US20080083670A1 - Composite semipermeable membrane and process for producing the same - Google Patents

Composite semipermeable membrane and process for producing the same Download PDF

Info

Publication number
US20080083670A1
US20080083670A1 US11/869,678 US86967807A US2008083670A1 US 20080083670 A1 US20080083670 A1 US 20080083670A1 US 86967807 A US86967807 A US 86967807A US 2008083670 A1 US2008083670 A1 US 2008083670A1
Authority
US
United States
Prior art keywords
semipermeable membrane
composite semipermeable
porous support
alkali metal
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/869,678
Inventor
Tomomi Ohara
Atsuhito Koumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Assigned to NITTO DENKO CORPORATION reassignment NITTO DENKO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOUMOTO, ATSUHITO, OHARA, TOMOMI
Publication of US20080083670A1 publication Critical patent/US20080083670A1/en
Priority to US12/606,518 priority Critical patent/US8851297B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/28Degradation or stability over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Definitions

  • the present invention relates to a composite semipermeable membrane having a skin layer which includes a polyamide resin and a porous support that supports the skin layer, and to a process for producing the composite semipermeable membrane.
  • the composite semipermeable membranes are suitably used for production of ultrapure water, desalination of brackish water or sea water, etc., and usable for removing or collecting pollution sources or effective substances from pollution, which causes environment pollution occurrence, such as dyeing drainage and electrodeposition paint drainage, leading to contribute to closed system for drainage.
  • the membrane can be used for concentration of active ingredients in foodstuffs usage, for an advanced water treatment, such as removal of harmful component in water purification and sewage usage etc.
  • Patent Document 1 A composite semipermeable membrane, in which a skin layer includes polyamides obtained by interfacial polymerization of polyfunctional aromatic amines and polyfunctional aromatic acid halides and is formed on a porous support, has been proposed.
  • Patent Document 2 A composite semipermeable membrane, in which a skin layer includes a polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic acid halide and is formed on a porous support, has been also proposed (Patent Document 2).
  • the composite semipermeable membrane produced is preferably a dried composite semipermeable membrane.
  • a composite semipermeable membrane having a skin layer formed on the surface of the porous support is dried, there has occurred a problem of deterioration of salt-blocking performance and permeation flux, compared with characteristics before drying.
  • a technique in which a reverse osmosis membrane is dried after hydrophilization treatment for the purpose of solving the problem has been disclosed (Patent Document 3).
  • a method of drying a composite membrane after immersion treatment in a solution of saccharides having a molecular weight of 1000 or less has been disclosed (Patent Document 4).
  • Patent Document 5 In order to obtain a dried composite reverse osmosis membrane having outstanding water permeability, organic matter blocking performance, and salt-blocking performance, a method of performing heat drying treatment of a compound reverse osmosis membrane after contact to an aqueous solution at a temperature of 40 to 100° C. has been disclosed (Patent Document 5).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 02-187135
  • Patent Document 2 Japanese Patent Application Laid-Open No. 62-121603
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-320224
  • Patent Document 4 Patent No. 3015853 specification
  • Patent Document 5 Japanese Patent Application Laid-Open No. 10-165789
  • the present invention aims at providing a composite semipermeable membrane in which water permeability and salt-blocking rate cannot deteriorate by long-term storage, and at providing a process for producing the same.
  • the present invention relates to a composite semipermeable membrane having a skin layer formed on the surface of a porous support, the skin layer including a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component, wherein the porous support contains at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers, in an amount of 95% by weight or more with respect to the whole composite semipermeable membrane.
  • Reasons for deterioration with time of performances, such as water permeability and solute blocking property, of a composite semipermeable membrane include possible degradation of the composite semipermeable membrane by increase of bacillus, appearance of mold, structural change by drying at the time of storage, and chemical change by oxidation, etc.
  • the composite semipermeable membrane of the present invention is characterized by including the above-described additives mainly in the porous support. For this reason, the composite semipermeable membrane of the present invention can minimize secondary adverse effect to the skin layer, and can exhibit characteristics of giving no deterioration in water permeability and salt-blocking rate by long-term storage without deterioration of performance of the skin layer.
  • the composite semipermeable membrane of the present invention is preferred to be a dried composite semipermeable membrane from viewpoints of workability, preservability, stability of quality and performance.
  • moisturizers are preferably of organic acid metal salts and/or inorganic acid metal salts.
  • the organic acid metal salt preferably include at least one kind of organic acid alkali metal salt selected from the group consisting of alkali metal acetate, alkali metal lactate, and alkali metal glutamate.
  • the alkali metal is preferably selected from sodium or potassium.
  • the inorganic acid metal salt preferably includes at least one kind of inorganic acid alkali metal salt selected from the group consisting of alkali metal hydrogencarbonate, dialkali metal monohydrogen phosphate, monoalkali metal dihydrogen phosphate,
  • the alkali metal is preferably selected from sodium or potassium.
  • the present invention also relates to a process for producing a composite semipermeable membrane comprising the steps of: forming a skin layer including a polyamide resin obtained by reaction between a polyfunctional amine component and a polyfunctional acid halide component on the surface of a porous support; and performing a treatment with additives onto the porous support by contact of an aqueous solution including at least one kind of additives selected from the group consisting of an antioxidant, an antibacterial agent, an antifungal agent, and a moisturizer, to a face without the skin layer of the porous support.
  • a skin layer containing a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component is formed on the surface of a porous support, and the porous support contains at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers in an amount of 95% by weight or more with respect to the total weight of the composite semipermeable membrane.
  • the polyfunctional amine component is defined as a polyfunctional amine having two or more reactive amino groups, and includes aromatic, aliphatic, and alicyclic polyfunctional amines.
  • the aromatic polyfunctional amines include, for example, m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triamino benzene, 1,2,4-triamino benzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N,N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, xylylene diamine etc.
  • the aliphatic polyfunctional amines include, for example, ethylenediamine, propylenediamine, tris(2-aminoethyl)amine, n-phenylethylenediamine, etc.
  • the alicyclic polyfunctional amines include, for example, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethyl piperazine, etc.
  • polyfunctional amines may be used independently, and two or more kinds may be used in combination. In order to obtain a skin layer having a higher salt-blocking property, it is preferred to use the aromatic polyfunctional amines.
  • the polyfunctional acid halide component represents polyfunctional acid halides having two or more reactive carbonyl groups.
  • the polyfunctional acid halides include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • the aromatic polyfunctional acid halides include, for example trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, chlorosulfonyl benzenedicarboxylic acid dichloride etc.
  • the aliphatic polyfunctional acid halides include, for example, propanedicarboxylic acid dichloride, butane dicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propane tricarboxylic acid trichloride, butane tricarboxylic acid trichloride, pentane tricarboxylic acid trichloride, glutaryl halide, adipoyl halide etc.
  • the alicyclic polyfunctional acid halides include, for example, cyclopropane tricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentane tricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, tetrahydrofurantetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, tetrahydrofuran dicarboxylic acid dichloride, etc.
  • polyfunctional acid halides may be used independently, and two or more kinds may be used in combination. In order to obtain a skin layer having higher salt-blocking property, it is preferred to use aromatic polyfunctional acid halides. In addition, it is preferred to form a cross linked structure using polyfunctional acid halides having trivalency or more as at least a part of the polyfunctional acid halide components.
  • polymers such as polyvinyl alcohol, polyvinylpyrrolidone, and polyacrylic acids etc., and polyhydric alcohols, such as sorbitol and glycerin, may be copolymerized.
  • the porous support for supporting the skin layer is not especially limited as long as it has a function for supporting the skin layer, and usually ultrafiltration membrane having micro pores with an average pore size approximately 10 to 500 angstroms may preferably be used.
  • Materials for formation of the porous support include various materials, for example, polyarylether sulfones, such as polysulfones and polyether sulfones; polyimides; polyvinylidene fluorides; etc., and polysulfones and polyarylether sulfones are especially preferably used from a viewpoint of chemical, mechanical, and thermal stability.
  • the thickness of this porous support is usually approximately 25 to 125 ⁇ m, and preferably approximately 40 to 75 ⁇ m, but the thickness is not necessarily limited to them.
  • the porous support may be reinforced with backing by cloths, nonwoven fabric, etc.
  • Processes for forming the skin layer including the polyamide resin on the surface of the porous support is not in particular limited, and any publicly known methods may be used.
  • the publicly known methods include an interfacial condensation method, a phase separation method, a thin film application method, etc.
  • the interfacial condensation method is a method, wherein an amine aqueous solution containing a polyfunctional amine component, an organic solution containing a polyfunctional acid halide component are forced to contact together to form a skin layer by an interfacial polymerization, and then the obtained skin layer is laid on a porous support, and a method wherein a skin layer of a polyamide resin is directly formed on a porous support by the above-described interfacial polymerization on a porous support. Details, such as conditions of the interfacial condensation method, are described in Japanese Patent Application Laid-Open No. 58-24303, Japanese Patent Application Laid-Open No. 01-180208, and these known methods are suitably employable.
  • a covering layer of aqueous solution made from the amine aqueous solution containing a polyfunctional amine components is formed on the porous support, then an interfacial polymerization is performed by contact with an organic solution containing a polyfunctional acid halide component, and the covering layer of aqueous solution, and then a skin layer is formed.
  • the concentration of the polyfunctional amine component in the amine aqueous solution is not in particular limited, the concentration is preferably 0.1 to 5% by weight, and more preferably 0.5 to 2% by weight. Less than 0.1% by weight of the concentration of the polyfunctional amine component may easily cause defect such as pinhole. in the skin layer, leading to tendency of deterioration of salt-blocking property. On the other hand, the concentration of the polyfunctional amine component exceeding 5% by weight allows easy permeation of the polyfunctional amine component into the porous support to be an excessively large thickness and to raise the permeation resistance, likely giving deterioration of the permeation flux.
  • the concentration of the polyfunctional acid halide component in the organic solution is not in particular limited, it is preferably 0.01 to 5% by weight, and more preferably 0.05 to 3% by weight. Less than 0.01% by weight of the concentration of the polyfunctional acid halide component is apt to make the unreacted polyfunctional amine component remain, to cause defect such as pinhole in the skin layer, leading to tendency of deterioration of salt-blocking property. On the other hand, the concentration exceeding 5% by weight of the polyfunctional acid halide component is apt to make the unreacted polyfunctional acid halide component remain, to be an excessively large thickness and to raise the permeation resistance, likely giving deterioration of the permeation flux.
  • the organic solvents used for the organic solution is not especially limited as long as they have small solubility to water, and do not cause degradation of the porous support, and dissolve the polyfunctional acid halide component.
  • the organic solvents include saturated hydrocarbons, such as cyclohexane, heptane, octane, and nonane, halogenated hydrocarbons, such as 1,1,2-trichlorofluoroethane, etc. They are preferably saturated hydrocarbons having a boiling point of 300° C. or less, and more preferably 200° C. or less, or naphthene solvents.
  • additives may be added to the amine aqueous solution or the organic solution in order to provide easy film production and to improve performance of the composite semipermeable membrane to be obtained.
  • the additives include, for example, surfactants, such as sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate; basic compounds, such as sodium hydroxide, trisodium phosphate, triethylamine, etc. for removing hydrogen halides formed by polymerization; acylation catalysts; compounds having a solubility parameter of 8 to 14 (cal/cm 3 ) 1/2 described in Japanese Patent Application Laid-Open No. 08-224452.
  • the period of time after application of the amine aqueous solution until application of the organic solution on the porous support depends on the composition and viscosity of the amine aqueous solution, and on the pore size of the surface layer of the porous support, and it is preferably 15 seconds or less, and more preferably 5 seconds or less.
  • Application interval of the solution exceeding 15 seconds may allow permeation and diffusion of the amine aqueous solution to a deeper portion in the porous support, and possibly cause a large amount of the residual unreacted polyfunctional amine components in the porous support. In this case, removal of the unreacted polyfunctional amine component that has permeated to the deeper portion in the porous support is probably difficult even with a subsequent membrane washing treatment. Excessive amine aqueous solution may be removed after covering by the amine aqueous solution on the porous support.
  • the heating temperature is more preferably 70 to 200° C., and especially preferably 100 to 150° C.
  • the heating period of time is preferably approximately 30 seconds to 10 minutes, and more preferably approximately 40 seconds to 7 minutes.
  • the thickness of the skin layer formed on the porous support is not in particular limited, and it is usually approximately 0.05 to 2 ⁇ m, and preferably 0.1 to 1 ⁇ m.
  • a washed composite semipermeable membrane may be obtained by subsequently applying membrane washing treatment to the produced composite semipermeable membrane.
  • the method of the membrane washing treatment is not in particular limited, and conventionally publicly known methods are employable.
  • the following membrane washing treatment is especially preferably adopted.
  • the acidic substance concerned is not in particular limited as long as it is water-soluble, and for example, inorganic acids, such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids, such as formic acid, acetic acid, and citric acid, may be mentioned.
  • inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid
  • organic acids such as formic acid, acetic acid, and citric acid
  • the inorganic salt is not in particular limited as long as it is a inorganic salt that can form a complex with an amido group and, for example, lithium chloride (LiCl), calcium chloride (CaCl 2 ), rhodan calcium [Ca(SCN) 2 ], and rhodan potassium (KSCN) may be mentioned.
  • LiCl lithium chloride
  • CaCl 2 calcium chloride
  • KSCN rhodan potassium
  • the concentration of the acidic substance and/or the mineral salt in the aqueous solution is preferably 10 ppm to 50% by weight, more preferably 50 ppm to 20% by weight, and especially preferably 1 to 10% by weight.
  • the concentration of the acidic substance and/or the mineral salt less than 10 ppm shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane.
  • the concentration exceeding 50% by weight has a great influence on performance of the semipermeable membrane, and shows a tendency for permeation flux to deteriorate.
  • the water-soluble organic substance is not in particular limited, as long as it does not give adverse effect on membrane performance, and the substance include, for example, monohydric alcohols, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol; polyhydric alcohols, such as ethylene glycol, triethylene glycol, and glycerin; ethers, such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; polar solvents, such as dimethylformamide, dimethylacetamide, and n-methylpyrrolidone.
  • monohydric alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol
  • polyhydric alcohols such as ethylene glycol, triethylene glycol, and glycerin
  • ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol
  • the concentration of the water-soluble organic substance in the aqueous solution can be suitably adjusted for every material to be used, and it is approximately 1 to 90% by weight, more preferably 10 to 80% by weight, and especially preferably 20 to 50% by weight. Less than 1% by weight of the concentration of the water soluble organic substance shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane. On the other hand, the concentration exceeding 90% by weight has a great influence on performance of the semipermeable membrane, and shows a tendency for permeation flux to deteriorate.
  • a reversed order of contact with solutions cannot fully remove the unreacted polyfunctional amine component.
  • Firstly conducted contact of the composite semipermeable membrane with the solution containing the water soluble organic substance can accelerate hydrophilization and swelling of the membrane. Therefore, this process allows quick permeation of the aqueous solution including the acidic substance to an inner portion of the membrane in the subsequent contact treatment, and can increase washing effect.
  • the concentration of the water soluble organic substance in the solution can be suitably adjusted for every materials to be used, and usually, it is 1 to 100% by weight, preferably 10 to 80% by weight, and more preferably 20 to 50% by weight. It is especially preferred to use the aqueous solution having the above described concentration.
  • the concentration of the water soluble organic substance less than 1% by weight shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane.
  • the concentration of the acidic substance in the aqueous solution is preferably 10 ppm to 50% by weight, more preferably 50 ppm to 20% by weight, and especially preferably 1 to 10% by weight.
  • the concentration of the acidic substance less than 10 ppm shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane.
  • the concentration exceeding 50% by weight has a great influence on the performance of the semipermeable membrane.
  • examples of the method of contacting the solution to the composite semipermeable membrane include all methods, such as a dipping, a pressurized water flow, a spray, an application, and a showering, and the dipping and the pressurized water flow methods are preferably used in order to obtain sufficient effect of contacting.
  • the contact period of time is not limited at all within a range acceptable by an allowable content of the unreacted polyfunctional amine component in the composite semipermeable membrane after the membrane washing treatment, and manufacturing restrictions, and any period of time may be adopted.
  • the contact period of time cannot necessarily be specified, it is usually several seconds to tens of minutes, and preferably 10 seconds to 3 minutes. Since the amount of removal of the unreacted polyfunctional amine component reaches an equilibrium, removing effect does not necessarily improve even with longer contact period of time. When the contact period of time is excessively lengthened, there is conversely shown a tendency for the membrane performance and manufacturing efficiency to deteriorate.
  • the contact temperature in particular will not be limited as long as the solution is in a temperature range allowing existence as a liquid, from a view point of removing effect of the unreacted polyfunctional amine component, of prevention of the membrane from deterioration, and of easiness of treatment etc.
  • the contact temperature is preferably 10 to 90° C., more preferably 10 to 60° C., and especially preferably 10 to 45° C.
  • the pressure is not in particular limited, as long as the pressure in use of this solution with respect to the semipermeable membrane is in a range acceptable by the semipermeable membrane and the physical strength of the members and the equipment for pressure application.
  • the pressurized water flow is preferably performed at 0.1 to 10 MPa, and more preferably at 1.5 to 7.5 Mpa.
  • the pressurized water flow at a pressure less than 0.1 Mpa shows a tendency of extending the contact period of time, in order to obtain necessary effect. And when exceeding 10 Mpa, compaction caused by the pressure is apt to decrease the permeation flux.
  • the present invention needs application of treatment to the porous support with additives by inclusion of at least one kind of the additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers.
  • Methods for inclusion of the additives in the porous support is not in particular limited, and preferred is a method for contact of an aqueous solution including at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers to a face that does not have the skin layer of the porous support of the unwashed or washed composite semipermeable membrane produced by the method described above.
  • the antioxidant include, for example, sulfites, such as sodium sulfite, sodium hyposulfite, sodium bisulfite, potassium sulfite, potassium hydrogen hyposulfite; sulfur dioxide; citrates, such as isopropyl citrate; and Vitamins C, such as ascorbic acid, alkyl ascorbate, and sodium ascorbate.
  • sulfites such as sodium sulfite, sodium hyposulfite, sodium bisulfite, potassium sulfite, potassium hydrogen hyposulfite
  • sulfur dioxide such as isopropyl citrate
  • citrates such as isopropyl citrate
  • Vitamins C such as ascorbic acid, alkyl ascorbate, and sodium ascorbate.
  • the antibacterial agents and antifungal agents include, for example, silver based compounds; copper based compounds; photocatalytic compounds; chitosans; and catechins, such as catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate.
  • the moisturizer includes, for example, organic acid alkali metal salts, such as sodium acetate, potassium acetate, sodium lactate, potassium lactate, sodium glutamate, and potassium glutamate; organic acid alkaline earth metal salts, such as magnesium acetate, calcium acetate, magnesium lactate, calcium lactate, magnesium glutamate, and calcium glutamate; inorganic acid alkaline metal salts, such as sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate, potassium carbonate, disodium monohydrogen phosphate, dipotassium monohydrogen phosphate, monosodium dihydrogen phosphate, monopotassium dihydrogen phosphate, sodium phosphate, potassium phosphate; inorganic acid alkaline earth metal salts, such as magnesium hydrogencarbonate, calcium hydrogencarbonate, magnesium carbonate, calcium carbonate, magnesium primary phosphate, calcium primary phosphate, magnesium secondary phosphate, calcium secondary phosphate, magnesium tertiary phosphate, calcium tertiary phosphate: alkali metal
  • the concentration of the additives in the aqueous solution is not in particular limited, and it is preferably 100 ppm to 30% by weight, and more preferably 500 ppm to 10% by weight.
  • the concentration of the additives less than 100 ppm does not sufficiently exhibit effect for controlling deterioration in water permeability and salt-blocking rate after long-term storage, showing a tendency of requiring a longer processing time.
  • the concentration of additives exceeding 30% by weight causes increase in costs, showing a tendency of giving an adverse effect to film performance.
  • Methods for contacting the aqueous solution containing the additives in the porous support includes, for example, application method, spraying method of the aqueous solution containing the additives, or contact method with a vapor of the additives, etc., and is not limited to them, and publicly known method are employable.
  • immersion of the composite semipermeable membrane in the aqueous solution containing the additives immersion of the composite semipermeable membrane is performed in a state where the skin layer is closely contacted to a roll, in order to realize inclusion of most of the additives in the porous support.
  • the aqueous solution is preferably applied to only the surface of the porous support in order to prevent deterioration of performance of the skin layer.
  • the temperature of the aqueous solution is not in particular limited as long as the solution is in a temperature range that allows existence of the aqueous solution as a liquid, from viewpoints of exhibition of target effect, prevention of the membrane from deterioration, easiness of treatment, etc., it is preferably 10 to 90° C., more preferably 10 to 60° C., especially preferably 10 to 45° C.
  • Excessive aqueous solution may be removed after contact of the aqueous solution containing the additives in the composite semipermeable membrane by the above-described method.
  • Removal methods include, for example, a contact type removal method with blades, made of plastics or rubbers, a non-contact type removal method with air knife, etc.
  • the content of the additives in the porous support may be suitably adjusted based on the kinds of additives, the grade of targeted effect etc., and, it is preferably 1 mg/m 2 to 100 g/m 2 , and more preferably 10 mg/m 2 to 10 g/m 2 for sufficient expression of the targeted effect.
  • the content of the additives less than 1 mg/m 2 shows a tendency of failing to exhibit sufficient deterioration inhibitory effect of the water permeability and the salt-blocking rate after long-term storage.
  • the content exceeding 100 g/m 2 does not vary deterioration inhibitory effect of water permeability and salt-blocking rate after long-term storage for the increase of content, leading to possible lack of stability of water quality of the target compound caused by elution of the additives.
  • porous support It is necessary for the porous support to have 95% by weight or more of content of the additives with respect to the whole composite semipermeable membrane, and preferably 96% by weight or more.
  • the amount and content of the additives included in the whole composite semipermeable membrane and porous support may be measured by the following method.
  • a composite semipermeable membrane is cut into a predetermined size and is separated into a skin layer and a porous support.
  • a method of separation for example, a method wherein a pressure sensitive adhesive tape attached on the surface of the skin layer of the composite semipermeable membrane having a size of 50 mm ⁇ 50 mm is separated after slight friction may be mentioned.
  • the skin layer and a microporous layer on an uppermost surface of the porous support is separated together with the pressure sensitive adhesive tape. The remaining portion that does not attach to the tape is defined as a porous support.
  • the separated porous support is boiled in a specified amount of pure water, the obtained extracted liquid is analyzed using publicly known methods of analysis, such as ion chromatograph analysis, GC analysis, absorption spectrometry, and refractive index analysis to determine the amount of the additives in the porous support. Furthermore, the composite semipermeable membrane cut into a predetermined size is also measured for the amount of additives in a similar way. The two obtained values are substituted for the following expression, and the content of additives in the porous support is calculated.
  • Contain rate (%) [(contain in porous support)/(contain in composite semipermeable membrane)] ⁇ 100
  • the composite semipermeable membrane, to which the treatment with additives is applied with the method described above may be dried to obtain a dried composite semipermeable membrane.
  • the temperature of drying treatment is not in particular limited, and it is preferably 20 to 150° C., and more preferably 40 to 130° C.
  • the temperature less than 20° C. needs an excessively long drying treatment period, and likely gives insufficient drying.
  • the temperature exceeding 150° C. shows a tendency to cause decrease of membrane performance due to structural change of the membrane caused by heat.
  • the period of the drying treatment is not in particular limited, and it is preferred that drying is performed until the amount of solvents in the dried composite semipermeable membrane is 5% by weight or less.
  • the membrane in the case of production of a dry spiral element, may be processed into a spiral shape in any stage from production of the above-described skin layer to drying treatment.
  • the composite semipermeable membrane may be processed into a spiral shape before the washing treatment of the membrane to produce a membrane unit.
  • the composite semipermeable membrane may be processed into a spiral shape after treatment with additives to produce the membrane unit, and the composite semipermeable membrane may be processed into a spiral shape before the drying treatment to produce the membrane unit.
  • the membrane unit may be produced by simultaneous application of the washing treatment and the treatment with additives to the produced membrane unit.
  • the same method as the one described above may be mentioned as the treatment method.
  • the dried composite semipermeable membrane and dry spiral element produced by such a method have extremely small content of unreacted components.
  • a permeated liquid separated and refined or a target compounds condensed by using the composite semipermeable membrane, etc. includes extremely small amount of impurities, and has a high purity.
  • the dried composite semipermeable membrane and the dry spiral element of the present invention have outstanding workability and preservability because it is a dry type.
  • the dried composite semipermeable membrane and the dry spiral element of the present invention are a dry type, they exhibit water permeability and salt-blocking rate equivalent to that of the wet type composite semipermeable membrane and spiral element, causing no deterioration of performance after long term storage.
  • a dried composite semipermeable membrane produced with a shape of a flat film is cut into a predetermined shape and size, and is set to a cell for flat film evaluation.
  • An aqueous solution containing NaCl of about 1500 mg/L and adjusted to a pH of 6.5 to 7.5 with NaOH was forced to contact to a supply side, and a permeation side of the membrane at a differential pressure of 1.5 MPa at 25° C.
  • a permeation velocity and an electric conductivity of the permeated water obtained by this operation were measured for, and a permeation flux (m 3 /m 2 ⁇ d) and a salt-blocking rate (%) were calculated.
  • the correlation (calibration curve) of the NaCl concentration and the electric conductivity of the aqueous solution was beforehand made, and the salt-blocking rate was calculated by a following equation.
  • Salt-blocking rate (%) ⁇ 1 ⁇ (NaCl concentration [mg/L] in permeated liquid)/(NaCl concentration [mg/L] in supply solution) ⁇ 100
  • a prepared dried composite semipermeable membrane was cut into a size of 1 cm ⁇ 3 cm to obtain samples A and B.
  • a pressure sensitive adhesive tape (made by NITTO DENKO CORPORATION, No. 31-B) was attached on the surface of the skin layer of sample A, and the pressure sensitive adhesive tape was separated after light friction. The skin layer and the microporous layer on the uppermost surface of the porous support were removed together with the pressure sensitive adhesive tape. Subsequently, the separated porous support was immersed into 50 cc of pure water, and was boiled at 120° C. for 1 hour in a sealed state. The obtained extracted liquid was subjected to analysis with ion chromatography to obtain an amount of additives in the extracted liquid. Determination of the additives was performed by comparison to a calibration curve prepared using standard solutions beforehand prepared to several kinds of prescribed concentrations. Measurement conditions are shown as follows.
  • Isolation column Ion Pac AS15 (4 mm ⁇ 250 mm)
  • sample B was immersed into 50 cc of pure water, and was boiled for 1 hour at 120° C. in a sealed state. Subsequently, the extracted liquid was subjected to analysis under the same conditions as described above to obtain an amount of additives in the extracted liquid. The two obtained value were substituted for the following expression, and the content rate of the additives in the porous support was calculated.
  • Content rate(%) [(content in porous support)/(content in composite semipermeable membrane)] ⁇ 100
  • a dope for manufacturing a membrane containing 18% by weight of a polysulfone (produced by Solvay, P-3500) dissolved in N,N-dimethylformamide (DMF) was uniformly applied so that it might give 200 ⁇ m in thickness in wet condition on a nonwoven fabric base material. Subsequently, it was immediately solidified by immersion in water at 40 to 50° C., and DMF as a solvent was completely extracted by washing. Thus a porous support having a polysulfone microporous layer was produced on the nonwoven fabric base material.
  • aqueous solution of amines containing 3% by weight of m-phenylenediamine, 3% by weight of triethylamine, and 6% by weight of camphorsulfonic acid was applied to the porous support, and then an excessive amount of the amine aqueous solution was removed to form a covering layer of the aqueous solution.
  • an isooctane solution containing 0.2% by weight of trimesic acid chlorides was applied to the surface of the covering layer of the aqueous solution. Then, the excessive solution was removed, and the material was kept standing for 3 minutes in a hot air dryer at 120° C.
  • an unwashed composite semipermeable membrane was obtained.
  • the unwashed composite semipermeable membrane was immersed for 10 minutes at 50° C. in pure water for membrane washing treatment to produce a washed composite semipermeable membrane.
  • a sodium acetate aqueous solution (concentration: 5% by weight) was applied to the surface (a face which does not have a formed skin layer) of the porous support of the washed composite semipermeable membrane under a condition of 30 cc/m 2 for treatment with additives.
  • treated composite semipermeable membrane stood to remove the excessive sodium acetate aqueous solution, and then was kept standing for 5 minutes in a hot air dryer at 80° C., finally producing a dried composite semipermeable membrane.
  • a dried composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium lactate aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution in example 1.
  • a dried composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium hydrogen carbonate aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution in example 1.
  • a composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium bisulfite aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution, and not drying after treatment with additives in example 1.
  • a dried composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium bisulfite aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution in example 1.
  • a washed composite semipermeable membrane was produced in the same manner as in example 1. Subsequently, the washed composite semipermeable membrane was immersed in a sodium acetate aqueous solution (concentration: 5% by weight) for 1 minute at 25° C., and treatment with additives was applied. Then, the treated composite semipermeable membrane stood and thus the excessive sodium acetate aqueous solution was removed, and then was kept standing for 5 minutes in a hot air dryer at 80° C. to produce a dried composite semipermeable membrane.
  • a sodium acetate aqueous solution concentration: 5% by weight
  • a washed composite semipermeable membrane was produced in the same manner as in example 1. Subsequently, a sodium acetate aqueous solution (concentration: 5% by weight) 25° C. was applied on the surface of the skin layer of the washed composite semipermeable membrane under a condition of 30 cc/m 2 , the surface was uniformly smoothed using a PET film and then treatment with additives was applied. Then, the treated composite semipermeable membrane stood and thus the excessive sodium acetate aqueous solution was removed, and next was kept standing for 5 minutes in a hot air dryer at 80° C. to produce a dried composite semipermeable membrane.
  • a dried composite semipermeable membrane was produced in the same manner as in example 1, except for not performing treatment with additives in example 1.
  • a washed composite semipermeable membrane was produced in the same manner as in example 1. Appearance of mold in the skin layer was observed after storage for one week of the washed composite semipermeable membrane.
  • An unwashed composite semipermeable membrane was produced in the same manner as in example 1.
  • a composite semipermeable membrane having water permeability and salt-blocking rate without deterioration after long-term storage may be obtained by mainly including specific additives mainly in a porous support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention aims at providing a composite semipermeable membrane in which water permeability and salt-blocking rate cannot deteriorate by long-term storage, and at providing a process for producing the same. The present invention relates to a composite semipermeable membrane having a skin layer formed on the surface of a porous support, the skin layer including a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component, wherein the porous support contains at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers, in an amount of 95% by weight or more with respect to the whole composite semipermeable membrane.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a composite semipermeable membrane having a skin layer which includes a polyamide resin and a porous support that supports the skin layer, and to a process for producing the composite semipermeable membrane. The composite semipermeable membranes are suitably used for production of ultrapure water, desalination of brackish water or sea water, etc., and usable for removing or collecting pollution sources or effective substances from pollution, which causes environment pollution occurrence, such as dyeing drainage and electrodeposition paint drainage, leading to contribute to closed system for drainage. Furthermore, the membrane can be used for concentration of active ingredients in foodstuffs usage, for an advanced water treatment, such as removal of harmful component in water purification and sewage usage etc.
  • DESCRIPTION OF THE RELATED ART
  • Recently, a composite semipermeable membrane, in which a skin layer includes polyamides obtained by interfacial polymerization of polyfunctional aromatic amines and polyfunctional aromatic acid halides and is formed on a porous support, has been proposed (Patent Document 1). A composite semipermeable membrane, in which a skin layer includes a polyamide obtained by interfacial polymerization of a polyfunctional aromatic amine and a polyfunctional alicyclic acid halide and is formed on a porous support, has been also proposed (Patent Document 2).
  • However, when it is needed to obtain a target compounds condensed or refined as permeated liquid or non-permeated liquids using conventional composite semipermeable membranes in actual cases, there has occurred a problem of unstable water quality of target compounds due to deterioration with time of performances, such as water permeability and solute blocking property, of the composite semipermeable membranes.
  • On the other hand, from viewpoints of subsequent workability, preservability, etc., the composite semipermeable membrane produced is preferably a dried composite semipermeable membrane. However, when a composite semipermeable membrane having a skin layer formed on the surface of the porous support is dried, there has occurred a problem of deterioration of salt-blocking performance and permeation flux, compared with characteristics before drying. A technique in which a reverse osmosis membrane is dried after hydrophilization treatment for the purpose of solving the problem has been disclosed (Patent Document 3). Furthermore, a method of drying a composite membrane after immersion treatment in a solution of saccharides having a molecular weight of 1000 or less has been disclosed (Patent Document 4).
  • In order to obtain a dried composite reverse osmosis membrane having outstanding water permeability, organic matter blocking performance, and salt-blocking performance, a method of performing heat drying treatment of a compound reverse osmosis membrane after contact to an aqueous solution at a temperature of 40 to 100° C. has been disclosed (Patent Document 5).
  • However, various kinds of above-described treatments, for the purpose of control of deterioration of the performance and quality, applied to a composite semipermeable membrane having a skin layer formed on the surface of a porous support conversely promotes deterioration of salt-blocking performance and permeation flux depending on kinds of chemicals used, treatment method, etc., in some case.
  • [Patent Document 1] Japanese Patent Application Laid-Open No. 02-187135
  • [Patent Document 2] Japanese Patent Application Laid-Open No. 62-121603
  • [Patent Document 3] Japanese Patent Application Laid-Open No. 2003-320224
  • [Patent Document 4] Patent No. 3015853 specification
  • [Patent Document 5] Japanese Patent Application Laid-Open No. 10-165789
  • SUMMARY OF THE INVENTION
  • The present invention aims at providing a composite semipermeable membrane in which water permeability and salt-blocking rate cannot deteriorate by long-term storage, and at providing a process for producing the same.
  • As a result of wholehearted investigation conducted by the present inventors for attaining the above-described objectives, it has been found out that inclusion of specific additives in a porous support after formation of a skin layer can provide a composite semipermeable membrane in which water permeability and salt-blocking rate cannot deteriorate after long-term storage, leading to completion of the present invention.
  • That is, the present invention relates to a composite semipermeable membrane having a skin layer formed on the surface of a porous support, the skin layer including a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component, wherein the porous support contains at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers, in an amount of 95% by weight or more with respect to the whole composite semipermeable membrane.
  • Reasons for deterioration with time of performances, such as water permeability and solute blocking property, of a composite semipermeable membrane include possible degradation of the composite semipermeable membrane by increase of bacillus, appearance of mold, structural change by drying at the time of storage, and chemical change by oxidation, etc.
  • Furthermore, various treatments, as applied in various treatments for conventional composite semipermeable membranes, by entire immersion, etc., of the composite semipermeable membranes with a flat film form or with a processed spiral element form allow expression of objective function by the treatment agent, but at the same time the treatment possibly gives unpreferable modification, such as swelling, hydrolysis, denaturation, etc., to the skin layer, and some treatment measure may give physical damage to the skin layer. Such possibilities are considered to be one of the causes of degradation of the composite semipermeable membrane.
  • The composite semipermeable membrane of the present invention is characterized by including the above-described additives mainly in the porous support. For this reason, the composite semipermeable membrane of the present invention can minimize secondary adverse effect to the skin layer, and can exhibit characteristics of giving no deterioration in water permeability and salt-blocking rate by long-term storage without deterioration of performance of the skin layer.
  • The composite semipermeable membrane of the present invention is preferred to be a dried composite semipermeable membrane from viewpoints of workability, preservability, stability of quality and performance.
  • In the present invention, moisturizers are preferably of organic acid metal salts and/or inorganic acid metal salts.
  • The organic acid metal salt preferably include at least one kind of organic acid alkali metal salt selected from the group consisting of alkali metal acetate, alkali metal lactate, and alkali metal glutamate. The alkali metal is preferably selected from sodium or potassium.
  • In addition, the inorganic acid metal salt preferably includes at least one kind of inorganic acid alkali metal salt selected from the group consisting of alkali metal hydrogencarbonate, dialkali metal monohydrogen phosphate, monoalkali metal dihydrogen phosphate, The alkali metal is preferably selected from sodium or potassium.
  • Although a prolonged moisturing treatment is needed in order to obtain necessary effect when using as surfactants and saccharides as a moisturizer, use of the organic acid metal salts and/or inorganic acid metal salts can give sufficient effect by extremely short-time moisturing treatment, leading to great advantage on the productive process. In addition, although use of the surfactants or saccharides as a moisturizer may give poor effect depending on drying conditions (temperature, period of time, etc.), use of the organic acid metal salts and/or inorganic acid metal salts can provide sufficient effect independently of dry conditions, resulting in great advantage on the productive processes.
  • The present invention also relates to a process for producing a composite semipermeable membrane comprising the steps of: forming a skin layer including a polyamide resin obtained by reaction between a polyfunctional amine component and a polyfunctional acid halide component on the surface of a porous support; and performing a treatment with additives onto the porous support by contact of an aqueous solution including at least one kind of additives selected from the group consisting of an antioxidant, an antibacterial agent, an antifungal agent, and a moisturizer, to a face without the skin layer of the porous support.
  • BEST MODE FOR CARRYING OUT OF THE INVENTION
  • The embodiments of the invention will, hereinafter, be described. In the composite semipermeable membrane of the present invention, a skin layer containing a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component is formed on the surface of a porous support, and the porous support contains at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers in an amount of 95% by weight or more with respect to the total weight of the composite semipermeable membrane.
  • The polyfunctional amine component is defined as a polyfunctional amine having two or more reactive amino groups, and includes aromatic, aliphatic, and alicyclic polyfunctional amines.
  • The aromatic polyfunctional amines include, for example, m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triamino benzene, 1,2,4-triamino benzene, 3,5-diaminobenzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N,N′-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, xylylene diamine etc.
  • The aliphatic polyfunctional amines include, for example, ethylenediamine, propylenediamine, tris(2-aminoethyl)amine, n-phenylethylenediamine, etc.
  • The alicyclic polyfunctional amines include, for example, 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethyl piperazine, etc.
  • These polyfunctional amines may be used independently, and two or more kinds may be used in combination. In order to obtain a skin layer having a higher salt-blocking property, it is preferred to use the aromatic polyfunctional amines.
  • The polyfunctional acid halide component represents polyfunctional acid halides having two or more reactive carbonyl groups.
  • The polyfunctional acid halides include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • The aromatic polyfunctional acid halides include, for example trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, chlorosulfonyl benzenedicarboxylic acid dichloride etc.
  • The aliphatic polyfunctional acid halides include, for example, propanedicarboxylic acid dichloride, butane dicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propane tricarboxylic acid trichloride, butane tricarboxylic acid trichloride, pentane tricarboxylic acid trichloride, glutaryl halide, adipoyl halide etc.
  • The alicyclic polyfunctional acid halides include, for example, cyclopropane tricarboxylic acid trichloride, cyclobutanetetracarboxylic acid tetrachloride, cyclopentane tricarboxylic acid trichloride, cyclopentanetetracarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, tetrahydrofurantetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, tetrahydrofuran dicarboxylic acid dichloride, etc.
  • These polyfunctional acid halides may be used independently, and two or more kinds may be used in combination. In order to obtain a skin layer having higher salt-blocking property, it is preferred to use aromatic polyfunctional acid halides. In addition, it is preferred to form a cross linked structure using polyfunctional acid halides having trivalency or more as at least a part of the polyfunctional acid halide components.
  • Furthermore, in order to improve performance of the skin layer including the polyamide resin, polymers such as polyvinyl alcohol, polyvinylpyrrolidone, and polyacrylic acids etc., and polyhydric alcohols, such as sorbitol and glycerin, may be copolymerized.
  • The porous support for supporting the skin layer is not especially limited as long as it has a function for supporting the skin layer, and usually ultrafiltration membrane having micro pores with an average pore size approximately 10 to 500 angstroms may preferably be used. Materials for formation of the porous support include various materials, for example, polyarylether sulfones, such as polysulfones and polyether sulfones; polyimides; polyvinylidene fluorides; etc., and polysulfones and polyarylether sulfones are especially preferably used from a viewpoint of chemical, mechanical, and thermal stability. The thickness of this porous support is usually approximately 25 to 125 μm, and preferably approximately 40 to 75 μm, but the thickness is not necessarily limited to them. The porous support may be reinforced with backing by cloths, nonwoven fabric, etc.
  • Processes for forming the skin layer including the polyamide resin on the surface of the porous support is not in particular limited, and any publicly known methods may be used. For example, the publicly known methods include an interfacial condensation method, a phase separation method, a thin film application method, etc. The interfacial condensation method is a method, wherein an amine aqueous solution containing a polyfunctional amine component, an organic solution containing a polyfunctional acid halide component are forced to contact together to form a skin layer by an interfacial polymerization, and then the obtained skin layer is laid on a porous support, and a method wherein a skin layer of a polyamide resin is directly formed on a porous support by the above-described interfacial polymerization on a porous support. Details, such as conditions of the interfacial condensation method, are described in Japanese Patent Application Laid-Open No. 58-24303, Japanese Patent Application Laid-Open No. 01-180208, and these known methods are suitably employable.
  • In the present invention, it is especially preferred that a covering layer of aqueous solution made from the amine aqueous solution containing a polyfunctional amine components is formed on the porous support, then an interfacial polymerization is performed by contact with an organic solution containing a polyfunctional acid halide component, and the covering layer of aqueous solution, and then a skin layer is formed.
  • In the interfacial-polymerization method, although the concentration of the polyfunctional amine component in the amine aqueous solution is not in particular limited, the concentration is preferably 0.1 to 5% by weight, and more preferably 0.5 to 2% by weight. Less than 0.1% by weight of the concentration of the polyfunctional amine component may easily cause defect such as pinhole. in the skin layer, leading to tendency of deterioration of salt-blocking property. On the other hand, the concentration of the polyfunctional amine component exceeding 5% by weight allows easy permeation of the polyfunctional amine component into the porous support to be an excessively large thickness and to raise the permeation resistance, likely giving deterioration of the permeation flux.
  • Although the concentration of the polyfunctional acid halide component in the organic solution is not in particular limited, it is preferably 0.01 to 5% by weight, and more preferably 0.05 to 3% by weight. Less than 0.01% by weight of the concentration of the polyfunctional acid halide component is apt to make the unreacted polyfunctional amine component remain, to cause defect such as pinhole in the skin layer, leading to tendency of deterioration of salt-blocking property. On the other hand, the concentration exceeding 5% by weight of the polyfunctional acid halide component is apt to make the unreacted polyfunctional acid halide component remain, to be an excessively large thickness and to raise the permeation resistance, likely giving deterioration of the permeation flux.
  • The organic solvents used for the organic solution is not especially limited as long as they have small solubility to water, and do not cause degradation of the porous support, and dissolve the polyfunctional acid halide component. For example, the organic solvents include saturated hydrocarbons, such as cyclohexane, heptane, octane, and nonane, halogenated hydrocarbons, such as 1,1,2-trichlorofluoroethane, etc. They are preferably saturated hydrocarbons having a boiling point of 300° C. or less, and more preferably 200° C. or less, or naphthene solvents.
  • Various kinds of additives may be added to the amine aqueous solution or the organic solution in order to provide easy film production and to improve performance of the composite semipermeable membrane to be obtained. The additives include, for example, surfactants, such as sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate; basic compounds, such as sodium hydroxide, trisodium phosphate, triethylamine, etc. for removing hydrogen halides formed by polymerization; acylation catalysts; compounds having a solubility parameter of 8 to 14 (cal/cm3)1/2 described in Japanese Patent Application Laid-Open No. 08-224452.
  • The period of time after application of the amine aqueous solution until application of the organic solution on the porous support depends on the composition and viscosity of the amine aqueous solution, and on the pore size of the surface layer of the porous support, and it is preferably 15 seconds or less, and more preferably 5 seconds or less. Application interval of the solution exceeding 15 seconds may allow permeation and diffusion of the amine aqueous solution to a deeper portion in the porous support, and possibly cause a large amount of the residual unreacted polyfunctional amine components in the porous support. In this case, removal of the unreacted polyfunctional amine component that has permeated to the deeper portion in the porous support is probably difficult even with a subsequent membrane washing treatment. Excessive amine aqueous solution may be removed after covering by the amine aqueous solution on the porous support.
  • In the present invention, after the contact with the covering layer of aqueous solution and the organic solution including the amine aqueous solution, it is preferred to remove the excessive organic solution on the porous support, and to dry the formed membrane on the porous support by heating at a temperature of 70° C. or more, forming the skin layer. Heat-treatment of the formed membrane can improve the mechanical strength, heat-resisting property, etc. The heating temperature is more preferably 70 to 200° C., and especially preferably 100 to 150° C. The heating period of time is preferably approximately 30 seconds to 10 minutes, and more preferably approximately 40 seconds to 7 minutes.
  • The thickness of the skin layer formed on the porous support is not in particular limited, and it is usually approximately 0.05 to 2 μm, and preferably 0.1 to 1 μm.
  • In the present invention, a washed composite semipermeable membrane may be obtained by subsequently applying membrane washing treatment to the produced composite semipermeable membrane. The method of the membrane washing treatment is not in particular limited, and conventionally publicly known methods are employable. The following membrane washing treatment is especially preferably adopted.
  • 1) Method of washing the membrane by contact of the composite semipermeable membrane with pure water or ion exchange water.
  • 2) Method of washing the membrane by contact of the composite semipermeable membrane with an aqueous solution containing an acidic substance and/or an inorganic salt, and an water-soluble organic substance.
  • The acidic substance concerned is not in particular limited as long as it is water-soluble, and for example, inorganic acids, such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids, such as formic acid, acetic acid, and citric acid, may be mentioned.
  • The inorganic salt is not in particular limited as long as it is a inorganic salt that can form a complex with an amido group and, for example, lithium chloride (LiCl), calcium chloride (CaCl2), rhodan calcium [Ca(SCN)2], and rhodan potassium (KSCN) may be mentioned.
  • The concentration of the acidic substance and/or the mineral salt in the aqueous solution is preferably 10 ppm to 50% by weight, more preferably 50 ppm to 20% by weight, and especially preferably 1 to 10% by weight. The concentration of the acidic substance and/or the mineral salt less than 10 ppm shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane. On the other hand, the concentration exceeding 50% by weight has a great influence on performance of the semipermeable membrane, and shows a tendency for permeation flux to deteriorate.
  • The water-soluble organic substance is not in particular limited, as long as it does not give adverse effect on membrane performance, and the substance include, for example, monohydric alcohols, such as methyl alcohol, ethyl alcohol, n-propyl alcohol, and isopropyl alcohol; polyhydric alcohols, such as ethylene glycol, triethylene glycol, and glycerin; ethers, such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monobutyl ether; polar solvents, such as dimethylformamide, dimethylacetamide, and n-methylpyrrolidone.
  • In view of the suppression effect of deterioration of removal performance and membrane performance of the unreacted polyfunctional amine component, the concentration of the water-soluble organic substance in the aqueous solution can be suitably adjusted for every material to be used, and it is approximately 1 to 90% by weight, more preferably 10 to 80% by weight, and especially preferably 20 to 50% by weight. Less than 1% by weight of the concentration of the water soluble organic substance shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane. On the other hand, the concentration exceeding 90% by weight has a great influence on performance of the semipermeable membrane, and shows a tendency for permeation flux to deteriorate.
  • 3) A method of, first of all, making the composite semipermeable membrane contact with a solution including the water soluble organic substance, then making the semipermeable membrane contact with an aqueous solution containing the acidic substance to wash the membrane.
  • A reversed order of contact with solutions cannot fully remove the unreacted polyfunctional amine component. Firstly conducted contact of the composite semipermeable membrane with the solution containing the water soluble organic substance can accelerate hydrophilization and swelling of the membrane. Therefore, this process allows quick permeation of the aqueous solution including the acidic substance to an inner portion of the membrane in the subsequent contact treatment, and can increase washing effect.
  • In consideration of the suppression effect of deterioration of removal performance and membrane performance of the unreacted polyfunctional amine component, the concentration of the water soluble organic substance in the solution can be suitably adjusted for every materials to be used, and usually, it is 1 to 100% by weight, preferably 10 to 80% by weight, and more preferably 20 to 50% by weight. It is especially preferred to use the aqueous solution having the above described concentration. The concentration of the water soluble organic substance less than 1% by weight shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane.
  • The concentration of the acidic substance in the aqueous solution is preferably 10 ppm to 50% by weight, more preferably 50 ppm to 20% by weight, and especially preferably 1 to 10% by weight. The concentration of the acidic substance less than 10 ppm shows a tendency of making difficult efficient removal of the unreacted polyfunctional amine component from the semipermeable membrane. On the other hand, the concentration exceeding 50% by weight has a great influence on the performance of the semipermeable membrane.
  • In the membrane washing methods 1) to 3) described above, examples of the method of contacting the solution to the composite semipermeable membrane include all methods, such as a dipping, a pressurized water flow, a spray, an application, and a showering, and the dipping and the pressurized water flow methods are preferably used in order to obtain sufficient effect of contacting.
  • The contact period of time is not limited at all within a range acceptable by an allowable content of the unreacted polyfunctional amine component in the composite semipermeable membrane after the membrane washing treatment, and manufacturing restrictions, and any period of time may be adopted. Although the contact period of time cannot necessarily be specified, it is usually several seconds to tens of minutes, and preferably 10 seconds to 3 minutes. Since the amount of removal of the unreacted polyfunctional amine component reaches an equilibrium, removing effect does not necessarily improve even with longer contact period of time. When the contact period of time is excessively lengthened, there is conversely shown a tendency for the membrane performance and manufacturing efficiency to deteriorate. Although the contact temperature in particular will not be limited as long as the solution is in a temperature range allowing existence as a liquid, from a view point of removing effect of the unreacted polyfunctional amine component, of prevention of the membrane from deterioration, and of easiness of treatment etc. the contact temperature is preferably 10 to 90° C., more preferably 10 to 60° C., and especially preferably 10 to 45° C.
  • In the contact of the solution by the pressurized water flow method, the pressure is not in particular limited, as long as the pressure in use of this solution with respect to the semipermeable membrane is in a range acceptable by the semipermeable membrane and the physical strength of the members and the equipment for pressure application. The pressurized water flow is preferably performed at 0.1 to 10 MPa, and more preferably at 1.5 to 7.5 Mpa. The pressurized water flow at a pressure less than 0.1 Mpa shows a tendency of extending the contact period of time, in order to obtain necessary effect. And when exceeding 10 Mpa, compaction caused by the pressure is apt to decrease the permeation flux.
  • The present invention needs application of treatment to the porous support with additives by inclusion of at least one kind of the additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers. Methods for inclusion of the additives in the porous support is not in particular limited, and preferred is a method for contact of an aqueous solution including at least one kind of additives selected from the group consisting of antioxidants, antibacterial agents, antifungal agents, and moisturizers to a face that does not have the skin layer of the porous support of the unwashed or washed composite semipermeable membrane produced by the method described above.
  • The antioxidant include, for example, sulfites, such as sodium sulfite, sodium hyposulfite, sodium bisulfite, potassium sulfite, potassium hydrogen hyposulfite; sulfur dioxide; citrates, such as isopropyl citrate; and Vitamins C, such as ascorbic acid, alkyl ascorbate, and sodium ascorbate.
  • The antibacterial agents and antifungal agents include, for example, silver based compounds; copper based compounds; photocatalytic compounds; chitosans; and catechins, such as catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epicatechin gallate, gallocatechin gallate, and epigallocatechin gallate.
  • The moisturizer includes, for example, organic acid alkali metal salts, such as sodium acetate, potassium acetate, sodium lactate, potassium lactate, sodium glutamate, and potassium glutamate; organic acid alkaline earth metal salts, such as magnesium acetate, calcium acetate, magnesium lactate, calcium lactate, magnesium glutamate, and calcium glutamate; inorganic acid alkaline metal salts, such as sodium hydrogencarbonate, potassium hydrogencarbonate, sodium carbonate, potassium carbonate, disodium monohydrogen phosphate, dipotassium monohydrogen phosphate, monosodium dihydrogen phosphate, monopotassium dihydrogen phosphate, sodium phosphate, potassium phosphate; inorganic acid alkaline earth metal salts, such as magnesium hydrogencarbonate, calcium hydrogencarbonate, magnesium carbonate, calcium carbonate, magnesium primary phosphate, calcium primary phosphate, magnesium secondary phosphate, calcium secondary phosphate, magnesium tertiary phosphate, calcium tertiary phosphate: alkali metal halides, such as sodium chloride; alkali earth metal halides, such as magnesium chloride; surfactants, such as sodium lauryl sulfate, lauryl potassium sulfate, sodium alkyl benzene sulfonate, and potassium alkylbenzene sulfonate; saccharides, such as glucose and saccharose; amino acids, such as glycine and leucine etc.
  • The concentration of the additives in the aqueous solution is not in particular limited, and it is preferably 100 ppm to 30% by weight, and more preferably 500 ppm to 10% by weight. The concentration of the additives less than 100 ppm does not sufficiently exhibit effect for controlling deterioration in water permeability and salt-blocking rate after long-term storage, showing a tendency of requiring a longer processing time. On the other hand, the concentration of additives exceeding 30% by weight causes increase in costs, showing a tendency of giving an adverse effect to film performance.
  • Methods for contacting the aqueous solution containing the additives in the porous support includes, for example, application method, spraying method of the aqueous solution containing the additives, or contact method with a vapor of the additives, etc., and is not limited to them, and publicly known method are employable. Alternatively, in the case of immersion of the composite semipermeable membrane in the aqueous solution containing the additives, immersion of the composite semipermeable membrane is performed in a state where the skin layer is closely contacted to a roll, in order to realize inclusion of most of the additives in the porous support.
  • In the case of application of an aqueous solution containing additives to the composite semipermeable membrane, the aqueous solution is preferably applied to only the surface of the porous support in order to prevent deterioration of performance of the skin layer.
  • Although the temperature of the aqueous solution is not in particular limited as long as the solution is in a temperature range that allows existence of the aqueous solution as a liquid, from viewpoints of exhibition of target effect, prevention of the membrane from deterioration, easiness of treatment, etc., it is preferably 10 to 90° C., more preferably 10 to 60° C., especially preferably 10 to 45° C.
  • Excessive aqueous solution may be removed after contact of the aqueous solution containing the additives in the composite semipermeable membrane by the above-described method. Removal methods include, for example, a contact type removal method with blades, made of plastics or rubbers, a non-contact type removal method with air knife, etc.
  • The content of the additives in the porous support may be suitably adjusted based on the kinds of additives, the grade of targeted effect etc., and, it is preferably 1 mg/m2 to 100 g/m2, and more preferably 10 mg/m2 to 10 g/m2 for sufficient expression of the targeted effect. The content of the additives less than 1 mg/m2 shows a tendency of failing to exhibit sufficient deterioration inhibitory effect of the water permeability and the salt-blocking rate after long-term storage. On the other hand, the content exceeding 100 g/m2 does not vary deterioration inhibitory effect of water permeability and salt-blocking rate after long-term storage for the increase of content, leading to possible lack of stability of water quality of the target compound caused by elution of the additives.
  • It is necessary for the porous support to have 95% by weight or more of content of the additives with respect to the whole composite semipermeable membrane, and preferably 96% by weight or more.
  • The amount and content of the additives included in the whole composite semipermeable membrane and porous support may be measured by the following method.
  • (Separate Method)
  • A composite semipermeable membrane is cut into a predetermined size and is separated into a skin layer and a porous support. As a method of separation, for example, a method wherein a pressure sensitive adhesive tape attached on the surface of the skin layer of the composite semipermeable membrane having a size of 50 mm×50 mm is separated after slight friction may be mentioned. By this method, the skin layer and a microporous layer on an uppermost surface of the porous support is separated together with the pressure sensitive adhesive tape. The remaining portion that does not attach to the tape is defined as a porous support. Subsequently, the separated porous support is boiled in a specified amount of pure water, the obtained extracted liquid is analyzed using publicly known methods of analysis, such as ion chromatograph analysis, GC analysis, absorption spectrometry, and refractive index analysis to determine the amount of the additives in the porous support. Furthermore, the composite semipermeable membrane cut into a predetermined size is also measured for the amount of additives in a similar way. The two obtained values are substituted for the following expression, and the content of additives in the porous support is calculated.

  • Contain rate (%)=[(contain in porous support)/(contain in composite semipermeable membrane)]×100
  • In the present invention, subsequently, the composite semipermeable membrane, to which the treatment with additives is applied with the method described above, may be dried to obtain a dried composite semipermeable membrane.
  • The temperature of drying treatment is not in particular limited, and it is preferably 20 to 150° C., and more preferably 40 to 130° C. The temperature less than 20° C. needs an excessively long drying treatment period, and likely gives insufficient drying. The temperature exceeding 150° C. shows a tendency to cause decrease of membrane performance due to structural change of the membrane caused by heat.
  • The period of the drying treatment is not in particular limited, and it is preferred that drying is performed until the amount of solvents in the dried composite semipermeable membrane is 5% by weight or less.
  • In addition, in the case of production of a dry spiral element, the membrane may be processed into a spiral shape in any stage from production of the above-described skin layer to drying treatment. In detail, the composite semipermeable membrane may be processed into a spiral shape before the washing treatment of the membrane to produce a membrane unit. Alternatively, the composite semipermeable membrane may be processed into a spiral shape after treatment with additives to produce the membrane unit, and the composite semipermeable membrane may be processed into a spiral shape before the drying treatment to produce the membrane unit.
  • Furthermore, the membrane unit may be produced by simultaneous application of the washing treatment and the treatment with additives to the produced membrane unit. The same method as the one described above may be mentioned as the treatment method.
  • The dried composite semipermeable membrane and dry spiral element produced by such a method have extremely small content of unreacted components. A permeated liquid separated and refined or a target compounds condensed by using the composite semipermeable membrane, etc., includes extremely small amount of impurities, and has a high purity. The dried composite semipermeable membrane and the dry spiral element of the present invention have outstanding workability and preservability because it is a dry type. Furthermore, although the dried composite semipermeable membrane and the dry spiral element of the present invention are a dry type, they exhibit water permeability and salt-blocking rate equivalent to that of the wet type composite semipermeable membrane and spiral element, causing no deterioration of performance after long term storage.
  • For improvement in salt-blocking property, water permeability, anti-oxidation agent property, etc., of the dried composite semipermeable membrane or dry spiral element, various conventionally publicly known treatments may be applied.
  • EXAMPLE
  • The present invention will, hereinafter, be described with reference to Examples, but the present invention is not limited at all by these Examples.
  • (Measurement of Permeation Flux and Salt-Blocking Rate)
  • A dried composite semipermeable membrane produced with a shape of a flat film is cut into a predetermined shape and size, and is set to a cell for flat film evaluation. An aqueous solution containing NaCl of about 1500 mg/L and adjusted to a pH of 6.5 to 7.5 with NaOH was forced to contact to a supply side, and a permeation side of the membrane at a differential pressure of 1.5 MPa at 25° C. A permeation velocity and an electric conductivity of the permeated water obtained by this operation were measured for, and a permeation flux (m3/m2·d) and a salt-blocking rate (%) were calculated. The correlation (calibration curve) of the NaCl concentration and the electric conductivity of the aqueous solution was beforehand made, and the salt-blocking rate was calculated by a following equation.

  • Salt-blocking rate (%)={1−(NaCl concentration [mg/L] in permeated liquid)/(NaCl concentration [mg/L] in supply solution)}×100
  • (Measurement of Content and Content Rate of Additives)
  • A prepared dried composite semipermeable membrane was cut into a size of 1 cm×3 cm to obtain samples A and B. A pressure sensitive adhesive tape (made by NITTO DENKO CORPORATION, No. 31-B) was attached on the surface of the skin layer of sample A, and the pressure sensitive adhesive tape was separated after light friction. The skin layer and the microporous layer on the uppermost surface of the porous support were removed together with the pressure sensitive adhesive tape. Subsequently, the separated porous support was immersed into 50 cc of pure water, and was boiled at 120° C. for 1 hour in a sealed state. The obtained extracted liquid was subjected to analysis with ion chromatography to obtain an amount of additives in the extracted liquid. Determination of the additives was performed by comparison to a calibration curve prepared using standard solutions beforehand prepared to several kinds of prescribed concentrations. Measurement conditions are shown as follows.
  • Analyzer: Ion chromatograph, manufactured by DIONEX CORPORATION, DX-320
  • Isolation column: Ion Pac AS15 (4 mm×250 mm)
  • Guard column: Ion Pac AG15 (4 mm×50 mm)
  • Detector: Conductometrical detector
  • Eluate: KOH 2 mM→10 mM
  • Eluate flow rate: 1.2 mL/min
  • Specimen injection: 50 μL
  • Furthermore, sample B was immersed into 50 cc of pure water, and was boiled for 1 hour at 120° C. in a sealed state. Subsequently, the extracted liquid was subjected to analysis under the same conditions as described above to obtain an amount of additives in the extracted liquid. The two obtained value were substituted for the following expression, and the content rate of the additives in the porous support was calculated.

  • Content rate(%)=[(content in porous support)/(content in composite semipermeable membrane)]×100
  • Production Example 1 Production of Porous Support
  • A dope for manufacturing a membrane containing 18% by weight of a polysulfone (produced by Solvay, P-3500) dissolved in N,N-dimethylformamide (DMF) was uniformly applied so that it might give 200 μm in thickness in wet condition on a nonwoven fabric base material. Subsequently, it was immediately solidified by immersion in water at 40 to 50° C., and DMF as a solvent was completely extracted by washing. Thus a porous support having a polysulfone microporous layer was produced on the nonwoven fabric base material.
  • Example 1
  • An aqueous solution of amines containing 3% by weight of m-phenylenediamine, 3% by weight of triethylamine, and 6% by weight of camphorsulfonic acid was applied to the porous support, and then an excessive amount of the amine aqueous solution was removed to form a covering layer of the aqueous solution. Subsequently, an isooctane solution containing 0.2% by weight of trimesic acid chlorides was applied to the surface of the covering layer of the aqueous solution. Then, the excessive solution was removed, and the material was kept standing for 3 minutes in a hot air dryer at 120° C. to form a skin layer containing a polyamide resin on the porous support, an unwashed composite semipermeable membrane was obtained. After that time, the unwashed composite semipermeable membrane was immersed for 10 minutes at 50° C. in pure water for membrane washing treatment to produce a washed composite semipermeable membrane. Subsequently, a sodium acetate aqueous solution (concentration: 5% by weight) was applied to the surface (a face which does not have a formed skin layer) of the porous support of the washed composite semipermeable membrane under a condition of 30 cc/m2 for treatment with additives. And treated composite semipermeable membrane stood to remove the excessive sodium acetate aqueous solution, and then was kept standing for 5 minutes in a hot air dryer at 80° C., finally producing a dried composite semipermeable membrane.
  • Example 2
  • A dried composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium lactate aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution in example 1.
  • Example 3
  • A dried composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium hydrogen carbonate aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution in example 1.
  • Example 4
  • A composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium bisulfite aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution, and not drying after treatment with additives in example 1.
  • Example 5
  • A dried composite semipermeable membrane was produced in the same manner as in example 1, except for using a sodium bisulfite aqueous solution (concentration: 5% by weight) instead of the sodium acetate aqueous solution in example 1.
  • Comparative Example 1
  • A washed composite semipermeable membrane was produced in the same manner as in example 1. Subsequently, the washed composite semipermeable membrane was immersed in a sodium acetate aqueous solution (concentration: 5% by weight) for 1 minute at 25° C., and treatment with additives was applied. Then, the treated composite semipermeable membrane stood and thus the excessive sodium acetate aqueous solution was removed, and then was kept standing for 5 minutes in a hot air dryer at 80° C. to produce a dried composite semipermeable membrane.
  • Comparative Example 2
  • A washed composite semipermeable membrane was produced in the same manner as in example 1. Subsequently, a sodium acetate aqueous solution (concentration: 5% by weight) 25° C. was applied on the surface of the skin layer of the washed composite semipermeable membrane under a condition of 30 cc/m2, the surface was uniformly smoothed using a PET film and then treatment with additives was applied. Then, the treated composite semipermeable membrane stood and thus the excessive sodium acetate aqueous solution was removed, and next was kept standing for 5 minutes in a hot air dryer at 80° C. to produce a dried composite semipermeable membrane.
  • Comparative Example 3
  • A dried composite semipermeable membrane was produced in the same manner as in example 1, except for not performing treatment with additives in example 1.
  • Comparative Example 4
  • A washed composite semipermeable membrane was produced in the same manner as in example 1. Appearance of mold in the skin layer was observed after storage for one week of the washed composite semipermeable membrane.
  • Comparative Example 5
  • An unwashed composite semipermeable membrane was produced in the same manner as in example 1.
  • TABLE 1
    Content of additives
    (mg/m2) Initial Performance
    Whole Content of performance one week after
    Condition composite additives to Permeation Permeation
    of semipermeable Porous porous Salt-blocking Flux Salt-blocking Flux
    membrane Additive membrane support support (%) rate (%) (m3/m2 · d) rate (%) (m3/m2 · d)
    Example 1 Washed, Sodium 790 780 98.7 99.3 0.8 99.3 0.8
    dry acetate
    Example 2 Washed, Sodium 1050  1020  97.1 99.5 0.9 99.6 0.8
    dry lactate
    Example 3 Washed, Sodium 570 550 96.5 99.3 0.6 99.2 0.6
    dry hydrogen
    carbonate
    Example 4 Washed, Sodium 580 570 98.3 99.4 0.6 99.3 0.6
    wet bisulfite
    Example 5 Washed, Sodium 600 580 96.7 99.5 1.0 99.5 1.0
    dry bisulfite
    Comparative Washed, Sodium 820 740 90.2 98.9 0.9 98.7 0.8
    Example 1 dry acetate
    Comparative Washed, Sodium 660 590 89.4 97.9 1.1 97.1 1.2
    Example 2 dry acetate
    Comparative Washed, Measurement impossible (permeation flux <0.1)
    Example 3 dry
    Comparative Washed, 99.5 0.9 99.1 0.7
    Example 4 wet
    Comparative Unwashed, 99.5 0.9 99.0 1.4
    Example 5 dry
  • As is clearly shown in table 1, a composite semipermeable membrane having water permeability and salt-blocking rate without deterioration after long-term storage may be obtained by mainly including specific additives mainly in a porous support.

Claims (14)

1. A composite semipermeable membrane having a skin layer formed on the surface of a porous support, the skin layer comprising a polyamide resin obtained by interfacial polymerization of a polyfunctional amine component and a polyfunctional acid halide component, wherein the porous support contains at least one kind of additive selected from the group consisting of an antioxidant, an antibacterial agent, an antifungal agent, and a moisturizer in an amount of 95% by weight or more with respect to the whole composite semipermeable membrane.
2. The composite semipermeable membrane according to claim 1, wherein the composite semipermeable membrane is a dried composite semipermeable membrane.
3. The composite semipermeable membrane according to claim 1, wherein the moisturizer is an organic acid metal salt and/or an inorganic acid metal salt.
4. The composite semipermeable membrane according to claim 3, wherein the organic acid metal salt is at least one kind of organic acid alkali metal salt selected from the group consisting of an alkali metal acetate, alkali metal lactate, and alkali metal glutamate.
5. The composite semipermeable membrane according to claim 3, wherein the inorganic acid metal salt is at least one kind of inorganic acid alkali metal salt selected from the group consisting of an alkali metal hydrogencarbonate, dialkali metal monohydrogen phosphate, and monoalkali metal dihydrogen phosphate.
6. A process for producing a composite semipermeable membrane comprising:
forming a skin layer including a polyamide resin obtained by reaction between a polyfunctional amine component and a polyfunctional acid halide component on the surface of a porous support; and
performing a treatment with additives onto the porous support by contact of an aqueous solution including at least one kind of additives selected from the group consisting of an antioxidant, an antibacterial agent, an antifungal agent, and a moisturizer, to a face without the skin layer of the porous support.
7. The composite semipermeable membrane according to claim 2, wherein the moisturizer is an organic acid metal salt and/or an inorganic acid metal salt.
8. The composite semipermeable membrane according to claim 7, wherein the organic acid metal salt is at least one kind of organic acid alkali metal salt selected from the group consisting of an alkali metal acetate, alkali metal lactate, and alkali metal glutamate.
9. The composite semipermeable membrane according to claim 7, wherein the inorganic acid metal salt is at least one kind of inorganic acid alkali metal salt selected from the group consisting of an alkali metal hydrogencarbonate, dialkali metal monohydrogen phosphate, and monoalkali metal dihydrogen phosphate.
10. The composite semipermeable membrane according to claim 1, wherein the porous support contains an antioxidant selected from the group consisting of sodium sulfite, sodium hyposulfite, sodium bisulfite, potassium sulfite, potassium hydrogen hyposulfite, sulfur dioxide, isopropyl citrate, ascorbic acid, alkyl ascorbate, and sodium ascorbate.
11. The composite semipermeable membrane according to claim 1, wherein the porous support contains an antibacterial agent selected from the group consisting of a silver based compound, a copper based compound, a photocatalytic compound, a chitosan, and a catechin.
12. The composite semipermeable membrane according to claim 1, wherein the content of the additive(s) in the porous support is 1 mg/m2 to 100 g/m2.
13. The process of claim 6, further comprising drying the treated composite semipermeable membrane.
14. The process of claim 6, wherein concentration of the additives in the aqueous solution is 100 ppm to 30% by weight.
US11/869,678 2006-10-10 2007-10-09 Composite semipermeable membrane and process for producing the same Abandoned US20080083670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/606,518 US8851297B2 (en) 2006-10-10 2009-10-27 Composite semipermeable membrane and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006276661A JP2008093544A (en) 2006-10-10 2006-10-10 Composite semipermeable membrane and manufacturing method thereof
JP2006-276661 2006-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/606,518 Division US8851297B2 (en) 2006-10-10 2009-10-27 Composite semipermeable membrane and process for producing the same

Publications (1)

Publication Number Publication Date
US20080083670A1 true US20080083670A1 (en) 2008-04-10

Family

ID=39274208

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/869,678 Abandoned US20080083670A1 (en) 2006-10-10 2007-10-09 Composite semipermeable membrane and process for producing the same
US12/606,518 Active 2029-03-22 US8851297B2 (en) 2006-10-10 2009-10-27 Composite semipermeable membrane and process for producing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/606,518 Active 2029-03-22 US8851297B2 (en) 2006-10-10 2009-10-27 Composite semipermeable membrane and process for producing the same

Country Status (4)

Country Link
US (2) US20080083670A1 (en)
JP (1) JP2008093544A (en)
KR (1) KR20080032609A (en)
CN (1) CN101219345B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251447A1 (en) * 2006-10-10 2008-10-16 Atsuhito Koumoto Process for producing a dried composite semipermeable membrane
US20080257818A1 (en) * 2004-10-01 2008-10-23 Nitto Denko Corporation Semipermeable Composite Membrane and Process for Producing the Same
US20080277334A1 (en) * 2004-10-01 2008-11-13 Nitto Denko Corporation Process for Producing Semipermeable Composite Membrane
US20090050558A1 (en) * 2004-10-04 2009-02-26 Hirotoshi Ishizuka Process for producing composite reverse osmosis membrane
US20100044902A1 (en) * 2006-10-10 2010-02-25 Tomomi Ohara Composite semipermeable membrane and process for producing the same
US20100173083A1 (en) * 2004-10-01 2010-07-08 Tomomi Ohara Semipermeable composite membrane and process for producing the same
US20100176052A1 (en) * 2007-03-30 2010-07-15 NITTO DENKO CORPORATION a corporation Process for producing composite semipermeable membrane
WO2013118148A1 (en) * 2012-02-06 2013-08-15 Council Of Scientific & Industrial Research "l-enantiomers selective membrane for optical resolution of alpha-amino acids and process for the preparation thereof"
US20170232433A1 (en) * 2012-03-08 2017-08-17 Bio-Rad Laboratories, Inc. Anionic exchange-hydrophobic mixed mode
CN113908696A (en) * 2020-07-07 2022-01-11 沃顿科技股份有限公司 Method for preparing reverse osmosis membrane and reverse osmosis membrane prepared thereby
CN114177786A (en) * 2021-11-01 2022-03-15 泰州九润环保科技有限公司 Preparation method of multilayer polyamide composite reverse osmosis membrane
CN115072904A (en) * 2022-07-14 2022-09-20 重庆海通环保科技有限公司 Reverse osmosis membrane for fractional reverse osmosis treatment of treatment liquid

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6261589A (en) * 1985-09-10 1987-03-18 Fuji Oil Co Ltd Processing of glyceride fat or oil
US8177978B2 (en) 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
WO2012064939A2 (en) * 2010-11-10 2012-05-18 Nanoh2O, Inc. Improved hybrid tfc ro membranes with non-metallic additives
TWI519339B (en) 2012-12-28 2016-02-01 財團法人工業技術研究院 Filtering membrane
US20150165388A1 (en) * 2013-12-17 2015-06-18 Pall Corporation Skinless polyethersulfone membrane
JP2015116539A (en) * 2013-12-19 2015-06-25 東レ株式会社 Composite semipermeable membrane and method of producing the same
KR101584129B1 (en) * 2014-05-29 2016-01-11 주식회사 포스코건설 Biofilm supported reverse osmosis membrane filter and method for preparing thereof and method for treating water using the same
CN104043341A (en) * 2014-06-23 2014-09-17 南通惠然生物科技有限公司 High-flux antioxidant filter membrane
CN106474945A (en) * 2015-08-28 2017-03-08 中国石油化工股份有限公司 A kind of antibacterial polyamide polymeric membrane and its preparation method and application
US9861940B2 (en) 2015-08-31 2018-01-09 Lg Baboh2O, Inc. Additives for salt rejection enhancement of a membrane
US9737859B2 (en) 2016-01-11 2017-08-22 Lg Nanoh2O, Inc. Process for improved water flux through a TFC membrane
US10155203B2 (en) 2016-03-03 2018-12-18 Lg Nanoh2O, Inc. Methods of enhancing water flux of a TFC membrane using oxidizing and reducing agents
CN105948333A (en) * 2016-06-30 2016-09-21 杭州聚合顺新材料股份有限公司 Removing method and device for inorganic ions in nylon 6 slice extracting water
CN110975620A (en) * 2019-12-25 2020-04-10 恩泰环保科技(常州)有限公司 Nanofiltration membrane based on weak base buffer system and preparation method thereof
CN111569675A (en) * 2020-05-28 2020-08-25 西北大学 Reverse osmosis membrane based on dimethyl carbonate and preparation method thereof

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1234567A (en) * 1915-09-14 1917-07-24 Edward J Quigley Soft collar.
US4005012A (en) * 1975-09-22 1977-01-25 The United States Of America As Represented By The Secretary Of The Interior Semipermeable membranes and the method for the preparation thereof
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4520044A (en) * 1984-07-30 1985-05-28 E. I. Du Pont De Nemours And Company Production of composite membranes
US4529646A (en) * 1984-07-30 1985-07-16 E. I. Du Pont De Nemours And Company Production of composite membranes
US4761234A (en) * 1985-08-05 1988-08-02 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
US4830885A (en) * 1987-06-08 1989-05-16 Allied-Signal Inc. Chlorine-resistant semipermeable membranes
US4872984A (en) * 1988-09-28 1989-10-10 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
US4938872A (en) * 1989-06-07 1990-07-03 E. I. Du Pont De Nemours And Company Treatment for reverse osmosis membranes
US4948507A (en) * 1988-09-28 1990-08-14 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
US4950404A (en) * 1989-08-30 1990-08-21 Allied-Signal Inc. High flux semipermeable membranes
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
US5152901A (en) * 1990-09-14 1992-10-06 Ionics, Incorporated Polyamine-polyamide composite nanofiltration membrane for water softening
US5259950A (en) * 1990-03-27 1993-11-09 Toray Industries, Inc. Composite membrane
US5746916A (en) * 1994-01-26 1998-05-05 Mitsubishi Rayon Co., Ltd. Microporous membrane made of non-crystalline polymers and method of producing the same
US5783079A (en) * 1994-08-29 1998-07-21 Toyo Boseki Kabushiki Kaisha Composite hollow fiber membrane and process for its production
US6177011B1 (en) * 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
US20020063093A1 (en) * 1997-06-06 2002-05-30 Koch Membrane Systems, Inc. High performance composite membrane
US6551536B1 (en) * 2001-07-30 2003-04-22 Saehan Industries Incorporation Reverse osmosis membrane having excellent anti-fouling property and method for manufacturing the same
US20040222146A1 (en) * 2003-05-06 2004-11-11 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
US7156997B2 (en) * 2001-10-05 2007-01-02 Dow Global Technologies Inc. Package assembly for piperazine-based membranes
US7220358B2 (en) * 2004-02-23 2007-05-22 Ecolab Inc. Methods for treating membranes and separation facilities and membrane treatment composition
US20080053893A1 (en) * 2004-10-01 2008-03-06 Tomomi Ohara Semipermeable Composite Membrane and Process for Producing the Same
US20080251447A1 (en) * 2006-10-10 2008-10-16 Atsuhito Koumoto Process for producing a dried composite semipermeable membrane
US20080257818A1 (en) * 2004-10-01 2008-10-23 Nitto Denko Corporation Semipermeable Composite Membrane and Process for Producing the Same
US20080277334A1 (en) * 2004-10-01 2008-11-13 Nitto Denko Corporation Process for Producing Semipermeable Composite Membrane
US20090050558A1 (en) * 2004-10-04 2009-02-26 Hirotoshi Ishizuka Process for producing composite reverse osmosis membrane

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2727087A (en) * 1952-04-18 1955-12-13 Gen Electric Armored oil well cable
US3023300A (en) * 1959-08-10 1962-02-27 Hackethal Draht & Kabelwerk Ag Method and apparatus for forming cable sheath
NL271831A (en) * 1960-11-29
US3133137A (en) * 1960-11-29 1964-05-12 Univ California High flow porous membranes for separating water from saline solutions
US3567632A (en) * 1968-09-04 1971-03-02 Du Pont Permselective,aromatic,nitrogen-containing polymeric membranes
US3744642A (en) * 1970-12-30 1973-07-10 Westinghouse Electric Corp Interface condensation desalination membranes
JPS6038166B2 (en) 1976-07-30 1985-08-30 東ソー株式会社 Composite membrane manufacturing method
JPS58180206A (en) 1982-04-15 1983-10-21 Toray Ind Inc Production of selective permeable membrane
JPS6146207A (en) 1984-08-09 1986-03-06 Nitto Electric Ind Co Ltd Manufacture of composite semipermeable membrane
JPS62121603A (en) 1985-08-05 1987-06-02 Toray Ind Inc Composite semipermeable membrane and preparation thereof
JPH0790152B2 (en) 1986-02-26 1995-10-04 東レ株式会社 Composite reverse osmosis membrane
JP2510530B2 (en) 1986-09-26 1996-06-26 東レ株式会社 Manufacturing method of composite membrane
JPS63218208A (en) 1987-03-05 1988-09-12 Toray Ind Inc Composite semipermeable membrane and its production
US4769148A (en) * 1987-11-18 1988-09-06 The Dow Chemical Company Novel polyamide reverse osmosis membranes
JPH0278428A (en) 1988-06-07 1990-03-19 Toray Ind Inc Laminated semipermeable membrane and production thereof
US5015380A (en) 1989-04-20 1991-05-14 E. I. Du Pont De Nemours And Company Microporous support layer with interfacially polymerized copolyamide membrane thereon
JPH0315853A (en) 1989-06-14 1991-01-24 Kao Corp Electrophotographic sensitive body
US4964998A (en) * 1989-12-13 1990-10-23 Filmtec Corporation Use of treated composite polyamide membranes to separate concentrated solute
JPH0523558A (en) 1989-12-19 1993-02-02 Exxon Res & Eng Co Production of thin supporting layer film
US5045354A (en) 1989-12-19 1991-09-03 Exxon Research & Engineering Company Production of supported thin film membranes
NL9001274A (en) * 1990-06-06 1992-01-02 X Flow Bv SEMI-PERMEABLE COMPOSITE MEMBRANE, AND METHOD FOR MANUFACTURING IT.
US5173335A (en) * 1990-07-31 1992-12-22 E. I. Du Pont De Nemours And Company Method of producing multilayer reverse osmosis membrane of polyamide-urea
CA2045109A1 (en) 1991-06-20 1992-12-21 Joseph Louis Feimer Production of supported thin film membranes
US5254261A (en) * 1991-08-12 1993-10-19 Hydranautics Interfacially synthesized reverse osmosis membranes and processes for preparing the same
US5234598A (en) * 1992-05-13 1993-08-10 Allied-Signal Inc. Thin-film composite membrane
US5368889A (en) 1993-04-16 1994-11-29 The Dow Chemical Company Method of making thin film composite membranes
US5693227A (en) * 1994-11-17 1997-12-02 Ionics, Incorporated Catalyst mediated method of interfacial polymerization on a microporous support, and polymers, fibers, films and membranes made by such method
US5582725A (en) * 1995-05-19 1996-12-10 Bend Research, Inc. Chlorine-resistant composite membranes with high organic rejection
US5547701A (en) * 1995-06-07 1996-08-20 Kimberly-Clark Corporation Method of forming a paper applicator containing a water insoluble coating
JP3681214B2 (en) * 1996-03-21 2005-08-10 日東電工株式会社 High permeability composite reverse osmosis membrane
JP3665692B2 (en) 1996-12-05 2005-06-29 日東電工株式会社 Method for producing dry composite reverse osmosis membrane
US6413425B1 (en) * 1997-04-10 2002-07-02 Nitto Denko Corporation Reverse osmosis composite membrane and reverse osmosis treatment method for water using the same
US6132804A (en) * 1997-06-06 2000-10-17 Koch Membrane Systems, Inc. High performance composite membrane
JP3577917B2 (en) * 1997-10-31 2004-10-20 株式会社日立製作所 Automatic analyzer
US6015495A (en) * 1998-02-18 2000-01-18 Saehan Industries Incorporation Composite polyamide reverse osmosis membrane and method of producing the same
JPH11319517A (en) 1998-05-08 1999-11-24 Sumitomo Heavy Ind Ltd Membrane separation apparatus, membrane separation method, and method for washing membrane separation apparatus
US6162358A (en) * 1998-06-05 2000-12-19 Nl Chemicals Technologies, Inc. High flux reverse osmosis membrane
JP4213789B2 (en) 1998-07-10 2009-01-21 日東電工株式会社 Method for producing liquid separation membrane
JP2000153137A (en) 1998-11-20 2000-06-06 Nitto Denko Corp Composite reverse osmosis membrane
JP2000300974A (en) 1999-04-21 2000-10-31 Petroleum Energy Center Semipermeable membrane, its manufacture and helium separating semipermeable membrane
JP2000325759A (en) 1999-05-17 2000-11-28 Toray Ind Inc Manufacture of membrane
JP2001038175A (en) 1999-05-27 2001-02-13 Toyobo Co Ltd Composite semipermeable membrane
JP2000350928A (en) 1999-06-10 2000-12-19 Toyobo Co Ltd Composite diaphragm, composite diaphragm module and its manufacture
JP2001179061A (en) 1999-12-22 2001-07-03 Toray Ind Inc Composite semipermeable membrane and manufacturing method thereof
JP2001286741A (en) 2000-04-04 2001-10-16 Toray Ind Inc Reverse osmosis composite membrane and manufacturing method therefor
US6337018B1 (en) * 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
JP2002095939A (en) 2000-09-21 2002-04-02 Toyobo Co Ltd Composite semipermeable membrane, composite semipermeable membrane separation element, and their manufacturing method and rewetting method
JP2002136849A (en) 2000-10-31 2002-05-14 Toray Ind Inc Method for manufacturing composite membrane
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
JP5030192B2 (en) 2000-12-14 2012-09-19 東レ株式会社 Manufacturing method of composite semipermeable membrane
JP2002355938A (en) 2001-05-30 2002-12-10 Tonen Chem Corp Composite film, its manufacturing method, and separator for battery using the same or filter
JP3899485B2 (en) 2002-03-22 2007-03-28 富士フイルム株式会社 Application method and apparatus
JP2003320224A (en) 2002-04-26 2003-11-11 Toray Ind Inc Manufacturing method for dry reverse osmosis membrane
JP2005066464A (en) 2003-08-25 2005-03-17 Nitto Denko Corp Liquid separation membrane and manufacturing method therefor
JP4177231B2 (en) 2003-11-04 2008-11-05 日東電工株式会社 Liquid separation membrane and method for producing the same
PT1848473E (en) * 2005-02-07 2013-08-28 Hanuman Llc Plasma concentrator device
JP4793978B2 (en) 2005-03-29 2011-10-12 日東電工株式会社 Method for producing dry composite semipermeable membrane
US7727434B2 (en) * 2005-08-16 2010-06-01 General Electric Company Membranes and methods of treating membranes
JP2008093544A (en) * 2006-10-10 2008-04-24 Nitto Denko Corp Composite semipermeable membrane and manufacturing method thereof
JP2008246419A (en) * 2007-03-30 2008-10-16 Nitto Denko Corp Production method for composite semi-permeable membrane

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1234567A (en) * 1915-09-14 1917-07-24 Edward J Quigley Soft collar.
US4005012A (en) * 1975-09-22 1977-01-25 The United States Of America As Represented By The Secretary Of The Interior Semipermeable membranes and the method for the preparation thereof
US4277344A (en) * 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4520044A (en) * 1984-07-30 1985-05-28 E. I. Du Pont De Nemours And Company Production of composite membranes
US4529646A (en) * 1984-07-30 1985-07-16 E. I. Du Pont De Nemours And Company Production of composite membranes
US4761234A (en) * 1985-08-05 1988-08-02 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
US4830885A (en) * 1987-06-08 1989-05-16 Allied-Signal Inc. Chlorine-resistant semipermeable membranes
US4872984A (en) * 1988-09-28 1989-10-10 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
US4948507A (en) * 1988-09-28 1990-08-14 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
US4938872A (en) * 1989-06-07 1990-07-03 E. I. Du Pont De Nemours And Company Treatment for reverse osmosis membranes
US4950404A (en) * 1989-08-30 1990-08-21 Allied-Signal Inc. High flux semipermeable membranes
US4950404B1 (en) * 1989-08-30 1991-10-01 Allied Signal Inc
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
US5259950A (en) * 1990-03-27 1993-11-09 Toray Industries, Inc. Composite membrane
US5152901A (en) * 1990-09-14 1992-10-06 Ionics, Incorporated Polyamine-polyamide composite nanofiltration membrane for water softening
US5746916A (en) * 1994-01-26 1998-05-05 Mitsubishi Rayon Co., Ltd. Microporous membrane made of non-crystalline polymers and method of producing the same
US5783079A (en) * 1994-08-29 1998-07-21 Toyo Boseki Kabushiki Kaisha Composite hollow fiber membrane and process for its production
US6177011B1 (en) * 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
US20020063093A1 (en) * 1997-06-06 2002-05-30 Koch Membrane Systems, Inc. High performance composite membrane
US6536605B2 (en) * 1997-06-06 2003-03-25 Koch Membrane Systems, Inc. High performance composite membrane
US6551536B1 (en) * 2001-07-30 2003-04-22 Saehan Industries Incorporation Reverse osmosis membrane having excellent anti-fouling property and method for manufacturing the same
US7156997B2 (en) * 2001-10-05 2007-01-02 Dow Global Technologies Inc. Package assembly for piperazine-based membranes
US20040222146A1 (en) * 2003-05-06 2004-11-11 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
US7220358B2 (en) * 2004-02-23 2007-05-22 Ecolab Inc. Methods for treating membranes and separation facilities and membrane treatment composition
US20080053893A1 (en) * 2004-10-01 2008-03-06 Tomomi Ohara Semipermeable Composite Membrane and Process for Producing the Same
US20080257818A1 (en) * 2004-10-01 2008-10-23 Nitto Denko Corporation Semipermeable Composite Membrane and Process for Producing the Same
US20080277334A1 (en) * 2004-10-01 2008-11-13 Nitto Denko Corporation Process for Producing Semipermeable Composite Membrane
US20090050558A1 (en) * 2004-10-04 2009-02-26 Hirotoshi Ishizuka Process for producing composite reverse osmosis membrane
US20080251447A1 (en) * 2006-10-10 2008-10-16 Atsuhito Koumoto Process for producing a dried composite semipermeable membrane

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100173083A1 (en) * 2004-10-01 2010-07-08 Tomomi Ohara Semipermeable composite membrane and process for producing the same
US20080257818A1 (en) * 2004-10-01 2008-10-23 Nitto Denko Corporation Semipermeable Composite Membrane and Process for Producing the Same
US20080277334A1 (en) * 2004-10-01 2008-11-13 Nitto Denko Corporation Process for Producing Semipermeable Composite Membrane
US20090050558A1 (en) * 2004-10-04 2009-02-26 Hirotoshi Ishizuka Process for producing composite reverse osmosis membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
US20100044902A1 (en) * 2006-10-10 2010-02-25 Tomomi Ohara Composite semipermeable membrane and process for producing the same
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US20080251447A1 (en) * 2006-10-10 2008-10-16 Atsuhito Koumoto Process for producing a dried composite semipermeable membrane
US20100176052A1 (en) * 2007-03-30 2010-07-15 NITTO DENKO CORPORATION a corporation Process for producing composite semipermeable membrane
WO2013118148A1 (en) * 2012-02-06 2013-08-15 Council Of Scientific & Industrial Research "l-enantiomers selective membrane for optical resolution of alpha-amino acids and process for the preparation thereof"
US20170232433A1 (en) * 2012-03-08 2017-08-17 Bio-Rad Laboratories, Inc. Anionic exchange-hydrophobic mixed mode
US10682640B2 (en) * 2012-03-08 2020-06-16 Bio-Rad Laboratories, Inc. Anionic exchange-hydrophobic mixed mode
CN113908696A (en) * 2020-07-07 2022-01-11 沃顿科技股份有限公司 Method for preparing reverse osmosis membrane and reverse osmosis membrane prepared thereby
CN114177786A (en) * 2021-11-01 2022-03-15 泰州九润环保科技有限公司 Preparation method of multilayer polyamide composite reverse osmosis membrane
CN115072904A (en) * 2022-07-14 2022-09-20 重庆海通环保科技有限公司 Reverse osmosis membrane for fractional reverse osmosis treatment of treatment liquid

Also Published As

Publication number Publication date
CN101219345B (en) 2012-03-21
KR20080032609A (en) 2008-04-15
JP2008093544A (en) 2008-04-24
CN101219345A (en) 2008-07-16
US20100044902A1 (en) 2010-02-25
US8851297B2 (en) 2014-10-07

Similar Documents

Publication Publication Date Title
US8851297B2 (en) Composite semipermeable membrane and process for producing the same
US8518310B2 (en) Process for producing a dried composite semipermeable membrane
EP1820566B1 (en) Prosses for producing a semipermeable composite membrane
US20080053893A1 (en) Semipermeable Composite Membrane and Process for Producing the Same
EP1806174B1 (en) Process for producing semipermeable composite membrane
CA2060256C (en) Process for the manufacture of thin film composite membranes
US20100297429A1 (en) Composite membrane and method of making
EP2883600B1 (en) Manufacturing of polyamide-based water-treatment separation membrane
EP2857088B1 (en) Method for manufacturing a reverse osmosis membrane
US20150068963A1 (en) Reverse osmosis membrane having high initial permeate flux and method of manufacturing the same
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
EP3088073B1 (en) High-functional polyamide-based dry water treatment separator and method for manufacturing same
US20100176052A1 (en) Process for producing composite semipermeable membrane
US20160339396A1 (en) Method for producing composite semipermeable membrane
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
US11517861B2 (en) Water treatment separation membrane, water treatment module comprising same, and manufacturing method therefor
KR101653414B1 (en) Method for Manufacturing Polyamide-based Reverse Osmosis Membrane having Antifouling Property
KR101474062B1 (en) Reverse osmosis membrane and method of manufacturing the same
US20140034569A1 (en) Reverse osmosis membrane having high initial permeate flux
KR20030022915A (en) Producing method of composite polyamide reverse osmosis membrane
KR20190071188A (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby

Legal Events

Date Code Title Description
AS Assignment

Owner name: NITTO DENKO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OHARA, TOMOMI;KOUMOTO, ATSUHITO;REEL/FRAME:019939/0135

Effective date: 20071003

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION