JP2001038175A - Composite semipermeable membrane - Google Patents

Composite semipermeable membrane

Info

Publication number
JP2001038175A
JP2001038175A JP2000151575A JP2000151575A JP2001038175A JP 2001038175 A JP2001038175 A JP 2001038175A JP 2000151575 A JP2000151575 A JP 2000151575A JP 2000151575 A JP2000151575 A JP 2000151575A JP 2001038175 A JP2001038175 A JP 2001038175A
Authority
JP
Japan
Prior art keywords
polyamide
membrane
semipermeable membrane
composite semipermeable
polysulfone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000151575A
Other languages
Japanese (ja)
Inventor
Hideki Yamada
英樹 山田
Toshiyuki Tsuchiya
俊之 土屋
Akihiro Yuchi
章浩 有地
Atsuo Kumano
淳夫 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2000151575A priority Critical patent/JP2001038175A/en
Publication of JP2001038175A publication Critical patent/JP2001038175A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide composite semipermeable membrane which is produced by coating one surface of polysulfone-based semipermeable membrane with a polyamide-based polymer thin film and is excellent in permeation performance, separation performance and in particular performance with respect to the removal of organic matter. SOLUTION: This composite semipermeable membrane consists of polysulfone- based semipermeable membrane and a polyamide-based polymer thin coating film formed on one surface of the polysulfone-based semipermeable membrane, wherein in a surface infrared absorption spectrum of the surface on the polyamide coating film side of the composite membrane, the ratio T (Aa/As) of the absorption intensity (Aa) of an absorption peak being at 1,600 to 1,700 cm-1, due to C=O of the polyamide, to the absorption intensity (As) of an absorption peak being at about 1,586 cm-1, due to the polysulfone, is 0.05 to 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、逆浸透膜やナノ濾
過膜として有用な複合半透膜に関する。より詳しくは選
択透過性を有する薄膜重合体を多孔質膜の一方の表面に
形成させることにより得られた複合半透膜に関するもの
である。これにより得られた複合半透膜により海水の淡
水化やカン水の脱塩、水溶液中の有価物の回収、排水処
理、特に、水中の不純物、例えば有機物の除去が可能で
ある。
TECHNICAL FIELD The present invention relates to a composite semipermeable membrane useful as a reverse osmosis membrane or a nanofiltration membrane. More specifically, the present invention relates to a composite semipermeable membrane obtained by forming a thin film polymer having selective permeability on one surface of a porous membrane. The composite semipermeable membrane thus obtained enables desalination of seawater and desalination of can water, recovery of valuables in an aqueous solution, and wastewater treatment, particularly removal of impurities in water, such as organic substances.

【0002】[0002]

【従来の技術】ポリスルホン系多孔質中空糸膜の外表面
にポリアミド系重合体薄膜を有する複合中空糸膜とし
て、米国特許第4980061号明細書、特開昭62−
95105号公報、PBレポート81−167215、
特開平2−2842号公報に複合中空糸膜が開示されて
いる。
2. Description of the Related Art A composite hollow fiber membrane having a polyamide polymer thin film on the outer surface of a polysulfone porous hollow fiber membrane is disclosed in U.S. Pat.
No. 95105, PB Report 81-167215,
JP-A-2-2842 discloses a composite hollow fiber membrane.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、米国特
許第4980061号明細書、特開昭62−95105
号公報に開示されている従来の複合中空糸膜は、透水性
能が低いため、高圧操作が必要であり、また、有機物の
除去性能に関する記載はない。
However, U.S. Pat. No. 4,986,0061, Japanese Unexamined Patent Application Publication No. 62-95105.
The conventional composite hollow fiber membrane disclosed in Japanese Patent Laid-Open Publication No. H11-157572 has low water permeability, so high-pressure operation is required, and there is no description on the performance of removing organic substances.

【0004】一方、前記PBレポート81−16721
5に示される複合中空糸膜は、データのバラツキが大き
く、重合体薄膜に欠陥が生じていると推察され、分離性
能も低く、また有機物の除去性能に関して記載されてい
ない。
On the other hand, the PB report 81-16721
The composite hollow fiber membrane shown in No. 5 has a large variation in data, is presumed to have a defect in the polymer thin film, has a low separation performance, and does not describe the performance of removing organic substances.

【0005】同様に、前記特開平2−2842号公報に
示される複合中空糸膜に関しては有機物の除去性能に関
する記載はあるが、透水性能の高いものは除去性能が低
く、逆に除去性能の高いものは透水性能が低いものしか
示されていない。本発明は、かかる欠点を解消しようと
するものであり、ポリアミド系重合体薄膜を最適化した
複合中空糸膜により透水性能および分離性能、特に有機
物除去性能に優れた複合中空糸膜を提供することを目的
とするものである。
Similarly, the composite hollow fiber membrane disclosed in Japanese Patent Application Laid-Open No. 2-2842 is described with respect to the performance of removing organic substances, but those having high water permeability have a low removal performance, and conversely have a high removal performance. Only those having low water permeability are shown. An object of the present invention is to provide a composite hollow fiber membrane excellent in water permeability and separation performance, particularly, organic substance removal performance by using a composite hollow fiber membrane in which a polyamide-based polymer thin film is optimized. It is intended for.

【0006】[0006]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者らは、ポリスルホン系多孔質中空糸膜
の外表面にポリアミド系重合体薄膜を有する複合中空糸
膜において、赤外吸収スペクトルにおける1600〜1
700cm-1のポリアミドのC=Oに由来する吸収ピー
クの吸収強度Aaと1586cm-1付近の吸収ピークの
吸収強度Asの比Tが一定範囲内のものであれば高い分
離性能、特に有機物除去性能を有し、かつ、高い透水性
能を発現できることを見出し、前記目的が達成されるに
至った。
Means for Solving the Problems As a result of intensive studies in view of the above-mentioned objects, the present inventors have found that a composite hollow fiber membrane having a polyamide polymer thin film on the outer surface of a polysulfone porous hollow fiber membrane has an infrared ray. 1600-1 in absorption spectrum
If the ratio T between the absorption intensity Aa of the absorption peak derived from C = O of the polyamide at 700 cm -1 and the absorption intensity As of the absorption peak near 1586 cm -1 is within a certain range, high separation performance, particularly organic substance removal performance And found that high water-permeability can be exhibited, and the above object has been achieved.

【0007】すなわち、本発明は、ポリスルホン系多孔
質膜とその一方の表面を被覆するポリアミド系重合体薄
膜からなる複合半透膜において、該複合半透膜のポリア
ミド系重合体薄膜が被覆されている側の表面赤外吸収ス
ペクトルにおける、1600〜1700cm-1のポリア
ミドのC=Oに由来する吸収ピークの吸収強度Aaと1
586cm-1付近のポリスルホンに由来する吸収ピーク
の吸収強度Asの比T(= Aa/ As)が、0.05以
上であり3以下であることを特徴とする複合半透膜であ
る。本発明には、前記ポリアミド系重合体薄膜は、架橋
ポリアミド系重合体からなることを含み、、更には架橋
ポリピペラジンアミドからなることをも含む。好適な実
施様態においては、操作圧力0.3MPa、温度25
℃、pH6.5の0.1重量%ショ糖水溶液に対するシ
ョ糖除去率が92%以上、透水量が0.2m3 /m2
日以上の性能を有することが可能である。また、本発明
は複合半透膜が中空糸膜形態をとることを含み、また、
ポリアミド系重合体薄膜が中空糸膜の外表面側に形成さ
れていることを含む。
That is, the present invention provides a composite semipermeable membrane comprising a polysulfone-based porous membrane and a polyamide-based polymer thin film covering one surface thereof, wherein the polyamide-based polymer thin film of the composite semipermeable membrane is coated. The absorption intensity Aa of the absorption peak derived from C = O of the polyamide at 1600 to 1700 cm -1 in the surface infrared absorption spectrum of
A composite semipermeable membrane characterized in that a ratio T (= Aa / As) of an absorption intensity As of an absorption peak derived from polysulfone near 586 cm −1 is 0.05 or more and 3 or less. In the present invention, the polyamide-based polymer thin film includes a cross-linked polyamide-based polymer, and further includes a cross-linked polypiperazine amide. In a preferred embodiment, the operating pressure is 0.3 MPa, the temperature is 25 MPa.
The sucrose removal rate with respect to a 0.1% by weight aqueous sucrose solution at pH 6.5 and pH 6.5 is 92% or more, and the water permeability is 0.2 m 3 / m 2 /
It is possible to have performance over a day or more. The present invention also includes that the composite semipermeable membrane takes the form of a hollow fiber membrane,
This includes that the polyamide-based polymer thin film is formed on the outer surface side of the hollow fiber membrane.

【0008】以下、本発明を詳細に説明する。本発明に
おいて、ポリスルホン系多孔質膜は、逆浸透膜、ナノ濾
過膜領域では分離対象物に対して実質的に分離性能を示
さず、上記ポリアミド系重合体薄膜を支えるための支持
膜であれば特に限定されない。そのポリアミド系重合体
薄膜を形成させる側の表面に、好ましくは0.001μ
m以上かつ0.05μm以下、より好ましくは0.00
5μm以上かつ0.03μm以下の微細孔を有し、裏面
までの構造は流体の透過抵抗を必要以上に大きくしない
ために、前記表面の微細孔より大きな細孔からなるもの
が好ましく、網状、指状ボイドまたはそれらの混合構造
のいずれでもよい。また、ポリエステル等の材質からな
る織布または不織布等の補強材を含んでいてもよい。ま
た、ポリスルホン系多孔質膜の特性をデキストランT7
0水溶液の分離特性で表現すると、供給圧力0.1MP
a、25℃、回収率30%未満、膜面平均流速40cm
/秒において、除去率が50%以上であることが望まし
い。
Hereinafter, the present invention will be described in detail. In the present invention, a polysulfone-based porous membrane is a reverse osmosis membrane, which does not substantially exhibit separation performance with respect to an object to be separated in a nanofiltration membrane region, and is a support membrane for supporting the polyamide-based polymer thin film. There is no particular limitation. On the surface on which the polyamide-based polymer thin film is to be formed, preferably 0.001 μm
m or more and 0.05 μm or less, more preferably 0.00
It has fine pores of 5 μm or more and 0.03 μm or less, and the structure up to the back surface is preferably composed of fine pores larger than the fine pores on the front surface so as not to unnecessarily increase fluid permeation resistance. It may be either a void or a mixed structure thereof. Further, a reinforcing material such as a woven fabric or a nonwoven fabric made of a material such as polyester may be included. In addition, the characteristics of the polysulfone-based porous membrane were determined by dextran T7.
In terms of the separation characteristics of 0 aqueous solution, the supply pressure is 0.1MP
a, 25 ° C., recovery rate less than 30%, average membrane surface flow velocity 40 cm
/ S, the removal rate is desirably 50% or more.

【0009】本発明におけるポリスルホン樹脂として
は、化学式1(化1)で示される繰り返しユニットから
なるポリマーと下記化学式2(化2)で示される繰り返
しユニットからなるポリマー等があげられるが、好まし
くはこれらのポリマーであり、さらに好ましくは化学式
1で示される繰り返しユニットからなるポリマーであ
る。
Examples of the polysulfone resin in the present invention include a polymer composed of a repeating unit represented by the chemical formula 1 (Chemical Formula 1) and a polymer composed of a repeating unit represented by the following chemical formula 2 (Chemical Formula 2). And more preferably a polymer comprising a repeating unit represented by Chemical Formula 1.

【0010】[0010]

【化1】 Embedded image

【0011】[0011]

【化2】 Embedded image

【0012】本発明におけるポリスルホン系多孔質膜の
膜厚は特に限定されない。たとえば、中空糸膜形態をと
る場合は、製膜時の操作性、モジュールの膜面積、耐圧
性を考慮すると外径は100μm〜2000μm、内径
は30μm〜1800μmの範囲のものが好ましく、外
径は150μm〜500μm、内径は50μm〜300
μmのものがより好ましい。さらに本発明におけるポリ
スルホン系多孔質膜は、少なくとも複合膜としての操作
圧力以上の圧力に耐え得ることが必要である。かかるポ
リスルホン多孔質膜は各種市販品から選択可能である
が、通常は公知の乾湿式製膜法等により、製造可能であ
る。さらに必要に応じて、製膜後の多孔質中空糸膜を特
開昭58−199007号公報に開示されているように
50℃の湿熱処理を施したり、特開昭60−19020
4号公報に開示されているように90℃以上の熱水処理
をしたものでもよい。
The thickness of the polysulfone porous membrane in the present invention is not particularly limited. For example, when taking the form of a hollow fiber membrane, the outer diameter is preferably 100 μm to 2000 μm, and the inner diameter is preferably 30 μm to 1800 μm in consideration of the operability during film formation, the membrane area of the module, and the pressure resistance. 150 μm to 500 μm, inner diameter 50 μm to 300
μm is more preferred. Furthermore, the polysulfone-based porous membrane in the present invention must be able to withstand at least the operating pressure of the composite membrane. Such a polysulfone porous membrane can be selected from various commercially available products, but can usually be produced by a known dry-wet membrane forming method or the like. Further, if necessary, the porous hollow fiber membrane after film formation may be subjected to a wet heat treatment at 50 ° C. as disclosed in JP-A-58-199007, or may be subjected to JP-A-60-19020.
As disclosed in Japanese Patent Publication No. 4 (1999) -1994, a hot water treatment at 90 ° C. or higher may be used.

【0013】本発明におけるポリアミド系重合体薄膜
は、ポリアミド系重合体から構成されるものであれば特
に限定されない。多官能性アミンと多官能性酸ハロゲン
化物の界面重縮合反応により得られた架橋ポリアミド重
合体薄膜が好ましく、架橋ポリピペラジンアミド、全芳
香族架橋ポリアミドなどがあげられる。特に、架橋ポリ
ピペラジンアミドが好ましい。厚みはピンホールがなけ
れば薄いほど好ましい。製膜安定性、透過性能等を考慮
すると1.0μm以下が好ましく、0.5μm以下がよ
り好ましい。この分離活性層の表面に必要に応じて保護
層が形成されていてもよい。
The polyamide polymer thin film in the present invention is not particularly limited as long as it is composed of a polyamide polymer. A crosslinked polyamide polymer thin film obtained by an interfacial polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide is preferable, and examples thereof include crosslinked polypiperazineamide and wholly aromatic crosslinked polyamide. In particular, crosslinked polypiperazineamide is preferred. The thickness is preferably as thin as possible without pinholes. In consideration of film forming stability, permeation performance and the like, the thickness is preferably 1.0 μm or less, more preferably 0.5 μm or less. A protective layer may be formed on the surface of the separation active layer as needed.

【0014】なお、本発明においては、ポリアミド系重
合体薄膜が架橋体であるか否かの判別の一例として、ポ
リアミド重合体薄膜の溶媒に対する溶解性による判別が
あげられる。以下に一例を示す。ピペラジンとイソフタ
ル酸クロライドの反応によって得られるポリアミド重合
体は非架橋のリニアポリマーであり、クロロホルム等に
溶解することが知られている。また、m−フェニレンジ
アミンとイソフタル酸クロライドの反応によって得られ
るポリアミド重合体も非架橋のリニアポリマーであり、
N−メチル−2−ピロリドン、N,N−ジメチルアセト
アミド等に溶解することが知られている。これに対し、
ポリアミド系重合体が架橋体であれば、これらの溶媒に
低濃度で溶解を試行しても未溶解分が残る。この性質を
利用し、乾燥した複合半透膜1g(ポリスルホン系多孔
質膜を含めて)をクロロホルム、m−クレゾール、ジク
ロロメタン、N−メチル−2−ピロリドンまたはN,N
−ジメチルアセトアミドの各々100mLに加えて常温
で撹拌し、いずれの場合にも未溶解物が残った場合はこ
れを架橋ポリアミドであると判定する。なお、ポリスル
ホン系多孔質膜が前記した5種の溶媒に溶解しない場合
は、あらかじめ適当な溶媒でこれを溶解除去した後、ポ
リアミド系重合体薄膜を分離した後、上記の操作を行
う。また、複合半透膜が前記組成物に加えて、不織布・
織布等の補強材等を構成要素として含んでいる場合に
は、これをあらかじめ剥離、溶解等の方法によって除去
したのち、前記操作を行う。更に、複合半透膜が使用済
みで膜表面に汚れ等が付着している場合は、その汚れ等
の付着状況に応じた適切な洗浄方法で除去した後、上記
判定を行う。
In the present invention, as an example of the determination as to whether or not the polyamide-based polymer thin film is a crosslinked product, there is a determination based on the solubility of the polyamide polymer thin film in a solvent. An example is shown below. A polyamide polymer obtained by a reaction between piperazine and isophthalic acid chloride is a non-crosslinked linear polymer, and is known to be soluble in chloroform or the like. Further, a polyamide polymer obtained by a reaction between m-phenylenediamine and isophthalic acid chloride is also a non-crosslinked linear polymer,
It is known to dissolve in N-methyl-2-pyrrolidone, N, N-dimethylacetamide and the like. In contrast,
If the polyamide-based polymer is a crosslinked product, undissolved components remain even if an attempt is made to dissolve in these solvents at a low concentration. By utilizing this property, 1 g of the dried composite semipermeable membrane (including the polysulfone-based porous membrane) can be mixed with chloroform, m-cresol, dichloromethane, N-methyl-2-pyrrolidone or N, N
-Add 100 mL of each of dimethylacetamide and stir at room temperature, and in any case, if any undissolved matter remains, judge this as a crosslinked polyamide. If the polysulfone-based porous membrane does not dissolve in the above-mentioned five types of solvents, it is dissolved and removed in advance with an appropriate solvent, and then the polyamide-based polymer thin film is separated. In addition, the composite semi-permeable membrane, in addition to the composition, a nonwoven fabric
When a reinforcing material such as a woven fabric is included as a component, the above operation is performed after removing the material by a method such as peeling or dissolving in advance. Further, when the composite semipermeable membrane has been used and stains or the like have adhered to the membrane surface, the composite semipermeable membrane is removed by an appropriate cleaning method according to the adhesion state of the stain or the like, and then the above determination is made.

【0015】本発明における表面赤外吸収スペクトル
は、ATR法赤外分光分析法による赤外吸収スペクトル
が好適に用いられる。ATR法赤外分光分析法とは、測
定物表面における全反射赤外光を利用して測定する赤外
分光法であり、透過法による赤外分光分析と比較して、
測定対象物表面の情報を鋭敏に捉えることができる。A
TR法赤外分光分析法において、再現性のあるスペクト
ルを得るためには試料と内部反射エレメントとを十分に
圧着させることが重要である。圧着の度合いを高めてい
くと、一般的には内部反射エレメントと測定対象物の密
着性の向上により、高波数側の吸収強度が増大する、よ
って、本発明で規定した吸収強度比Tは増加すると考え
られる。ところが、本発明における複合半透膜のATR
法赤外吸収スペクトルの測定においては、内部反射エレ
メントを試料に圧着させていく過程でポリスルホン多孔
質膜が圧縮変形されて緻密になり、ポリスルホン由来の
吸収強度が強くなり、通常とは逆に吸収強度比Tが減少
する。そこで、内部反射エレメントの圧着度合いを増し
ながら数点で測定を行い、ポリアミド系重合体由来の吸
収の強度とポリスルホン由来の吸収の強度の比が一定に
なったら、それをその複合膜の表面赤外吸収スペクトル
であるとみなすこととする。
As the surface infrared absorption spectrum in the present invention, an infrared absorption spectrum obtained by ATR infrared spectroscopy is preferably used. The ATR method infrared spectroscopy is an infrared spectroscopy that measures the total reflection infrared light on the surface of the object to be measured.
Information on the surface of the measurement object can be captured sharply. A
In the TR method infrared spectroscopy, it is important to sufficiently press the sample and the internal reflection element to obtain a reproducible spectrum. Increasing the degree of crimping generally increases the absorption intensity on the high wavenumber side due to the improvement in the adhesion between the internal reflection element and the object to be measured, and therefore the absorption intensity ratio T defined in the present invention increases. It is thought that. However, the ATR of the composite semipermeable membrane in the present invention
In the measurement of the infrared absorption spectrum, the porous polysulfone membrane is compressed and densified in the process of compressing the internal reflection element to the sample, and the absorption intensity derived from polysulfone increases. The intensity ratio T decreases. Therefore, measurement was performed at several points while increasing the degree of pressure bonding of the internal reflection element, and when the ratio of the absorption intensity derived from the polyamide polymer and the absorption intensity derived from polysulfone became constant, it was determined that the surface red of the composite film was red. It is assumed to be an external absorption spectrum.

【0016】図1にポリスルホン製多孔質中空糸膜の、
図2にポリスルホン製多孔質膜の外表面にポリアミド系
重合体薄膜を形成させた複合中空糸膜の外表面のATR
法赤外吸収スペクトルの例を示した。また図3には、図
2の膜をクロロホルムで処理し、ポリスルホン多孔質膜
を溶解除去し、ポリアミド系重合体のみを分別したもの
のATR法赤外吸収スペクトルの例を示した。図1と図
2は後述する比較例1と実施例1の中空糸膜の赤外吸収
スペクトルである。図1〜図3の比較から、1586c
-1付近の吸収ピークはポリスルホンに由来し、163
0cm-1付近の吸収ピークはポリアミドに由来すること
が明らかである。また、1586cm-1付近の吸収ピー
クはポリスルホンの芳香環のC=C伸縮に、1630c
-1付近の吸収ピークはポリアミドのC=O伸縮による
ものと帰属されることが知られている。
FIG. 1 shows a porous hollow fiber membrane made of polysulfone.
FIG. 2 shows the ATR of the outer surface of a composite hollow fiber membrane in which a polyamide polymer thin film is formed on the outer surface of a polysulfone porous membrane.
An example of a method infrared absorption spectrum is shown. FIG. 3 shows an example of an ATR method infrared absorption spectrum of a membrane obtained by treating the membrane of FIG. 2 with chloroform, dissolving and removing the polysulfone porous membrane, and separating only the polyamide polymer. 1 and 2 show infrared absorption spectra of the hollow fiber membranes of Comparative Example 1 and Example 1 described later. From the comparison of FIG. 1 to FIG.
The absorption peak near m -1 is derived from polysulfone and 163
It is clear that the absorption peak near 0 cm -1 is derived from polyamide. The absorption peak near 1586 cm -1 was due to the C = C expansion and contraction of the aromatic ring of polysulfone at 1630 c.
It is known that the absorption peak near m -1 is attributed to the C = O stretching of the polyamide.

【0017】複合半透膜の赤外吸収スペクトルにおける
1600〜1700cm-1のポリアミドのC=Oに由来
する吸収ピークの吸収強度Aaと1586cm-1付近の
吸収ピークの吸収強度Asの比T(= Aa/ As)は、
主にポリアミド重合体薄膜の厚みを反映するものと考え
られる。すなわち、吸収強度比Tが大きいものはポリア
ミド系重合体薄膜の厚みが大きく、吸収強度比Tの小さ
いものはポリアミド系重合体薄膜の厚みが小さい。有機
物の除去性能が高く、かつ、高い透水性能の複合中空糸
膜であるためには、吸収強度比Tが0.05以上3以下
であることが好ましく、より好ましくは0.1以上1.
5以下が好適である。吸収強度比Tが3より大きいと、
有機物除去性能は高いものが得られるが、ポリアミド系
重合体薄膜の厚みが過大となるため透過抵抗が過大とな
り、透水性能は低くなり、好ましくない。また、前記比
が0.05より小さいと、透水性能は大きくなるが、ポ
リアミド系重合体薄膜が支持膜全体を完全に被覆するこ
とが困難になり、リークの発生や有機物除去性の低下を
きたし、またポリアミド系重合体薄膜の厚みが過小なた
め、物理的・化学的耐久性が低下する等の問題が生じ、
好ましくない。
[0017] The ratio of the absorption intensity As of the absorption peak around absorption intensity Aa and 1586 cm -1 of the absorption peak derived from C = O of polyamide 1600~1700Cm -1 in the infrared absorption spectrum of the composite semipermeable membrane T (= Aa / As)
It is considered that the thickness mainly reflects the thickness of the polyamide polymer thin film. That is, those having a large absorption intensity ratio T have a large thickness of the polyamide polymer thin film, and those having a small absorption intensity ratio T have a small thickness of the polyamide polymer thin film. In order to obtain a composite hollow fiber membrane having high organic matter removal performance and high water permeability, the absorption intensity ratio T is preferably 0.05 or more and 3 or less, more preferably 0.1 or more and 1 or less.
5 or less is preferred. If the absorption intensity ratio T is greater than 3,
Although high organic matter removal performance can be obtained, the thickness of the polyamide polymer thin film becomes excessively large, so that the permeation resistance becomes excessively large and the water permeation performance becomes low, which is not preferable. On the other hand, when the ratio is less than 0.05, the water permeability becomes large, but it becomes difficult for the polyamide-based polymer thin film to completely cover the entire support film, which causes a leak and a decrease in organic matter removal properties. Also, since the thickness of the polyamide-based polymer thin film is too small, problems such as a decrease in physical and chemical durability occur,
Not preferred.

【0018】なお、ポリアミド由来の赤外吸収の吸収波
長はその化学組成によって変動し、例えばメタフェニレ
ンジアミンとトリメシン酸クロライドの反応によって形
成されるポリアミドの場合には、前記したC=O伸縮に
よるものと帰属されるポリアミド由来の吸収は1660
cm-1付近にシフトする。よって、この場合には166
0cm-1付近の吸収強度を本願請求項における1600
〜1700cm-1のポリアミドのC=Oに由来する吸収
ピークの吸収強度とみなすこととする。
The absorption wavelength of infrared absorption derived from polyamide varies depending on its chemical composition. For example, in the case of polyamide formed by the reaction between metaphenylenediamine and trimesic acid chloride, the absorption wavelength due to the above-mentioned C 伸縮 O expansion and contraction occurs. Absorption derived from polyamide attributed to
Shift to around cm -1 . Therefore, in this case, 166
The absorption intensity near 0 cm -1 was set to 1600 in the present invention.
It is to be regarded as the absorption intensity of the absorption peak derived from C = O of the polyamide of 11700 cm −1 .

【0019】次に、本発明の複合半透膜の製造方法の一
例を説明する。ポリスルホン系多孔質膜の外表面上で多
官能性アミンと多官能性酸ハロゲン化物の界面重縮合反
応を行うことにより、本発明の複合半透膜を形成するこ
とができる。すなわち、ポリスルホン系多孔質膜を濃度
調整されたアミン溶液に接触させ、過剰アミン溶液を液
きりした後、濃度調整された多官能性酸ハロゲン化物溶
液に接触させ、界面重縮合反応を生じさせることにより
複合半透膜が得られる。
Next, an example of the method for producing a composite semipermeable membrane of the present invention will be described. By performing an interfacial polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide on the outer surface of the polysulfone-based porous membrane, the composite semipermeable membrane of the present invention can be formed. That is, the polysulfone-based porous membrane is brought into contact with a concentration-adjusted amine solution, and after the excess amine solution is drained, it is brought into contact with a concentration-adjusted polyfunctional acid halide solution to cause an interfacial polycondensation reaction. Yields a composite semipermeable membrane.

【0020】多官能性アミンの例としては芳香族アミ
ン、脂肪族アミンが挙げられ、このいずれであってもよ
い。
Examples of the polyfunctional amine include an aromatic amine and an aliphatic amine, and any of these may be used.

【0021】芳香族アミンとしては一分子中に2個以上
のアミノ基を有する芳香族アミンであり、2官能以上の
アミンとしては例えば、m−フェニレンジアミン、p −
フェニレンジアミン、4,4’−ジアミノジフェニルア
ミン、4,4’−ジアミノジフェニルエーテル、3,
4’−ジアミノジフェニルエーテル、3, 3’−ジアミ
ノジフェニルアミン、3, 5−ジアミノ安息香酸塩、
4,4’−ジアミノジフェニルスルホン、3, 3’−ジ
アミノジフェニルスルホン、3, 4’−ジアミノジフェ
ニルスルホン、1,3,5−トリアミノベンゼンなどが
挙げられ、これらの混合物であってもよい。なかでもm
- フェニレンジアミンが最も好ましい。
The aromatic amine is an aromatic amine having two or more amino groups in one molecule. Examples of the difunctional or higher functional amine include m-phenylenediamine and p-amine.
Phenylenediamine, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylether, 3,
4′-diaminodiphenyl ether, 3,3′-diaminodiphenylamine, 3,5-diaminobenzoate,
4,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 3,4'-diaminodiphenylsulfone, 1,3,5-triaminobenzene and the like may be mentioned, and a mixture thereof may be used. Above all, m
-Phenylenediamine is most preferred.

【0022】脂肪族アミンとしては2官能以上のアミン
であればいずれでもよく、具体例としては、ピペラジン
や2−メチルピペラジン、2−エチルピペラジン、2,
5−ジメチルピペラジン、ホモピペラジン、t−2,5
−ジメチルピペラジンのようなピペラジン誘導体、ビス
(4−ピペリジル)メタン、1,2−ビス(4−ピペリ
ジル)エタン、1,3−ビス(4−ピペリジル)プロパ
ン、N,N’−ジメチルエチレンジアミン、エチレンジ
アミン、プロピレンジアミン、プロピレントリアミン、
N,N’−ジメチルプロパンジアミン、4−(アミノメ
チル)ピペリジン、シクロヘキサンジアミン、などが挙
げられ、これらの混合物であってもよく、またこれらか
ら構成されるアミドプレポリマーであってもよい。なか
でもピペラジンがもっとも好ましい。
The aliphatic amine may be any bifunctional or higher amine, and specific examples thereof include piperazine, 2-methylpiperazine, 2-ethylpiperazine,
5-dimethylpiperazine, homopiperazine, t-2,5
-Piperazine derivatives such as -dimethylpiperazine, bis (4-piperidyl) methane, 1,2-bis (4-piperidyl) ethane, 1,3-bis (4-piperidyl) propane, N, N'-dimethylethylenediamine, ethylenediamine , Propylene diamine, propylene triamine,
N, N'-dimethylpropanediamine, 4- (aminomethyl) piperidine, cyclohexanediamine, and the like may be mentioned, and a mixture thereof, or an amide prepolymer composed of these may be used. Of these, piperazine is most preferred.

【0023】多官能性酸ハロゲン化物の例としては多官
能性アシルハライドが挙げられ、芳香族、脂肪族のいず
れでもよく、また、前記多官能性アミンと反応して重合
体を形成し得る2官能以上であればよい。芳香族または
脂肪族の2官能又は3官能酸ハロゲン化物が好ましく、
例えば、トリメシン酸ハライド、トリメリット酸ハライ
ド、ピロメリット酸ハライド、ベンゾフェノンテトラカ
ルボン酸ハライド、イソフタル酸ハライド、テレフタル
酸ハライド、ジフェニルジカルボン酸ハライド、ナフタ
レンジカルボン酸ハライド、ベンゼンジスルホン酸ハラ
イド、クロロスルホニルイソフタル酸ハライド、ピリジ
ンジカルボン酸ハライド、1,3,5−シクロヘキサン
トリカルボン酸ハライド、などが挙げられる。透水性
能、有機物除去性能などを考慮するとトリメシン酸クロ
ライド、イソフタル酸クロライド、テレフタル酸クロラ
イド、およびこれらの混合物が好ましい。
Examples of polyfunctional acid halides include polyfunctional acyl halides, which may be aromatic or aliphatic, and which can react with the polyfunctional amine to form a polymer. What is necessary is just functional or more. Aromatic or aliphatic bifunctional or trifunctional acid halides are preferred,
For example, trimesic acid halide, trimellitic acid halide, pyromellitic acid halide, benzophenone tetracarboxylic acid halide, isophthalic acid halide, terephthalic acid halide, diphenyldicarboxylic acid halide, naphthalenedicarboxylic acid halide, benzenedisulfonic acid halide, chlorosulfonylisophthalic acid halide Pyridinedicarboxylic acid halide, 1,3,5-cyclohexanetricarboxylic acid halide, and the like. Considering the water permeability, the organic matter removal performance, and the like, trimesic acid chloride, isophthalic acid chloride, terephthalic acid chloride, and a mixture thereof are preferable.

【0024】これらの多官能性化合物の濃度について
は、多官能性化合物の種類、溶媒に対する分配係数によ
り異なる。ピペラジンを前記多官能性アミンとし、その
溶媒が水であり、トリメシン酸クロライドを前記多官能
性酸ハロゲン化物とし、その溶媒がn−ヘキサンである
場合を例に示すと、ピペラジンの濃度は約0.1〜10
重量%、好ましくは約0.5〜5重量%のものが適当で
あり、トリメシン酸クロライドの濃度は約0.1〜10
重量%、好ましくは約0.1〜5重量%のものが適当で
ある。これらの濃度が低いと界面重合膜の形成が不完全
で欠点が生じやすく分離性能の低下を招き、逆に高すぎ
ると界面重合膜が厚くなり過ぎて透過性能の低下を生じ
たり、製造膜中の残留未反応物量が増加し、膜性能へ悪
影響を及ぼすことが有り得る。また、多官能性アミンと
多官能性酸ハロゲン化物の濃度比は、得られる複合半透
膜の膜性能に重要な影響を与え、最適濃度比にすること
によって、欠陥のない複合半透膜を得ることができる。
最適濃度比(多官能性アミン濃度/多官能性酸ハロゲン
化物濃度)は20〜0.1の範囲である。
The concentration of these polyfunctional compounds differs depending on the kind of the polyfunctional compound and the partition coefficient with respect to the solvent. For example, when piperazine is the polyfunctional amine, the solvent is water, trimesic acid chloride is the polyfunctional acid halide, and the solvent is n-hexane, the concentration of piperazine is about 0. .1 to 10
%, Preferably about 0.5 to 5% by weight, and the concentration of trimesic acid chloride is about 0.1 to 10%.
%, Preferably about 0.1 to 5% by weight. When these concentrations are low, the formation of the interfacial polymer film is incomplete and defects are liable to occur, resulting in a decrease in separation performance. Conversely, when the concentration is too high, the interfacial polymer film becomes too thick, causing a decrease in permeation performance, or in the production film. May increase the amount of unreacted matter remaining, and may adversely affect the film performance. In addition, the concentration ratio between the polyfunctional amine and the polyfunctional acid halide has an important effect on the membrane performance of the resulting composite semipermeable membrane. Obtainable.
The optimal concentration ratio (polyfunctional amine concentration / polyfunctional acid halide concentration) is in the range of 20-0.1.

【0025】なお、縮合反応で酸が発生する場合は反応
溶液に酸捕捉剤としてのアルカリを添加したり、多孔質
膜の濡れ性を向上させるなどのために界面活性剤を添加
したり、この他多官能性化合物の反応促進剤を必要に応
じて添加してもよい。酸捕捉剤の例としては、水酸化ナ
トリウムのようなカ性アルカリ、リン酸三ナトリウムの
ようなリン酸ソーダ、ピリジン、トリエチレンジアミ
ン、トリエチルアミン等の3級アミンなどが挙げられ
る。界面活性剤の例としてはラウリルスルホン酸ナトリ
ウム、ラウリルベンゼンスルホン酸ナトリウムなどが挙
げられる。反応促進剤の例としては、ジメチルホルムア
ミドなどがある。これらは予め前記多官能性アミン溶液
中及び/または前記多官能性酸ハロゲン化物溶液中に含
ませることが可能である。界面活性剤、酸捕捉剤および
反応促進剤の濃度についても、膜性能に重大な影響を及
ぼすが、その最適値については実験的に決定することが
できる。
When an acid is generated by the condensation reaction, an alkali as an acid scavenger may be added to the reaction solution, or a surfactant may be added to improve the wettability of the porous film. A reaction accelerator of another polyfunctional compound may be added as needed. Examples of the acid scavenger include caustic alkali such as sodium hydroxide, sodium phosphate such as trisodium phosphate, tertiary amine such as pyridine, triethylenediamine, and triethylamine. Examples of the surfactant include sodium lauryl sulfonate, sodium lauryl benzene sulfonate, and the like. Examples of the reaction accelerator include dimethylformamide. These can be previously contained in the polyfunctional amine solution and / or the polyfunctional acid halide solution. The concentrations of the surfactant, the acid scavenger and the reaction accelerator also have a significant effect on the membrane performance, but the optimum values can be determined experimentally.

【0026】前記多官能性アミン溶液の溶媒及び前記多
官能性酸ハロゲン化物溶液の溶媒としてはそれぞれ前記
多官能性アミン、多官能性酸ハロゲン化物を溶解し、各
溶液が接した場合液々界面を形成しポリスルホン系多孔
質中空糸膜を損傷しないものであれば特に限定されな
い。例えば、多官能性アミンの溶媒としては水が、多官
能性酸ハライドの溶媒としてはn−ヘキサン、シクロヘ
キサン、n−ヘプタン、n−オクタン、n−ノナン、n
−デカン、n−ウンデカン等の炭化水素系溶剤およびこ
れらの混合物が例として挙げられる。
As the solvent for the polyfunctional amine solution and the solvent for the polyfunctional acid halide solution, the polyfunctional amine and the polyfunctional acid halide are dissolved, respectively. Is not particularly limited, as long as it forms a polysulfone-based porous hollow fiber membrane. For example, water is used as the solvent for the polyfunctional amine, and n-hexane, cyclohexane, n-heptane, n-octane, n-nonane, n-hexane is used as the solvent for the polyfunctional acid halide.
Examples thereof include hydrocarbon solvents such as -decane and n-undecane and mixtures thereof.

【0027】これら、前記多官能性アミン溶液、前記多
官能性酸ハロゲン化物溶液の各温度は特に限定されない
が、室温で十分迅速に界面反応が生じる多官能性化合物
の組み合わせであれば、操作上室温程度すなわち5〜4
5℃の範囲が用いられる。温度が高すぎると、多官能性
化合物の劣化が促進されたり、溶媒の蒸発が促進される
問題が有り、逆に低すぎると、ポリスルホン系多孔質中
空糸膜への前記多官能性アミン溶液の含浸が不足した
り、界面反応速度が小さくなりすぎて重合体薄膜が完全
に形成されなかったり、溶媒の粘度が大きくなりすぎて
製膜過程に障害を与える。
The temperatures of the polyfunctional amine solution and the polyfunctional acid halide solution are not particularly limited, but any combination of polyfunctional compounds that cause an interfacial reaction at room temperature sufficiently quickly can be used in operation. About room temperature, ie 5-4
A range of 5 ° C is used. If the temperature is too high, the deterioration of the polyfunctional compound is promoted, or there is a problem that the evaporation of the solvent is promoted.On the other hand, if the temperature is too low, the polyfunctional amine solution to the polysulfone-based porous hollow fiber membrane is used. Insufficiency of impregnation, the interface reaction rate becomes too low to form a polymer thin film completely, and the viscosity of the solvent becomes too high, which hinders the film forming process.

【0028】本発明においてポリスルホン系多孔質膜に
各溶液を接触させるとはポリスルホン系多孔質膜に各溶
液を塗布すること、あるいは各溶液中に浸漬、通過させ
ることである。また前記多官能性アミン溶液に接触させ
た後、ポリスルホン系多孔質膜表面の過剰溶液の残存は
薄膜の剥離を起こす原因となるので過剰溶液は除去する
ことが好ましい。除去方法の一例としては、ポリスルホ
ン系多孔質膜を空中走行させ自然落下・自然乾燥させる
方法、前記多官能性アミンおよび多官能性ハロゲン化物
の溶液とは異なる第3の液を用いてかき取る方法、その
他空気や不活性ガスの吹き付け、乾燥器による乾燥など
が挙げられる。また、多官能性酸ハロゲン化物溶液接触
後、中和及び反応停止のために酸捕捉剤の水溶液に浸漬
しても良い。酸捕捉剤の例としては、リン酸三ナトリウ
ムのようなリン酸ソーダ、炭酸ナトリウムなどが挙げら
れる。また、膜中に残存するオリゴマーや未反応モノマ
ー、界面活性剤、酸捕捉剤、反応促進剤等を除去するた
めに、純水、熱水、酸水溶液、アルカリ水溶液、有機溶
剤、有機溶剤水溶液、酸化剤水溶液、還元剤水溶液等で
膜を洗浄することも可能である。
In the present invention, bringing each solution into contact with the polysulfone-based porous membrane means applying each solution to the polysulfone-based porous membrane, or dipping and passing through each solution. Further, after the contact with the polyfunctional amine solution, the excess solution on the surface of the polysulfone-based porous membrane may cause peeling of the thin film. Therefore, it is preferable to remove the excess solution. Examples of the removal method include a method in which the polysulfone-based porous membrane is allowed to run in the air and naturally fall and air-dry, and a method in which the polyfunctional amine and the polyfunctional halide are scraped using a third liquid different from the solution. And spraying with air or an inert gas, and drying with a dryer. Further, after contact with the polyfunctional acid halide solution, it may be immersed in an aqueous solution of an acid scavenger for neutralization and termination of the reaction. Examples of acid scavengers include sodium phosphate, such as trisodium phosphate, sodium carbonate, and the like. Further, in order to remove oligomers and unreacted monomers, surfactants, acid scavengers, reaction accelerators, and the like remaining in the film, pure water, hot water, an acid aqueous solution, an alkaline aqueous solution, an organic solvent, an organic solvent aqueous solution, The membrane can be washed with an oxidizing agent aqueous solution, a reducing agent aqueous solution, or the like.

【0029】[0029]

【実施例】以下に実施例および比較例を挙げて本発明を
説明するが、本発明はこれらにより何ら制限されるもの
ではない。本発明における複合半透膜が中空糸膜である
場合について詳細に述べるが、膜の形態が平膜あるいは
管状膜であっても、ポリスルホン系多孔質膜の形状が異
なるのみであり、本質的には同様な技術によって透水性
と分離性能に優れた複合半透膜を得ることができる。な
お、実施例、比較例で示された、性能、赤外吸収スペク
トルは以下の方法、条件で測定されたものである。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The case where the composite semipermeable membrane in the present invention is a hollow fiber membrane will be described in detail. However, even if the form of the membrane is a flat membrane or a tubular membrane, only the shape of the polysulfone-based porous membrane is different. Can obtain a composite semipermeable membrane excellent in water permeability and separation performance by the same technique. The performance and infrared absorption spectrum shown in Examples and Comparative Examples were measured by the following methods and conditions.

【0030】(1) 膜性能評価用ミニモジュールの作
製 54本(比較例1では18本)の中空糸膜でループを形
成し、ループの一端をホルダーに挿入してエポキシ樹脂
で封止した。この際ホルダーの反対側の端部から中空糸
膜が数cm突出する状態で封止を行い、エポキシ樹脂が
硬化したのち、この突出部を切断することにより、中空
糸膜の開口部を形成した。中空糸膜の有効長は38.5
cmであり、有効面積は中空糸膜外径基準で457cm
2 (比較例1では152cm2 )であった。 (2) 複合中空糸膜のショ糖水溶液分離性能 ショ糖80gをRO水80Lに溶解し、1000mg/
L水溶液を得た。水温25℃、圧力0.30MPa、膜
面平均流速1 3cm/秒、回収率1%未満で中空糸膜外
表面側に供給した。回収率RCは下記の式で定義され
る。 RC(%)=Qp/Qf×100 Qp:透過液の流量 Qf:供給液の流量 1時間後、中空部から流出する透過液の流量とショ糖濃
度を測定した。透水性能は、単位膜面積(m2 )、単位
時間(日)あたりの透過液量で表した。除去性能の指標
であるである除去率Rjは下記の式で定義される。な
お、ショ糖の濃度の測定は、アンスロン硫酸法比色分析
で行った。 Rj(%)=(1−Cp/ Cf)×100 Cp:透過液のショ糖濃度 Cf:供給液のショ糖濃度
(1) Preparation of Mini Module for Evaluation of Membrane Performance A loop was formed with 54 (18 in Comparative Example 1) hollow fiber membranes, and one end of the loop was inserted into a holder and sealed with epoxy resin. At this time, sealing was performed in a state where the hollow fiber membrane protruded from the opposite end of the holder by several cm, and after the epoxy resin was cured, the projection was cut to form an opening of the hollow fiber membrane. . The effective length of the hollow fiber membrane is 38.5
cm, and the effective area is 457 cm based on the outer diameter of the hollow fiber membrane.
2 (152 cm 2 in Comparative Example 1). (2) Separation performance of sucrose aqueous solution of composite hollow fiber membrane 80 g of sucrose was dissolved in 80 L of RO water, and 1000 mg /
An L aqueous solution was obtained. Water was supplied to the outer surface of the hollow fiber membrane at a temperature of 25 ° C., a pressure of 0.30 MPa, an average membrane surface flow rate of 13 cm / sec, and a recovery of less than 1%. Recovery RC is defined by the following equation. RC (%) = Qp / Qf × 100 Qp: Flow rate of permeate Qf: Flow rate of feed solution One hour later, the flow rate of permeate flowing out of the hollow portion and the sucrose concentration were measured. The water permeability was represented by the permeated liquid amount per unit membrane area (m 2 ) and unit time (day). The removal rate Rj, which is an index of the removal performance, is defined by the following equation. In addition, the measurement of the sucrose concentration was performed by the anthrone sulfate method colorimetric analysis. Rj (%) = (1−Cp / Cf) × 100 Cp: sucrose concentration of permeate Cf: sucrose concentration of feed solution

【0031】(3)ATR法赤外吸収スペクトル 複合中空糸膜を80℃で一晩加熱減圧乾燥した後、複合
中空糸膜外表面のATR赤外吸収スペクトルを測定し
た。中空糸膜を繊維軸に対して略平行な平面で2分割
し、測定試料とした。測定はSPECTRA TECH
製 IR μ s/SIRMを用い、内部反射エレメント
としてダイヤモンド45°を使用し、分解能8cm-1
積算回数64回で測定を行った。また、フーリエ変換時
のApodaizationはHapp−Genzel
関数で行った。中空糸膜外表面12ヶ所について測定を
行い、以下の式で定義される、吸収強度比T(i) の平均
値をその複合中空糸膜の吸収強度比Tとした。なお、添
え字(i) はi番目の測定位置における値であることを意
味し、iは1〜12の整数である。 T(i) = Aa(i) / As(i) Aa(i) :i番目の測定位置における1600〜170
0cm-1のポリアミドのC=Oに由来する吸収ピークの
吸収強度 As(i) :i番目の測定位置における1586cm-1
近のポリスルホンに由来する吸収ピークの吸収強度 なお、内部反射エレメントと試料の圧着の度合いによっ
て、上記T(i) の値は変動し、圧着の度合いを増すにつ
れて小さくなる。本発明においては、各測定位置毎に圧
着度合いを増しながら数回の測定を行い、圧着度合いを
更に増してもT (i) が減少しなくなった時の値をT(i)
として採用した。また、吸収強度を算出するためのベー
スラインは以下の手順により定めた。1600〜170
0cm-1のポリアミドのC=Oに由来する吸収ピークの
吸収強度については、この吸収の高波数側のすそと、1
586cm-1付近のポリスルホンに由来する吸収ピーク
の低波数側の谷を結んでベースラインとした。1586
cm-1付近のポリスルホンに由来する吸収ピークの吸収
強度については、この吸収の両側の谷を結んでベースラ
インとした。なお、これらのベースラインは、スペクト
ルと交差しないように引いた。
(3) ATR method infrared absorption spectrum The composite hollow fiber membrane was heated and dried at 80 ° C. overnight under reduced pressure.
Measure the ATR infrared absorption spectrum of the outer surface of the hollow fiber membrane
Was. Hollow fiber membrane is divided into two parts by a plane almost parallel to the fiber axis
And used as a measurement sample. Measurement is SPECTRA TECH
Internal reflection element using IR μs / SIRM
Using diamond 45 ° as the resolution 8cm-1,
The measurement was carried out at a cumulative number of 64 times. Also, at the time of Fourier transform
Apodization of Happ-Genzel
Made in function. Measurement of 12 outer surfaces of hollow fiber membrane
And the absorption intensity ratio T defined by the following equation:(i)The average of
The value was defined as the absorption intensity ratio T of the composite hollow fiber membrane. In addition,
Character(i)Is the value at the i-th measurement position.
Taste, i is an integer of 1 to 12. T(i)= Aa(i)/ As(i) Aa(i): 1600 to 170 at i-th measurement position
0cm-1Of the absorption peak derived from C = O of the polyamide
Absorption intensity As(i): 1586 cm at the i-th measurement position-1Attached
Absorption intensity of absorption peak derived from nearby polysulfone
And the above T(i)Values fluctuate, and as crimping increases
And become smaller. In the present invention, the pressure is measured at each measurement position.
Perform several measurements while increasing the degree of
T (i)Is the value at which ceases to decrease(i)
Adopted as. Also, a base for calculating the absorption intensity
Slines were determined by the following procedure. 1600-170
0cm-1Of the absorption peak derived from C = O of the polyamide
Regarding the absorption intensity, the skirt on the high wavenumber side of this absorption and 1
586cm-1Absorption peak derived from nearby polysulfone
The valley on the low wavenumber side was connected to be the baseline. 1586
cm-1Absorption peak near polysulfone
For strength, connect the valleys on both sides of this absorption to the baseline.
In. Note that these baselines are
Pulled so as not to intersect with Le.

【0032】実施例1 ポリスルホン樹脂(テイジンアモコエンジニアリングプ
ラスチックス社、Udel P−3500)20重量
%、トリエチレングリコール4重量%、ラウリルベンゼ
ンスルホン酸ナトリウム0.5重量%、およびジメチル
アセトアミド75.5重量%からなる紡糸原液を、二重
管構造の中空糸製造用ノズルの外周部から吐出し、中央
部からはジメチルアセトアミド30重量%と水70重量
%からなる水溶液を吐出させ、6cmの空中走行部を経
て、水を主成分とする凝固浴中に15m/分で引き取
り、ポリスルホン製多孔質中空糸膜を得た。その後、水
洗工程で残留溶媒を除去し、70℃の熱水処理を行っ
た。引き続き、この多孔質中空糸膜をピペラジン2.0
重量%、トリエチレンジアミン1.0重量%、ラウリル
ベンゼンスルホン酸ナトリウム0.065重量%をRO
水に溶解して得られたアミン水溶液を作製し、この溶液
に連続した多孔質中空糸膜を浸漬、通過させた。このア
ミン水溶液の濃度組成は一定になるように制御されてい
る。続いてこの多孔質中空糸膜表面の過剰なアミン溶液
を除去した後、トリメシン酸クロライド0.96重量%
を含むn−ヘキサン溶液、フロリナ−トFC−70、1
重量%酢酸水溶液に順次接触させ、乾燥塔で乾熱処理を
行った。さらに、水洗槽にて水洗し、外表面に架橋ポリ
ピペラジンアミドからなる薄膜を有する複合中空糸膜を
得た。得られた複合中空糸膜のATR法赤外吸収スペク
トルの吸収強度比Tは0.54であった。また、前記し
た条件で測定したショ糖の除去率は95.6%、透水性
能は272L/m2 /日であった。
Example 1 20% by weight of polysulfone resin (Teijin Amoco Engineering Plastics, Udel P-3500), 4% by weight of triethylene glycol, 0.5% by weight of sodium laurylbenzenesulfonate, and 75.5% by weight of dimethylacetamide % Of the spinning solution is discharged from an outer peripheral portion of a nozzle for producing a hollow fiber having a double-tube structure, and an aqueous solution composed of 30% by weight of dimethylacetamide and 70% by weight of water is discharged from a central portion. After that, the mixture was taken into a coagulation bath containing water as a main component at a rate of 15 m / min to obtain a polysulfone porous hollow fiber membrane. Thereafter, the residual solvent was removed in a water washing step, and a hot water treatment at 70 ° C. was performed. Subsequently, this porous hollow fiber membrane was treated with piperazine 2.0
% By weight, 1.0% by weight of triethylenediamine and 0.065% by weight of sodium laurylbenzenesulfonate in RO
An amine aqueous solution obtained by dissolving in water was prepared, and a continuous porous hollow fiber membrane was immersed and passed through this solution. The concentration composition of the aqueous amine solution is controlled to be constant. Subsequently, after removing the excess amine solution on the surface of the porous hollow fiber membrane, trimesic acid chloride was 0.96% by weight.
N-hexane solution, Fluorinert FC-70, 1
It was sequentially contacted with an aqueous solution of acetic acid by weight and subjected to a dry heat treatment in a drying tower. Further, the composite hollow fiber membrane was washed with water in a washing tank to obtain a composite hollow fiber membrane having a thin film made of crosslinked polypiperazinamide on the outer surface. The absorption intensity ratio T in the ATR infrared absorption spectrum of the obtained composite hollow fiber membrane was 0.54. The sucrose removal rate measured under the above-mentioned conditions was 95.6%, and the water permeability was 272 L / m 2 / day.

【0033】実施例2 トリメシン酸クロライドのn−ヘキサン溶液の濃度を
0.85重量%に変更した以外は実施例1と同様にして
複合中空糸膜を作製した。吸収強度比T、ショ糖除去
率、透水性能はそれぞれ、1.02、95.8%、21
1L/m2 /日であった。
Example 2 A composite hollow fiber membrane was produced in the same manner as in Example 1 except that the concentration of the n-hexane solution of trimesic acid chloride was changed to 0.85% by weight. The absorption intensity ratio T, sucrose removal rate, and water permeability were 1.02, 95.8%, and 21 respectively.
It was 1 L / m 2 / day.

【0034】実施例3 アミン水溶液のトリエチレンジアミン濃度を2.0重量
%、トリメシン酸クロライドのn−ヘキサン溶液の濃度
を0.75重量%に変更した以外は実施例1と同様にし
て複合中空糸膜を作製した。吸収強度比T、ショ糖除去
率、透水性能はそれぞれ、0.16、95.2%、38
4L/m2 /日であった。
Example 3 Composite hollow fiber was prepared in the same manner as in Example 1, except that the concentration of triethylenediamine in the aqueous amine solution was changed to 2.0% by weight and the concentration of the n-hexane solution of trimesic acid chloride was changed to 0.75% by weight. A film was prepared. The absorption intensity ratio T, sucrose removal rate, and water permeability were 0.16, 95.2%, and 38, respectively.
It was 4 L / m 2 / day.

【0035】比較例1 実施例1において、アミン水溶液含浸の前の段階で中空
糸膜を取り出した。吸収強度比T、ショ糖除去率、透水
性能はそれぞれ、0.00、0.0%、12000L/
2 /日であった。
Comparative Example 1 In Example 1, the hollow fiber membrane was taken out before the impregnation with the aqueous amine solution. The absorption intensity ratio T, sucrose removal rate, and water permeability were 0.00, 0.0%, and 12,000 L /, respectively.
m 2 / day.

【0036】比較例2 トリメシン酸クロライド0.96重量%を含むn−ヘキ
サン溶液との接触時間を実施例1の場合の10倍にした
他は実施例1と同様にして、複合中空糸膜を得た。吸収
強度比T、ショ糖除去率、透水性能はそれぞれ、3.
5、97.2%、73L/m2 /日であった。
Comparative Example 2 A composite hollow fiber membrane was prepared in the same manner as in Example 1 except that the contact time with an n-hexane solution containing 0.96% by weight of trimesic acid chloride was 10 times that in Example 1. Obtained. The absorption intensity ratio T, the sucrose removal rate, and the water permeability were each 3.
5, 97.2%, 73 L / m 2 / day.

【0037】実施例4〜6 ポリスルホン樹脂(テイジンアモコエンジニアリングプ
ラスチックス社、Udel P−3500)20重量
%、トリエチレングリコール4重量%、ラウリルベンゼ
ンスルホン酸ナトリウム0.5重量%、およびジメチル
アセトアミド75.5重量%からなる紡糸原液を、二重
管構造の中空糸製造用ノズルの外周部から吐出し、中央
部からはジメチルアセトアミド30重量%と水70重量
%からなる水溶液を吐出させ、6cmの空中走行部を経
て、水を主成分とする凝固浴中に15m/分で引き取
り、ポリスルホン製多孔質中空糸膜を得た。その後、水
洗工程で残留溶媒を除去した。ピペラジン2.0重量
%、トリエチレンジアミン1.0重量%、ラウリルベン
ゼンスルホン酸ナトリウム0.065重量%をRO水に
溶解して得られたアミン水溶液を作製し、この溶液に前
記の多孔質中空糸膜を浸漬、通過させた。このアミン水
溶液の濃度組成は一定になるように制御されている。続
いてこの多孔質中空糸膜表面の過剰なアミン溶液を除去
した後、表1に示した組成の酸クロライドを含むn−ヘ
キサン溶液、フロリナ−トFC−70、1重量%酢酸水
溶液に順次接触させ、乾燥塔で乾熱処理を行った。さら
に、水洗槽にて水洗し、外表面に架橋ポリピペラジンア
ミドからなる薄膜を有する複合中空糸膜を得た。得られ
た複合中空糸膜のATR法赤外吸収スペクトルの吸収強
度比T、前記した条件で測定したショ糖の除去率、透水
性能を表1に示した。
Examples 4 to 6 20% by weight of polysulfone resin (Teijin Amoco Engineering Plastics, Udel P-3500), 4% by weight of triethylene glycol, 0.5% by weight of sodium laurylbenzenesulfonate, and 75% by weight of dimethylacetamide. A spinning stock solution consisting of 5% by weight is discharged from the outer peripheral portion of a hollow fiber manufacturing nozzle having a double-tube structure, and an aqueous solution consisting of 30% by weight of dimethylacetamide and 70% by weight of water is discharged from the central portion. After passing through the running section, it was taken into a coagulation bath containing water as a main component at a rate of 15 m / min to obtain a polysulfone porous hollow fiber membrane. Thereafter, the residual solvent was removed in a water washing step. An aqueous amine solution was prepared by dissolving 2.0% by weight of piperazine, 1.0% by weight of triethylenediamine, and 0.065% by weight of sodium laurylbenzenesulfonate in RO water. The membrane was immersed and passed. The concentration composition of the aqueous amine solution is controlled to be constant. Subsequently, after removing the excess amine solution from the surface of the porous hollow fiber membrane, the porous hollow fiber membrane was successively contacted with an n-hexane solution containing acid chloride having the composition shown in Table 1, Fluorinert FC-70, and a 1% by weight aqueous acetic acid solution. Then, a dry heat treatment was performed in a drying tower. Further, the composite hollow fiber membrane was washed with water in a washing tank to obtain a composite hollow fiber membrane having a thin film made of crosslinked polypiperazinamide on the outer surface. Table 1 shows the absorption intensity ratio T in the ATR infrared absorption spectrum of the obtained composite hollow fiber membrane, the sucrose removal rate measured under the above-described conditions, and the water permeability.

【0038】[0038]

【表1】 (注)トリメシン酸クロライドをTMC、イソフタル酸
クロライドをIPCと略記した。
[Table 1] (Note) Trimesic acid chloride is abbreviated as TMC, and isophthalic acid chloride is abbreviated as IPC.

【0039】[0039]

【発明の効果】本発明の複合半透膜は、ポリスルホン系
多孔質膜の一方の表面にポリアミド系重合体薄膜を形成
したものであり、透過性能および分離性能、特に有機物
除去性能に優れた複合半透膜である。従って、本発明の
複合半透膜は、逆浸透膜としては、かん水、海水等の脱
塩による淡水化や半導体の製造に用いられる超純水の製
造、ナノ濾過膜としては、小型純水製造機器、浄水器用
途、高度浄水器用途、有価物の回収用途、排水処理用途
などの様々な分野で用いることができる。
The composite semipermeable membrane of the present invention is obtained by forming a polyamide-based polymer thin film on one surface of a polysulfone-based porous membrane. The composite semipermeable membrane has excellent permeation performance and separation performance, especially excellent organic substance removal performance. It is a semipermeable membrane. Therefore, the composite semipermeable membrane of the present invention can be used as a reverse osmosis membrane, for producing desalination by desalination of seawater, seawater, etc., for producing ultrapure water used for producing semiconductors, and as a nanofiltration membrane, for producing small pure water. It can be used in various fields such as equipment, water purifier applications, advanced water purifier applications, valuable resource recovery applications, and wastewater treatment applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で用いたポリスルホン性多孔質中空糸
膜外表面のATR法赤外吸収スペクトルを示す。
FIG. 1 shows an ATR infrared absorption spectrum of the outer surface of a polysulfone porous hollow fiber membrane used in Example 1.

【図2】実施例1で得た複合中空糸膜外表面のATR法
赤外吸収スペクトルを示す。
FIG. 2 shows an ATR infrared absorption spectrum of the outer surface of the composite hollow fiber membrane obtained in Example 1.

【図3】実施例1で得た複合中空糸膜外表面のポリアミ
ド系重合体のみを分別したもののATR法赤外吸収スペ
クトルを示す。
FIG. 3 shows an ATR infrared absorption spectrum of only the polyamide polymer on the outer surface of the composite hollow fiber membrane obtained in Example 1, which was separated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊野 淳夫 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Atsushi Kumano 2-1-1 Katata, Otsu City, Shiga Prefecture Toyobo Co., Ltd. Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 ポリスルホン系多孔質膜とその一方の表
面を被覆するポリアミド系重合体薄膜からなる複合半透
膜において、該複合半透膜のポリアミド系重合体薄膜が
被覆されている側の表面赤外吸収スペクトルにおける、
1600〜1700cm-1のポリアミドのC=Oに由来
する吸収ピークの吸収強度Aaと1586cm-1付近の
ポリスルホンに由来する吸収ピークの吸収強度Asの比
T(=Aa/ As)が、0.05以上であり3以下であ
ることを特徴とする複合半透膜。
1. A composite semipermeable membrane comprising a polysulfone-based porous membrane and a polyamide-based polymer thin film covering one surface thereof, the surface of the composite semipermeable membrane on the side on which the polyamide-based polymer thin film is coated. In the infrared absorption spectrum,
1600~1700cm -1 polyamide C = absorption of the absorption peak derived from O intensity Aa and 1586cm ratio of absorption intensity As of the absorption peak derived from polysulfone near -1 T (= Aa / As) is 0.05 The composite semipermeable membrane, which is at least 3 and at most 3.
【請求項2】 T(= Aa/ As)が、0.1以上であ
り1.5以下である請求項1記載の複合半透膜。
2. The composite semipermeable membrane according to claim 1, wherein T (= Aa / As) is 0.1 or more and 1.5 or less.
【請求項3】 ポリアミド系重合体が架橋ポリアミド系
重合体である請求項1記載の複合半透膜。
3. The composite semipermeable membrane according to claim 1, wherein the polyamide polymer is a crosslinked polyamide polymer.
【請求項4】 ポリアミド系重合体が架橋ポリピペラジ
ンアミドからなる請求項1記載の複合半透膜。
4. The composite semipermeable membrane according to claim 1, wherein the polyamide polymer comprises a crosslinked polypiperazine amide.
【請求項5】 操作圧力0.3MPa、温度25℃、p
H6.5の0.1重量%ショ糖水溶液に対するショ糖除
去率が92%以上、透水量が0.2m3 /m 2 /日以上
の性能を有する請求項1乃至4のいずれかに記載の複合
半透膜。
5. Operating pressure 0.3 MPa, temperature 25 ° C., p
Removal of sucrose from 0.1 wt% sucrose aqueous solution of H6.5
Deletion rate is more than 92%, water permeability is 0.2mThree/ M Two/ Day or more
The composite according to any one of claims 1 to 4, which has the following performance.
Semi-permeable membrane.
【請求項6】 複合半透膜が中空糸膜形態をとる請求項
1乃至5のいずれかに記載の複合半透膜。
6. The composite semipermeable membrane according to claim 1, wherein the composite semipermeable membrane takes the form of a hollow fiber membrane.
【請求項7】 ポリアミド系重合体薄膜が中空糸膜の外
表面側に形成されている請求項1乃至6のいずれかに記
載の複合半透膜。
7. The composite semipermeable membrane according to claim 1, wherein the polyamide-based polymer thin film is formed on the outer surface of the hollow fiber membrane.
JP2000151575A 1999-05-27 2000-05-23 Composite semipermeable membrane Withdrawn JP2001038175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151575A JP2001038175A (en) 1999-05-27 2000-05-23 Composite semipermeable membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14855299 1999-05-27
JP11-148552 1999-05-27
JP2000151575A JP2001038175A (en) 1999-05-27 2000-05-23 Composite semipermeable membrane

Publications (1)

Publication Number Publication Date
JP2001038175A true JP2001038175A (en) 2001-02-13

Family

ID=26478703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151575A Withdrawn JP2001038175A (en) 1999-05-27 2000-05-23 Composite semipermeable membrane

Country Status (1)

Country Link
JP (1) JP2001038175A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076013A (en) * 2002-03-22 2003-09-26 주식회사 효성 Nanofiltration composite membrane and the process for the preparing the same
WO2006038503A1 (en) * 2004-10-04 2006-04-13 Nitto Denko Corporation Process for producing composite reverse osmosis membrane
KR100821486B1 (en) * 2005-08-08 2008-04-10 주식회사 코오롱 Nano composite membrane of hollow fiber and method of manufacturing the same
WO2013047398A1 (en) * 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
CN103638824A (en) * 2013-11-07 2014-03-19 青岛文创科技有限公司 Preparation method for crosslinked-inulin/fullerene composite membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
JP2015510450A (en) * 2012-11-21 2015-04-09 エルジー・ケム・リミテッド High flow rate water treatment separation membrane with excellent chlorine resistance
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284639A (en) * 1994-04-20 1995-10-31 Toyobo Co Ltd Production of composite hollow membrane
JPH08281085A (en) * 1995-04-12 1996-10-29 Toyobo Co Ltd Composite hollow fiber membrane and its production
JPH0947644A (en) * 1995-08-04 1997-02-18 Toyobo Co Ltd Process and device for manufacturing dual hollow yarn membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07284639A (en) * 1994-04-20 1995-10-31 Toyobo Co Ltd Production of composite hollow membrane
JPH08281085A (en) * 1995-04-12 1996-10-29 Toyobo Co Ltd Composite hollow fiber membrane and its production
JPH0947644A (en) * 1995-08-04 1997-02-18 Toyobo Co Ltd Process and device for manufacturing dual hollow yarn membrane

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076013A (en) * 2002-03-22 2003-09-26 주식회사 효성 Nanofiltration composite membrane and the process for the preparing the same
WO2006038503A1 (en) * 2004-10-04 2006-04-13 Nitto Denko Corporation Process for producing composite reverse osmosis membrane
JP2006130497A (en) * 2004-10-04 2006-05-25 Nitto Denko Corp Production method of composite reverse osmosis membrane
KR100885591B1 (en) * 2004-10-04 2009-02-24 닛토덴코 가부시키가이샤 Process for producing composite reverse osmosis membrane
JP4656511B2 (en) * 2004-10-04 2011-03-23 日東電工株式会社 Method for producing composite reverse osmosis membrane
KR100821486B1 (en) * 2005-08-08 2008-04-10 주식회사 코오롱 Nano composite membrane of hollow fiber and method of manufacturing the same
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
WO2013047398A1 (en) * 2011-09-29 2013-04-04 東レ株式会社 Composite semipermeable membrane
JPWO2013047398A1 (en) * 2011-09-29 2015-03-26 東レ株式会社 Composite semipermeable membrane
US9259691B2 (en) 2012-11-21 2016-02-16 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance
JP2015510450A (en) * 2012-11-21 2015-04-09 エルジー・ケム・リミテッド High flow rate water treatment separation membrane with excellent chlorine resistance
US9370751B2 (en) 2012-11-21 2016-06-21 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance
US9211507B2 (en) 2012-11-21 2015-12-15 Lg Chem, Ltd. Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same
CN103638824A (en) * 2013-11-07 2014-03-19 青岛文创科技有限公司 Preparation method for crosslinked-inulin/fullerene composite membrane
CN103638824B (en) * 2013-11-07 2015-11-18 青岛文创科技有限公司 The preparation method of a kind of crosslinked inulin, fullerene composite membrane

Similar Documents

Publication Publication Date Title
JP6943180B2 (en) Method for manufacturing composite semipermeable membrane and composite semipermeable membrane
KR101967262B1 (en) Composite semipermeable membrane
JP6136266B2 (en) Composite semipermeable membrane
EP1806174B1 (en) Process for producing semipermeable composite membrane
JPH08323167A (en) Manufacturing method of chlorine resistant complex membrane having high organic compound removability and product by thesame
CN106457165B (en) Composite semipermeable membrane
US20030136727A1 (en) Composite semipermeable membrane
EP1825905A1 (en) Semipermeable composite membrane and process for producing the same
JP2001038175A (en) Composite semipermeable membrane
JP3250644B2 (en) Composite hollow fiber membrane and method for producing the same
KR20200053549A (en) Composite semipermeable membrane and manufacturing method thereof
JP4284767B2 (en) Composite semipermeable membrane, water production method using the same, and fluid separation element
JP3611795B2 (en) Polyamide-based reverse osmosis composite membrane and method for producing the same
JP3985387B2 (en) Method for producing composite semipermeable membrane
JP5130967B2 (en) Manufacturing method of composite semipermeable membrane
JP4543296B2 (en) Composite semipermeable membrane, method for producing the same, and composite semipermeable membrane separation element incorporating the same
JPH0910565A (en) Semipermeable composite membrane
JP2000093771A (en) Fluid separation membrane and its manufacture
KR100516209B1 (en) Method for preparation of highly permeable composite polyamide nanofiltration membranes
JP2002095939A (en) Composite semipermeable membrane, composite semipermeable membrane separation element, and their manufacturing method and rewetting method
JP2005177741A (en) Treatment method of semipermeable membrane, modified semipermeable membrane and its production method
JP3628114B2 (en) Treatment method with composite reverse osmosis membrane
WO2021085599A1 (en) Composite semi-permeable membrane
JPH10235173A (en) Composite semipermeable membrane and its production
WO2024048695A1 (en) Composite semipermeable membrane and method for producing composite semipermeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100325

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100524