US20080135122A1 - Loom - Google Patents

Loom Download PDF

Info

Publication number
US20080135122A1
US20080135122A1 US11/663,041 US66304105A US2008135122A1 US 20080135122 A1 US20080135122 A1 US 20080135122A1 US 66304105 A US66304105 A US 66304105A US 2008135122 A1 US2008135122 A1 US 2008135122A1
Authority
US
United States
Prior art keywords
loom
heald
main shaft
jacquard machine
direct drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/663,041
Other languages
English (en)
Inventor
Albrecht Donner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DONNER, ALBRECHT
Publication of US20080135122A1 publication Critical patent/US20080135122A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03CSHEDDING MECHANISMS; PATTERN CARDS OR CHAINS; PUNCHING OF CARDS; DESIGNING PATTERNS
    • D03C1/00Dobbies
    • D03C1/14Features common to dobbies of different types
    • D03C1/16Arrangements of dobby in relation to loom
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03CSHEDDING MECHANISMS; PATTERN CARDS OR CHAINS; PUNCHING OF CARDS; DESIGNING PATTERNS
    • D03C1/00Dobbies
    • D03C1/14Features common to dobbies of different types
    • D03C1/146Independent drive motor
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03CSHEDDING MECHANISMS; PATTERN CARDS OR CHAINS; PUNCHING OF CARDS; DESIGNING PATTERNS
    • D03C3/00Jacquards
    • D03C3/24Features common to jacquards of different types
    • D03C3/32Jacquard driving mechanisms
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D51/00Driving, starting, or stopping arrangements; Automatic stop motions
    • D03D51/007Loom optimisation

