09-25 2011-03-31 Hyungil Ahn Multimodal Affective-Cognitive Product Evaluation
US11669858B2 (en) 2009-10-29 2023-06-06 Nielsen Consumer Llc Analysis of controlled and automatic attention for introduction of stimulus material
US11481788B2 (en) 2009-10-29 2022-10-25 Nielsen Consumer Llc Generating ratings predictions using neuro-response data
US10269036B2 (en) 2009-10-29 2019-04-23 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US10068248B2 (en) 2009-10-29 2018-09-04 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US8209224B2 (en) 2009-10-29 2012-06-26 The Nielsen Company (Us), Llc Intracluster content management using neuro-response priming data
US11170400B2 (en) 2009-10-29 2021-11-09 Nielsen Consumer Llc Analysis of controlled and automatic attention for introduction of stimulus material
US20110106621A1 (en) * 2009-10-29 2011-05-05 Neurofocus, Inc. Intracluster content management using neuro-response priming data
US8762202B2 (en) 2009-10-29 2014-06-24 The Nielson Company (Us), Llc Intracluster content management using neuro-response priming data
US9560984B2 (en) 2009-10-29 2017-02-07 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US20110119129A1 (en) * 2009-11-19 2011-05-19 Neurofocus, Inc. Advertisement exchange using neuro-response data
WO2011062796A1 (en) * 2009-11-19 2011-05-26 Neurofocus, Inc. Multimedia advertisement exchange
US8335716B2 (en) 2009-11-19 2012-12-18 The Nielsen Company (Us), Llc. Multimedia advertisement exchange
US20110119124A1 (en) * 2009-11-19 2011-05-19 Neurofocus, Inc. Multimedia advertisement exchange
WO2011062795A1 (en) * 2009-11-19 2011-05-26 Neurofocus, Inc. Advertisement exchange using neuro-response data
US8335715B2 (en) 2009-11-19 2012-12-18 The Nielsen Company (Us), Llc. Advertisement exchange using neuro-response data
US20110225049A1 (en) * 2010-03-12 2011-09-15 Yahoo! Inc. Emoticlips
US20110223571A1 (en) * 2010-03-12 2011-09-15 Yahoo! Inc. Emotional web
US20110225021A1 (en) * 2010-03-12 2011-09-15 Yahoo! Inc. Emotional mapping
US8442849B2 (en) * 2010-03-12 2013-05-14 Yahoo! Inc. Emotional mapping
US8888497B2 (en) 2010-03-12 2014-11-18 Yahoo! Inc. Emotional web
US20110237971A1 (en) * 2010-03-25 2011-09-29 Neurofocus, Inc. Discrete choice modeling using neuro-response data
US9454646B2 (en) 2010-04-19 2016-09-27 The Nielsen Company (Us), Llc Short imagery task (SIT) research method
US11200964B2 (en) 2010-04-19 2021-12-14 Nielsen Consumer Llc Short imagery task (SIT) research method
US10248195B2 (en) 2010-04-19 2019-04-02 The Nielsen Company (Us), Llc. Short imagery task (SIT) research method
US9336535B2 (en) 2010-05-12 2016-05-10 The Nielsen Company (Us), Llc Neuro-response data synchronization
US8655428B2 (en) 2010-05-12 2014-02-18 The Nielsen Company (Us), Llc Neuro-response data synchronization
US8392251B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Location aware presentation of stimulus material
US8392250B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Neuro-response evaluated stimulus in virtual reality environments
US8396744B2 (en) 2010-08-25 2013-03-12 The Nielsen Company (Us), Llc Effective virtual reality environments for presentation of marketing materials
US8548852B2 (en) 2010-08-25 2013-10-01 The Nielsen Company (Us), Llc Effective virtual reality environments for presentation of marketing materials
US20120290409A1 (en) * 2011-05-11 2012-11-15 Neurofocus, Inc. Marketing material enhanced wait states
US20120303466A1 (en) * 2011-05-27 2012-11-29 WowYow, Inc. Shape-Based Advertising for Electronic Visual Media
US12036030B2 (en) 2011-08-02 2024-07-16 Emotiv Inc. Methods for modeling neurological development and diagnosing a neurological impairment of a patient
US11553870B2 (en) 2011-08-02 2023-01-17 Emotiv Inc. Methods for modeling neurological development and diagnosing a neurological impairment of a patient
US9268905B2 (en) * 2012-01-06 2016-02-23 WujiTech, Inc. Methods and systems for determining, monitoring, and analyzing personalized response variables using brain wave frequency data and interactive multimedia display
US20130179087A1 (en) * 2012-01-06 2013-07-11 WujiTech, Inc. Methods and Systems for Determining, Monitoring, and Analyzing Personalized Response Variables Using Brain Wave Frequency Data and Interactive Multimedia Display
CN103190902A (en) * 2012-01-06 2013-07-10 无极技术公司 Methods and systems for determining, monitoring, and analyzing personalized response variables using brain wave frequency data and interactive multimedia display
US10881348B2 (en) 2012-02-27 2021-01-05 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9451303B2 (en) 2012-02-27 2016-09-20 The Nielsen Company (Us), Llc Method and system for gathering and computing an audience's neurologically-based reactions in a distributed framework involving remote storage and computing
US9292858B2 (en) 2012-02-27 2016-03-22 The Nielsen Company (Us), Llc Data collection system for aggregating biologically based measures in asynchronous geographically distributed public environments
US9519909B2 (en) 2012-03-01 2016-12-13 The Nielsen Company (Us), Llc Methods and apparatus to identify users of handheld computing devices
US10080053B2 (en) 2012-04-16 2018-09-18 The Nielsen Company (Us), Llc Methods and apparatus to detect user attentiveness to handheld computing devices
US10986405B2 (en) 2012-04-16 2021-04-20 The Nielsen Company (Us), Llc Methods and apparatus to detect user attentiveness to handheld computing devices
US10536747B2 (en) 2012-04-16 2020-01-14 The Nielsen Company (Us), Llc Methods and apparatus to detect user attentiveness to handheld computing devices
US11792477B2 (en) 2012-04-16 2023-10-17 The Nielsen Company (Us), Llc Methods and apparatus to detect user attentiveness to handheld computing devices
US9485534B2 (en) 2012-04-16 2016-11-01 The Nielsen Company (Us), Llc Methods and apparatus to detect user attentiveness to handheld computing devices
US20180092558A1 (en) * 2012-05-25 2018-04-05 Emotiv, Inc. System and method for providing and aggregating biosignals and action data
US10842403B2 (en) 2012-08-17 2020-11-24 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US9907482B2 (en) 2012-08-17 2018-03-06 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US11980469B2 (en) 2012-08-17 2024-05-14 Nielsen Company Systems and methods to gather and analyze electroencephalographic data
US10779745B2 (en) 2012-08-17 2020-09-22 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US8989835B2 (en) 2012-08-17 2015-03-24 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US9060671B2 (en) 2012-08-17 2015-06-23 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US9215978B2 (en) 2012-08-17 2015-12-22 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9223297B2 (en) 2013-02-28 2015-12-29 The Nielsen Company (Us), Llc Systems and methods for identifying a user of an electronic device
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US9320450B2 (en) 2013-03-14 2016-04-26 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US11076807B2 (en) 2013-03-14 2021-08-03 Nielsen Consumer Llc Methods and apparatus to gather and analyze electroencephalographic data
US9668694B2 (en) 2013-03-14 2017-06-06 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US11974859B2 (en) 2013-07-30 2024-05-07 Emotiv Inc. Wearable system for detecting and measuring biosignals
US10806400B2 (en) 2013-07-30 2020-10-20 Emotiv Inc. Wearable system for detecting and measuring biosignals
US10108601B2 (en) * 2013-09-19 2018-10-23 Infosys Limited Method and system for presenting personalized content
US11141108B2 (en) 2014-04-03 2021-10-12 Nielsen Consumer Llc Methods and apparatus to gather and analyze electroencephalographic data
US9622702B2 (en) 2014-04-03 2017-04-18 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US9622703B2 (en) 2014-04-03 2017-04-18 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US11847260B2 (en) 2015-03-02 2023-12-19 Emotiv Inc. System and method for embedded cognitive state metric system
US10936065B2 (en) * 2015-03-02 2021-03-02 Emotiv Inc. System and method for embedded cognitive state metric system
US10108264B2 (en) * 2015-03-02 2018-10-23 Emotiv, Inc. System and method for embedded cognitive state metric system
US20190018488A1 (en) * 2015-03-02 2019-01-17 Emotiv, Inc. System and method for embedded cognitive state metric system
US10771844B2 (en) 2015-05-19 2020-09-08 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
US11290779B2 (en) 2015-05-19 2022-03-29 Nielsen Consumer Llc Methods and apparatus to adjust content presented to an individual
US9936250B2 (en) 2015-05-19 2018-04-03 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
WO2017009696A1 (en) 2015-07-15 2017-01-19 Slovenská Poľnohospodárska Univerzita V Nitre Method of gathering and/or processing of neuromarketing data and system for realization thereof
US10783444B2 (en) 2017-03-08 2020-09-22 International Business Machines Corporation Real-time analysis of predictive audience feedback during content creation
US10169713B2 (en) 2017-03-08 2019-01-01 International Business Machines Corporation Real-time analysis of predictive audience feedback during content creation
US10783443B2 (en) 2017-03-08 2020-09-22 International Business Machines Corporation Real-time analysis of predictive audience feedback during content creation
US12063422B2 (en) 2018-01-31 2024-08-13 WowYow, Inc. Methods and apparatus for efficient media search and analysis
US10939182B2 (en) 2018-01-31 2021-03-02 WowYow, Inc. Methods and apparatus for media search, characterization, and augmented reality provision
US11903713B2 (en) 2018-12-21 2024-02-20 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
US11006876B2 (en) 2018-12-21 2021-05-18 Hi Llc Biofeedback for awareness and modulation of mental state using a non-invasive brain interface system and method
US11006878B2 (en) 2019-04-04 2021-05-18 Hi Llc Modulation of mental state of a user using a non-invasive brain interface system and method
US11172869B2 (en) 2019-04-26 2021-11-16 Hi Llc Non-invasive system and method for product formulation assessment based on product-elicited brain state measurements
US11553871B2 (en) 2019-06-04 2023-01-17 Lab NINE, Inc. System and apparatus for non-invasive measurement of transcranial electrical signals, and method of calibrating and/or using same for various applications
US11684304B2 (en) 2019-06-11 2023-06-27 Hi Llc Non-invasive systems and methods for the detection and modulation of a user's mental state through awareness of priming effects
US11593715B2 (en) 2020-03-04 2023-02-28 Hi Llc Methods for training and using a neurome that emulates the brain of a user
US11132625B1 (en) 2020-03-04 2021-09-28 Hi Llc Systems and methods for training a neurome that emulates the brain of a user
US20210334831A1 (en) * 2020-04-23 2021-10-28 ESD Technologies, Inc. System and method of identifying audience demographics and delivering relative content to audience
CN114663700A (en) * 2022-03-10 2022-06-24 支付宝(杭州)信息技术有限公司 Virtual resource pushing method, device and equipment

Also Published As

Publication number Publication date
US20190156352A1 (en) 2019-05-23
US10963895B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
US10963895B2 (en) Personalized content delivery using neuro-response priming data
US11610223B2 (en) Content based selection and meta tagging of advertisement breaks
US11488198B2 (en) Stimulus placement system using subject neuro-response measurements
US11763340B2 (en) Neuro-response stimulus and stimulus attribute resonance estimator
US11481788B2 (en) Generating ratings predictions using neuro-response data
US8762202B2 (en) Intracluster content management using neuro-response priming data
US8335715B2 (en) Advertisement exchange using neuro-response data
US8335716B2 (en) Multimedia advertisement exchange
US20110282749A1 (en) Methods and apparatus for providing advocacy as advertisement
US20110276504A1 (en) Methods and apparatus for providing remuneration for advocacy
US20100145215A1 (en) Brain pattern analyzer using neuro-response data
US20090025023A1 (en) Multi-market program and commercial response monitoring system using neuro-response measurements

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEUROFOCUS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PRADEEP, ANANTHA;KNIGHT, ROBERT T.;GURUMOORTHY, RAMACHANDRAN;REEL/FRAME:021668/0986

Effective date: 20081001

AS Assignment

Owner name: TNC (US) HOLDINGS, INC.,CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEUROFOCUS, INC.;REEL/FRAME:024183/0713

Effective date: 20100325

Owner name: TNC (US) HOLDINGS, INC., CONNECTICUT

Free format text: SECURITY AGREEMENT;ASSIGNOR:NEUROFOCUS, INC.;REEL/FRAME:024183/0713

Effective date: 20100325

AS Assignment

Owner name: THE NIELSEN COMPANY (US), LLC., A DELAWARE LIMITED

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TNC (US) HOLDINGS INC., A NEW YORK CORPORATION;REEL/FRAME:026689/0381

Effective date: 20110802

Owner name: TNC (US) HOLDINGS INC., A NEW YORK CORPORATION, NE

Free format text: MERGER;ASSIGNOR:NEUROFOCUS, INC.;REEL/FRAME:026689/0318

Effective date: 20110428

AS Assignment

Owner name: NEUROFOCUS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TNC (US) HOLDINGS, INC.;REEL/FRAME:026805/0336

Effective date: 20110610

AS Assignment

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT FOR THE FIRST LIEN SECURED PARTIES, DELAWARE

Free format text: SUPPLEMENTAL IP SECURITY AGREEMENT;ASSIGNOR:THE NIELSEN COMPANY ((US), LLC;REEL/FRAME:037172/0415

Effective date: 20151023

Owner name: CITIBANK, N.A., AS COLLATERAL AGENT FOR THE FIRST

Free format text: SUPPLEMENTAL IP SECURITY AGREEMENT;ASSIGNOR:THE NIELSEN COMPANY ((US), LLC;REEL/FRAME:037172/0415

Effective date: 20151023

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION

AS Assignment

Owner name: THE NIELSEN COMPANY (US), LLC, NEW YORK

Free format text: RELEASE (REEL 037172 / FRAME 0415);ASSIGNOR:CITIBANK, N.A.;REEL/FRAME:061750/0221

Effective date: 20221011