JP3992187B2 - Method for producing hollow fiber membrane - Google Patents

Method for producing hollow fiber membrane Download PDF

Info

Publication number
JP3992187B2
JP3992187B2 JP2002292753A JP2002292753A JP3992187B2 JP 3992187 B2 JP3992187 B2 JP 3992187B2 JP 2002292753 A JP2002292753 A JP 2002292753A JP 2002292753 A JP2002292753 A JP 2002292753A JP 3992187 B2 JP3992187 B2 JP 3992187B2
Authority
JP
Japan
Prior art keywords
membrane
drying
yarn bundle
moisture content
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002292753A
Other languages
Japanese (ja)
Other versions
JP2003175322A (en
Inventor
輝彦 大石
益次郎 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP2002292753A priority Critical patent/JP3992187B2/en
Publication of JP2003175322A publication Critical patent/JP2003175322A/en
Application granted granted Critical
Publication of JP3992187B2 publication Critical patent/JP3992187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ない優れた透析性能を有する中空糸状乾燥膜の製造方法において、特に透水量及び透過率等の性能のばらつきの小さな中空糸状膜を製造する方法に関する。
【0002】
【従来の技術】
近年、選択的な透過性を有する膜を利用する技術がめざましく進歩し、これまでに気体や液体の分離フィルター、医療分野における血液透析器、血液濾過器、血液成分選択分離フィルター等の広範な分野での実用化が進んでいる。
該膜の材料としては、セルロース系(再生セルロース系、酢酸セルロース系、化学変性セルロース系等)、ポリアクリロニトリル系、ポリメチルメタクリレート系、ポリスルホン系、ポリエチレンビニルアルコール系、ポリアミド系等のポリマーが用いられてきた。
このうちポリスルホン系ポリマーは、その熱安定性、耐酸、耐アルカリ性に加え、製膜原液に親水化剤を添加して製膜することにより、血液適合性が向上することから、半透膜素材として注目され研究が進められてきた。
【0003】
一方、膜を接着してモジュールを作製するためには膜を乾燥させる必要があるが、有機高分子よりなる多孔膜、なかでもポリスルホン系等の疎水性ポリマーからなる透析膜、限外濾過膜は、製膜後に乾燥させると乾燥前に比べ著しく透水量が低下することが知られている。そのため膜は常に湿潤状態か、水に浸漬させた状態で取り扱う必要があった。
【0004】
この対策として従来よりとられてきた方法は、製膜後、乾燥前にグリセリン等の低揮発性有機液体を多孔膜中の空孔部分に詰めておくことであった。しかしながら、低揮発性有機液体は、一般に高粘度なため、洗浄除去に時間がかかり、膜をモジュール成型して洗浄後も微量ではあるが低揮発性有機液体由来の溶出物等(低揮発性有機液体と化学反応して生成した様々な誘導体)がモジュール封入液中にみられることに問題があった。
【0005】
低揮発性有機液体を用いずに乾燥させる方法として、特許文献1には、低揮発性有機液体の代わりに塩化カルシウム等の無機塩を用いる方法が示されているが、洗浄除去する必要性に変わりはない。また、微量であるとしても残存した無機塩が透析患者に与える悪影響が危惧される。
【0006】
また、膜の乾燥方法として、特許文献2には、中空糸膜に対し水蒸気による湿熱処理を行いながらマイクロ波を照射する中空糸膜の製造方法が示されている。しかし、乾燥でありながら膜の変形を防ぐために水蒸気処理していることから乾燥時間を長くする欠点があり、さらに、グリセリン等の低揮発性有機液体を付着させてからの乾燥であることから、膜からの溶出物を低減させるという目的は達成されない。
【0007】
特許文献3及び特許文献4には、低揮発性有機液体を用いずに乾燥処理をしたポリビニルピロリドンを含む親水化膜が開示されている。これらには、血液から血漿成分を分離する性能が記載されているが、血漿タンパクが透過することから透析膜としては有効でないことが分かる。また、ポリビニルピロリドンを分解・変性させる温度で乾燥していることから、膜からの溶出物を低減させるという目的においては極めて好ましくない製法である。
【0008】
また、特許文献5には血液が直接接触する膜内表面でのポリビニルピロリドンの存在率を20〜50%程度にした中空糸膜が開示されている。これは主に血液タンパク、血小板等の付着物を少なくするための湿潤膜を示すものである。従って、血液タンパクが付着しにくいことからろ液速度の径時変化が起こりにくいことが示されているが、アルブミンの透過性が低い等の透析性能についての記載は一切無い。
【0009】
本発明者は、特定の性能を有する湿潤膜をグリセリン等の低揮発性有機液体に含浸せずに乾燥して高性能な血液浄化膜を製造する方法を提案した(特許文献6)。しかし、その後の検討の結果、この方法によって、糸束状にして乾燥した場合には、糸束の中心部と外周部の膜とでは若干の性能差が生じることが明らかとなった。
【0010】
【特許文献1】
特開平6−277470号公報
【特許文献2】
特開平11−332980号公報
【特許文献3】
特開平8−52331号公報
【特許文献4】
特公平8−9668号公報
【特許文献5】
特開平6−296686号公報
【特許文献6】
特許第3281364号公報
【0011】
【発明が解決しようとする課題】
本発明の課題は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ない優れた中空糸状の製造方法において、特に透水量及び透過率等の性能のばらつきの小さな中空糸状膜を製造する方法を提供することにある。
【0012】
【課題を解決するための手段】
以上の如く、モジュールからの溶出物の原因となる膜孔保持剤を用いずに乾燥した透析性能を有する血液浄化用乾燥膜は本発明者等の特許発明(特許文献6)までなかった。その原因は、膜孔保持剤を用いずに乾燥させると、湿潤状態とは全く異なった低性能の膜となることであった。そこで、本発明者等は、前記発明により、あらかじめ目標とする性能よりも高透水量で大孔径である特定の性能を有する湿潤膜を作製しておき、これを乾燥・収縮させて目標の透析性能を有する膜を製造するというこれまでにない、誰も思いつかなかった発想に基づき鋭意研究を進めた結果、溶出物が極めて少なく、血液タンパクや血小板の付着が少ない選択透過性に優れた透析性能を有する膜を得る方法を提供した。ところが、その後、さらに研究を進めたところ、本発明者らは、特許文献6の方法によって血液浄化膜を製造する際、湿潤膜を糸束状にして乾燥すると、糸束の中心部と外周部の膜とでは、透水量や透過性能にばらつきが生じることを発見した。そこで、ばらつきをなくすために鋭意研究した結果、乾燥工程を工夫することで、ばらつきが抑えられることを見出し本発明に至ったものである。
【0013】
すなわち本発明は、
(1)ポリスルホン系ポリマー及びポリビニルピロリドンからなる、高透水量で大きな孔径の膜孔保持剤を含まない湿潤膜をあらかじめ製造しておき、脱溶剤後乾燥することにより該湿潤膜の孔径を収縮させた後、さらに膜中のポリビニルピロリドンの一部を水に不溶化する工程を含む溶出物の少ない乾燥した中空糸状膜の製造方法であって、湿潤膜の乾燥工程を40℃以上120℃以下の温度で加熱乾燥した後にマイクロ波照射することによって行なうことを特徴とする中空糸状膜の製造方法、
(2)乾燥時における中空糸状膜が糸束状に製束されており、該糸束内に除湿気体を通風することを特徴とする上記(1)に記載の製造方法、
(3)乾燥開始時の糸束の中心部と外周部における膜の含水率の差が10%以内であることを特徴とする上記(2)に記載の製造方法、
(4)乾燥開始後の糸束の平均含水率が20〜70%になる時点で加熱乾燥からマイクロ波照射に切り替えることを特徴とする上記(2)または(3)に記載の製造方法、
(5)乾燥開始後の糸束の平均含水率が20〜70%になる時点での該糸束の中心部と外周部における膜の含水率の差が5%以内であることを特徴とする上記(4)に記載の製造方法、及び
(6)製膜原液が、ポリスルホン系ポリマー、ポリビニルピロリドン、及び溶剤からなり、ポリスルホン系ポリマーに対するポリビニルピロリドンの比率が18〜27重量%であることを特徴とする上記(1)〜(5)のいずれかの製造方法、
に関するものである。
本発明の方法で得られた中空糸状膜は、血液透析性能において優れており、透析膜として用いられる。さらに、その他の体外循環治療のための膜としても有用である。
【0014】
【発明の実施の形態】
以下に、本発明の中空糸状膜(以下単に「膜」ともいう)の構成について詳細に説明する。
本発明の製造方法は、高透水量で大きな孔径の湿潤膜をあらかじめ製造しておき、脱溶剤後に膜孔保持剤を含浸させずに乾燥させることに特徴を有する。
【0015】
通常、中空糸状膜を製造する際に用いられる膜孔保持剤には、粘性を有する有機物と人体への毒性が懸念される無機物に分類される。
粘性を有する有機物からなる膜孔保持剤は、粘性が高いために完全に洗浄除去することが困難であることから、膜中に残存して膜からの溶出量を増加させ、さらに残存した膜孔保持剤と化学反応して有害物を生じる原因と成り得る。
一方、無機物からなる膜孔保持剤においても、微量に残存するため透析患者に与える悪影響が危惧される。
【0016】
本発明でいう膜孔保持剤とは、乾燥時の性能低下を防ぐために乾燥前までの製造過程で膜中の空孔部分に詰めておく物質である。膜孔保持剤を含んだ溶液に湿潤膜を浸漬することによって膜中の空孔部分に該保持剤を詰めることが可能である。乾燥後も膜孔保持剤を洗浄・除去さえすれば、膜孔保持剤の効果により湿潤膜と同等の透水量、阻止率等の性能を保持することが可能である。
【0017】
膜孔保持剤としては、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,2−ブチレングリコール、1,3−ブチレングリコール、2−ブチン−1,4−ジオール、2−メチル−2,4−ペンタジオール、2−エチル−1,3−ヘキサンジオール、グリセリン、テトラエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、ポリエチレングリコール400等のグリコール系又はグリセロール系化合物及び蔗糖脂肪酸エステル等の有機化合物および塩化カルシウム、炭酸ナトリウム、酢酸ナトリウム、硫酸マグネシウム、硫酸ナトリウム、塩化亜鉛等の無機塩を挙げることができる。
【0018】
また、本発明において、高透水量で大きな孔径の湿潤膜とは、透水量が100mL/(m2・hr・mmHg)以上であって、重量平均分子量40,000のポリビニルピロリドンの透過率が75%を超え、且つ牛血漿系におけるアルブミンの透過率が0.3%以上である性能を有する湿潤膜を意味する。
【0019】
牛血漿アルブミンの透過率は、以下のような方法で測定することが可能である。まず、長さ20cmの中空糸状膜を100本束ねて小型モジュールを作製する。このモジュールに37℃に加温したヘパリン添加牛血漿(ヘパリン5000IU/L(リットル)、タンパク濃度6.0g/dL(デシリットル))を膜内表面側に線速1.0cm/秒で通過させ、モジュールの入り圧と出圧の平均圧力50mmHgにて30分間限外濾過を行う。得られた濾液と元液の濃度の測定は、紫外分光光度計により280nmの波長にて測定し、下記の式(1)に代入して透過率を算出する。
透過率(%)=(濾液の吸光度)×100/(元液の吸光度) (1)
【0020】
ポリビニルピロリドンの透過率は、濾過する水溶液を3重量%のポリビニルピロリドン(BASF社製 K30、重量平均分子量40,000)のリン酸バッファー(0.15mol/リットル、pH7.4)水溶液にして、モジュールの入り圧と出圧の平均圧力を200mmHgにした以外は、牛血漿アルブミンの透過率の測定と同様な操作を行うことにより求められる。
【0021】
高透水量で大きな孔径の湿潤膜は、ポリスルホン系ポリマー(以下単に「ポリマー」ともいう)、ポリビニルピロリドン、及び溶剤からなる製膜原液を、内部液とともに2重環状ノズルから吐出させ、エアギャップを通過させた後、凝固浴で凝固させる製造方法において、内部液にポリマーの溶剤の水溶液を用いることにより製造可能である。
【0022】
内部液は,膜の中空部と内表面を形成させるものであるが、内表面の孔径は、内部液中の溶剤濃度に比例して大きくなることが判っている。
本発明では、湿潤膜を乾燥収縮させることにより目標の性能の透析膜が得られることから、内部液中の溶剤濃度を、目標とする透析性能を有する湿潤膜を製造する時に比べて、高濃度にする必要がある。
【0023】
本発明で用いられるポリスルホン系ポリマーとしては、下記の式(2)、または式(3)で示される繰り返し単位を有するものが挙げられる。なお、式中のArはパラ位での2置換のフェニル基を示し、重合度や分子量については特に限定しない。
−O−Ar−C(CH−Ar−O−Ar−SO−Ar− (2)
−O−Ar−SO−Ar− (3)
【0024】
ポリビニルピロリドンは高分子量のものほど膜への親水化効果が高いため、高分子量のものほど少量で十分な効果が発揮できることから、本発明においては重量平均分子量900,000以上のポリビニルピロリドンが使用される。900,000より小さい重量平均分子量を有するポリビニルピロリドンを用いて膜への親水化効果を付与するためには大量のポリビニルピロリドンを膜中に残存させる必要があるが、このために膜からの溶出物が増加することになる。また、逆に溶出物を下げるために900,000より小さい重量平均分子量のポリビニルピロリドンの膜中での残存量を少なくすると親水化効果が不十分となってしまい、その結果血液透析を行ったとき濾過速度の経時的低下をきたし十分な効果を発揮できない。
【0025】
また、ポリスルホン系ポリマーとポリビニルピロリドンの溶解に用いられる溶剤は、これら両方を共に溶解するものであり、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等である。
製膜原液中のポリマー濃度は、製膜可能で、かつ得られた膜が膜としての性能を有するような濃度の範囲であれば特に制限されず、5〜35重量%、好ましくは10〜30重量%である。高い透水性能を達成するためには、ポリマー濃度は低い方がよく、10〜25重量%が好ましい。
【0026】
さらに重要なことはポリビニルピロリドンの添加量であり、ポリマーに対するポリビニルピロリドンの混和比率が27重量%以下、好ましくは10〜27重量%、さらに好ましくは20〜27重量%である。ポリマーに対するポリビニルピロリドンの混和比率が27重量%を超えると溶出量が増える傾向にあり、また10重量%未満では製膜原液の粘性が低いためにスポンジ構造の膜を得ることが困難である。また、原液粘度、溶解状態を制御する目的で、水、貧溶剤等の第4成分を添加することも可能であり、その種類、添加量は組み合わせにより随時行えばよい。
【0027】
凝固浴としては、例えば水;メタノール、エタノール等のアルコール類;エーテル類;n−ヘキサン、n−ヘプタン等の脂肪族炭化水素類などポリマーを溶解しない液体が用いられるが、水が好ましい。また、凝固浴にポリマーを溶解する溶剤を若干添加することにより凝固速度をコントロールすることも可能である。凝固浴の温度は、-30〜90℃、好ましくは0〜90℃、さらに好ましくは0〜80℃である。凝固浴の温度が90℃を超えたり、−30℃未満であると、凝固浴中の中空糸状膜の表面状態が安定しにくい。
【0028】
脱溶剤洗浄後の乾燥は、中空糸状膜を多数本束ねた糸束の形態(以後、単に『糸束』と呼ぶ)にて、十分に湿潤している糸束を40℃以上120℃以下の温度で送風乾燥した後、マイクロ波照射に切り替えることにより行なわれる。
さらに、この加熱乾燥及び/マイクロ波照射時には40℃を超えない除湿気体を通風することが好ましい。糸束内に通風するとは中空糸状膜間に風を流すことを意味する。本発明において、40℃以上120℃以下の温度の除湿気体を糸束内に通風することは、糸束内に通風すると同時に糸束に対し加熱乾燥を行なっていることを意味する。
【0029】
マイクロ波照射は、低含水率の糸束をより均一に且つ短時間で乾燥するのに適しており、送風乾燥からマイクロ波照射への切り替えは糸束の平均含水率が20〜70%、望ましくは50〜70%になる時点が好ましく、さらにその時、糸束の中心部と外周部における膜の含水率の差が5%以内であることが性能のばらつきを抑えるのにより好ましい。乾燥時、糸束内に通風を行うことによって、該糸束の中心部と外周部における膜の含水率の差を5%以内にすることが可能である。
ここで、糸束の中心部とは、糸束の円形状断面において中心点から直径の1/6の範囲をいう。また、糸束の外周部とは、糸束の円形状断面において外周から直径の1/6の範囲をいう。
【0030】
また、同様な理由から、乾燥開始時における糸束についても、糸束の中心部と外周部における膜の含水率の差が10%以内であることが好ましい。脱溶剤後糸束を放置しておくと、糸束の中心部と外周部の含水率には差が生じるために、乾燥工程に入る直前に糸束を再度水中に浸漬することにより糸束中心部と外周部の含水率の差を10%以内にすることが可能である。
【0031】
ここで、含水率とは、乾燥前の糸束(又は膜)の重量(A(g))と乾燥糸束(又は膜)の重量(B(g))から(4)式により計算で求められるものをいう。
含水率(%)=(A−B)×100/B (4)
【0032】
乾燥温度は、40℃以上120℃以下であることが好ましく、さらに好ましくは40℃以上100℃以下である。120℃を超えるとポリビニルピロリドンが変性および分解するために、膜孔保持剤を用いなくても得られた乾燥膜からの溶出量が増えることから好ましくない。40℃未満では、乾燥に時間がかかり過ぎて好ましくない。
また、マイクロ波の出力は高いことが好ましいが、乾燥させる膜の量により最適値は異なる。
【0033】
乾燥後の膜に電子線及びγ線等の放射線を照射することにより、膜中のPVPの一部を水に不溶化できることから、膜からの溶出量をより低減することが可能である。放射線の照射は、モジュール化前又はモジュール化後のどちらでも良い。また、膜中の全PVPを不溶化してしまうと、溶出量を低減できる一方で、透析時にロイコペニア症状が観察されることから好ましくない。
【0034】
本発明でいう水に不溶であるPVPとは、膜中の全PVP量から水に可溶であるPVP量を差し引いたものである。膜中の全PVP量は、窒素及びイオウの元素分析により容易に算出することができる。
また、水に可溶であるPVP量は、以下の方法により求めることができる。
膜をN−メチル−2−ピロリドンで完全に溶解した後、得られたポリマー溶液に水を添加してポリスルホン系ポリマーを完全に沈殿させる。さらに該ポリマー溶液を静置した後、上澄み液中のPVP量を液体クロマトグラフィーで定量することにより水に可溶であるPVPを定量することができる。
【0035】
本発明の製造方法は、膜孔保持剤を含まない湿潤膜を40℃以上120℃以下の温度で加熱乾燥した後にマイクロ波照射により乾燥することを特徴とし、本製造方法を用いて得られた膜は、膜孔保持剤を含まない乾燥膜であって、純水の透水量が10〜1,000mL/(m2・hr・mmHg)、重量平均分子量40,000のポリビニルピロリドンの透過率が75%以下で、且つ牛血漿系におけるアルブミンの透過率が0.3%未満であり、さらにそれぞれの性能のバラツキが小さいことを特徴とする中空糸状膜である。
【0036】
最近の血液透析療法では、透析アミロイド病状の改善のために原因物質とされているβ2−ミクログロブリン(分子量:11,800)を十分に透過させるが、アルブミン(分子量:67,000)はほとんど透過させない分画性を有する膜が求められており、本発明の膜は、牛血漿系におけるアルブミンの透過率が0.3%以下である。アルブミンの透過率が0.3%を超えることは体内に有効なアルブミンを大きく損失することを意味することから透析膜としては好ましくない。
【0037】
また、純水の透水量が10mL/(m2・hr・mmHg)以上の膜においては、ポリビニルピロリドンの透過率(A(%))とβ2−ミクログロブリンのクリアランス(B(mL/分))とには下記の式(5)に示す一次関数的な相関関係が存在する。クリアランス評価には1.5m2の有効膜面積を有する透析仕様のモジュールに成形・加工することが必要であるが、本評価方法では簡易的に測定可能であり、クリアランスを容易に推測することが可能である。
B(mL/分)=0.636A+29.99 (5)
ここで、β2−ミクログロブリンのクリアランスは、1.5m2の有効膜面積のモジュールに、血液流量200mL/分(膜内表面側)、透析液流量500mL/分(膜外表面側)の条件下で日本人工臓器学会の性能評価基準に従い透析測定したものである。
【0038】
β2−ミクログロブリンのクリアランスは、透析患者の体力や病状及び病状の進行度に合わせて様々なものが要求されているが、ポリビニルピロリドンの透過率が75%を超えるとアルブミンの透過率が0.3%を超えてしまうことから、ポリビニルピロリドンの透過率は75%以下であることが必要である。
【0039】
また、本発明の製造方法により作られた膜は,膜孔保持剤を製造工程で使用してないことから、膜孔保持剤由来の溶出物は存在しない。
従って、本発明の膜の溶出物試験液の吸光度は0.04未満であり、且つ該試験液中に膜孔保持剤を含まない。ここで、溶出物試験液とは、人工腎臓装置承認基準に基づき調製したものであり、2cmに切断した乾燥中空糸状膜1.5gと注射用蒸留水150mLを日本薬局方の注射用ガラス容器試験のアルカリ溶出試験に適合するガラス容器に入れ、70±5℃で1時間加温し、冷却後膜を取り除いた後蒸留水を加えて150mLとしたものを意味する。吸光度は220〜350nmでの最大吸収波長を示す波長にて紫外吸収スペクトルで測定する。人工腎臓装置承認基準では吸光度を0.1以下にすることが定められているが、本発明の膜は膜孔保持剤を保持しないことから0.04未満を達成することが可能である。また、膜孔保持剤の有無については、該試験液を濃縮又は水分除去したものをガスクロマトグラフィー、液体クロマトグラフィー、示差屈折系、紫外分光光度計、赤外線吸光光度法、核磁気共鳴分光法、及び元素分析等の公知の方法により測定することにより検知可能である。また、膜中に膜孔保持剤を含むか否かについてもこれらの測定方法により検知可能である。
【0040】
本発明の製造方法により作られた膜は、ポリスルホン系ポリマーとポリビニルピロリドンからなり、膜内表面におけるポリビニルピロリドンの濃度が30〜45重量%である。膜の血液適合性に重要な因子は、血液が接する膜内表面の親水性であり、ポリビニルピロリドン(以下単に「PVP」ともいう)を含有するポリスルホン系膜では、膜内表面のPVP濃度が重要である。膜内表面のPVP濃度が低すぎると膜内表面が疎水性を示し、血漿タンパク質が吸着しやすく、血液の凝固も起こりやすい。すなわち、膜の血液適合性不良となる。逆に膜内表面のPVP濃度が高すぎると、PVPの血液系への溶出量が増加し本発明の目的や用途にとっては好ましくない結果を与える。従って、本発明での膜内表面のPVPの濃度は、30〜40%の範囲であり、好ましくは33〜40%である。
【0041】
膜内表面のPVP濃度は、エックス線光量子スペクトル(X-ray Photoelectron spectroscopy、以下XPS)によって決定される。すなわち、膜内表面のXPSの測定は、試料を両面テープ上に並べた後、カッターで繊維軸方向に切開し、膜の内側が表になるように押し広げた後、通常の方法で測定する。すなわち、C1s、O1s、N1s、S2pスペクトルの面積強度から、装置付属の相対感度係数を用いて窒素の表面濃度(窒素原子濃度)とイオウの表面濃度(イオウ原子濃度)から求めた濃度をいうものであり、ポリスルホン系ポリマーが(2)式の構造であるときには(6)式により計算で求めることができる。
PVP濃度(重量%)=C×100/(C+C) (6)
ここで、C:窒素原子濃度(%)
:イオウ原子濃度(%)
:PVPの繰り返しユニットの分子量(111)
:ポリスルホン系ポリマーの繰り返しユニットの分子量(442)
【0042】
【実施例】
以下にこの発明の実施例を示すが、本発明は、これに限定されるものではない。
(血小板粘着量の測定)
膜への血小板粘着量の測定は、以下の操作手順で行った。
長さ15cmの中空糸状膜を100本束ねて小型モジュールを作製し、該モジュールにヘパリン添加ヒト新鮮血を線速1.0cm/秒にて15分間通過させ、続いて生理食塩水を1分間通過させた。次に中空糸状膜を5mm間隔程度に細断し、0.5%ポリエチレングリコールアルキルフェニルエーテル(和光純薬社製 商品名トリトンX−100)を含む生理食塩水中で超音波照射して膜表面に粘着した血小板から放出される乳酸脱水素酵素(以下、「LDH」という)を定量することにより膜面積(内表面換算)当たりのLDH活性として算出した。酵素活性の測定はLDHモノテストキット(ベーリンガー・マンハイム・山之内社製)を使用した。なお、陽性対照としてPVPを含有しない膜(γ線照射前の実施例1の膜を有効塩素濃度1,500ppmの次亜塩素酸ナトリウムに2日間浸漬した後、エタノールに1日間浸漬することにより得られたもの)を用い、試験品と同時に比較した。
【0043】
(血漿タンパク質吸着量)
膜への血漿タンパク質吸着量は、限外濾過時間を240分にした以外はアルブミンの透過率測定と同様な操作を行った後、生理食塩水で1分間洗浄した。次に中空糸状膜を5mm間隔程度に細断し、1.0%ラウリル硫酸ナトリウムを含む生理食塩水中で攪拌して抽出した血漿タンパク質を定量することにより膜重量当たりのタンパク質吸着量として算出した。タンパク質濃度はBCAプロテインアッセイ(ピアース社製)を使用した。なお、陽性対照としてPVPを含有しない膜(γ線照射前の実施例1の膜を有効塩素濃度1,500ppmの次亜塩素酸ナトリウムに2日間浸漬した後、エタノールに1日間浸漬することにより得られたもの)を用い、試験品と同時に比較した。
【0044】
【実施例1】
(製膜及び残溶剤の除去)
ポリスルホン(Amoco Engineering Polymers社製 P-1700)18.0重量%、ポリビニルピロリドン(BASF社製 K90、重量平均分子量1,200,000)4.3重量%を、N,N−ジメチルアセトアミド77.7重量%に溶解して均一な溶液とした。ここで、製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は23.9重量%であった。この製膜原液を60℃に保ち、N,N−ジメチルアセトアミド30重量%と水70重量%の混合溶液からなる内部液とともに、紡口(2重環状ノズル 0.1mm−0.2mm−0.3mm)から吐出させ、0.96mのエアギャップを通過させて75℃の水からなる凝固浴へ浸漬した。
この時、紡口から凝固浴までを円筒状の筒で囲み、筒の中に水蒸気を含んだ窒素ガスを流しながら、筒の中の湿度を54.5%、温度を51℃にコントロールした。紡速は、80m/分に固定した。ここで、紡速に対するエアギャップの比率は、0.012m/(m/分)であった。
巻き取った糸束を切断後、束(長さ300mm、膜本数9200本)の切断面上方から80℃の熱水シャワーを2時間かけて洗浄することにより膜中の残溶剤を除去した。
【0045】
(湿潤膜の乾燥及びPVPの不溶化処理)
上記の残溶剤除去後の糸束(含水率が300%、糸束中心部の膜の含水率が300%、糸束外周部の膜の含水率が300%、糸束の中心部と外周部における膜の含水率の差が0%)30本を87℃に設定した乾燥機(乾燥機内の循環風速3m/秒)に入れることにより加熱乾燥した。
また、乾燥開始時から乾燥終了時までの間、各糸束の下部から8m/秒の風速にて25℃の除湿空気(湿度10%以下)を糸束の下部から上部へと通風した。この時、糸束の上部からは乾燥開始時において糸束平均で1m/秒の風速が測定された。次に、糸束の含水率が65%(糸束中心部の膜の含水率が67%、糸束外周部の膜の含水率が64%、糸束の中心部と外周部における膜の含水率の差が3%)になった時点で送風乾燥を止め、4分間マイクロ波照射(出力21kW)することにより含水率が1%未満の乾燥膜(糸束)を得た。
さらに、得られた乾燥膜(糸束)に25kGyのγ線を照射することにより膜中のPVPの一部を不溶化した。
【0046】
(性能評価結果)
この膜の性能を表1に示す。性能は10回測定した結果の平均値を示す。この膜を有効濾過面積1.5m2のモジュールにしてβ2−ミクログロブリンのクリアランスを実測したところ、32mL/分で有ることが分かり、PVPの透過率を式(6)に代入して算出したクリアランス32.5mL/分と同等であることが明らかとなった。さらに、該モジュールにて尿素、ビタミンB12の透過測定を行ったところ、尿素のクリアランスと透過率はそれぞれ185mL/分、83%であった。また、ビタミンB12については同様に95mL/分、48%であった。測定は、【0035】と同様な方法で行った。また、膜中の全PVP量の62%が、水に不溶であった。
膜の溶出物試験をした結果、溶出物試験液の吸光度は0.04以下であった。また、膜孔保持剤を用いていないことから溶出物試験液中に膜孔保持剤は含まれて無かった。
さらに、この膜は陽性対照膜に比べて、血小板粘着量が低く(陽性対照膜43.4Unit/m2)、且つ血漿タンパク質の粘着量も低いことが明らかとなった(陽性対照膜62.5mg/g)。
【0047】
以上に挙げた性能から、この膜は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ないことが明らかとなった。また、アルブミンの透過率が少なくβ2−ミクログロブリンのクリアランスにも優れることから透析性能にも優れた膜であることが分かった。さらに、糸束の中心部と外周部における膜の性能の差がこれまでの乾燥方法(比較例1)に比べて少ないことから性能のばらつきが少ないことが明らかとなった。
【0048】
【実施例2】
製膜原液中のポリビニルピロリドンを4重量%、N,N−ジメチルアセトアミドを78重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は22.2重量%であった。この膜の性能を表1に示す。
この膜は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ないことが明らかとなった。また、アルブミンの透過率が少なく、且つβ2−ミクログロブリンのクリアランスにも優れることが示唆されたことから透析性能にも優れた膜であることが分かった。さらに、糸束の中心部と外周部における膜の性能の差がこれまでの乾燥方法(比較例1)に比べて少ないことから性能のばらつきが少ないことが明らかとなった。
【0049】
【実施例3】
製膜原液中のポリビニルピロリドンを4.8重量%、N,N−ジメチルアセトアミドを77.2重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は26.7重量%であった。この膜の性能を表1に示す。
この膜は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ないことが明らかとなった。また、アルブミンの透過率が少なく、且つβ2−ミクログロブリンのクリアランスにも優れることが示唆されたことから透析性能にも優れた膜であることが分かった。さらに、糸束の中心部と外周部における膜の性能の差がこれまでの乾燥方法(比較例1)に比べて少ないことから性能のばらつきが少ないことが明らかとなった。
【0050】
【実施例4】
内部液にN,N−ジメチルアセトアミド52重量%と水48重量%からなる混和溶液を用いた以外は、実施例3と同様な操作を行った。この膜の性能を表2に示す。この膜は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ないことが明らかとなった。また、アルブミンの透過率が少なく、且つβ2−ミクログロブリンのクリアランスにも優れることが示唆されたことから透析性能にも優れた膜であることが分かった。さらに、糸束の中心部と外周部における膜の性能の差がこれまでの乾燥方法(比較例1)に比べて少ないことから性能のばらつきが少ないことが明らかとなった。
【0051】
【比較例1】
残溶剤除去後の糸束(含水率が300%、糸束中心部の膜の含水率が300%、糸束外周部の膜の含水率が300%、糸束の中心部と外周部における膜の含水率の差が0%)30本を87℃に設定した乾燥機(乾燥機内の循環風速3m/秒)に入れることにより加熱乾燥して含水率が1%未満の糸束を得た以外は実施例1と同様な操作を行った。この結果を表2に示す。透水量及PVPの透過率において糸束の中心部と外周部における膜の性能に差があり、結果として糸束内で性能のばらつきがあることが明らかとなった。
【0052】
【比較例2】
γ線照射しない以外は、実施例1と同様な操作を行った。この結果を表3に示す。PVPの溶出のため溶出試験液の吸光度が0.04を超えることが明らかとなった。
【0053】
【比較例3】
製膜原液中のポリビニルピロリドンを5.0重量%、N,N−ジメチルアセトアミドを77.0重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は27.8重量%であった。この膜の性能を表3に示す。製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率が27重量%を超えているので、溶出量、膜内表面PVP濃度が増加している。
【0054】
【比較例4】
製膜原液中のポリビニルピロリドンを3.6重量%、N,N−ジメチルアセトアミドを78.4重量%とした以外は、実施例1と同様な操作を行った。この時の製膜原液中のポリスルホンに対するポリビニルピロリドンの混和比率は20.0重量%であった。この膜の性能を表3に示す。膜内表面のPVP量が30%を下回っていることが明らかとなった。
【0055】
【比較例5】
内部液にN,N−ジメチルアセトアミド60重量%と水40重量%からなる混和溶液を用いた以外は、実施例3と同様な操作を行った。この膜の性能を表3に示す。この膜は、アルブミンの透過率が0.3%を超えており、またPVPの透過率も75%を超える性能であった。
【0056】
【比較例6】
内部液にN,N−ジメチルアセトアミド10重量%と水90重量%からなる混和溶液を用いた以外は、実施例1と同様な操作を行った。この膜の性能を表3に示す。純水の透水量が10mL/(m2・hr・mmHg)を下回る性能であった。
【0057】
【比較例7】
乾燥温度を170℃にした以外は、実施例1と同様な操作を行った。この膜の性能を表3に示す。この膜は、膜中の全てのPVPが水に不溶であった。この膜を有効濾過面積1.5m2のモジュールにして血液流量200mL/分(膜内表面側)、透析液流量500mL/分(膜外表面側)の条件下で日本人工臓器学会の性能評価基準に従い臨床血液評価したところ、透析患者の白血球数が一時的に低下するロイコペニア症状が観察された。
【0058】
【表1】

Figure 0003992187
【0059】
【表2】
Figure 0003992187
【0060】
【表3】
Figure 0003992187
【0061】
【発明の効果】
本発明の膜は、膜からの溶出量が極めて少なく、血液タンパク質や血小板の付着が少ない優れた透析性能を有することから医薬用途、医療用途、及び一般工業用途に用いることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hollow fiber-like dry membrane having an excellent dialysis performance in which the amount of elution from the membrane is extremely small and the adhesion of blood proteins and platelets is small. The present invention relates to a method for producing a filamentous membrane.
[0002]
[Prior art]
In recent years, technologies using selective permeable membranes have made remarkable progress, and so far a wide range of fields such as gas and liquid separation filters, hemodialyzers in the medical field, blood filters, blood component selective separation filters, etc. Practical use in is progressing.
As the material of the membrane, polymers such as cellulose (regenerated cellulose, cellulose acetate, chemically modified cellulose, etc.), polyacrylonitrile, polymethyl methacrylate, polysulfone, polyethylene vinyl alcohol, and polyamide are used. I came.
Among these, polysulfone-based polymers have improved blood compatibility by adding a hydrophilizing agent to the film-forming stock solution in addition to its thermal stability, acid resistance, and alkali resistance. Attention has been paid to research.
[0003]
On the other hand, in order to produce a module by adhering the membrane, it is necessary to dry the membrane, but porous membranes made of organic polymers, especially dialysis membranes made of hydrophobic polymers such as polysulfone, ultrafiltration membranes are It is known that when the film is dried after film formation, the water permeability is significantly reduced as compared with that before drying. Therefore, it was necessary to handle the membrane always in a wet state or in a state immersed in water.
[0004]
As a countermeasure against this problem, a conventional method has been to pack a low-volatile organic liquid such as glycerin in the pores in the porous film after film formation and before drying. However, since low-volatile organic liquids generally have high viscosity, it takes time for cleaning and removal, and even after the membrane is molded into a module, a small amount of effluent derived from low-volatile organic liquids (low-volatile organic liquids). There was a problem in that various derivatives produced by chemical reaction with liquid were found in the module sealing liquid.
[0005]
As a method for drying without using a low-volatile organic liquid, Patent Document 1 discloses a method using an inorganic salt such as calcium chloride instead of a low-volatile organic liquid. There is no change. Moreover, even if it is a trace amount, there is a concern that the remaining inorganic salt may adversely affect the dialysis patient.
[0006]
As a method for drying a membrane, Patent Document 2 discloses a method for producing a hollow fiber membrane in which microwave irradiation is performed while performing wet heat treatment with water vapor on the hollow fiber membrane. However, there is a drawback of extending the drying time because it is steamed to prevent deformation of the membrane while being dry, and since it is drying after attaching a low volatile organic liquid such as glycerin, The objective of reducing effluent from the membrane is not achieved.
[0007]
Patent Document 3 and Patent Document 4 disclose a hydrophilic film containing polyvinylpyrrolidone that has been dried without using a low-volatile organic liquid. These describe the ability to separate plasma components from blood, but it is found that plasma proteins permeate and are not effective as dialysis membranes. In addition, since it is dried at a temperature at which polyvinylpyrrolidone is decomposed and modified, it is an extremely undesirable production method for the purpose of reducing the amount of eluate from the membrane.
[0008]
Patent Document 5 discloses a hollow fiber membrane in which the abundance ratio of polyvinyl pyrrolidone on the inner surface of the membrane in direct contact with blood is about 20 to 50%. This mainly indicates a wet film for reducing deposits such as blood proteins and platelets. Therefore, it has been shown that the blood protein hardly adheres, so that the filtrate speed is hardly changed over time, but there is no description about dialysis performance such as low albumin permeability.
[0009]
The present inventor has proposed a method for producing a high-performance blood purification membrane by drying a wet membrane having specific performance without impregnating it with a low-volatile organic liquid such as glycerin (Patent Document 6). However, as a result of subsequent studies, it has been clarified that when this method is used to dry a yarn bundle, there is a slight difference in performance between the central portion and the outer peripheral portion of the yarn bundle.
[0010]
[Patent Document 1]
JP-A-6-277470 [Patent Document 2]
JP-A-11-332980 [Patent Document 3]
JP-A-8-52331 [Patent Document 4]
Japanese Patent Publication No.8-9668 [Patent Document 5]
JP-A-6-296686 [Patent Document 6]
Japanese Patent No. 3281364 gazette
[Problems to be solved by the invention]
The object of the present invention is to produce a hollow fiber membrane having a very small variation in performance such as water permeability and permeability, etc., in an excellent hollow fiber production method in which the amount of elution from the membrane is extremely small and the adhesion of blood proteins and platelets is small. It is to provide a way to do.
[0012]
[Means for Solving the Problems]
As described above, there has been no dry membrane for blood purification having a dialysis performance that has been dried without using a membrane pore retentive agent that causes eluate from the module. The cause was that when it was dried without using a membrane pore-retaining agent, it became a low-performance membrane completely different from the wet state. Therefore, the present inventors have previously prepared a wet membrane having a specific performance that has a larger water permeability and larger pore diameter than the target performance, and then dried and contracted the target dialysis. As a result of diligent research based on an unprecedented idea of producing membranes with high performance, dialysis performance with excellent permselectivity with very little eluate and little blood protein or platelet adhesion A method of obtaining a film having However, after further research, the inventors of the present invention, when manufacturing the blood purification membrane by the method of Patent Document 6, dried the wet membrane in the form of a bundle of yarns. It was discovered that the amount of water permeation and permeation performance vary with the membrane. Therefore, as a result of earnest research to eliminate the variation, the inventors have found that variation can be suppressed by devising the drying process, and have reached the present invention.
[0013]
That is, the present invention
(1) A wet membrane comprising a polysulfone-based polymer and polyvinylpyrrolidone and containing no membrane pore retainer having a high water permeability and a large pore size is prepared in advance, and the pore size of the wet membrane is reduced by drying after removing the solvent. And a method for producing a dried hollow fiber membrane with less eluate, including a step of insolubilizing a part of polyvinylpyrrolidone in the membrane in water, wherein the wet membrane drying step is performed at a temperature of 40 ° C. or higher and 120 ° C. or lower. A method for producing a hollow fiber membrane, characterized by being performed by microwave irradiation after heat drying with
(2) The production method according to the above (1), wherein the hollow fiber membrane at the time of drying is bundled into a yarn bundle, and dehumidifying gas is passed through the yarn bundle,
(3) The production method according to (2) above, wherein the difference in the moisture content of the membrane between the center and the outer periphery of the yarn bundle at the start of drying is within 10%,
(4) The production method according to (2) or (3) above, wherein the drying is switched from heat drying to microwave irradiation when the average moisture content of the yarn bundle after the start of drying reaches 20 to 70%.
(5) The difference in the moisture content of the film between the central portion and the outer peripheral portion of the yarn bundle when the average moisture content of the yarn bundle after the start of drying becomes 20 to 70% is within 5%. The production method according to (4) above, and (6) the film-forming stock solution comprises a polysulfone polymer, polyvinyl pyrrolidone, and a solvent, and the ratio of polyvinyl pyrrolidone to the polysulfone polymer is 18 to 27% by weight. The production method according to any one of (1) to (5) above,
It is about.
The hollow fiber membrane obtained by the method of the present invention is excellent in hemodialysis performance and used as a dialysis membrane. It is also useful as a membrane for other extracorporeal circulation treatments.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of the hollow fiber membrane of the present invention (hereinafter also simply referred to as “membrane”) will be described in detail.
The production method of the present invention is characterized in that a wet membrane having a high water permeability and a large pore diameter is produced in advance, and dried without impregnation with a membrane pore retainer after solvent removal.
[0015]
Usually, the membrane pore-holding agent used when producing a hollow fiber membrane is classified into an organic material having viscosity and an inorganic material in which toxicity to the human body is a concern.
Membrane pore retainers made of viscous organic substances are difficult to clean and remove completely due to their high viscosity, so they remain in the membrane and increase the amount of elution from the membrane. It can be a cause of chemical reaction with the retention agent to produce harmful substances.
On the other hand, since the membrane pore retainer made of an inorganic substance remains in a very small amount, there is a fear of adverse effects on dialysis patients.
[0016]
The membrane pore retainer referred to in the present invention is a substance that is packed in the pores in the membrane in the production process before drying in order to prevent performance degradation during drying. By dipping a wet membrane in a solution containing a membrane pore retention agent, the pore retention portion in the membrane can be filled with the retention agent. As long as the membrane pore retainer is washed and removed even after drying, it is possible to maintain performance such as water permeability and blocking rate equivalent to a wet membrane due to the effect of the membrane pore retainer.
[0017]
As the membrane pore retainer, ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2-butyne-1,4-diol, 2-methyl-2,4-penta Organic compounds such as diol, 2-ethyl-1,3-hexanediol, glycerin, tetraethylene glycol, polyethylene glycol 200, polyethylene glycol 300, polyethylene glycol 400, and the like, or organic compounds such as glycerol-based compounds and sucrose fatty acid esters, and calcium chloride; Examples thereof include inorganic salts such as sodium carbonate, sodium acetate, magnesium sulfate, sodium sulfate, and zinc chloride.
[0018]
In the present invention, a wet membrane having a high water permeability and a large pore diameter means that the permeability of polyvinylpyrrolidone having a water permeability of 100 mL / (m 2 · hr · mmHg) or more and a weight average molecular weight of 40,000 is 75%. It means a wet membrane having a performance of exceeding 0.3% and albumin permeability in a bovine plasma system.
[0019]
The permeability of bovine plasma albumin can be measured by the following method. First, 100 small hollow fiber membranes having a length of 20 cm are bundled to produce a small module. Heparinized bovine plasma (heparin 5000 IU / L (liter), protein concentration 6.0 g / dL (deciliter)) heated to 37 ° C was passed through the module at a linear velocity of 1.0 cm / sec. Ultrafiltration is performed for 30 minutes at an average pressure of 50 mmHg of inlet pressure and outlet pressure. The concentration of the obtained filtrate and original solution is measured at a wavelength of 280 nm with an ultraviolet spectrophotometer, and the transmittance is calculated by substituting into the following formula (1).
Transmittance (%) = (absorbance of filtrate) × 100 / (absorbance of original solution) (1)
[0020]
The transmittance of polyvinylpyrrolidone is determined by changing the aqueous solution to be filtered to 3% by weight aqueous solution of polyvinylpyrrolidone (BASF K30, weight average molecular weight 40,000) phosphate buffer (0.15 mol / liter, pH 7.4), And the average pressure of the output pressure was determined to be 200 mmHg by performing the same operation as the measurement of the permeability of bovine plasma albumin.
[0021]
A wet membrane having a high water permeability and a large pore size is obtained by discharging a film-forming stock solution comprising a polysulfone-based polymer (hereinafter also simply referred to as “polymer”), polyvinylpyrrolidone, and a solvent together with an internal solution from a double annular nozzle, thereby forming an air gap In the production method in which it is allowed to pass and then solidified in a coagulation bath, it can be produced by using an aqueous solution of a polymer solvent as the internal liquid.
[0022]
The internal liquid forms the hollow part of the membrane and the inner surface, but it has been found that the pore diameter of the inner surface increases in proportion to the solvent concentration in the internal liquid.
In the present invention, the dialysis membrane having the target performance can be obtained by drying and shrinking the wet membrane. Therefore, the concentration of the solvent in the internal liquid is higher than that in the production of the wet membrane having the target dialysis performance. It is necessary to.
[0023]
Examples of the polysulfone-based polymer used in the present invention include those having a repeating unit represented by the following formula (2) or formula (3). Ar in the formula represents a disubstituted phenyl group at the para position, and the degree of polymerization and molecular weight are not particularly limited.
—O—Ar—C (CH 3 ) 2 —Ar—O—Ar—SO 2 —Ar— (2)
—O—Ar—SO 2 —Ar— (3)
[0024]
Since the higher the molecular weight, the higher the hydrophilicity of the polyvinyl pyrrolidone, the higher the effect can be achieved with the smaller molecular weight. Therefore, in the present invention, polyvinyl pyrrolidone having a weight average molecular weight of 900,000 or more is used. In order to impart a hydrophilic effect to the membrane using polyvinylpyrrolidone having a weight average molecular weight of less than 900,000, it is necessary to leave a large amount of polyvinylpyrrolidone in the membrane, which increases the effluent from the membrane. Will do. Conversely, if the amount of polyvinylpyrrolidone with a weight average molecular weight of less than 900,000 in the membrane is decreased to lower the eluate, the hydrophilization effect will be insufficient, resulting in a filtration rate when hemodialysis is performed. It is not possible to exert a sufficient effect due to a decrease in time.
[0025]
The solvent used for dissolving the polysulfone-based polymer and polyvinylpyrrolidone dissolves both of them, and is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide or the like. .
The polymer concentration in the membrane forming stock solution is not particularly limited as long as the membrane can be formed and the obtained membrane has a performance as a membrane, and is not limited, and is 5 to 35% by weight, preferably 10 to 30%. % By weight. In order to achieve high water permeability, the polymer concentration should be low, preferably 10 to 25% by weight.
[0026]
What is more important is the amount of polyvinyl pyrrolidone added, and the mixing ratio of polyvinyl pyrrolidone to the polymer is 27% by weight or less, preferably 10 to 27% by weight, more preferably 20 to 27% by weight. When the mixing ratio of polyvinyl pyrrolidone to the polymer exceeds 27% by weight, the amount of elution tends to increase, and when it is less than 10% by weight, it is difficult to obtain a sponge-structured film because the viscosity of the film-forming stock solution is low. For the purpose of controlling the stock solution viscosity and the dissolved state, it is also possible to add a fourth component such as water or a poor solvent, and the type and amount of addition may be appropriately determined depending on the combination.
[0027]
As the coagulation bath, for example, water; alcohols such as methanol and ethanol; ethers; and aliphatic hydrocarbons such as n-hexane and n-heptane may be used, but water is preferable. It is also possible to control the coagulation rate by adding a little solvent for dissolving the polymer to the coagulation bath. The temperature of the coagulation bath is −30 to 90 ° C., preferably 0 to 90 ° C., more preferably 0 to 80 ° C. If the temperature of the coagulation bath exceeds 90 ° C or less than -30 ° C, the surface state of the hollow fiber membrane in the coagulation bath is difficult to stabilize.
[0028]
Drying after solvent removal washing is performed in the form of a yarn bundle in which a number of hollow fiber membranes are bundled (hereinafter simply referred to as “yarn bundle”). It is performed by switching to microwave irradiation after air drying at temperature.
Furthermore, it is preferable to ventilate a dehumidified gas that does not exceed 40 ° C. during this heat drying and / or microwave irradiation. To ventilate the yarn bundle means to let air flow between the hollow fiber membranes. In the present invention, the passage of dehumidified gas having a temperature of 40 ° C. or higher and 120 ° C. or lower into the yarn bundle means that the yarn bundle is heated and dried at the same time as it is passed through the yarn bundle.
[0029]
Microwave irradiation is suitable for drying yarn bundles with a low water content more uniformly and in a short time. Switching from blow drying to microwave irradiation is preferable when the average moisture content of the yarn bundle is 20 to 70%. Is preferably 50 to 70%, and at that time, the difference in the moisture content of the film between the central portion and the outer peripheral portion of the yarn bundle is preferably within 5% in order to suppress variation in performance. By performing ventilation in the yarn bundle during drying, it is possible to make the difference in the moisture content of the membrane between the central portion and the outer peripheral portion of the yarn bundle within 5%.
Here, the center portion of the yarn bundle means a range of 1/6 of the diameter from the center point in the circular cross section of the yarn bundle. Further, the outer peripheral portion of the yarn bundle means a range of 1/6 of the diameter from the outer periphery in the circular cross section of the yarn bundle.
[0030]
For the same reason, the difference in the moisture content of the film between the central part and the outer peripheral part of the yarn bundle is preferably 10% or less for the yarn bundle at the start of drying. If the yarn bundle is left unattended after solvent removal, there will be a difference in the moisture content between the center and the outer periphery of the yarn bundle. It is possible to make the difference in moisture content between the outer part and the outer part within 10%.
[0031]
Here, the moisture content is calculated by the equation (4) from the weight (A (g)) of the yarn bundle (or membrane) before drying and the weight (B (g)) of the dried yarn bundle (or membrane). Say what you can.
Water content (%) = (A−B) × 100 / B (4)
[0032]
The drying temperature is preferably 40 ° C. or higher and 120 ° C. or lower, more preferably 40 ° C. or higher and 100 ° C. or lower. If it exceeds 120 ° C., polyvinylpyrrolidone is denatured and decomposed, so that the amount of elution from the dry membrane obtained without using a membrane pore retainer is not preferable. If it is less than 40 ° C, it takes too much time to dry, which is not preferable.
The microwave output is preferably high, but the optimum value varies depending on the amount of film to be dried.
[0033]
By irradiating the dried film with radiation such as an electron beam and γ-ray, a part of PVP in the film can be insolubilized in water, so that the amount of elution from the film can be further reduced. Irradiation may be performed either before modularization or after modularization. Further, insolubilization of all PVP in the membrane is not preferable because the amount of elution can be reduced while leucopenia symptoms are observed during dialysis.
[0034]
In the present invention, PVP that is insoluble in water is obtained by subtracting the amount of PVP soluble in water from the total amount of PVP in the membrane. The total amount of PVP in the film can be easily calculated by elemental analysis of nitrogen and sulfur.
The amount of PVP soluble in water can be determined by the following method.
After completely dissolving the membrane with N-methyl-2-pyrrolidone, water is added to the resulting polymer solution to completely precipitate the polysulfone-based polymer. Further, after the polymer solution is allowed to stand, PVP soluble in water can be quantified by quantifying the amount of PVP in the supernatant by liquid chromatography.
[0035]
The production method of the present invention is characterized in that a wet membrane that does not contain a membrane pore retainer is heated and dried at a temperature of 40 ° C. or more and 120 ° C. or less and then dried by microwave irradiation, and obtained using this production method. The membrane is a dry membrane that does not contain a pore-retaining agent, and has a water permeability of pure water of 10 to 1,000 mL / (m 2 · hr · mmHg) and a transmittance of 75% or less of polyvinylpyrrolidone with a weight average molecular weight of 40,000. In addition, the hollow fiber membrane is characterized in that the permeability of albumin in the bovine plasma system is less than 0.3% and the variation in performance of each is small.
[0036]
In recent hemodialysis, β 2 -microglobulin (molecular weight: 11,800), which is considered to be a causative agent for improving dialysis amyloid pathology, is permeated sufficiently, but albumin (molecular weight: 67,000) is hardly permeated. The membrane of the present invention has an albumin permeability of 0.3% or less in the bovine plasma system. When the albumin permeability exceeds 0.3%, it means that effective albumin is largely lost in the body, which is not preferable as a dialysis membrane.
[0037]
For membranes with a water permeability of 10 mL / (m 2 · hr · mmHg) or more, the permeability of polyvinylpyrrolidone (A (%)) and the clearance of β 2 -microglobulin (B (mL / min) ) Has a linear function correlation shown in the following formula (5). For clearance evaluation, it is necessary to mold and process into a dialysis specification module with an effective membrane area of 1.5 m 2 , but with this evaluation method, it is possible to easily measure and estimate the clearance easily. It is.
B (mL / min) = 0.636A + 29.99 (5)
Here, the clearance of β 2 -microglobulin is 1.5 m 2 of module with an effective membrane area under the conditions of blood flow rate 200 mL / min (inside membrane surface) and dialysate flow rate 500 mL / min (outside membrane surface). And measured by dialysis according to the performance evaluation criteria of the Japanese Society for Artificial Organs.
[0038]
Various clearances for β 2 -microglobulin are required depending on the physical strength of the dialysis patient and the disease state and the degree of progression of the disease state. When the polyvinylpyrrolidone permeability exceeds 75%, the albumin permeability is 0.3. %, The transmittance of polyvinylpyrrolidone needs to be 75% or less.
[0039]
Moreover, since the membrane produced by the production method of the present invention does not use the membrane pore retention agent in the production process, there is no eluate derived from the membrane pore retention agent.
Therefore, the absorbance of the membrane eluate test solution of the present invention is less than 0.04, and the membrane solution is not contained in the test solution. Here, the eluate test solution was prepared based on the approval criteria for an artificial kidney device, and 1.5 g of a dry hollow fiber membrane cut into 2 cm and 150 mL of distilled water for injection were used in a glass container test for injection by the Japanese Pharmacopoeia. It means a container that is placed in a glass container suitable for the alkali dissolution test, heated at 70 ± 5 ° C. for 1 hour, cooled, removed the membrane, and then distilled water is added to 150 mL. Absorbance is measured with an ultraviolet absorption spectrum at a wavelength showing the maximum absorption wavelength at 220 to 350 nm. Although the artificial kidney device approval standard stipulates that the absorbance be 0.1 or less, the membrane of the present invention does not retain a membrane pore-retaining agent, and can achieve less than 0.04. As for the presence or absence of a membrane pore-retaining agent, gas chromatography, liquid chromatography, differential refraction system, ultraviolet spectrophotometer, infrared absorptiometry, nuclear magnetic resonance spectroscopy, which is obtained by concentrating or removing water from the test solution, And it can detect by measuring by well-known methods, such as elemental analysis. Moreover, it can be detected by these measurement methods whether or not a membrane pore retainer is contained in the membrane.
[0040]
The membrane produced by the production method of the present invention comprises a polysulfone polymer and polyvinyl pyrrolidone, and the concentration of polyvinyl pyrrolidone on the inner surface of the membrane is 30 to 45% by weight. An important factor for the blood compatibility of the membrane is the hydrophilicity of the inner surface of the membrane in contact with blood. For polysulfone-based membranes containing polyvinylpyrrolidone (hereinafter also simply referred to as “PVP”), the PVP concentration on the inner surface of the membrane is important. It is. If the PVP concentration on the inner membrane surface is too low, the inner membrane surface becomes hydrophobic, plasma proteins are easily adsorbed, and blood coagulation tends to occur. That is, the blood compatibility of the membrane is poor. On the other hand, if the PVP concentration on the inner surface of the membrane is too high, the amount of PVP eluted into the blood system will increase, giving undesirable results for the purposes and applications of the present invention. Accordingly, the concentration of PVP on the inner surface of the film in the present invention is in the range of 30 to 40%, preferably 33 to 40%.
[0041]
The PVP concentration on the inner surface of the film is determined by X-ray photoelectron spectroscopy (hereinafter referred to as XPS). In other words, the XPS of the inner surface of the membrane is measured by a normal method after arranging the sample on a double-sided tape, incising it in the fiber axis direction with a cutter, spreading it so that the inside of the membrane becomes the front, and so on. . That is, the concentration obtained from the surface intensity of nitrogen (nitrogen atom concentration) and sulfur surface concentration (sulfur atom concentration) using the relative sensitivity coefficient attached to the device from the area intensity of C1s, O1s, N1s, and S2p spectra. When the polysulfone polymer has the structure of the formula (2), it can be calculated by the formula (6).
PVP concentration (% by weight) = C 1 M 1 × 100 / (C 1 M 1 + C 2 M 2 ) (6)
Where C 1 : nitrogen atom concentration (%)
C 2 : sulfur atom concentration (%)
M 1 : Molecular weight of repeating unit of PVP (111)
M 2 : Molecular weight of repeating unit of polysulfone polymer (442)
[0042]
【Example】
Examples of the present invention are shown below, but the present invention is not limited thereto.
(Measurement of platelet adhesion)
The measurement of the amount of platelet adhesion to the membrane was performed according to the following procedure.
A small module is made by bundling 100 hollow fiber membranes with a length of 15 cm, and heparin-added human fresh blood is passed through the module at a linear speed of 1.0 cm / sec for 15 minutes, followed by physiological saline for 1 minute. It was. Next, the hollow fiber membrane was shredded at intervals of about 5 mm and adhered to the membrane surface by ultrasonic irradiation in physiological saline containing 0.5% polyethylene glycol alkylphenyl ether (trade name Triton X-100, manufactured by Wako Pure Chemical Industries, Ltd.). Lactic acid dehydrogenase (hereinafter referred to as “LDH”) released from platelets was quantified to calculate LDH activity per membrane area (inner surface equivalent). The enzyme activity was measured using an LDH monotest kit (Boehringer Mannheim, Yamanouchi). As a positive control, a membrane containing no PVP (obtained by immersing the membrane of Example 1 before γ-ray irradiation in sodium hypochlorite having an effective chlorine concentration of 1,500 ppm for 2 days and then in ethanol for 1 day. Comparison was made at the same time as the test product.
[0043]
(Plasma protein adsorption)
The amount of plasma protein adsorbed on the membrane was washed with physiological saline for 1 minute after performing the same operation as the measurement of albumin permeability except that the ultrafiltration time was 240 minutes. Next, the hollow fiber membrane was shredded at intervals of about 5 mm, and the amount of protein adsorbed per membrane weight was calculated by quantifying the plasma protein extracted by stirring in physiological saline containing 1.0% sodium lauryl sulfate. The protein concentration was BCA protein assay (Pierce). As a positive control, a membrane containing no PVP (obtained by immersing the membrane of Example 1 before γ-ray irradiation in sodium hypochlorite having an effective chlorine concentration of 1,500 ppm for 2 days and then in ethanol for 1 day. Comparison was made at the same time as the test product.
[0044]
[Example 1]
(Removal of film and residual solvent)
Polysulfone (Amoco Engineering Polymers P-1700) 18.0 wt% and polyvinylpyrrolidone (BASF K90, weight average molecular weight 1,200,000) 4.3 wt% were dissolved in N, N-dimethylacetamide 77.7 wt% to obtain a uniform solution. did. Here, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane forming stock solution was 23.9% by weight. This film-forming stock solution is kept at 60 ° C., and from the spinning nozzle (double annular nozzle 0.1 mm-0.2 mm-0.3 mm) together with an internal solution consisting of a mixed solution of 30% by weight of N, N-dimethylacetamide and 70% by weight of water. The mixture was discharged, passed through a 0.96 m air gap, and immersed in a coagulation bath composed of 75 ° C. water.
At this time, the area from the spinning nozzle to the coagulation bath was surrounded by a cylindrical tube, and while the nitrogen gas containing water vapor was passed through the tube, the humidity in the tube was controlled to 54.5% and the temperature was controlled to 51 ° C. The spinning speed was fixed at 80 m / min. Here, the ratio of the air gap to the spinning speed was 0.012 m / (m / min).
After cutting the wound yarn bundle, the residual solvent in the membrane was removed by washing with hot water shower at 80 ° C. for 2 hours from above the cut surface of the bundle (length: 300 mm, number of membranes: 9200).
[0045]
(Drying wet membrane and insolubilizing PVP)
Yarn bundle after removal of residual solvent (moisture content is 300%, the moisture content of the membrane at the center of the yarn bundle is 300%, the moisture content of the membrane at the outer periphery of the yarn bundle is 300%, the center and outer circumference of the yarn bundle The difference in moisture content of the membrane at 0% was 30), and 30 pieces were put into a dryer set at 87 ° C. (circulation wind speed 3 m / sec in the dryer) and dried by heating.
Further, from the beginning of drying to the end of drying, 25 ° C. dehumidified air (humidity of 10% or less) was passed from the lower part of each yarn bundle to the upper part at a wind speed of 8 m / sec. At this time, an average wind speed of 1 m / sec was measured from the top of the yarn bundle at the start of drying. Next, the moisture content of the yarn bundle is 65% (the moisture content of the membrane at the center of the yarn bundle is 67%, the moisture content of the membrane at the outer periphery of the yarn bundle is 64%, and the moisture content of the membrane at the center and the outer circumference of the yarn bundle is When the difference in rate reached 3%), the drying by blowing was stopped, and microwave drying (output 21 kW) was performed for 4 minutes to obtain a dry film (yarn bundle) having a moisture content of less than 1%.
Furthermore, a part of PVP in the film was insolubilized by irradiating the obtained dried film (yarn bundle) with 25 kGy of γ rays.
[0046]
(Performance evaluation results)
The performance of this membrane is shown in Table 1. The performance shows the average value of the results of 10 measurements. Using this membrane as a module with an effective filtration area of 1.5 m 2 and measuring the clearance of β 2 -microglobulin, it was found to be 32 mL / min, and the clearance calculated by substituting the PVP permeability into equation (6). It was found to be equivalent to 32.5 mL / min. Furthermore, when urea and vitamin B 12 permeation measurements were performed with the module, the urea clearance and transmissivity were 185 mL / min and 83%, respectively. Similarly, 95 mL / min for Vitamin B 12, was 48%. The measurement was performed in the same manner as in [0035]. In addition, 62% of the total PVP amount in the membrane was insoluble in water.
As a result of the membrane eluate test, the absorbance of the eluate test solution was 0.04 or less. Further, since no membrane pore retention agent was used, the membrane pore retention agent was not contained in the eluate test solution.
Furthermore, this membrane was found to have a lower platelet adhesion (positive control membrane 43.4 Unit / m 2 ) and a lower plasma protein adhesion than the positive control membrane (positive control membrane 62.5 mg / g). ).
[0047]
From the above-mentioned performance, it was revealed that this membrane has a very small amount of elution from the membrane and little adhesion of blood proteins and platelets. In addition, it was found that the membrane was excellent in dialysis performance because of its low albumin permeability and excellent β 2 -microglobulin clearance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it has been clarified that the variation in performance is small.
[0048]
[Example 2]
The same operation as in Example 1 was carried out except that polyvinylpyrrolidone in the film-forming stock solution was 4 wt% and N, N-dimethylacetamide was 78 wt%. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane forming stock solution was 22.2% by weight. The performance of this membrane is shown in Table 1.
It was revealed that this membrane has very little elution from the membrane and has little adhesion of blood proteins and platelets. Moreover, since it was suggested that the albumin permeability is low and the clearance of β 2 -microglobulin is excellent, it was found that the membrane is excellent in dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it has been clarified that the variation in performance is small.
[0049]
[Example 3]
The same operation as in Example 1 was performed except that polyvinylpyrrolidone in the film-forming stock solution was changed to 4.8% by weight and N, N-dimethylacetamide was changed to 77.2% by weight. At this time, the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane forming stock solution was 26.7% by weight. The performance of this membrane is shown in Table 1.
It was revealed that this membrane has very little elution from the membrane and has little adhesion of blood proteins and platelets. Moreover, since it was suggested that the albumin permeability is low and the clearance of β 2 -microglobulin is excellent, it was found that the membrane is excellent in dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it has been clarified that the variation in performance is small.
[0050]
[Example 4]
The same operation as in Example 3 was performed except that a mixed solution consisting of 52% by weight of N, N-dimethylacetamide and 48% by weight of water was used as the internal solution. The performance of this membrane is shown in Table 2. It was revealed that this membrane has very little elution from the membrane and has little adhesion of blood proteins and platelets. Moreover, since it was suggested that the albumin permeability is low and the clearance of β 2 -microglobulin is excellent, it was found that the membrane is excellent in dialysis performance. Furthermore, since the difference in the performance of the film between the central portion and the outer peripheral portion of the yarn bundle is smaller than that of the conventional drying method (Comparative Example 1), it has been clarified that the variation in performance is small.
[0051]
[Comparative Example 1]
Yarn bundle after removal of residual solvent (moisture content is 300%, moisture content of the membrane at the center of the yarn bundle is 300%, moisture content of the membrane at the outer periphery of the yarn bundle is 300%, and the membrane at the center and outer circumference of the yarn bundle Except for obtaining a yarn bundle with a moisture content of less than 1% by heating and drying 30 pieces in a dryer set at 87 ° C (circulation wind speed of 3m / sec.) The same operation as in Example 1 was performed. The results are shown in Table 2. It was clarified that there was a difference in the performance of the membrane between the central part and the outer peripheral part of the yarn bundle in terms of water permeability and PVP permeability, and as a result, there was a variation in performance within the yarn bundle.
[0052]
[Comparative Example 2]
The same operation as Example 1 was performed except not irradiating γ rays. The results are shown in Table 3. It became clear that the absorbance of the dissolution test solution exceeded 0.04 due to elution of PVP.
[0053]
[Comparative Example 3]
The same operation as in Example 1 was performed except that polyvinylpyrrolidone in the film-forming stock solution was changed to 5.0% by weight and N, N-dimethylacetamide was changed to 77.0% by weight. At this time, the mixing ratio of polyvinyl pyrrolidone to polysulfone in the membrane forming stock solution was 27.8% by weight. The performance of this membrane is shown in Table 3. Since the mixing ratio of polyvinylpyrrolidone to polysulfone in the membrane forming stock solution exceeds 27% by weight, the elution amount and the inner surface PVP concentration are increased.
[0054]
[Comparative Example 4]
The same operation as in Example 1 was performed except that polyvinylpyrrolidone in the film-forming stock solution was changed to 3.6% by weight and N, N-dimethylacetamide was changed to 78.4% by weight. At this time, the mixing ratio of polyvinyl pyrrolidone to polysulfone in the membrane forming stock solution was 20.0% by weight. The performance of this membrane is shown in Table 3. The amount of PVP on the inner surface of the membrane was found to be less than 30%.
[0055]
[Comparative Example 5]
The same operation as in Example 3 was performed except that a mixed solution composed of 60% by weight of N, N-dimethylacetamide and 40% by weight of water was used as the internal solution. The performance of this membrane is shown in Table 3. This membrane had an albumin permeability exceeding 0.3% and a PVP permeability exceeding 75%.
[0056]
[Comparative Example 6]
The same operation as in Example 1 was performed except that a mixed solution consisting of 10% by weight of N, N-dimethylacetamide and 90% by weight of water was used as the internal liquid. The performance of this membrane is shown in Table 3. The water permeability of pure water was less than 10 mL / (m 2 · hr · mmHg).
[0057]
[Comparative Example 7]
The same operation as in Example 1 was performed except that the drying temperature was 170 ° C. The performance of this membrane is shown in Table 3. This membrane had all PVP in the membrane insoluble in water. Using this membrane as a module with an effective filtration area of 1.5 m 2 , the blood flow rate was 200 mL / min (inside the membrane surface) and the dialysate flow rate was 500 mL / min (outside membrane side), in accordance with the performance evaluation criteria of the Japanese Society for Artificial Organs. As a result of clinical blood evaluation, a leucopenia symptom in which the white blood cell count of a dialysis patient temporarily decreased was observed.
[0058]
[Table 1]
Figure 0003992187
[0059]
[Table 2]
Figure 0003992187
[0060]
[Table 3]
Figure 0003992187
[0061]
【The invention's effect】
The membrane of the present invention can be used for medical use, medical use, and general industrial use because it has excellent dialysis performance with very little elution from the membrane and less adhesion of blood proteins and platelets.

Claims (6)

ポリスルホン系ポリマー及びポリビニルピロリドンからなる、高透水量で大きな孔径の膜孔保持剤を含まない湿潤膜をあらかじめ製造しておき、脱溶剤後乾燥することにより該湿潤膜の孔径を収縮させた後、さらに膜中のポリビニルピロリドンの一部を水に不溶化する工程を含む溶出物の少ない乾燥した中空糸状膜の製造方法であって、湿潤膜の乾燥工程を40℃以上120℃以下の温度で加熱乾燥した後にマイクロ波照射することによって行なうことを特徴とする中空糸状膜の製造方法。A wet membrane made of a polysulfone-based polymer and polyvinylpyrrolidone and containing a high water permeability and large pore size membrane pore retainer is prepared in advance, and after removing the solvent and drying, the pore size of the wet membrane is shrunk. Furthermore, a method for producing a dry hollow fiber membrane with less eluate, including a step of insolubilizing a part of polyvinylpyrrolidone in the membrane in water, and drying the wet membrane at a temperature of 40 ° C. to 120 ° C. A method for producing a hollow fiber membrane, which is performed by performing microwave irradiation. 乾燥時における中空糸状膜が糸束状に製束されており、該糸束内に除湿気体を通風することを特徴とする請求項1に記載の製造方法。2. The production method according to claim 1, wherein the hollow fiber-like membrane at the time of drying is bundled into a yarn bundle, and dehumidified gas is blown into the yarn bundle. 乾燥開始時の糸束の中心部と外周部における膜の含水率の差が10%以内であることを特徴とする請求項2に記載の製造方法。The manufacturing method according to claim 2, wherein the difference in moisture content of the membrane between the center portion and the outer peripheral portion of the yarn bundle at the start of drying is within 10%. 乾燥開始後の糸束の平均含水率が20〜70%になる時点で、加熱乾燥からマイクロ波照射に切り替えることを特徴とする請求項2または3に記載の製造方法。The method according to claim 2 or 3, wherein when the average moisture content of the yarn bundle after the start of drying becomes 20 to 70%, the drying is switched from heat drying to microwave irradiation. 乾燥開始後の糸束の平均含水率が50〜70%になる時点での該糸束の中心部と外周部における膜の含水率の差が5%以内であることを特徴とする請求項4に記載の製造方法。The difference in the moisture content of the film between the central portion and the outer peripheral portion of the yarn bundle when the average moisture content of the yarn bundle after the start of drying reaches 50 to 70% is within 5%. The manufacturing method as described in. 製膜原液が、ポリスルホン系ポリマー、ポリビニルピロリドン、及び溶剤からなり、ポリスルホン系ポリマーに対するポリビニルピロリドンの比率が18〜27重量%であることを特徴とする請求項1〜5のいずれかに記載の製造方法。6. The production according to any one of claims 1 to 5, wherein the film-forming stock solution comprises a polysulfone polymer, polyvinyl pyrrolidone, and a solvent, and the ratio of polyvinyl pyrrolidone to the polysulfone polymer is 18 to 27% by weight. Method.
JP2002292753A 2001-10-05 2002-10-04 Method for producing hollow fiber membrane Expired - Lifetime JP3992187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292753A JP3992187B2 (en) 2001-10-05 2002-10-04 Method for producing hollow fiber membrane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-309675 2001-10-05
JP2001309675 2001-10-05
JP2002292753A JP3992187B2 (en) 2001-10-05 2002-10-04 Method for producing hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2003175322A JP2003175322A (en) 2003-06-24
JP3992187B2 true JP3992187B2 (en) 2007-10-17

Family

ID=26623746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292753A Expired - Lifetime JP3992187B2 (en) 2001-10-05 2002-10-04 Method for producing hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP3992187B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3642065B1 (en) 2004-03-22 2005-04-27 東洋紡績株式会社 Permselective separation membrane and method for producing a selectively permeable separation membrane

Also Published As

Publication number Publication date
JP2003175322A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
JP4211168B2 (en) Dialyzer manufacturing method and sterilization method
JP4059543B2 (en) Medical device for extracorporeal treatment of blood or plasma and method for manufacturing the device
RU2113273C1 (en) Polysulfone-based hollow-fiber membrane and method of manufacturing thereof
EP0569229A1 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
JPWO2002009857A1 (en) Modified hollow fiber membrane
RU2667068C2 (en) Porous membrane, blood purifying module incorporating porous membrane and method for producing porous membrane
KR100829692B1 (en) Hollow Fiber Membrane for Purifying Blood
JP6737565B2 (en) Separation membrane for blood treatment and blood treatment device incorporating the membrane
JP4126062B2 (en) Hollow fiber membrane for blood purification and blood purification device using the same
JP3992185B2 (en) Method for producing hollow fiber membrane
JP3714686B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP4325904B2 (en) Hollow fiber membrane drying equipment
JP3992186B2 (en) Method for producing hollow fiber membrane
JPH06296686A (en) Polysulfone hollow yarn membrane for medical purpose
JP3934340B2 (en) Blood purifier
JP3281363B1 (en) Blood purification membrane
JP3992187B2 (en) Method for producing hollow fiber membrane
JP3281364B1 (en) Method for producing blood purification membrane
JP2000135421A (en) Polysulfone-base blood purifying membrane
JP2005137996A (en) Permselective separation membrane
JP3933300B2 (en) Polysulfone selective separation membrane
JP4325903B2 (en) Method for producing hollow fiber membrane
JP2020110638A (en) Separation membrane for blood treatment, and blood treatment device incorporating the membrane
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

R150 Certificate of patent or registration of utility model

Ref document number: 3992187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term