Definitions

  • the present invention relates to a loom.
  • the loom has, for example, a heald loom or a Jacquard machine.
  • Jacquard machines serve for generating any desired patterns in conjunction with looms or knitting machines. Heald looms serve for generating coarser patterns, particularly in conjunction with looms.
  • the loom in an advantageous embodiment, has a basic machine. By a basic machine being used, for example, a warp beam can be exchanged.
  • the Jacquard machine or the heald loom which may also have a separate main shaft, has hitherto been drivable by means of a cardan shaft by a basic machine or by means of a specific drive having a gear.
  • the heald loom or Jacquard machine is connected directly or via gears or via electronic synchronism to the main shaft of the loom.
  • Electronic synchronism with respect to the main shaft corresponds in principle, for example, to an electronic king shaft in a printing machine.
  • the term “king shaft” differs from the term “main shaft” merely in that the term “main shaft” is typically used in looms and the term “king shaft” in printing machines.
  • Technical functioning is identical.
  • the electronic main shaft serves for bringing about a synchronized movement.
  • the cardan shaft and the gear are costly and subject to wear.
  • a further disadvantage is that both a cardan shaft and a gear to a considerable extent demand replacement and are therefore unsuitable for a compact type of construction, since their exchange becomes complicated.
  • a further disadvantage of the prior art is afforded in that the Jacquard machine or the heald loom runs synchronously with the loom. Consequently, a shed opening time is inversely proportional to the rotational speed of the main shaft of the loom and is therefore determined solely by this rotational speed. A defined shed opening angle is thus also predetermined.
  • a loom in which a heald loom or a Jacquard machine has a separate motor for its drive, is known from U.S. Pat. No. 4,986,315, EP 0 743 383 A1, EP 1 445 364 A2 and JP-3249233.
  • An object of the present invention is to overcome the disadvantages described above. In this case, it is advantageous to make a compact type of construction possible and to reduce the wear of the mechanical parts of the loom. Furthermore, an object of the present invention is to increase the shared opening time.
  • a loom according to the invention which has a heald loom or a Jacquard machine, the loom being coupled to the heald loom or the loom to the Jacquard machine by means of an electronic main shaft, the heald loom or the Jacquard machine has a direct drive.
  • the heald loom or the Jacquard machine are thus driven directly.
  • the heald loom or the Jacquard machine therefore has no gear.
  • the operating time of the looms can thereby be increased.
  • a hitherto conventional connection of the Jacquard machine via a cardan shaft to a main shaft of the loom is thus dispensed with.
  • Achieving the synchronism of the loom or basic machine with the heald loom or Jacquard machine is ensured by means of an electronic main shaft.
  • the electronic main shaft allows an electronic synchronism of drives both in the loom and in the heald loom or in the Jacquard machine.
  • the direct drive is a torque motor.
  • the torque motor can be fed by means of a power converter. By the torque motor being used as a drive of the Jacquard machine, it is no longer necessary to use a gear.
  • the torque motor is coupled to a main shaft of the loom via a suitable control by means of an electronic cam disk.
  • the electronic cam disk can be designed in such a way that a shared opening angle is greater, as compared with a design having a mechanical drive of the Jacquard machine or heald loom.
  • the relative shared opening time is always the same, that is to say, with the increase in the main shaft rotational speed, the absolute shared opening time becomes increasingly lower.
  • the heald loom rotates more rapidly in the angular range in which the shared is changed and rotates more slowly in the shared open region, then the relative shared opening time is increased, so that the critical minimum weft insertion time is consequently reached only at a higher rotational speed of the main shaft. Since, in this method, the warp threads are also subjected to greater load due to the more rapid shared change, the parameters relating to the method must be optimized.
  • a corresponding adapted electronic cam disk is advantageously stored in the control of the loom and/or in the control of the Jacquard machine and/or in the control of the heald loom.
  • Either the control of the loom is separate from the controls of the Jacquard machine or of the heald loom or the controls are integrated in one apparatus.
  • the control of the direct drive takes place, for example, by means of the control of the loom or of the Jacquard machine of the heald loom.
  • control in this context covers both control and regulation tasks.
  • the mass inertia of the mechanical system of the Jacquard machine or of the heald loom is also reduced.
  • a smaller drive for driving the Jacquard machine or the heald loom can therefore be used.
  • the reduction in mass inertia may also be utilized to ensure that more rapid acceleration values can be achieved by means of the existing drive.
  • the shared opening angle of the heald loom or of the Jacquard machine can be influenced by means of an electronic cam disk. Owing to this capability of exerting influence, it is also possible to influence the shared opening time, that is to say, in particular, advantageously increase it. Thus, in a method for operating a loom according to the invention, influence on the shared opening time is achieved by means of the electronic cam disk for the direct drive in the heald loom or the Jacquard machine.
  • the drive of the heald loom or of the Jacquard machine in this case takes place by means of a direct drive, and the direct drive is controlled or regulated via an electronic cam disk.
  • FIG. 1 shows a loom
  • FIG. 2 shows fabric
  • FIG. 3 shows a curve profile of a shed opening angle
  • FIG. 4 shows a first loom according to the prior art
  • FIG. 5 shows a second loom according to the prior art
  • FIG. 6 shows a loom according to the invention.
  • the illustration according to FIG. 1 shows a loom 1 .
  • the loom 1 has a heald loom 7 .
  • the heald loom 7 is provided for the movement of heald frames 5 , the heald loom being activated in turn by means of signals.
  • the heald frames 5 belong to the loom.
  • the heald loom 7 is connected on the drive side in rotation to the main shaft of the loom, and the heald loom is connected on the output side in translation to the individual heald frames.
  • Which heald frame has to be raised or lowered during the current revolution of the loom and heald loom is predetermined electrically for the heald loom by activation.
  • the loom has an operating device 9 , a control 11 , a reed 17 and a cloth beam 15 for batching up woven cloth 13 .
  • a shed 3 is formed by the warp threads deflected by the heald frames.
  • the illustration according to FIG. 2 shows a shed opening angle ⁇ 23 .
  • the shed opening angle 23 occurs due to the angle of tentered warp threads 41 .
  • all the warp threads can be raised or lowered individually. Raising and lowering are controlled by means of a control.
  • the heald frames serve for tentering the shed.
  • a plurality of warp threads are grouped in a heald frame. The heald frames are moved alternately upward and downward, with the result that shed opening occurs. The shed opening is synchronized with the weaving process.
  • synchronization took place by means of direct coupling to the main shaft of the loom and is in this case often implemented by means of an electronic main shaft. Synchronization takes place, in the case of an electronic main shaft, by means of a bus system.
  • a Jacquard machine is required instead of the heald loom. Neither of the two machines is illustrated in FIG. 2 .
  • a jacquard selection unit which is mounted on a carrying stand, raises individual warp threads selectively via harness cords and consequently allows more flexible shedding and consequently weave pattern formation.
  • the Jacquard machine has, for example, a specific control/regulation which is data-coupled to the actual loom control for the purpose of data exchange.
  • the illustration according to FIG. 3 shows a graph with two curve profiles, the time t being plotted on one axis and the shed opening angle 23 being plotted on the other axis.
  • the profile of the shed opening angle 23 is plotted in a first curve 45 .
  • a shed opening time 26 occurs in a bandwidth 49 of the shed opening angle 23 .
  • a profile according to the curve 47 can be generated. This profile results in a greater shed opening time 28 .
  • FIG. 4 shows a loom 2 according to the prior art.
  • the loom 2 is coupled to a heald loom 7 . Coupling takes place directly or via a gear to the main shaft of the loom and mechanical couplings 39 . Gears 35 also serve for coupling.
  • the loom 2 is depicted separately from the heald loom 7 .
  • the term “loom 2 ”, however, may also be interpreted to the effect that this loom also has a heald loom 7 .
  • the heald loom 7 is thus part of the loom 2 . This interpretation also applies according to FIGS. 5 and 6 .
  • FIG. 5 shows a loom 2 which is coupled to a heald loom 7 . Coupling takes place by means of a databus 33 .
  • the databus 33 is connected here to a control 11 .
  • the control 11 serves for controlling the heald loom 7 .
  • the control 11 takes place by means of a drive 53 which is coupled to the heald loom 7 via the gear 35 .
  • a transducer 29 for measuring the rotational speed of the loom 2 is necessary.
  • FIG. 6 shows a loom 1 according to the invention.
  • the loom 1 has an electronic main shaft.
  • a direct drive 51 can be activated by means of a control 11 of the heald loom and a databus 33 .
  • the direct drive 51 serves for driving the heald loom 7 .
  • the loom 1 may also be designed, for example, with a Jacquard machine 8 .
  • the heald loom and the Jacquard machine can be designed in such a way that the loom 1 has a heald loom or a Jacquard machine. In FIG. 6 , however, this is illustrated merely implicitly by a broken line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Looms (AREA)
US11/663,041 2004-09-17 2005-09-09 Loom Abandoned US20080135122A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004045208.3 2004-09-17
DE102004045208A DE102004045208A1 (de) 2004-09-17 2004-09-17 Webmaschine
PCT/EP2005/054503 WO2006029993A1 (de) 2004-09-17 2005-09-09 Webmaschine

Publications (1)

Publication Number Publication Date
US20080135122A1 true US20080135122A1 (en) 2008-06-12

Family

ID=35432141

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/663,041 Abandoned US20080135122A1 (en) 2004-09-17 2005-09-09 Loom

Country Status (4)

Country Link
US (1) US20080135122A1 (de)
CN (1) CN101103151B (de)
DE (2) DE102004045208A1 (de)
WO (1) WO2006029993A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3751037A1 (de) * 2019-06-13 2020-12-16 VÚTS, a.s. Luftdüsenwebmaschine zur herstellung von drehergeweben
EP3751036A1 (de) * 2019-06-13 2020-12-16 VÚTS, a.s. Verfahren zur steuerung des verlaufs der hubfunktionen der hauptmechanismen einer webmaschine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387026B (zh) * 2008-10-27 2011-05-04 王伯奇 电子提花机双凸轮提针机构
CN102981449A (zh) * 2012-11-23 2013-03-20 王勇 一种凸轮同步传动提花织机数控方法
CN102978774A (zh) * 2012-11-23 2013-03-20 王勇 一种提花织机数控凸轮同步传动机构

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474219A (en) * 1982-01-29 1984-10-02 Societe Des Etablissements Staubli (France) Shed locating devices associated with dobbies and other weaving systems
US4478254A (en) * 1981-12-28 1984-10-23 Societe Alsacienne De Constructions Mecanniques De Mulhouse Device for actuating shedding motion searching and slow speed operation on a loom
US4537226A (en) * 1982-09-24 1985-08-27 Nissan Motor Co., Ltd. System for controlling warp let-off motion of weaving machine during machine downtime
US4538650A (en) * 1982-12-09 1985-09-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method for preparing weft supply to be picked upon starting the operation of a weaving loom, and an apparatus for effecting the same
US4592392A (en) * 1984-04-06 1986-06-03 N.V. Weefautomaten Picanol Shot seeking mechanism for weaving looms
US4724872A (en) * 1985-01-17 1988-02-16 Textilma Ag Method for the control of a weaving loom and weaving loom for implementing such method
US4986315A (en) * 1987-08-12 1991-01-22 Fred Borisch Weaving machine with a synchronously or independently operable mechanical dobby
US5285820A (en) * 1991-07-05 1994-02-15 Jurgens Maschinenbau Gmbh & Co. Kg Power loom lay or baton drive
US5642757A (en) * 1995-04-05 1997-07-01 Staubli Faverges Motor controlled drive for shed-forming systems in weaving looms
US5699837A (en) * 1995-05-11 1997-12-23 N.V. Michel Van De Wiele Combined pile feeder control system and pile warp let-off motion for pile weaving machine
US6328076B1 (en) * 1997-09-08 2001-12-11 Textilma Ag Thread controlling device with control element supported independently from the lifting device
US20030020375A1 (en) * 1996-05-23 2003-01-30 Siemens Aktiengesellschaft Method of producing a bending transducer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03249233A (ja) * 1990-02-23 1991-11-07 Murata Mach Ltd ジャカード駆動装置
JPH08302545A (ja) * 1995-05-12 1996-11-19 Tsudakoma Corp 織機の駆動機構
EP0893525A1 (de) * 1997-07-24 1999-01-27 Sulzer Rüti Ag Antriebsanordnung für eine Webmaschine und Webmaschine mit Antriebsanordnung
DE10149969A1 (de) * 2001-10-10 2003-05-08 Dornier Gmbh Lindauer Verfahren zur drehwinkelabhängigen Ansteuerung von Betätigungseinrichtungen einer mit einer Webmaschine kombinierten Jacquardvorrichtung
ITMI20030183A1 (it) * 2003-02-04 2004-08-05 Promatech Spa Telaio tessile a motorizzazione multipla con armatura elettrica perfezionata

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4478254A (en) * 1981-12-28 1984-10-23 Societe Alsacienne De Constructions Mecanniques De Mulhouse Device for actuating shedding motion searching and slow speed operation on a loom
US4474219A (en) * 1982-01-29 1984-10-02 Societe Des Etablissements Staubli (France) Shed locating devices associated with dobbies and other weaving systems
US4537226A (en) * 1982-09-24 1985-08-27 Nissan Motor Co., Ltd. System for controlling warp let-off motion of weaving machine during machine downtime
US4538650A (en) * 1982-12-09 1985-09-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method for preparing weft supply to be picked upon starting the operation of a weaving loom, and an apparatus for effecting the same
US4592392A (en) * 1984-04-06 1986-06-03 N.V. Weefautomaten Picanol Shot seeking mechanism for weaving looms
US4724872A (en) * 1985-01-17 1988-02-16 Textilma Ag Method for the control of a weaving loom and weaving loom for implementing such method
US4986315A (en) * 1987-08-12 1991-01-22 Fred Borisch Weaving machine with a synchronously or independently operable mechanical dobby
US5285820A (en) * 1991-07-05 1994-02-15 Jurgens Maschinenbau Gmbh & Co. Kg Power loom lay or baton drive
US5642757A (en) * 1995-04-05 1997-07-01 Staubli Faverges Motor controlled drive for shed-forming systems in weaving looms
US5699837A (en) * 1995-05-11 1997-12-23 N.V. Michel Van De Wiele Combined pile feeder control system and pile warp let-off motion for pile weaving machine
US20030020375A1 (en) * 1996-05-23 2003-01-30 Siemens Aktiengesellschaft Method of producing a bending transducer
US6570300B1 (en) * 1996-05-23 2003-05-27 Siemens Aktiengesellschaft Piezoelectric bending transducer and method for producing the transducer
US6328076B1 (en) * 1997-09-08 2001-12-11 Textilma Ag Thread controlling device with control element supported independently from the lifting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3751037A1 (de) * 2019-06-13 2020-12-16 VÚTS, a.s. Luftdüsenwebmaschine zur herstellung von drehergeweben
EP3751036A1 (de) * 2019-06-13 2020-12-16 VÚTS, a.s. Verfahren zur steuerung des verlaufs der hubfunktionen der hauptmechanismen einer webmaschine

Also Published As

Publication number Publication date
WO2006029993A1 (de) 2006-03-23
CN101103151A (zh) 2008-01-09
CN101103151B (zh) 2011-11-16
DE112005002161A5 (de) 2007-08-23
DE102004045208A1 (de) 2006-04-06

Similar Documents

Publication Publication Date Title
US20080135122A1 (en) Loom
US6834681B2 (en) Method for controlling the shed in a loom with mechanical weft insertion
US7341077B2 (en) Method for operating a loom
EP1640486B1 (de) Fachbildungsvorrichtung und Webmaschine mit einer solchen Fachbildungsvorrichtung
US7114527B2 (en) Method for operating a drive assembly of a loom and shedding machine comprising divided drive technology
EP0514959B1 (de) Verfahren und Vorrichtung zum Antrieb einer Webmaschine im Langsamlauf
JP6635006B2 (ja) 織機における開口方法及び開口装置
US6863091B2 (en) Method for controlling the shed in a loom with fluidic weft insertion
EP1862573B1 (de) Vorrichtung zum Vermeiden von Operativfehlern für eine Webmaschine
US6286560B1 (en) Device for producing a leno selvedge for a loom with heald frames
EP1065306B1 (de) Verfahren und Vorrichtung zur Fachbildungssteuerung in einer Webmaschine
US5285820A (en) Power loom lay or baton drive
KR20190045360A (ko) 직조기용 제어 시스템 및 딥 러닝 방법
EP1424415B1 (de) Webmaschine mit moduliertem Antrieb und Verfahren zur Webkontrolle mit Veränderung der Antriebsgeschwindigkeit
EP1741816B1 (de) Vorrichtung zum Bewegen von einem Webschaft in einer Webmaschine und Webmaschine mit einer oder mehreren dieser Vorrichtungen
EP3608458B1 (de) Synchrones steuerungsverfahren für eine webmaschine sowie webmaschine
EP1096048A2 (de) Automatische Nadelwebmaschine zur Herstellung von Bänder
CN1764750B (zh) 使织机运行的方法
JP3337394B2 (ja) 織機の開口制御方法と、その装置
JP3487502B2 (ja) 織機の織り段防止方法およびその装置
BE1017213A3 (nl) Dobby-inrichting voor het aansturen van de bewegingen van minstens een weefraam van een weefmachine, en weefmachine voorzien van een dergelijke dobby-inrichting.
JP3377166B2 (ja) パイル形成装置
JPH0434048A (ja) 織機の経糸張力調整装置
JP2006089893A (ja) 織機の電子開口装置
JPH02145835A (ja) サッカー織機

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DONNER, ALBRECHT;REEL/FRAME:020388/0460

Effective date: 20070313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION