US20080154029A1 - Process For Manufacturing a Composite Sorbent Material For Chromatographical Separation of Biopolymers - Google Patents

Process For Manufacturing a Composite Sorbent Material For Chromatographical Separation of Biopolymers Download PDF

Info

Publication number
US20080154029A1
US20080154029A1 US11/547,011 US54701105A US2008154029A1 US 20080154029 A1 US20080154029 A1 US 20080154029A1 US 54701105 A US54701105 A US 54701105A US 2008154029 A1 US2008154029 A1 US 2008154029A1
Authority
US
United States
Prior art keywords
sorbent material
sorbent
general formula
composite
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/547,011
Other languages
English (en)
Inventor
Hamlet Balayan
Robert-Matthias Leiser
Lutz Plobner
Leonti E. Tkachenko
Gottfried Brem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
nexttec GmbH
Nextec GmbH
Original Assignee
Nextec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nextec GmbH filed Critical Nextec GmbH
Assigned to NEXTEC GMBH reassignment NEXTEC GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BREM, GOTTFRIED, BALAYAN, HAMLET, LEISER, ROBERT-MATTHIAS, PLOBNER, LUTZ, TKACHENKO, LEONTI E.
Assigned to NEXTTEC GMBH reassignment NEXTTEC GMBH CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY, PREVIOUSLY RECORDED AT REEL 018727, FRAME 0809. Assignors: BREM, GOTTFRIED, BALAYAN, HAMLET, LEISER, ROBERT-MATTHIAS, PLOBNER, LUTZ, TKACHENKO, LEONTI E.
Publication of US20080154029A1 publication Critical patent/US20080154029A1/en
Priority to US12/830,676 priority Critical patent/US20110186519A1/en
Priority to US14/033,074 priority patent/US20140094596A1/en
Priority to US14/966,269 priority patent/US20160097048A1/en
Priority to US15/429,668 priority patent/US10221411B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/101Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/283Porous sorbents based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/289Phases chemically bonded to a substrate, e.g. to silica or to polymers bonded via a spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3278Polymers being grafted on the carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials

Definitions

  • the present invention relates to a sorbent material for separation and purification of biopolymers, particularly nucleic acids, having a solid support substantially modified with a copolymer coating comprising aromatic monomers and crosslinking compounds and unsaturated esters or ethers preferably attached to the support via a vinylchlorsilane.
  • hydrophilic support material such as silica gel
  • hydrophobic moieties like alkyl chains of different length.
  • U.S. Pat. No. 4,045,353 describes a chromatographic material prepared by radiation of polymerisable monomers absorbed on a microporous inorganic substrate.
  • the sorbent material thus obtained is suitable for separation of relatively small molecules, but there is insufficient selectivity for separation of biopolymers like nucleic acids.
  • EP 1 148 945 discloses a material having a solid support of controlled pore glass and a coating of crosslinkable olefinic oligomers. Fluorination of the oligomer coated support is effected with gaseous xenon difluoride (XeF 2 ), optionally under inert gas conditions, or with a mixture of fluorine and an inert carrier gas.
  • XeF 2 gaseous xenon difluoride
  • the composite material thus obtained is suitable for use in the isolation of DNA out of complex mixtures, where apart of DNA also RNA, proteins, low molecular substances and salts are present.
  • DNA also RNA, proteins, low molecular substances and salts are present.
  • HPLC high pressure
  • HIC hydrophobic interaction chromatography
  • sorbents on the basis of macroporous silica gels, modified with vinyl monomers like N-vinyl-pyrrolidone, styrene, ethylene, vinylethyl ether (authors certificate, USSR, No. 687081, 1979).
  • the sorbent materials are manufactured in applying said monomers to ⁇ -aminopropylated or silanised silica gel and subsequent polymerisation.
  • These sorbents possess good mechanical stability, do not swell in solvents and may be used for the separation of proteins and other active biomolecules. No hint is given for using these materials in the separation of nucleic acids.
  • the object of the present invention is to provide a sorbent material with improved characteristics in separation and purification capacity and increased selectivity in the specific action of the sorbent material on biopolymers having an advanced surface for biotechnological applications, such as isolation and separation of biopolymers, primarily in aqueous media, with improved access area of the separation surface in a separation medium and improved stability of the coating for the construction of material suitable for chromatographical applications like HPLC and fast sample preparations via solid phase extraction in compact cartridges for PCR-applications.
  • the object is solved by a polymer obtainable by a process of polymerizing at least three components [A], [B], and [M] wherein
  • [A], [B], and [M] have the same meaning as in claim 1 and x, y, and z are independent of each other an integer of 1-100 and p is a number between 2 and 5000.
  • Subject matter of the invention is also a monomer having the structure [A] x —[B] y —[M] z wherein [A], [B], and [M] have the same meaning as in claim 1 and x, y, and z is independent of each other an integer of 1-100
  • a chromatographic material comprising essentially a polymer of the invention is also subject matter of the invention as well as a composite sorbent material having a support which is at least partially covered by a polymer coating of the invention.
  • a sorbent material having a previously dehydrated solid support having a copolymer coating comprising substituted or unsubstituted aromatic vinyl monomers, substituted or unsubstituted aromatic crosslinking compounds and optionally non-saturated carboxylic acids or esters or non-saturated alcohols or ethers, respectively.
  • the coating can be attached to the support via a vinylchlorsilane.
  • Substituents of the compounds of the copolymer coating modify the hydrophobic/hydrophilic properties on the surface of the coating and provide an essentially improved selectivity for selected applications.
  • the functional groups exhibiting hydrophilic properties provide an essentially better wetting of the inner and outer surfaces of the pores of the sorbent material.
  • the support of the sorbent material of the invention is porous inorganic material selected from the group comprising inorganic metal oxides, such as oxides of aluminum, titanium, zirconium, silicon and/or iron.
  • inorganic metal oxides such as oxides of aluminum, titanium, zirconium, silicon and/or iron.
  • silica gel having an average pore size of 100-2000 ⁇ , preferably 300-1000 ⁇ , and a specific surface of 20-300 m 2 /g, more preferably 20-200 m 2 /g or 20-100 m 2 /g.
  • the support containing inorganic materials is in particle-like or monolithic membrane-like form and has a porous structure which shows a bidisperse or oligodisperse distribution of pore sizes.
  • Such structures build, e. g., the basis for sorbent materials according to the present invention, which allow additionally to the separation of biopolymers such as nucleic acids the improved retention of low molecular weight substances having, e. g., molecular weights of less than 500 Da, salts and proteins, whereas nucleic acids are passing without retention.
  • the separation of nucleic acids, e. g. DNA is conducted in one step.
  • Such bidisperse supports may preferentially be obtained by means of gelling (gel building) of silica sols, starting the process with the mixture of two size types of monodisperse colloidal silica particles.
  • the mass proportion of these two types of colloidal particles determines the proportion and distribution of differently sized pores in the final silica support material.
  • the ratio of the mean diameter of the large pore size distribution and the lower pore size distribution is in the range of 2-15 or 3-15 nm, in particular 4-10 nm.
  • the mean diameter of the larger pore size distribution should not be smaller than 25 to 50 nm and should not exceed 200 nm (2000 ⁇ ), preferably 100 nm (1000 ⁇ ).
  • Especially preferred mean diameters of the large pore size distribution are in the range of 20-100, more preferably 25-80 nm.
  • the mass proportion of the smaller to larger pores represents (90-60, preferably 85-70):(10-40, preferably 15-30) (in %).
  • the polymer coating preferably has a thickness of about 10 to 250 Angström, preferably 10 to 100 Angström and micropores of less than 50 ⁇ accessable to water, salts, and low molecular weight substances being non-adsorptive towards nucleic acids and adsorptive towards proteins.
  • the previously dried support material is modified by treating it with a boiling solution of a vinylchlorsilane. Treatment of the surface of the support material is conducted at boiling temperature of the solvent used. This treatment enables the following chemosorption of the copolymer and is the basis for enhanced chemical stability and durability of the final sorbent material. Washing of the silanised support, e. g. silica gel, for removal of unreacted silane is done by multiple extraction with organic solvents (ethanol, acetone, toluene, dioxane).
  • organic solvents ethanol, acetone, toluene, dioxane
  • Polymerisation of the copolymer composition is performed by polymerisation in solution of an organic solvent for a period of 2 to 8 h at the boiling temperature of the solvent or in aqueous solution (emulsion polymerisation) with an emulgator and in the presence of an initiator for radical polymerisation.
  • Suitable initiators comprise benzoyl peroxide, potassium peroxodisulfate as a water soluble initiator, ammonium persulfate, etc.
  • a 5-20% solution of copolymer is used.
  • a mass ratio of silica gel matrix and solution of 1:3-6 is also preferred. Finally unreacted material is removed and the composite material is recovered and dried.
  • the sorbent material according to the invention is useful in separation processes, enhancing the ease of handling and the speed of these processes.
  • the substances to be separated are nucleic acids and/or proteins.
  • a conventionally used chromatographic column or cartridge can be filled, at least partially, with the sorbent material of the invention.
  • the sorbent material of the invention behaves similar to other solid chromatographic supports so that the methods for filling chromatographic columns or cartridges can be used in an analogous manner.
  • the support for carrying out chromatographic separations can also be provided in the form of a membrane-like item comprising the sorbent material of the invention, wherein the sorbent material is embedded in a polymeric matrix such as a nylon membrane. Also other membrane materials which are used in preparation, isolation or separation of biomolecules can be used as matrix for embedding a sorbent material of the present invention.
  • a chromatographic material of the invention it is advantageous to provide the sorbent material according to the invention in bulk or a chromatographic column or cartridge or membrane-like device together with filter materials, reagents and/or buffers or other devices or chemicals for performing fast sample preparations and chromatographic separations.
  • This item can especially be provided in form of a kit or a miniaturized device in form of chips or microreactors.
  • the chromatographic separation is not limited in its scale. It can be used in any chromatographic operation for separation, isolation, identification, purification and/or detection of biomolecules, in particular nucleic acids, in preparative or analytical scale.
  • the present invention provides a product with advanced sorption properties that allows to use this product for chromatography of biopolymers according to the object of the invention.
  • the process of the invention leads to a sorbent material with high binding capacity towards proteins and minimal non-specific sorption of nucleic acids, which is accomplished by using copolymers having complementary functional groups.
  • the inventive process allows manufacturing of a sorbent with adjusted hydrophilic properties having high mechanical stability and very good hydrodynamic characteristics.
  • the sorbent has been obtained similar to example 1, but with a polymer composition without component [M] (2-hydroxyethylmethacrylate).
  • the sorbent has been obtained similar to example 3, but with a polymer composition without component [M] (methacrylic acid).
  • silanized silica 10 g of macroporous silica gel previously dried in vacuo at 200° C. for 3 h having an average pore diameter of 300 A are treated with a boiling solution of dimethylvinylchlorosilane corresponding to example 1.
  • the thus obtained silanized silica will be transferred into a three bottlenecked flask with a stirrer, a thermometer and a reflux condenser.
  • To the flask 40 ml toluene, 3 ml chlorovinyl benzene, 0.4 ml divinylbenzene, 0.4 ml allylic alcohol and 0.30 g benzoil peroxide will be added.
  • the polymerization is conducted for 6 h at 102° C. The further treatment will be achieved corresponding to example 1.
  • the sorbent has been obtained similar to example 5, but with a polymer composition without component [M] (allylic alcohol).
  • the ready obtained silica gel was grinded, fractionated and analysed for pore size distribution both by mercury porometry (according to DIN 66 133 (1993)) and BET-method (according to ISO 9277). These analyses showed a preferential pore size in two classes of 5 nm (appr. 85%) and 28 nm (appr. 15%) and a sorption volume of 0.7 cm 3 /g.
  • silica gel sorbent was prepared as in example 7, with following variations:
  • the porogrammes obtained by testing the sorbents based on the macroporous silica gel show the distribution of the pores in differential and integral manner and allow to determine the medium pore size of the sorbent as well as the effective thickness of the polymeric layer, which is 5-7.5 nm.
  • the kit contains all necessary reagents for lysis of cells or tissue and genomic DNA purification.
  • the resulting DNA is suitable for most enzymatic reactions (restriction digests, PCR, sequencing etc.).
  • DNA flows through the column during a short, one-step purification procedure.
  • kits are stable at room temperature during shipment. After arrival store the kit at +2° C. to +8° C. Columns may be stored at room temperature.
  • Buffer G1 10 vials blue
  • Buffer G2 10 vials blue
  • each for 5 isolations Nexttec clean-columns 50 columns
  • the kit contains all necessary reagents for lysis of bacterial cells and DNA purification. It is approved for many Gram( ⁇ ) as well as Gram(+) bacteria. The resulting DNA is suitable for most enzymatic reactions (restriction digests, PCR, sequencing etc.).
  • DNA flows through the column during a short, one-step purification procedure.
  • kit components are stable at room temperature during shipment. After arrival store RNase solution at ⁇ 20° C. The other kit components must be stored at +2° C. to +8° C. Nexttec clean-columns may be stored at room temperature.
  • Buffer B1 (basis buffer) 5 vials (white), each for 10 isolations Buffer B2 5 vials (white), each for 10 isolations Buffer B3 5 vials (white), each for 10 isolations Nexttec clean-columns 50 columns RNase solution 1 vial (white), for 50 isolations
  • BSA bovine serum albumin
  • Salt retention was measured using copper sulphate (CuSO 4 ) as a model salt.
  • a solution of this salt in water results in a blue coloured liquid.
  • the optical density of the solution is linearly depending on the CuSO 4 concentration.
  • the concentration of CuSO 4 in both solutions was then calculated using a linear regression resulting from a standard curve of different CuSO 4 concentrations in water.
  • the applied amount of CuSO 4 was set at 100% and the eluted amount of CuSO 4 was recalculated in % of the applied amount. The difference between both values gives the salt retention in %.
  • the lysate contains low molecular weight compounds, proteins (peptides), nucleic acids and other compounds.
  • the concentration of DNA before (crude lysate) and after (eluate) passing a sorbent containing column was measured using PicoGreen, a fluorescent dye, which binds only to doublestranded DNA, according to the manufacturer's instructions (Molecular Probes c/o Invitrogen).
  • PicoGreen a fluorescent dye, which binds only to doublestranded DNA, according to the manufacturer's instructions (Molecular Probes c/o Invitrogen).
  • PicoGreen a fluorescent dye, which binds only to doublestranded DNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
US11/547,011 2004-04-02 2005-04-01 Process For Manufacturing a Composite Sorbent Material For Chromatographical Separation of Biopolymers Abandoned US20080154029A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/830,676 US20110186519A1 (en) 2004-04-02 2010-07-06 Process for manufacturing a composite sorbent material for chormatographical separation of biopolymers
US14/033,074 US20140094596A1 (en) 2004-04-02 2013-09-20 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US14/966,269 US20160097048A1 (en) 2004-04-02 2015-12-11 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US15/429,668 US10221411B2 (en) 2004-04-02 2017-02-10 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04008147 2004-04-02
EP04008147.3 2004-04-02
PCT/EP2005/051490 WO2005095476A1 (fr) 2004-04-02 2005-04-01 Procede de fabrication de materiau sorbant composite pour la separation chromatographique de biopolymeres

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051490 A-371-Of-International WO2005095476A1 (fr) 2004-04-02 2005-04-01 Procede de fabrication de materiau sorbant composite pour la separation chromatographique de biopolymeres

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/830,676 Continuation US20110186519A1 (en) 2004-04-02 2010-07-06 Process for manufacturing a composite sorbent material for chormatographical separation of biopolymers

Publications (1)

Publication Number Publication Date
US20080154029A1 true US20080154029A1 (en) 2008-06-26

Family

ID=34963789

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/547,011 Abandoned US20080154029A1 (en) 2004-04-02 2005-04-01 Process For Manufacturing a Composite Sorbent Material For Chromatographical Separation of Biopolymers
US12/830,676 Abandoned US20110186519A1 (en) 2004-04-02 2010-07-06 Process for manufacturing a composite sorbent material for chormatographical separation of biopolymers
US14/033,074 Abandoned US20140094596A1 (en) 2004-04-02 2013-09-20 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US14/966,269 Abandoned US20160097048A1 (en) 2004-04-02 2015-12-11 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US15/429,668 Active US10221411B2 (en) 2004-04-02 2017-02-10 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers

Family Applications After (4)

Application Number Title Priority Date Filing Date
US12/830,676 Abandoned US20110186519A1 (en) 2004-04-02 2010-07-06 Process for manufacturing a composite sorbent material for chormatographical separation of biopolymers
US14/033,074 Abandoned US20140094596A1 (en) 2004-04-02 2013-09-20 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US14/966,269 Abandoned US20160097048A1 (en) 2004-04-02 2015-12-11 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
US15/429,668 Active US10221411B2 (en) 2004-04-02 2017-02-10 Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers

Country Status (5)

Country Link
US (5) US20080154029A1 (fr)
EP (2) EP2236529B1 (fr)
JP (1) JP5173406B2 (fr)
AT (1) ATE547442T1 (fr)
WO (1) WO2005095476A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301169A1 (en) * 2008-05-02 2009-12-10 Naval Research Laboratory Selective membranes/thin films for analytical applications
WO2016040697A1 (fr) 2014-09-10 2016-03-17 Quantumdx Group Limited Matériau sorbant pour la séparation de bio-macromolécules
CN109627402A (zh) * 2018-12-14 2019-04-16 江南大学 一种聚苯乙烯基高折射率纳米复合材料的制备方法
US10695744B2 (en) 2015-06-05 2020-06-30 W. R. Grace & Co.-Conn. Adsorbent biprocessing clarification agents and methods of making and using the same
US11229896B2 (en) 2014-01-16 2022-01-25 W.R. Grace & Co.—Conn. Affinity chromatography media and chromatography devices
US11376561B2 (en) * 2018-10-02 2022-07-05 Waters Technologies Corporation Sorbent particles for sample treatment
US11389783B2 (en) 2014-05-02 2022-07-19 W.R. Grace & Co.-Conn. Functionalized support material and methods of making and using functionalized support material
US11529610B2 (en) 2012-09-17 2022-12-20 W.R. Grace & Co.-Conn. Functionalized particulate support material and methods of making and using the same
US11628381B2 (en) 2012-09-17 2023-04-18 W.R. Grace & Co. Conn. Chromatography media and devices

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1620479B1 (fr) 2002-10-15 2013-07-24 ExxonMobil Chemical Patents Inc. Compositions à base d'adhesifs polyolefiniques et articles fabriques à partir de celles-ci
JP5097506B2 (ja) 2007-11-05 2012-12-12 日東電工株式会社 水酸基を有する多孔質樹脂粒子の製造方法
CN104174425B (zh) * 2014-07-11 2017-08-11 中国科学院生态环境研究中心 一种用于挥发性有机物催化氧化的催化剂及其制备方法
GB201703625D0 (en) 2017-03-07 2017-04-19 Quantumdx Group Ltd Aptamer based methods for protein detection
CN107626278A (zh) * 2017-09-04 2018-01-26 无锡普爱德环保科技有限公司 新型硅胶吸附材料的制备方法
EP4021639A1 (fr) 2019-08-30 2022-07-06 Boehringer Ingelheim Vetmedica GmbH Instrument de filtration, kit et procédé destinés au prétraitement d'un échantillon
CL2020002629A1 (es) 2020-10-12 2021-01-15 Taag Genetics S A Nuevo dispositivo de biología molecular para extracción y purificación de ácidos nucleicos desde diferentes tipos de muestras biológicas que comprende resinas de adsorción

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045353A (en) * 1974-10-15 1977-08-30 Toyo Soda Manufacturing Co., Ltd. High-energy radiation induced polymerization on a chromatographic solid support
US4600646A (en) * 1984-08-15 1986-07-15 E. I. Du Pont De Nemours And Company Metal oxide stabilized chromatography packings
US4732887A (en) * 1984-10-12 1988-03-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite porous material, process for production and separation of metallic element
US5163994A (en) * 1987-03-11 1992-11-17 Basf Aktiengesellschaft Crop protection agent containing an active ingredient
US5750258A (en) * 1994-04-11 1998-05-12 Ube Nitto Kasei Co., Ltd. Crosslinked resin-coated silica fine particles and process for the production thereof
US6316527B1 (en) * 1999-09-16 2001-11-13 Rohm And Haas Company Modified SAN resin blend compositions and articles produced therefrom
US6417239B1 (en) * 1997-08-28 2002-07-09 Eastman Chemical Company Methods of making modified condensation polymers
US20030134938A1 (en) * 2001-09-19 2003-07-17 Dainichiseika Color & Chem. Mfg Co., Ltd. Process for producing sulfonated solid particles

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923564B2 (ja) 1980-03-03 1984-06-02 昭光通商株式会社 三次元架橋高分子を主体とする多孔質体の成形用組成物
GB2191110B (en) * 1986-06-06 1989-12-06 Plessey Co Plc Chromatographic separation device
DE3707692A1 (de) * 1987-03-11 1988-09-22 Basf Ag Polymere traeger fuer pestizide
JP2790381B2 (ja) * 1990-02-03 1998-08-27 三井化学株式会社 有芯多層構造エマルション粒子
JPH0596184A (ja) * 1991-10-02 1993-04-20 Showa Denko Kk 弱酸性陽イオン交換体
JP3217417B2 (ja) * 1991-12-24 2001-10-09 三井化学株式会社 中空エマルション粒子
US6420127B1 (en) 1994-11-18 2002-07-16 Washington University Compounds and pharmaceutical compositions for the treatment and prophylaxis of bacterial infections
DK0880536T4 (en) * 1996-02-06 2015-09-07 Roche Diagnostics Gmbh A process for the preparation of purified nucleic acid and the use thereof
US5792331A (en) * 1996-12-19 1998-08-11 Dionex Corporation Preformed polymer coating process and product
US6056877A (en) * 1997-12-05 2000-05-02 Transgenomic, Inc. Non-polar media for polynucleotide separations
US5986020A (en) * 1997-08-05 1999-11-16 Campbell; J. David Process for producing hyperbranched polymers
BR9811372A (pt) * 1997-08-28 2000-08-29 Eastman Chem Co Composições de látex diol, de revestimento, e de veìculo de tinta, e, processo para a preparação da comoposição de látex diol
JP4037537B2 (ja) * 1998-09-01 2008-01-23 積水化学工業株式会社 液体クロマトグラフィー用充填剤
JP4074393B2 (ja) * 1998-11-09 2008-04-09 積水化学工業株式会社 液体クロマトグラフィー用充填剤
EP1020220A1 (fr) 1999-01-11 2000-07-19 Mira Diagnostica GmbH Nouveau polymere contenant des groupements de fluor
US6824866B1 (en) * 1999-04-08 2004-11-30 Affymetrix, Inc. Porous silica substrates for polymer synthesis and assays
WO2001074482A1 (fr) * 2000-04-05 2001-10-11 Japan Chemical Innovation Institute Nouveau materiau utilise pour la separation et procede de separation
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
JP2002194025A (ja) 2000-12-22 2002-07-10 Sumitomo Chem Co Ltd エチルスチレン・ジビニルベンゼン共重合体および該重合体からなるアミノ酸用分離材。
JP3957179B2 (ja) * 2001-09-18 2007-08-15 オルガノ株式会社 有機多孔質イオン交換体
JP2003165926A (ja) * 2001-09-19 2003-06-10 Dainichiseika Color & Chem Mfg Co Ltd スルホン化固体粒子の製造方法
US6991852B2 (en) * 2002-03-13 2006-01-31 Regents Of The University Of Minnesota Silica-based materials and methods
US20060243658A1 (en) 2002-11-08 2006-11-02 Zubov Vitali P Sorbent material having a covalently attached perfluorinated surface with functional groups

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045353A (en) * 1974-10-15 1977-08-30 Toyo Soda Manufacturing Co., Ltd. High-energy radiation induced polymerization on a chromatographic solid support
US4600646A (en) * 1984-08-15 1986-07-15 E. I. Du Pont De Nemours And Company Metal oxide stabilized chromatography packings
US4732887A (en) * 1984-10-12 1988-03-22 Asahi Kasei Kogyo Kabushiki Kaisha Composite porous material, process for production and separation of metallic element
US5163994A (en) * 1987-03-11 1992-11-17 Basf Aktiengesellschaft Crop protection agent containing an active ingredient
US5750258A (en) * 1994-04-11 1998-05-12 Ube Nitto Kasei Co., Ltd. Crosslinked resin-coated silica fine particles and process for the production thereof
US6417239B1 (en) * 1997-08-28 2002-07-09 Eastman Chemical Company Methods of making modified condensation polymers
US6316527B1 (en) * 1999-09-16 2001-11-13 Rohm And Haas Company Modified SAN resin blend compositions and articles produced therefrom
US20030134938A1 (en) * 2001-09-19 2003-07-17 Dainichiseika Color & Chem. Mfg Co., Ltd. Process for producing sulfonated solid particles

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301169A1 (en) * 2008-05-02 2009-12-10 Naval Research Laboratory Selective membranes/thin films for analytical applications
US8148161B2 (en) 2008-05-02 2012-04-03 The United States Of America, As Represented By The Secretary Of The Navy Selective membranes/thin films for analytical applications
US11628381B2 (en) 2012-09-17 2023-04-18 W.R. Grace & Co. Conn. Chromatography media and devices
US11529610B2 (en) 2012-09-17 2022-12-20 W.R. Grace & Co.-Conn. Functionalized particulate support material and methods of making and using the same
US11229896B2 (en) 2014-01-16 2022-01-25 W.R. Grace & Co.—Conn. Affinity chromatography media and chromatography devices
US11389783B2 (en) 2014-05-02 2022-07-19 W.R. Grace & Co.-Conn. Functionalized support material and methods of making and using functionalized support material
US10792640B2 (en) 2014-09-10 2020-10-06 Quantumdx Group Limited Sorbent material for separating bio-macromolecules
AU2015314928B2 (en) * 2014-09-10 2020-07-02 Quantumdx Group Limited Sorbent material for separating bio-macromolecules
EP3191590A4 (fr) * 2014-09-10 2018-08-01 Quantumdx Group Limited Matériau sorbant pour la séparation de bio-macromolécules
US20170282154A1 (en) * 2014-09-10 2017-10-05 Quantumdx Group Limited Sorbent material for separating bio-macromolecules
CN106604992A (zh) * 2014-09-10 2017-04-26 康特姆斯集团有限公司 用于分离生物大分子的吸附剂材料
WO2016040697A1 (fr) 2014-09-10 2016-03-17 Quantumdx Group Limited Matériau sorbant pour la séparation de bio-macromolécules
US10695744B2 (en) 2015-06-05 2020-06-30 W. R. Grace & Co.-Conn. Adsorbent biprocessing clarification agents and methods of making and using the same
US11376561B2 (en) * 2018-10-02 2022-07-05 Waters Technologies Corporation Sorbent particles for sample treatment
CN109627402A (zh) * 2018-12-14 2019-04-16 江南大学 一种聚苯乙烯基高折射率纳米复合材料的制备方法

Also Published As

Publication number Publication date
US20110186519A1 (en) 2011-08-04
US10221411B2 (en) 2019-03-05
JP2007530760A (ja) 2007-11-01
EP1756178B1 (fr) 2012-02-29
EP2236529B1 (fr) 2012-05-23
EP2236529A1 (fr) 2010-10-06
ATE547442T1 (de) 2012-03-15
US20140094596A1 (en) 2014-04-03
JP5173406B2 (ja) 2013-04-03
WO2005095476A1 (fr) 2005-10-13
US20160097048A1 (en) 2016-04-07
EP1756178A1 (fr) 2007-02-28
US20170152501A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US10221411B2 (en) Process for manufacturing a composite sorbent material for chromatographical separation of biopolymers
JP3395906B2 (ja) 核酸断片の分離法
US9624252B2 (en) Selective nucleic acid fragment recovery
US8569477B2 (en) Method for isolating nucleic acids comprising the use of ethylene glycol multimers
US8288169B2 (en) Surface mediated self-assembly of nanoparticles
JP2839144B2 (ja) 複合ポリマー、それらの製造、及び液相クロマトグラフイーにおけるそれらの使用
US20090048439A1 (en) Isolation of nucleic acids molecules using modified solid supports
JP2011503244A (ja) 核酸の単離方法またはリン酸化タンパク質の単離方法における粒子およびその使用
US20140287416A1 (en) Polyelectrolyte-coated size-exclusion ion-exchange particles
JP2001204462A (ja) 核酸の抽出方法
JP2022515769A (ja) 大孔径アガロース
JP2006512457A (ja) 収着剤、及びプラスミドdnaの分離方法
WO2005079984A1 (fr) Particules echangeuse d'ions d'exclusion enduites de polyelectrolytes
US20050196856A1 (en) Polyelectrolyte-coated size-exclusion ion-exchange particles
JP4929635B2 (ja) マレイミド基含有多孔質架橋ポリスチレン粒子及びその製造方法
Li et al. High-speed chromatographic purification of plasmid DNA with a customized biporous hydrophobic adsorbent
US20060243658A1 (en) Sorbent material having a covalently attached perfluorinated surface with functional groups
US7772152B2 (en) Composite polymer-coated sorbent with a bidisperse pore size distribution for the simultaneous separation and desalting of biopolymers
EP1848793B1 (fr) Particules d'echange ionique revetues de polyelectrolytes
US20070207460A1 (en) Method For Enriching And Stabilising Components Which Contain Dna And Which Are Made Of Biological Materials
US20040002594A1 (en) Removal of extraneous substances from biological fluids containing nucleic acids and the recovery of nucleic acids

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEXTEC GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BALAYAN, HAMLET;LEISER, ROBERT-MATTHIAS;PLOBNER, LUTZ;AND OTHERS;REEL/FRAME:018727/0809;SIGNING DATES FROM 20060922 TO 20060926

AS Assignment

Owner name: NEXTTEC GMBH, GERMANY

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY, PREVIOUSLY RECORDED AT REEL 018727, FRAME 0809.;ASSIGNORS:BALAYAN, HAMLET;LEISER, ROBERT-MATTHIAS;PLOBNER, LUTZ;AND OTHERS;REEL/FRAME:020863/0500;SIGNING DATES FROM 20060922 TO 20060926

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION