KR100516209B1 - Method for preparation of highly permeable composite polyamide nanofiltration membranes - Google Patents
Method for preparation of highly permeable composite polyamide nanofiltration membranes Download PDFInfo
- Publication number
- KR100516209B1 KR100516209B1 KR10-2003-0094656A KR20030094656A KR100516209B1 KR 100516209 B1 KR100516209 B1 KR 100516209B1 KR 20030094656 A KR20030094656 A KR 20030094656A KR 100516209 B1 KR100516209 B1 KR 100516209B1
- Authority
- KR
- South Korea
- Prior art keywords
- amine
- acid
- solution
- porous support
- polyreactive
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/105—Support pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2377/00—Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L77/00—Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
본 발명은 폴리아미드 나노복합막의 제조방법에 관한 것으로서, 보다 상세하게는 단백질 용액으로 전처리한 다공성 지지체를 다반응성 폴리아민, 산 및 인산염을 함유하는 아민 수용액과, 할라이드 및 이소시아네이트를 함유하는 이소파라핀계 유기용액에 순차적으로 반응시키는 공정을 포함하여 폴리아미드 나노복합막을 제조함으로써 2가 염의 배제율은 높으면서 1가 염의 배제율은 낮게 유지되며, 또한 낮은 운전압력에서도 투과유량이 크게 향상된 폴리아미드 나노복합막의 제조방법에 관한 것이다.The present invention relates to a method for preparing a polyamide nanocomposite membrane, and more particularly, to an isoparaffin-based organic solution containing an aqueous amine solution containing polyreactive polyamine, an acid and a phosphate, and a halide and an isocyanate. By preparing a polyamide nanocomposite membrane including a step of sequentially reacting the solution, the polyamide nanocomposite membrane has a high exclusion rate while maintaining a low exclusion rate of monovalent salts and a significantly improved permeation flow rate even at a low operating pressure. It is about a method.
Description
본 발명은 폴리아미드 나노복합막의 제조방법에 관한 것으로서, 보다 상세하게는 단백질 용액으로 전처리한 다공성 지지체를 다반응성 폴리아민, 산 및 인산염을 함유하는 아민 수용액과, 할라이드 및 이소시아네이트를 함유하는 이소파라핀계 유기용액에 순차적으로 반응시키는 공정을 포함하여 폴리아미드 나노복합막을 제조함으로써 2가 염의 배제율은 높으면서 1가 염의 배제율은 낮게 유지되며, 또한 낮은 운전압력에서도 투과유량이 크게 향상된 폴리아미드 나노복합막의 제조방법에 관한 것이다.The present invention relates to a method for preparing a polyamide nanocomposite membrane, and more particularly, to an isoparaffin-based organic solution containing an aqueous amine solution containing polyreactive polyamine, an acid and a phosphate, and a halide and an isocyanate. By preparing a polyamide nanocomposite membrane including a step of sequentially reacting the solution, the polyamide nanocomposite membrane has a high exclusion rate while maintaining a low exclusion rate of monovalent salts and a significantly improved permeation flow rate even at a low operating pressure. It is about a method.
본 발명은 계면중합에 의해서 나노복합막을 제조할 때, 다공성 지지체를 전처리한 후 수용액에 첨가제를 사용하여 투과유량이 매우 높은 나노복합막을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing a nanocomposite membrane having a very high permeation flux using an additive in an aqueous solution after pretreatment of a porous support when preparing a nanocomposite membrane by interfacial polymerization.
정밀여과, 한외여과, 나노여과 및 역삼투막에 의해서 용매에 녹아있는 용질을 분리해 내는 것이 가능하다. 특히 나노여과막은 유기물을 상당히 거를 수 있고 1가 이온은 자유로이 통과시키면서 2가 이온에 대해서는 높은 배제율을 보이는 것을 특징으로 한다. 정수처리에 있어서 나노여과막이 상업적으로 유용하기 위해서는 높은 물투과량을 보이면서 유기물에 대한 높은 배제율과 2가 이온을 상당히 거를 수 있어야 한다.It is possible to separate the solute dissolved in the solvent by microfiltration, ultrafiltration, nanofiltration and reverse osmosis membrane. In particular, the nanofiltration membrane is characterized in that it can filter the organic material considerably, while the monovalent ions pass freely and show a high rejection rate for the divalent ions. In order for the nanofiltration membrane to be commercially useful in water purification treatment, it must be able to exhibit high water permeation rate, high rejection rate for organic matter and considerably divalent divalent ions.
일반적인 나노여과막은 다공성의 지지체 위에 방향족 또는 지방족 폴리아미드를 계면중합에 의해서 형성시킨 복합막이다. 폴리아미드 필름은 아민과 아실 할라이드를 계면중합에 의해서 형성된다. 폴리아미드 복합막은 1981년에 Cadotte에 의해서 미국특허 제4,277,344호에 발표되었고, 상기 특허는 적어도 세 개의 아실 할라이드 반응성기를 갖는 방향족 아실 할라이드와 적어도 2개의 아민기를 갖는 방향족 아민 치환체와의 계면중합에 의해서 형성되는 방향족 폴리아미드 필름에 대한 것이다. Cadotte에 의해서 발명된 상기 복합막은 우수한 투과유량과 염 배제율을 보이지만 현재 개발되어진 나노복합막에 비해서는 투과유량이 매우 떨어지는 문제점이 있었다. A general nanofiltration membrane is a composite membrane in which an aromatic or aliphatic polyamide is formed by interfacial polymerization on a porous support. Polyamide films are formed by interfacial polymerization of amines and acyl halides. The polyamide composite membrane was published in US Pat. No. 4,277,344 by Cadotte in 1981, which was formed by interfacial polymerization of an aromatic acyl halide having at least three acyl halide reactive groups with an aromatic amine substituent having at least two amine groups. To aromatic polyamide films. The composite membrane invented by Cadotte shows an excellent permeation flow rate and salt rejection rate, but has a problem in that the permeate flow rate is very low as compared with the currently developed nanocomposite membrane.
폴리아미드 복합막의 투과유량과 염 배제율을 높이기 위한 시도가 다양하게 이루어졌으나, 대부분이 첨가제를 사용하는 것들이었다. 예를 들면, 1984년에 Tomaschke는 미국특허 제4,872,984호에서 수용성의 강산과 염기성의 3차아민(트리메틸아민, 트리에틸아민, 트리프로필아민, N-알킬시클로알리파틱 아민 등)과의 아민염을 사용하고 있다.Various attempts have been made to increase the permeation flow rate and the salt rejection rate of polyamide composite membranes, but most of them use additives. For example, in 1984, Tomaschke, in US Pat. No. 4,872,984, described an amine salt of a water soluble strong acid with a basic tertiary amine (trimethylamine, triethylamine, tripropylamine, N-alkylcycloaliphatic amine, etc.). I use it.
또한 Chau 등은 1991년에 미국특허 제4,983,291호에서 아민과 반응성이 없는 아프로틱(aprotic) 용매를 사용하여 계면중합시 발생하는 산을 잡는 매개체로 사용하였다.In 1991, Chau et al., US Pat. No. 4,983,291, used an aprotic solvent which is not reactive with an amine, and used it as a medium for trapping acid generated during interfacial polymerization.
Hirose 등은 1996년에 미국특허 제5,576,057호에서 수용액에 알코올류(에탄올, 프로판올, 이소프로판올, 운데칸올, 2-에틸부탄올, 헥산에디올, 글리세롤 등)와 질소화합물(니트로메탄, 포름아미드, 메틸포름아미드, 아세토니트릴, 디메닐포름아미드 등)의 혼합수용액으로 사용하였다.Hirose et al., In 1996, in US Pat. No. 5,576,057 used alcohols (ethanol, propanol, isopropanol, undecanol, 2-ethylbutanol, hexanediol, glycerol, etc.) and nitrogen compounds (nitromethane, formamide, methylform) in aqueous solutions. Amide, acetonitrile, dimenylformamide, etc.) as a mixed aqueous solution.
Hirose는 또한 1997년에 미국특허 제5,614,099에서 첨가제로서 알코올, 에테르, 케톤, 에스테르, 할로겐화 하이드로카본, 황을 함유하는 화합물을 첨가제로 사용하여 복합막을 합성할 경우 폴리아미드 스킨층의 평균 거칠기가 평균 55 nm 정도라고 했다. Hirose also described, in 1997, US Pat. No. 5,614,099, that the average roughness of the polyamide skin layer was averaged when the composite film was synthesized using additives containing alcohols, ethers, ketones, esters, halogenated hydrocarbons, and sulfur as additives. It was about nm.
또한, 테트라알킬암모늄 할라이드나 트리알킬아민과 유기산을 혼합하여 필름형성을 용이하게 한 기술도 있었다. There has also been a technique in which tetraalkylammonium halides, trialkylamines and organic acids are mixed to facilitate film formation.
상기와 같은 복합막들은 비교적 높은 정도의 물 투과도를 보이지만 낮은 운점 압력에서는 그 정도가 저하되는 문제점이 있었다.Such composite membranes show a relatively high degree of water permeability but have a problem that the degree decreases at low cloud point pressures.
따라서, 동력비를 줄이기 위하여 120 psi 이하의 낮은 운전압력에서 높은 염 배제율을 보이면서 높은 투과유량을 나타내는 복합막이 요구된다.Therefore, in order to reduce the power ratio, a composite membrane showing a high permeate flow rate while showing a high salt rejection rate at a low operating pressure of 120 psi or less is required.
2000년 Koo 등의 미국특허 제6,015,495호와 2001년 Hirose 등의 미국특허 제6,171,497호에서는 염기와 산의 염을 형성시킴으로서 투과유량을 크게 증가시킬 수 있었다고 보고하고 있다. 그러나, 상기 방법은 m-페닐렌 디아민을 기초로 했으며 그들의 방법을 이용할 경우 피페라진을 디아민으로 사용할 경우 같은 효과를 기대할 수 없는 문제점이 있었다. U.S. Patent No. 6,015,495 to Koo et al. 2000 and U.S. Patent No. 6,171,497 to Hirose et al. 2001 reported that the permeate flux could be greatly increased by forming salts of bases and acids. However, the method was based on m-phenylene diamine and there was a problem that the same effect could not be expected when piperazine was used as the diamine when using their method.
지금까지의 서술된 복합막들은 역삼투막에서 적용이 되고 있으며 나노복합막에 적용하기에는 염 배제율이 너무 높아서 많은 어려움이 따르며 염 배제율을 낮추는 것이 고유량의 나노복합막 제조시에 해결하여야 할 과제이다. 대부분의 상업화된 나노복합막들은 방향족 폴리아민 대신 피페라진 같은 사이클로 알킬 아민을 사용하여 제조되고 있지만 저압에서 운전하기에는 아직까지 투과유량이 상당히 낮은 실정이다. 또한 피페라진 계통의 지방족 폴리아민을 사용하여 표면의 거칠기를 증가시킨 특허나 연구결과가 없으며 상당히 어려운 것으로 알려져 있다.The composite membranes described up to now have been applied to reverse osmosis membranes, and the salt rejection rate is too high to be applied to the nanocomposite membrane, which leads to a lot of difficulties. . Most commercialized nanocomposites are manufactured using cycloalkyl amines, such as piperazine, instead of aromatic polyamines, but the permeate flux is still very low to operate at low pressures. In addition, there are no patents or studies that increase the surface roughness by using an aliphatic polyamine of the piperazine family and are known to be very difficult.
이에 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구 노력한 결과 다공성 지지체를 단백질 용액으로 전처리한 후, 다반응성 폴리아민, 강산 및 염형성 아민을 함유하는 아민 수용액과, 할라이드 및 이소시아네이트가 용해된 이소파라핀계 유기용액에 순차적으로 반응시켜 제조한 나노복합막은 2가 염의 배제율은 높으면서 1가 염의 배제율은 낮게 유지되며, 또한 투과유량은 크게 증가됨을 알게되어 본 발명을 완성하였다.Accordingly, the present inventors have studied to solve the above problems, and as a result, after pretreatment of the porous support with a protein solution, an aqueous amine solution containing polyreactive polyamine, strong acid, and salt-forming amine, and isoparaffin-based dissolve halide and isocyanate The nanocomposite membrane prepared by sequentially reacting the organic solution was found to have a high exclusion rate of divalent salts while maintaining a low exclusion rate of monovalent salts, and also to significantly increase the permeate flow rate, thereby completing the present invention.
따라서 본 발명은 선택적인 염 배제율이 우수하고, 낮은 동력운전에서도 투과유량이 높은 폴리아미드 나노복합막의 제조방법을 제공하는 데 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for producing a polyamide nanocomposite membrane having excellent selective salt rejection and high permeation flow rate even at low power operation.
본 발명은 계면중합법에 의하여 나노복합막을 제조하는 방법에 있어서, 1) 다공성 지지체를 단백질 용액으로 전처리하는 단계; 2) 상기 전처리된 다공성 지지체를 다반응성 폴리아민, 강산, 인산염 및 염형성 아민을 함유하는 아민 수용액에 침지하는 단계; 3) 상기 아민 수용액 처리된 다공성 지지체를 다반응성 아실할라이드, 술포닐 할라이드 또는 이소시아네이트가 용해된 이소파라핀계 유기용액에 침지하는 단계; 및 4) 상기 유기용액 처리된 다공성 지지체를 건조시킨 후 염기용액에 침지하는 단계를 포함하는 폴리아미드 나노복합막의 제조방법을 특징으로 한다.The present invention provides a method for producing a nanocomposite membrane by interfacial polymerization, comprising the steps of: 1) pretreatment of a porous support with a protein solution; 2) immersing the pretreated porous support in an aqueous amine solution containing polyreactive polyamine, strong acid, phosphate and salt forming amine; 3) immersing the porous support treated with the amine aqueous solution in an isoparaffinic organic solution in which polyreactive acyl halide, sulfonyl halide or isocyanate is dissolved; And 4) drying the porous support treated with the organic solution, and then immersing the base solution in a polyamide nanocomposite membrane.
본 발명에 따라 제조된 나노복합막은 2가 염의 배제율은 높으면서 1가 염의 배제율은 낮게 유지되며, 또한 낮은 운전압력에서도 투과유량이 크게 향상되는 효과가 있다.The nanocomposite membrane prepared according to the present invention has a high exclusion rate of divalent salts while maintaining a low exclusion rate of monovalent salts, and has an effect of greatly improving the permeate flow rate even at a low operating pressure.
이와 같은 본 발명을 제조단계별로 상세하게 설명한다.This invention will be described in detail for each manufacturing step.
먼저, 다공성 지지체를 단백질 용액으로 전처리하는 1단계이다. 상기 다공성 지지체는 폴리술폰, 폴리에테르술폰, 폴리이미드, 폴리아미드, 폴리올레핀 및 폴리비닐리덴플루오라이드 등 중에서 선택된 것을 사용할 수 있으며, 상기 단백질 용액은 우유 단백질인 것을 사용한다. 상기한 단백질 용액을 사용한 전처리에 의하여 다공성 지지체는 디아민 용액이 골고루 젖을 수 있는 특성을 갖게 되고, 따라서 본 발명의 폴리아미드 나노복합막이 우수한 선택적 염 배제율을 나타내며, 낮은 운전압력에서도 투과유량이 향상되도록 하는 것이다.First, pretreatment of the porous support with a protein solution is one step. The porous support may be selected from polysulfone, polyethersulfone, polyimide, polyamide, polyolefin, polyvinylidene fluoride, and the like, and the protein solution may be a milk protein. By pretreatment using the above protein solution, the porous support has the property that the diamine solution can be evenly wetted, and thus the polyamide nanocomposite membrane of the present invention exhibits excellent selective salt rejection rate, so that the permeate flow rate can be improved even at a low operating pressure. It is.
다음으로, 상기 전처리된 다공성 지지체를 다반응성 폴리아민, 강산 및 염형성 아민을 함유하는 아민 수용액을 처리하는 2 단계이다. 이때, 상기 다반응성 폴리아민은 방향족디아민, 지방족디아민, 시클로지방족 1차아민, 시클로지방족 2차아민, 크실렌 디아민 및 방향족 2차아민 등 중에서 선택된 것을 사용할 수 있다. 상기 강산은 방향족 술폰산, 지방족 술폰산, 시클로지방족 술폰산, 트리플루오르아세트산, 질산, 염산, 황산 및 이들의 혼합물을 사용할 수 있으며, 상기 염형성 아민은 상기한 강산과 반응하여 염을 형성하는 아민을 사용하는데, 3차 아민을 사용하는 것이 특히 바람직하다. 상기 아민 수용액은 다반응성 폴리아민 0.5 ∼ 3 중량%, 강산 1 ∼ 3 중량%, 인산염 1 ∼ 15 중량% 및 염형성 아민 0 ∼ 3 중량%로 이루어지며, 상기 범위를 벗어나면 염배제율이 떨어지며 투과량도 감소한다. 상기와 같이 다공성 지지체를 아민 수용액과 충분히 반응시킨 후 과량의 아민 수용액을 제거한다. Next, the pretreated porous support is subjected to two steps of treating an aqueous amine solution containing a polyreactive polyamine, a strong acid and a salt forming amine. In this case, the polyreactive polyamine may be selected from among aromatic diamine, aliphatic diamine, cycloaliphatic primary amine, cycloaliphatic secondary amine, xylene diamine and aromatic secondary amine. The strong acid may use aromatic sulfonic acid, aliphatic sulfonic acid, cycloaliphatic sulfonic acid, trifluoroacetic acid, nitric acid, hydrochloric acid, sulfuric acid, and mixtures thereof, and the salt forming amine uses an amine that reacts with the strong acid to form a salt. It is particularly preferable to use tertiary amines. The aqueous amine solution is composed of 0.5 to 3% by weight of polyreactive polyamine, 1 to 3% by weight of strong acid, 1 to 15% by weight of phosphate, and 0 to 3% by weight of salt-forming amine. Also decreases. As described above, after the porous support is sufficiently reacted with the amine aqueous solution, the excess amine aqueous solution is removed.
상기와 같이 아민 수용액으로 처리된 다공성 지지체는 아민 수용액이 지지체 전체적으로 좋은 젖음성을 나타내는 특성을 갖게 된다.The porous support treated with the amine aqueous solution as described above has the characteristic that the aqueous amine solution exhibits good wettability as a whole.
다음으로 상기 2 단계에서 아민 수용액으로 처리된 다공성 지지체를 다반응성 아실할라이드, 술포닐 할라이드 또는 이소시아네이트가 용해된 이소파라핀계 유기용액에서 반응시킨 후 잔류한 유기용액을 제거한 다음 50 ∼ 100 ℃의 뜨거운 공기로 가열하여 건조시킨다. 상기 다반응성 아실할라이드는 이소프탈로일 할라이드, 테레프탈로일 할라이드 및 트리메소일 할라이드 등 중에서 선택된 것을 사용할 수 있다. Next, the porous support treated with the aqueous amine solution in step 2 was reacted in an isoparaffinic organic solution in which polyreactive acyl halide, sulfonyl halide or isocyanate was dissolved, and then the remaining organic solution was removed, followed by hot air at 50 to 100 ° C. Heated to dryness. The polyreactive acyl halide may be selected from isophthaloyl halide, terephthaloyl halide, trimesoyl halide and the like.
상기 유기용액으로 처리된 다공성 지지체는 첨가제를 사용하지 않은 경우에 비해서 표면의 거칠기가 증가하는 특성이 있다.The porous support treated with the organic solution has a property of increasing surface roughness as compared with the case where no additive is used.
마지막으로 상기 건조시킨 다공성 지지체를 염기용액에 침지하여 폴리아미드 나노복합막을 제조하는 4 단계이다. 상기한 염기로는 K2CO3 또는 Na2CO 3 등 중에서 선택된 것을 사용할 수 있다.Finally, the dried porous support is immersed in a base solution to prepare a polyamide nanocomposite membrane. The base may be selected from K 2 CO 3 or Na 2 CO 3 and the like.
상기한 방법으로 제조된 본 발명의 폴리아미드 나노복합막은 2가 염의 배제율은 높으면서 1가 염의 배제율은 낮게 유지되며, 또한 낮은 운전압력에서도 투과유량이 크게 향상되는 효과가 있다.The polyamide nanocomposite membrane of the present invention prepared by the above method has a high exclusion rate of divalent salts and a low exclusion rate of monovalent salts, and has an effect of greatly improving the permeate flow rate even at a low operating pressure.
이하 실시예에 의거하여 본 발명을 더욱 구체적으로 설명하겠는바, 본 발명이 다음 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the present invention is not limited to the following examples.
실시예 1Example 1
부직포 위에 지지된 다공성의 폴리술폰 지지체를 우유단백질 용액에 침지하고 세척하여 전처리 시켰다.The porous polysulfone scaffold supported on the nonwoven fabric was pretreated by immersing and washing the milk protein solution.
상기 단백질 용액으로 전처리시킨 다공성 지지체를 피페라진 0.6 중량%, 트리에틸아민 0.6 중량%, 톨루엔술폰산 1 중량% , 소디움 포스페이트 5 중량%을 포함하는 아민 수용액에 침지한 다음 지지체의 표면에 묻어 있는 과량의 아민 수용액을 롤러로 완전히 제거하였다.The porous support pretreated with the protein solution was immersed in an aqueous amine solution containing 0.6% by weight of piperazine, 0.6% by weight of triethylamine, 1% by weight of toluenesulfonic acid, and 5% by weight of sodium phosphate, and then the excess of the surface was buried on the surface of the support. The aqueous amine solution was completely removed with a roller.
상기 아민 수용액 처리된 다공성 지지체를 트리메소일클로라이드 0.1 중량%를 함유하는 이소파라핀 용액에 침지하여 반응시킨 후 과량의 용액을 제거한 후 70 ℃에서 가열하여 건조시켰다.The amine aqueous solution-treated porous support was immersed in an isoparaffin solution containing 0.1% by weight of trimesoyl chloride, followed by reaction to remove excess solution, and dried by heating at 70 ° C.
상기 건조시킨 다공성 지지체를 0.2 중량% 농도의 K2CO3 용액에 침지시켜서 나노복합막을 제조하였다.The dried porous support was immersed in a K 2 CO 3 solution of 0.2% by weight concentration to prepare a nanocomposite membrane.
상기 나노복합막의 성능은 2000 ppm의 MgSO4 용액을 225 psi에서 30 분 동안 운전한 후 투과유량과 용질배제율을 측정하였으며, 1가 염과 2가 염의 배제율은 전도도기를 이용하여 측정하였다. 상기 측정 결과는 다음 표 1에 나타내었다.The performance of the nanocomposite membrane was measured by operating the 2000 ppm MgSO 4 solution at 225 psi for 30 minutes and the permeate flux and solute exclusion rate, the monovalent salt and divalent salt exclusion rate was measured using a conductivity meter. The measurement results are shown in Table 1 below.
비교예 1Comparative Example 1
상기 실시예서의 방법과 동일하게 나노복합막을 제조하였으며 단지 수용액내에 피페라진과 트리에틸아민 이외의 다른 첨가제는 사용하지 않았다. 제조된 나노복합막의 성능은 다음 표 1에 나타내었다.Nanocomposite membranes were prepared in the same manner as in the above example, except that no additives other than piperazine and triethylamine were used in the aqueous solution. The performance of the prepared nanocomposite membrane is shown in Table 1 below.
비교예 2Comparative Example 2
상기 실시예의 방법과 동일하게 나노복합막을 제조하였으며 단지 다공성 지지체를 단백질용액으로 전처리하지 않았다. 제조된 나노복합막의 성능은 다음 표 1에 나타내었다.Nanocomposite membranes were prepared in the same manner as in the above example, and only the porous support was not pretreated with the protein solution. The performance of the prepared nanocomposite membrane is shown in Table 1 below.
상기 표 1에 나타낸 바와 같이, 실시예에 따라 제조된 본 발명의 나노복합막은 2000 ppm의 MgSO4용액을 225 psi에서 측정했을 때 4.4 ㎥/㎡day의 투과유량과 > 97 %의 2가염 배제율을 나타내었다.As shown in Table 1, the nanocomposite membrane of the present invention prepared according to the Example has a permeate flow rate of 4.4 m 3 / m 2 day and a divalent exclusion rate of> 97% when 2000 ppm MgSO 4 solution is measured at 225 psi. Indicated.
또한, 1가염의 배제율은 40 ∼ 50 %로 나타나서 비교예의 경우보다 높거나 비슷하게 유지되었으며, 2가염의 배제율은 97 % 이상으로 나타나서 비교예의 경우보다 높게 유지됨을 알 수 있다.In addition, the exclusion rate of the monovalent salt was found to be 40 to 50% higher or similar to that of the comparative example, and the exclusion rate of the divalent salt was found to be 97% or more, which is higher than that of the comparative example.
이상에서 상세히 설명한 바와 같이, 나노복합막의 낮은 투과유량의 문제점을 보완하고자 지지체를 전처리하고 또한 수용액 내에 첨가제를 사용하여 계면중합을 이용하여 나노복합막을 제조한 결과 기존의 나노복합막의 용질배제율과 비슷한 성능을 보이면서 투과유량이 상당히 증가하였다. 또한 1가염의 배제율은 낮게 유지되고 2가염의 배제율은 높게 유지되는 효과가 있었다. As described in detail above, in order to compensate for the problem of low permeation flow rate of the nanocomposite membrane, the nanocomposite membrane was prepared by pre-treatment of the support and using interfacial polymerization using an additive in an aqueous solution, which is similar to the solute exclusion ratio of the conventional nanocomposite membrane. The permeate flow increased considerably with performance. In addition, the exclusion rate of monovalent salt was kept low and the exclusion rate of divalent salt was maintained high.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0094656A KR100516209B1 (en) | 2003-12-22 | 2003-12-22 | Method for preparation of highly permeable composite polyamide nanofiltration membranes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0094656A KR100516209B1 (en) | 2003-12-22 | 2003-12-22 | Method for preparation of highly permeable composite polyamide nanofiltration membranes |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050063271A KR20050063271A (en) | 2005-06-28 |
KR100516209B1 true KR100516209B1 (en) | 2005-09-23 |
Family
ID=37255141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0094656A KR100516209B1 (en) | 2003-12-22 | 2003-12-22 | Method for preparation of highly permeable composite polyamide nanofiltration membranes |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100516209B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100823628B1 (en) | 2006-12-04 | 2008-04-21 | 웅진케미칼 주식회사 | Manufacturing method of polyamide nano composite membrane for water ionizer |
KR101317643B1 (en) * | 2011-09-08 | 2013-10-15 | 웅진케미칼 주식회사 | Polyamide nanofiltration composite membrane and manufacturing method thereof |
KR20140065360A (en) * | 2012-11-21 | 2014-05-29 | 주식회사 엘지화학 | High flux water-treatment membrane with high chlorine resistance and manuracturing method for the same |
US9211507B2 (en) | 2012-11-21 | 2015-12-15 | Lg Chem, Ltd. | Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100813908B1 (en) * | 2005-07-27 | 2008-03-18 | 한국화학연구원 | Preparation method of highly permeable composite polyamide nanofiltration membranes |
KR100619497B1 (en) * | 2005-07-29 | 2006-09-06 | 주식회사 새한 | Fouling resistant polyamide composite membrane and method of producing the same |
-
2003
- 2003-12-22 KR KR10-2003-0094656A patent/KR100516209B1/en active IP Right Grant
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100823628B1 (en) | 2006-12-04 | 2008-04-21 | 웅진케미칼 주식회사 | Manufacturing method of polyamide nano composite membrane for water ionizer |
KR101317643B1 (en) * | 2011-09-08 | 2013-10-15 | 웅진케미칼 주식회사 | Polyamide nanofiltration composite membrane and manufacturing method thereof |
KR20140065360A (en) * | 2012-11-21 | 2014-05-29 | 주식회사 엘지화학 | High flux water-treatment membrane with high chlorine resistance and manuracturing method for the same |
WO2014081230A1 (en) * | 2012-11-21 | 2014-05-30 | 주식회사 엘지화학 | Outstandingly chlorine resistant high-flow-rate water-treatment separation membrane and production method for same |
US9211507B2 (en) | 2012-11-21 | 2015-12-15 | Lg Chem, Ltd. | Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same |
KR101583117B1 (en) | 2012-11-21 | 2016-01-06 | 주식회사 엘지화학 | High flux water-treatment membrane with high chlorine resistance and manuracturing method for the same |
US9259691B2 (en) | 2012-11-21 | 2016-02-16 | Lg Chem, Ltd. | Water-treatment separating membrane of high flux having good chlorine resistance |
Also Published As
Publication number | Publication date |
---|---|
KR20050063271A (en) | 2005-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101546244B1 (en) | Water treatment membrane having a high chlorine resistance and a high permeability and method of manufacturing the same | |
US20080257818A1 (en) | Semipermeable Composite Membrane and Process for Producing the Same | |
US20100173083A1 (en) | Semipermeable composite membrane and process for producing the same | |
EP2722100A2 (en) | Reverse osmosis membrane having superior salt rejection and permeate flow, and method for manufacturing same | |
US20080277334A1 (en) | Process for Producing Semipermeable Composite Membrane | |
EP1500425B1 (en) | Composite semipermeable membrane and process for producing the same | |
KR101114668B1 (en) | Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby | |
KR20140082532A (en) | Method for composite membrane module | |
KR102097849B1 (en) | Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same | |
KR101477848B1 (en) | Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same | |
KR100516209B1 (en) | Method for preparation of highly permeable composite polyamide nanofiltration membranes | |
KR102072877B1 (en) | Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane | |
KR100813893B1 (en) | Method of manufacturing reverse osmosis composite membrane | |
JPH10165790A (en) | Manufacture of composite reverse-osmosis membrane | |
KR102041657B1 (en) | Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane | |
JP4793978B2 (en) | Method for producing dry composite semipermeable membrane | |
KR101453791B1 (en) | Hollow fiber type forward osmosis membrane and manufacturing method thereof | |
KR100506538B1 (en) | Composite polyamide reverse osmosis membrane and method of producing the same | |
KR100543572B1 (en) | Method for preparation of high flux polyamide nanofiltration composite membrane | |
KR20030022915A (en) | Producing method of composite polyamide reverse osmosis membrane | |
KR20000031681A (en) | Process for the preparation of polyamide composite separating film | |
KR101520150B1 (en) | Reverse osmosis membrane with high flux and manufacturing method thereof | |
KR101474062B1 (en) | Reverse osmosis membrane and method of manufacturing the same | |
KR20220013744A (en) | Method for manufacturing water treatment membrane, water treatment membrane, and water treatment module | |
KR20110079141A (en) | Manufacturing method of polyamide composite membrane and composite membrane thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20120710 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20130730 Year of fee payment: 18 |