JP2000325759A - Manufacture of membrane - Google Patents

Manufacture of membrane

Info

Publication number
JP2000325759A
JP2000325759A JP13571999A JP13571999A JP2000325759A JP 2000325759 A JP2000325759 A JP 2000325759A JP 13571999 A JP13571999 A JP 13571999A JP 13571999 A JP13571999 A JP 13571999A JP 2000325759 A JP2000325759 A JP 2000325759A
Authority
JP
Japan
Prior art keywords
membrane
module
hollow
trehalose
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13571999A
Other languages
Japanese (ja)
Inventor
Yoshihiro Aga
善広 英加
Masaaki Shimagaki
昌明 島垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP13571999A priority Critical patent/JP2000325759A/en
Publication of JP2000325759A publication Critical patent/JP2000325759A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To simply and securely protect a membrane from being dried during a manufacturing process by immersing the membrane into a trehalose water solution and retaining the moisture of the membrane in the case of manufacturing the membrane used for filtration or the like. SOLUTION: A membrane manufacturing raw stock solution as a core liquid is discharged from, for example, an orifice type double cylindrical cap and passed through the given dry length, and then introduced into a solidifying medium to form hollow yarns. Also the hollow fibers are introduced into a cleaning bath and cleaned therein and then introduced into a trehalose water solution bath of given concentration to manufacture moisture-retaining hollow fibers. The moisture-retaining hollow yarns are dried by a drier, and then hollow separating membranes 4 are boundled, and both terminals of a bundle are fixed on a glass tube module case 5 by a potting agent 2 to manufacture a mini- module. Then γ rays are emitted to the mini-module in the wet state, and then its blood inlet 1 is connected with a dialyzate outlet 6, and distilled water is made to flow out of a blood outlet 7 to clean the hollow yarns and the interior of the module, and water permeability and the β2 micro-globulin removing performance are measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トレハロース水溶
液により、膜を保湿することを特徴とした膜の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a membrane, characterized in that the membrane is kept moist with an aqueous trehalose solution.

【0002】[0002]

【従来の技術】従来、ろ過処理や透析処理で用いられる
膜は、乾燥時の膜の透過能の低下を防止するために、多
くはグリセリン水溶液に膜を浸漬して製造工程中におけ
る膜の乾燥を防いできた。しかし、グリセリンは毒性は
低いものの、透析などの医療行為に膜が用いられる場合
は体内に直接混入しないよう製造工程中でグリセリンを
洗浄除去する必要がある。
2. Description of the Related Art Conventionally, membranes used in filtration and dialysis treatments are often immersed in an aqueous glycerin solution to prevent the permeability of the membrane from decreasing during drying. Has been prevented. However, although glycerin has low toxicity, when the membrane is used for medical treatment such as dialysis, it is necessary to wash and remove glycerin during the manufacturing process so that it does not directly enter the body.

【0003】さらに、グリセリン水溶液を膜に浸漬する
工程が導入されれば、製造現場ではグリセリン水溶液が
製造装置や床面に付着し、特に床面にグリセリン水溶液
が流出した場合は足元が非常に滑りやすく危険作業にな
り、安全を確保するためには清掃作業を頻繁に行わなう
ことになるため作業上好ましくない。また、手作業のあ
る工程では手や膜自体がベトつき、作業しやすいとは言
えない。
Furthermore, if a step of immersing an aqueous glycerin solution into a membrane is introduced, the aqueous glycerin solution adheres to the manufacturing equipment and the floor surface at the manufacturing site, and the foot slips extremely when the aqueous glycerin aqueous solution flows out to the floor surface. This is a dangerous work, and cleaning work is frequently performed in order to ensure safety. Further, in a step where manual work is performed, the hand or the film itself becomes sticky, and it cannot be said that the work is easy.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、かか
る従来技術の欠点を改良し、トレハロース水溶液を用い
て膜を保湿することを特徴とする膜の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to improve the disadvantages of the prior art and to provide a method for producing a membrane characterized by moisturizing the membrane with an aqueous trehalose solution.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するた
め、本発明は次の構成を有する。「トレハロース水溶液
に浸漬することにより膜を保湿する工程を有することを
特徴とする膜の製造方法。」
In order to solve the above-mentioned problems, the present invention has the following arrangement. "A method for producing a membrane, comprising a step of humidifying the membrane by immersing it in an aqueous trehalose solution."

【0006】[0006]

【発明の実施の形態】本発明で用いられるトレハロース
は、分子量が342.31を示す二糖類の一つで、2分
子のD−グルコースがその還元性基どうしで結合した構
造を有するものであり、その結合様式において天然型の
α、α−結合、α、β−結合、β、β−結合の3種の異
性体が存在し、本発明においてはいずれのものも用いる
ことができる。 トレハロースは、化粧料、甘味料など
の食品用途や医薬品としてもすでに用いられており生体
にとって、安全な化合物である。従来用いられてきたグ
リセリンは、高濃度に摂取した場合は、腎臓病などの症
状を示すため、保湿剤としてグリセリンを用いた場合は
膜の洗浄を徹底して行う必要があるのに対し、トレハロ
ースはその必要がないという特徴を有する。
DETAILED DESCRIPTION OF THE INVENTION Trehalose used in the present invention is one of disaccharides having a molecular weight of 342.31 and has a structure in which two molecules of D-glucose are linked together by their reducing groups. In its binding mode, there are three types of isomers of natural α, α-bond, α, β-bond, β, and β-bond, and any of them can be used in the present invention. Trehalose is a compound safe for living organisms, which has already been used in food applications such as cosmetics and sweeteners and as a pharmaceutical. Glycerin, which has been conventionally used, shows symptoms such as kidney disease when taken at a high concentration.Thus, when glycerin is used as a humectant, it is necessary to thoroughly clean the membrane, whereas trehalose Has the feature that it is not necessary.

【0007】トレハロースの室温での水への溶解性は約
40重量%である。水の温度を上げれば、それ以上の濃
度のトレハロース水溶液を調製することも可能である
が、60重量%より高濃度になると保湿後の膜が室温に
おかれたときはトレハロースの結晶が多量に析出して、
膜を傷つけたり、作業環境中に析出してくる傾向がある
ため、保湿剤としてのトレハロース水溶液濃度は60重
量%以下が望ましい。また、1重量%未満の濃度では膜
の保湿効果が低い傾向があるため、保湿剤としてのトレ
ハロース水溶液濃度は1重量%以上が望ましい。但し、
グリセリンを保湿剤として用いた場合は、濃度が10%
未満になると性能の低下が顕著になってくるが、トレハ
ロース水溶液の場合は1%であっても性能は保持されて
いる。そのため保湿剤濃度1%で使用する場合には、コ
スト面でも非常に有利である。
[0007] The solubility of trehalose in water at room temperature is about 40% by weight. If the temperature of water is increased, it is possible to prepare a trehalose aqueous solution having a higher concentration. However, if the concentration is higher than 60% by weight, a large amount of trehalose crystals are formed when the film after moisturizing is placed at room temperature. Precipitate out,
The concentration of the aqueous trehalose solution as a humectant is desirably 60% by weight or less, since the film tends to be damaged or deposited in the working environment. When the concentration is less than 1% by weight, the moisturizing effect of the film tends to be low. Therefore, the concentration of the trehalose aqueous solution as a humectant is desirably 1% by weight or more. However,
When glycerin is used as a moisturizer, the concentration is 10%
When the value is less than 1, the performance becomes remarkable, but in the case of the trehalose aqueous solution, the performance is maintained even at 1%. Therefore, when used at a humectant concentration of 1%, it is very advantageous in terms of cost.

【0008】さらに、保湿剤としてのグリセリン水溶液
は、製造現場ではグリセリン水溶液が製造装置や床面に
付着し、特に床面にグリセリン水溶液が流出した場合は
足元が非常に滑りやすく危険作業になり、安全を確保す
るためには清掃作業を頻繁に行わなうことになるため作
業上好ましくない。また、手作業のある工程では手や膜
自体がベトつき、作業しやすいとは言えない。一方、ト
レハロース水溶液はさらさらであり、床面に流出しても
滑らず、また放置すれば結晶として析出し清掃が容易で
ある。
Further, the aqueous glycerin solution as a moisturizing agent is attached to a manufacturing apparatus or a floor surface at a manufacturing site, and particularly when the aqueous glycerin solution flows out to the floor surface, the feet are very slippery and dangerous work is performed. In order to ensure safety, cleaning work is frequently performed, which is not preferable in terms of work. Further, in a step where manual work is performed, the hand or the film itself becomes sticky, and it cannot be said that the work is easy. On the other hand, the trehalose aqueous solution is smooth, does not slip even when it flows to the floor, and precipitates as crystals when left to stand for easy cleaning.

【0009】こういったグリセリン水溶液とトレハロー
ス水溶液の粘性の違いは、洗浄効率にも影響を与えると
考えられ、トレハロース水溶液を用いることにより、大
幅に洗浄時間が短縮できると考えられる。
The difference in viscosity between the glycerin aqueous solution and the trehalose aqueous solution is considered to affect the washing efficiency, and it is considered that the use of the trehalose aqueous solution can greatly reduce the washing time.

【0010】また、グリセリン水溶液は細菌の培養の際
に添加して用いられているように細菌が繁殖しやすいた
め、医療材料のようなクリーンな製造現場が求められる
場合には適さない。一方、トレハロースは食品用途とし
て低う触性をかかげているように、菌が付着しにくく、
医療材料の生産環境での使用に適している。
[0010] In addition, the glycerin aqueous solution is not suitable for a case where a clean production site such as a medical material is required, since the bacterium is easily propagated as used when cultivating the bacterium. On the other hand, as trehalose has low texture for food use, it is difficult for bacteria to adhere,
Suitable for use in medical material production environments.

【0011】本発明で用いられる膜の形態は、中空糸
膜、平膜、マイクロカプセル膜などどのような形態であ
ってもよい。
The form of the membrane used in the present invention may be any form such as a hollow fiber membrane, a flat membrane, or a microcapsule membrane.

【0012】また、本発明で用いられる膜の素材はポリ
エチレン、ポリプロピレン、ポリカーボネート、ポリア
クリロニトリル、ポリスルホン、ポリエステル、ポリ2
フッ化ビニリデン、ポリ4フッ化ビニリデン、ポリメチ
ルメタクリレート、セルローストリアセテート、エチレ
ンビニルアルコールなどが主たる素材として挙げられる
が、限定される性格のものではない。
The membrane used in the present invention is made of polyethylene, polypropylene, polycarbonate, polyacrylonitrile, polysulfone, polyester, poly2
The main materials include vinylidene fluoride, poly (vinylidene tetrafluoride), polymethyl methacrylate, cellulose triacetate, and ethylene vinyl alcohol, but are not limited in nature.

【0013】本発明の膜の製造方法について、中空糸膜
を例に挙げて説明する。膜を製造する際、膜は水洗後に
保湿剤の含まれた水溶液の浴に浸漬される。中空糸は余
分な保湿剤の水溶液を脱液や乾燥などの処理を施した後
に保管される。その後に中空糸膜を束ね、中空糸中空部
を閉塞しないようにポッティング剤で両末端をモジュー
ルケースに固定する。このとき、保湿剤がないと中空糸
が乾燥してしまい、性能が低下してしまう。
The method for producing a membrane of the present invention will be described by taking a hollow fiber membrane as an example. In manufacturing the membrane, the membrane is immersed in a bath of an aqueous solution containing a humectant after washing with water. The hollow fiber is stored after subjecting an excess aqueous solution of the humectant to a treatment such as dewatering or drying. Thereafter, the hollow fiber membranes are bundled, and both ends are fixed to the module case with a potting agent so as not to block the hollow portion of the hollow fiber. At this time, if there is no humectant, the hollow fiber is dried, and the performance is reduced.

【0014】さらに本発明で得られる膜は、透析膜をは
じめとして種々の分離膜などの製造に用いられ、特にポ
リスルホンの中空糸膜の製造に好適である。また人工腎
臓、水処理膜、気体分離膜などの用途に用いられる。
Further, the membrane obtained by the present invention is used for the production of various separation membranes including dialysis membranes, and is particularly suitable for the production of polysulfone hollow fiber membranes. It is also used for applications such as artificial kidneys, water treatment membranes, and gas separation membranes.

【0015】[0015]

【実施例】以下、用いた測定法は以下の通りである。 (1)透水性 中空糸の場合は、両端に環流液用の孔を備えたケースに
該中空糸膜を挿入し、市販のエポキシ系接着剤を用いて
モジュールを作成し、37℃に保って中空糸内側に水圧
をかけ膜を通して外側へ透過する一定時間の水の量と有
効膜面積および膜間圧力差から算出する方法で透水性能
を測定した。 (2)β2ミクログロブリン除去性能の測定 0.45μmのフィルター処理を行った牛血清30ml
に、ヒトβ2ミクログロブリンを5mg/mlの濃度で
溶解し、洗浄後のミニモジュールの血液入口からの中空
糸中空部分に1ml/minで還流し、中空糸外側には
37℃に保ったリン酸緩衝液(pH7.5)140ml
を20ml/minの速度で密閉系で還流した。2時間
還流後中空糸内側・外側環流液を採取し、クリアランス
を算出した。クリアランスは式(1)により算出した。
EXAMPLES The measuring methods used are as follows. (1) Water permeability In the case of a hollow fiber, insert the hollow fiber membrane into a case having holes for reflux liquid at both ends, prepare a module using a commercially available epoxy adhesive, and maintain the module at 37 ° C. Water permeation performance was measured by applying water pressure to the inside of the hollow fiber and calculating from the amount of water permeating through the membrane for a certain period of time, the effective membrane area, and the pressure difference between the membranes. (2) Measurement of β2 microglobulin removal performance 30 ml of bovine serum filtered with 0.45 μm filter
Then, human β2 microglobulin was dissolved at a concentration of 5 mg / ml, refluxed at 1 ml / min to the hollow fiber hollow portion from the blood inlet of the washed mini-module, and phosphoric acid kept at 37 ° C. was placed outside the hollow fiber. 140 ml of buffer (pH 7.5)
Was refluxed in a closed system at a rate of 20 ml / min. After refluxing for 2 hours, the reflux liquid inside and outside the hollow fiber was collected, and the clearance was calculated. The clearance was calculated by equation (1).

【0016】[0016]

【数1】 (Equation 1)

【0017】ここでCL:クリアランス(ml/mi
n)、CBi:モジュール入口側濃度(mg/mi
n)、CBo:モジュール出口側濃度、QB:モジュー
ル供給液量(ml/min)である。
Here, CL: clearance (ml / mi)
n), CBi: concentration at the module inlet side (mg / mi)
n), CBo: concentration at the module outlet side, QB: module supply liquid amount (ml / min).

【0018】以下、「部」は、「重量部」を示す。Hereinafter, "parts" means "parts by weight".

【0019】(実施例1〜3、比較例1,2)ポリスル
ホン(ユーデルP−3500)18部、ポリビニルピロ
リドン(K30)9部をN,N−ジメチルアセトアミド
72部、水1部に加え、90℃14時間加熱溶解した。
この製膜原液を外径0.3mm、内径0.2mmのオリ
フィス型二重円筒型口金より吐出し芯液としてジメチル
アセトアミド58部、水42部からなる溶液を吐出さ
せ、乾式長350mmを通過した後、水100%の凝固
浴に導き中空糸を得た。得られた中空糸はオンラインの
まま、85℃の水洗浴に導かれて水洗された後、所定濃
度のトレハロース水溶液浴に導き、保湿された中空糸を
得た。
(Examples 1 to 3, Comparative Examples 1 and 2) 18 parts of polysulfone (Udel P-3500) and 9 parts of polyvinylpyrrolidone (K30) were added to 72 parts of N, N-dimethylacetamide and 1 part of water. It melt | dissolved by heating at 14 degreeC.
This film forming stock solution was discharged from an orifice-type double cylindrical die having an outer diameter of 0.3 mm and an inner diameter of 0.2 mm, and a solution composed of 58 parts of dimethylacetamide and 42 parts of water was discharged as a core liquid, and passed through a dry length of 350 mm. Thereafter, the mixture was led to a coagulation bath containing 100% water to obtain a hollow fiber. The obtained hollow fiber was led to a water washing bath at 85 ° C. while being on-line, washed with water, and then led to a trehalose aqueous solution bath having a predetermined concentration to obtain a moisturized hollow fiber.

【0020】保湿された中空糸を一晩50℃の乾燥機に
て乾燥した後、そのポリスルホン中空糸分離膜を20本
束ね、中空糸中空部を閉塞しないようにエポキシ系ポッ
ティング剤で両末端をガラス管モジュールケースに固定
し、図1に示すミニモジュールを作成し、湿潤状態でγ
線照射した。該ミニモジュールの直径は約7mm、長さ
は約10cmである。
After the moisturized hollow fiber is dried overnight in a dryer at 50 ° C., 20 polysulfone hollow fiber separation membranes are bundled, and both ends are epoxy-potted so as not to block the hollow portion of the hollow fiber. It is fixed to a glass tube module case to make the mini module shown in FIG.
Irradiation was performed. The mini-module has a diameter of about 7 mm and a length of about 10 cm.

【0021】γ線照射後のミニモジュールの血液流入口
を透析液流出口をシリコンチューブで繋ぎ、血液流出口
から蒸留水を1ml/minの流速で30分間流し、中
空糸及びモジュール内部を洗浄し透水性およびβ2ミク
ログロブリン除去性能の測定を行った。結果を表1に示
す。
After the γ-ray irradiation, the blood inlet of the mini-module is connected to the dialysate outlet by a silicon tube, and distilled water is flowed from the blood outlet at a flow rate of 1 ml / min for 30 minutes to wash the hollow fiber and the inside of the module. Water permeability and β2 microglobulin removal performance were measured. Table 1 shows the results.

【0022】得られた中空糸の束は、べたつかず取り扱
いが容易であった。
The obtained bundle of hollow fibers was easy to handle without stickiness.

【0023】(比較例3、4)ポリスルホン(ユーデル
P−3500)18部、ポリビニルピロリドン(K3
0)9部をN,N−ジメチルアセトアミド72部、水1
部に加え、90℃14時間加熱溶解した。この製膜原液
を外径0.3mm、内径0.2mmのオリフィス型二重
円筒型口金より吐出し芯液としてジメチルアセトアミド
58部、水42部からなる溶液を吐出させ、乾式長35
0mmを通過した後、水100%の凝固浴に導き中空糸
を得た。得られた中空糸はオンラインのまま、85℃の
水洗浴に導かれて水洗された後、所定濃度のグリセリン
水溶液浴に導き、保湿された中空糸を得た。
(Comparative Examples 3 and 4) 18 parts of polysulfone (Udel P-3500) and polyvinylpyrrolidone (K3
0) 9 parts of N, N-dimethylacetamide 72 parts, water 1
And heated and dissolved at 90 ° C. for 14 hours. This membrane-forming stock solution was discharged from an orifice-type double cylindrical die having an outer diameter of 0.3 mm and an inner diameter of 0.2 mm, and a solution composed of 58 parts of dimethylacetamide and 42 parts of water was discharged as a core liquid.
After passing through 0 mm, it was led to a coagulation bath of 100% water to obtain a hollow fiber. The obtained hollow fiber was led to a water washing bath at 85 ° C. while being on-line, washed with water, and then led to a glycerin aqueous solution bath having a predetermined concentration to obtain a moisturized hollow fiber.

【0024】保湿された中空糸を一晩50℃の乾燥機に
て乾燥した後、そのポリスルホン中空糸分離膜を20本
束ね、中空糸中空部を閉塞しないようにエポキシ系ポッ
ティング剤で両末端をガラス管モジュールケースに固定
し、図1に示すミニモジュールを作成し、湿潤状態でγ
線照射した。該ミニモジュールの直径は約7mm、長さ
は約10cmである。
After the moisturized hollow fiber is dried overnight in a dryer at 50 ° C., 20 polysulfone hollow fiber separation membranes are bundled, and both ends are epoxy-potted with an epoxy potting agent so as not to block the hollow portion of the hollow fiber. It is fixed to a glass tube module case to make the mini module shown in FIG.
Irradiation was performed. The mini-module has a diameter of about 7 mm and a length of about 10 cm.

【0025】γ線照射後のミニモジュールの血液流入口
を透析液流出口をシリコンチューブで繋ぎ、血液流出口
から蒸留水500mlを100ml/minの流速で流
し、中空糸及びモジュール内部を洗浄し透水性およびβ
2ミクログロブリン除去性能の測定を行った。結果を表
1に示す。
After the γ-ray irradiation, the blood inlet of the mini-module is connected to the dialysate outlet by a silicon tube, and 500 ml of distilled water is flowed from the blood outlet at a flow rate of 100 ml / min to wash the hollow fiber and the inside of the module to allow water permeation. Gender and β
2 Measurement of microglobulin removal performance was performed. Table 1 shows the results.

【0026】得られた中空糸の束は、べたついて取り扱
い易いとは言えなかった。
The obtained bundle of hollow fibers was sticky and could not be said to be easy to handle.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】本発明の膜の製造方法により、膜の性能
を低下させず、しかも取り扱い性に優れた膜を提供する
ことができる。さらに、トレハロース水溶液を用いるこ
とにより、作業環境が改善され、洗浄効率に優れた膜の
製造方法が提供される。
According to the method for producing a film of the present invention, it is possible to provide a film excellent in handleability without deteriorating the performance of the film. Furthermore, by using the trehalose aqueous solution, a working environment is improved, and a method for producing a film having excellent cleaning efficiency is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例、比較例に用いたミニモジュール
の模式図である。
FIG. 1 is a schematic view of a mini-module used in Examples of the present invention and Comparative Examples.

【符号の説明】 1.血液入口 2.ポッティング部 3.透析液入口 4.中空糸分離膜 5.ガラス管モジュールケース 6.透析液入口 7.血液出口 8.モジュールヘッダー 9.モジュールケース[Explanation of Codes] Blood inlet 2. Potting section 3. 3. Dialysate inlet 4. Hollow fiber separation membrane Glass tube module case 6. 6. Dialysate inlet Blood outlet 8. Module header 9. Module case

フロントページの続き Fターム(参考) 4D006 GA13 HA02 HA18 MA01 MB02 MB06 MC18 MC22 MC23 MC29 MC34 MC37 MC39 MC40X MC48 MC49 MC62X NA04 NA58 NA64 NA71 PB09 PC44 PC47 Continued on the front page F-term (reference) 4D006 GA13 HA02 HA18 MA01 MB02 MB06 MC18 MC22 MC23 MC29 MC34 MC37 MC39 MC40X MC48 MC49 MC62X NA04 NA58 NA64 NA71 PB09 PC44 PC47

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 トレハロース水溶液に浸漬することによ
り膜を保湿する工程を有することを特徴とする膜の製造
方法。
1. A method for producing a film, comprising the step of immersing the film in a trehalose aqueous solution to keep the film moist.
【請求項2】 請求項1記載のトレハロース水溶液濃度
が1〜60重量%であることを特徴とする膜の製造方
法。
2. A method for producing a membrane, wherein the concentration of the trehalose aqueous solution according to claim 1 is 1 to 60% by weight.
【請求項3】 該膜の形態が中空糸膜であることを特徴
とする請求項1記載の膜の製造方法。
3. The method according to claim 1, wherein the form of the membrane is a hollow fiber membrane.
【請求項4】 該膜の素材がポリスルホン系樹脂である
ことを特徴とする請求項1記載の膜の製造方法。
4. The method according to claim 1, wherein the material of the membrane is a polysulfone resin.
【請求項5】 該膜が透析用途に用いられること特徴と
する膜の製造方法。
5. A method for producing a membrane, wherein the membrane is used for dialysis.
JP13571999A 1999-05-17 1999-05-17 Manufacture of membrane Pending JP2000325759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13571999A JP2000325759A (en) 1999-05-17 1999-05-17 Manufacture of membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13571999A JP2000325759A (en) 1999-05-17 1999-05-17 Manufacture of membrane

Publications (1)

Publication Number Publication Date
JP2000325759A true JP2000325759A (en) 2000-11-28

Family

ID=15158292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13571999A Pending JP2000325759A (en) 1999-05-17 1999-05-17 Manufacture of membrane

Country Status (1)

Country Link
JP (1) JP2000325759A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038425A1 (en) * 2004-10-01 2006-04-13 Nitto Denko Corporation Semipermeable composite membrane and process for producing the same
WO2006038426A1 (en) * 2004-10-01 2006-04-13 Nitto Denko Corporation Semipermeable composite membrane and process for producing the same
JP2008113880A (en) * 2006-11-06 2008-05-22 Nikkiso Co Ltd Blood purifier and its manufacturing method
JP2009226397A (en) * 2008-02-27 2009-10-08 Toray Ind Inc Hollow fiber membrane for humidification and membrane module for humidification
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888183B1 (en) * 2004-10-01 2009-03-10 닛토덴코 가부시키가이샤 Semipermeable composite membrane and process for producing the same
JP2006122887A (en) * 2004-10-01 2006-05-18 Nitto Denko Corp Composite semipermeable membrane and its production method
JP2006122886A (en) * 2004-10-01 2006-05-18 Nitto Denko Corp Composite semipermeable membrane and its production method
EP1825905A4 (en) * 2004-10-01 2009-04-15 Nitto Denko Corp Semipermeable composite membrane and process for producing the same
KR100884154B1 (en) * 2004-10-01 2009-02-17 닛토덴코 가부시키가이샤 Semipermeable composite membrane and process for producing the same
WO2006038426A1 (en) * 2004-10-01 2006-04-13 Nitto Denko Corporation Semipermeable composite membrane and process for producing the same
WO2006038425A1 (en) * 2004-10-01 2006-04-13 Nitto Denko Corporation Semipermeable composite membrane and process for producing the same
JP4656503B2 (en) * 2004-10-01 2011-03-23 日東電工株式会社 Composite semipermeable membrane and method for producing the same
KR100969049B1 (en) * 2004-10-01 2010-07-09 닛토덴코 가부시키가이샤 Semipermeable composite membrane and process for producing the same
JP4656502B2 (en) * 2004-10-01 2011-03-23 日東電工株式会社 Composite semipermeable membrane and method for producing the same
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
JP2008113880A (en) * 2006-11-06 2008-05-22 Nikkiso Co Ltd Blood purifier and its manufacturing method
JP2009226397A (en) * 2008-02-27 2009-10-08 Toray Ind Inc Hollow fiber membrane for humidification and membrane module for humidification

Similar Documents

Publication Publication Date Title
JP4059543B2 (en) Medical device for extracorporeal treatment of blood or plasma and method for manufacturing the device
EP0294737B1 (en) Polysulfone hollow fiber membrane and process for making the same
JP2001170167A (en) Method of manufacturing dialyzer and method of sterilization
CS226188B2 (en) Dialysing diaphragm in the form of flat foil,tubular foil or hollow filament made of cellulose regenerated by using cuoxam process
JP2001170171A (en) Semipermeable membrane for blood processing and dialyzer for blood processing using the same
JPH10108907A (en) Membrane for hemocatharsis, its preparation and module for hemocatharsis
AU672856B2 (en) High flux hollow fiber membrane
JP2000325759A (en) Manufacture of membrane
JP3714686B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP4211169B2 (en) Dialysis machine for blood treatment
JP3992185B2 (en) Method for producing hollow fiber membrane
JP3992186B2 (en) Method for producing hollow fiber membrane
JP4055634B2 (en) Hemodialysis membrane and method for producing the same
JPH0548705B2 (en)
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP3281363B1 (en) Blood purification membrane
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JP3948736B2 (en) Hemodialyzer
JP3295321B2 (en) Permselective hollow fiber membrane
JP3020016B2 (en) Hollow fiber membrane
JPH10263375A (en) Selective permeable hollow fiber membrane
JP2000325763A (en) Production of hollow-fiber membrane for hemocatheresis, and hollow-fiber membrane thereof
JP3992187B2 (en) Method for producing hollow fiber membrane
JP2000210544A (en) Production of semipermeable membrane
JP2710711B2 (en) Cellulose diacetate hollow fiber