JP2002355938A - Composite film, its manufacturing method, and separator for battery using the same or filter - Google Patents

Composite film, its manufacturing method, and separator for battery using the same or filter

Info

Publication number
JP2002355938A
JP2002355938A JP2001162047A JP2001162047A JP2002355938A JP 2002355938 A JP2002355938 A JP 2002355938A JP 2001162047 A JP2001162047 A JP 2001162047A JP 2001162047 A JP2001162047 A JP 2001162047A JP 2002355938 A JP2002355938 A JP 2002355938A
Authority
JP
Japan
Prior art keywords
surface
membrane
film
heat
step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001162047A
Other languages
Japanese (ja)
Inventor
Koichi Kono
Tetsuro Nogata
Kotaro Takita
Kazuhiro Yamada
一博 山田
公一 河野
耕太郎 滝田
鉄郎 野方
Original Assignee
Tonen Chem Corp
東燃化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Chem Corp, 東燃化学株式会社 filed Critical Tonen Chem Corp
Priority to JP2001162047A priority Critical patent/JP2002355938A/en
Publication of JP2002355938A publication Critical patent/JP2002355938A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To provide a composite film which can be used as a high quality separator in which a coating layer itself is not liable to heat melt in a field of a chemical battery such as a lithium cell or the like, and which can be used as a filter not liable to lower a performance even when the film is contacted with a high temperature chemical for a long time even in a field of a separate film, and to provide a method for manufacturing the same.
SOLUTION: The composite film comprises a coating layer made of a porous material (B) of a heat resistant polymer on at least one surface of a polyolefin microporous film (A) in such a manner that a mean pore size of the porous material (B) is larger than a maximum pore size of the microporous film (A). The method for manufacturing the composite film comprises a step of coating a heat resistant polymer substance solution or precursor solution on at least one surface of the film (A), a step of contacting the coating surface with their poor solvent to phase separate the solution, and a step of forming a coating layer made of the porous material (B) of the heat resistant polymer substance by heating and drying the phase separated surface.
COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、複合膜、その製造方法及びそれを用いた電池用セパレータ又はフィルターに関し、さらに詳しくは、リチウム電池のような化学電池の分野では、被覆層自身が熱溶融しにくく高品質セパレータとして使用でき、さらに分離膜の分野でも、高温の薬液と長時間接触しても性能が低下しにくい濾過フィルターとして使用することのできる複合膜、その製造方法及びそれを用いた電池用セパレータ又はフィルターに関する。 BACKGROUND OF THE INVENTION The present invention is a composite membrane, relates battery separator or a filter using the manufacturing method and it more specifically, in the field of electrochemical cells such as lithium batteries, the coating layer itself is thermally melted hardly be used as a high-quality separator, even more in the area of ​​the separation membrane, a composite membrane capable of performance in prolonged contact with high-temperature chemical liquid can be used as a hard filtration filter which decreases, using methods and it's production on the separator or filter for the battery.

【0002】 [0002]

【従来の技術】従来、様々な多孔膜が開発されており、 Conventionally, it has been developed various porous membrane,
フィルター、電解膜、非水溶媒型電池のセパレータとして使用されている。 Filter, electrolyte membrane, and is used as a separator for non-aqueous solvent type battery. リチウム二次電池の分野では、反応性の高い活物質を使用しているために、電池あるいは使用機器においては、各種の安全装置が設けられ、外部回路の短絡、過充電等により電池の発熱、発火、あるいは破裂事故等を防止するための一つの手段として、正極と負極を分離するセパレータにおいても、用いられているポリエチレン、ポリプロピレン製の微多孔性膜の孔が、 In the field of lithium secondary batteries, due to the use of high active material reactive, in the battery or use equipment, various kinds of safety devices are provided, short of an external circuit, heat generation of the battery by overcharging or the like, ignition, or as a means for preventing explosion accidents, even in the separator for separating the positive electrode and the negative electrode, polyethylene is used, holes of a polypropylene microporous membrane,
異常時の発熱によって閉塞され、セパレータを通じた電池反応を停止する機能とともに、高温になってもセパレータとしての形状を維持し、正極物質と負極物質が直接反応する危険な事態を防止する機能を有することが要求されている。 Is closed by the heat generation of the abnormality, together with the function of stopping the battery reaction through a separator, to maintain the shape as a separator even at a high temperature, it has a function of preventing a dangerous situation in which the positive electrode material and negative electrode material is directly reacted it has been requested. 特に、近年需要が増加している大容量のリチウムイオン二次電池では、容量が大きいために内部短絡を起こすとその箇所が発熱し、内部ショートが拡大するので、このような場合に発生しがちな事故の危険性を回避し得る高性能なセパレータの出現が渇望されていた。 Particularly, in the lithium ion secondary battery of high capacity demand in recent years has increased, causing an internal short circuit when that portion generates heat because capacitance is large, the internal short circuit is enlarged, it occurs when such is the advent of high-performance separator that can avoid the risk of senna accident had been craving. さらに、現在、広く用いられている延伸によって製造した微多孔性のセパレータは、膜形状維持特性が低く、高温でも膜形状維持特性の大きなセパレータが求められていた。 Furthermore, currently, microporous separator produced by stretching widely used, the film shape retention characteristics is low, a large separator film shape-retaining characteristics even at a high temperature has been demanded.

【0003】一方、分離膜の分野でも、ポリオレフィン微多孔膜は、その特性である微細孔構造を活かし、従来からガス分離、液液分離、固液分難などの分離膜として使用されてきたが、近年の分離操作で重要視されるようになってきた耐溶剤性、耐薬品性等の要求される用途においては、特に被分離対象の流体が高温であっても、分離機能を維持したままで十分な耐性を維持し得るように、分離膜としてのポリオレフィン微多孔膜の性能を改良すべく要請が高まっていた。 On the other hand, in the field of separation membranes, microporous polyolefin membrane, taking advantage of the microporous structure which is a characteristic, gas separated from the conventional liquid-liquid separation, it has been used as a separation membrane such as a solid-liquid separation flame while in the recent important is the way it came solvent resistance in the separation operation, applications which require the chemical resistance, also in particular fluid high temperature of the separation target, maintaining the separating function in so as to maintain a sufficient resistance, requested in order to improve the performance of the polyolefin microporous membrane as a separation film it is increasing.

【0004】こうした従来のポリオレフィン微多孔膜のもつ問題点を解消するために、これまで種々の試みがなされ、その1つとして、ポリオレフィン微多孔膜を基材としてその上にポリオレフィンよりも融点の高い耐熱性樹脂層を積層して複合膜にする検討もなされているが、 [0004] In order to solve the problems of these conventional polyolefin microporous film, various attempts have been made heretofore, as one of them, having a melting point higher than the polyolefin thereon a polyolefin microporous membrane as the substrate Although by laminating a heat-resistant resin layer it has been made investigations into a composite film,
いずれも強度や耐久性など機能面で十分に目的を達成したものとはいえなかった。 None said to be achieved sufficiently purpose strength and durability such functionality.

【0005】例えば、特開平5−62662号では、電池用セパレータとして、ポリオレフィンからなる多孔質膜に、耐熱性の高いポリイミド樹脂を複合化したネット、シートを用いることにより、微少短絡による発熱のためポリオレフィンが溶融した場合でも、ポリイミド樹脂は溶融せずに残り、正極と負極を接触させず二次的な大面積での短絡を防止し、短絡にともなう電池の急激な温度上昇を防ぐ手段が提案されているが、構成材料であるポリオレフィン多孔質膜、ポリイミド樹脂については平均孔径など詳細が開示されていないので、このような製品を市場へ安定的に供給するのは困難であった。 [0005] For example, in JP-A-5-62662, as a battery separator, a porous film made of polyolefin, net complexed high polyimide resin having heat resistance, the use of the sheet, because of heat generation due to particle shorts even when the polyolefin is melted, polyimide resin remains not melted, preventing a short circuit in the secondary large area without contacting the positive electrode and the negative electrode, proposes means for preventing the abrupt temperature rise of the battery due to short-circuit have been, polyolefin porous membrane is a structural material, because the polyimide resin is not disclosed in detail, such as the average pore diameter, it is difficult to supply such a product stably market. また、特開平11−144697号にも、ポリオレフィン多孔質体としてポリエチレン微多孔膜を、ポリイミド多孔質体の不織布ではさみ、サンドイッチ構造にしたセパレータを用いた非水電解質電池が提案されている。 Also, in JP-A-11-144697, a microporous polyethylene film as the polyolefin porous body, sandwiched between non-woven fabric of porous polyimide, a non-aqueous electrolyte battery using the separator was sandwiched structure is proposed. このようにすれば、微多孔膜のシャットダウン機能を改善でき、シャットダウンの際に完全溶融や溶融亀裂を防止しうるが、ポリイミド多孔質体を如何にして製造するかは明らかにしていない。 In this way, it can improve the shutdown function of the microporous film, but can prevent complete melting or melting cracking during shutdown, or prepared how the polyimide porous body is not disclosed.

【0006】こうした状況下、近年では、ポリオレフィン微多孔膜のもつ電池用セパレータとしての性能や分離膜としての性能を拡充、向上させるために、ポリオレフィン微多孔膜の上に耐熱性高分子からなる多孔質被覆層を形成した複合膜およびその製造方法の開発が切望されている。 [0006] Under these circumstances, in recent years, expanding the performance of the performance and the separation membrane as a battery separator having a polyolefin microporous membrane, in order to improve, comprising a heat-resistant polymer on a polyolefin microporous membrane porosity development of the composite film and a manufacturing method thereof to form a quality coating layer is desired.

【0007】 [0007]

【発明が解決しようとする課題】本発明の課題は、前述した従来技術の問題に鑑み、リチウム電池のような化学電池の分野では、被覆層自身が熱溶融しにくく高品質のセパレータとして使用でき、さらに、分離膜の分野でも、高温の薬液と長時間接触しても低下しにくい濾過フィルターとして使用することのできる複合膜、その製造方法及びそれを用いた電池用セパレータ又はフィルターを提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention has been made in view of the prior art problems described above, in the field of electrochemical cells such as lithium batteries, can be used as a high quality of the separator hardly covering layer itself is thermally melted further, in the field of separation membranes, composite membranes can be used as a hard filtration filter which falls in prolonged contact with high-temperature chemical liquid, to provide a battery separator or a filter using a method and to a manufacturing It is in.

【0008】 [0008]

【課題を解決するための手段】本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ポリオレフィン微多孔膜の少なくとも片面に耐熱性高分子物質の多孔質体からなる被覆層を形成してなる複合膜において、微多孔膜上に耐熱性高分子溶液、又はその前駆体を塗布後、相分離し多孔化することで、多孔質体の平均孔径を特定の範囲に調整したところ、従来にない高品質な電池用セパレータ、分離膜として利用できる複合膜が得られることを見出し、本発明を完成するに至った。 The present inventors Means for Solving the Problems] As a result of extensive studies to solve the above problems, the coating layer made of a porous material of a heat-resistant polymer material on at least one surface of the polyolefin microporous membrane in the composite film obtained by forming a microporous membrane heat-resistant polymer solution on, or after coating the precursor, by pore formation and phase separation to adjust the average pore diameter of the porous body to a specific range where, it found that unprecedented high quality battery separators, composite membranes can be used as the separation membrane is obtained, and have completed the present invention.

【0009】すなわち、本発明の第1の発明によれば、 [0009] That is, according to the first aspect of the present invention,
ポリオレフィン微多孔膜(A)の少なくとも片面に耐熱性高分子の多孔質体(B)からなる被覆層を形成してなる複合膜において、多孔質体(B)の平均孔径がポリオレフィン微多孔膜(A)の最大孔径よりも大きいことを特徴とする複合膜が提供される。 In microporous polyolefin membrane (A) of formed by forming at least one side made of a porous material of a heat-resistant polymer (B) coating layer composite membrane, a porous body (B) an average pore diameter of the polyolefin microporous membrane of ( composite membrane being greater than the maximum pore size of a) is provided.

【0010】また、本発明の第2の発明によれば、第1 [0010] According to the second aspect of the present invention, the first
の発明において、耐熱性高分子が、ポリイミド、ポリエーテルエーテルケトン、ポリアミド、ポリエーテルスルホン、ポリエーテルイミド、ポリスルホン、及びポリフェニレンスルフィドからなる群から選ばれる少なくとも1種以上であることを特徴とする複合膜が提供される。 In the invention, the composite of heat resistant polymer, wherein the polyimide, polyether ether ketone, polyamide, polyethersulfone, polyetherimide, polysulfone, and that at least one selected from the group consisting of polyphenylene sulfide membrane is provided.

【0011】さらに、本発明の第3の発明によれば、第1の発明又は第2の発明において、膜厚がポリオレフィン微多孔膜(A)の1.01倍〜10倍で、かつ透気度がポリオレフィン微多孔膜(A)の1.01倍〜10倍であることを特徴とする複合膜が提供される。 Furthermore, according to the third aspect of the present invention, in the first invention or the second invention, in 1.01 to 10 times the thickness of the polyolefin microporous film (A), and air permeability degrees composite membrane is provided which is a 1.01 to 10 times of the polyolefin microporous film (a).

【0012】一方、本発明の第4の発明によれば、ポリオレフィン微多孔膜(A)の少なくとも片方の面に耐熱性高分子溶液又はその前駆体溶液を塗布する工程と、該塗布面を該高分子又はその前駆体の貧溶剤に接触させることにより相分離させる工程と、該相分離させた面を加熱、乾燥することにより、耐熱性高分子の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする複合膜の製造方法が提供される。 Meanwhile, according to the fourth aspect of the present invention, the polyolefin microporous membrane and a step of applying at least one surface in heat-resistant polymer solution or a precursor solution (A), said the coating surface a step of phase separation by contact with a poor solvent of the polymer or a precursor thereof, heating the surface obtained by said phase separated, and dried, the coating layer made of a porous material of a heat-resistant polymer (B) the method of producing a composite film which is characterized in that it consists of a step of forming is provided.

【0013】また、本発明の第5の発明によれば、ポリオレフィン微多孔膜(A)の少なくとも片方の面に耐熱性高分子又はその前駆体、及びそれらの良溶剤と貧溶剤の混合物に溶解した溶液を塗布する工程と、当該塗布面から良溶剤を選択的に蒸発飛散させることにより相分離させる工程と、該相分離した面に残留する貧溶剤を除去することにより、耐熱性高分子の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする複合膜の製造方法が提供される。 [0013] According to the fifth aspect of the present invention, dissolved in at least a heat-resistant polymer or a precursor thereof to the surface of one, and a mixture of a poor solvent with those of a good solvent of the microporous polyolefin membrane (A) solution and applying a, a step of phase separation by selectively evaporating scattered good solvent from the coated surface, by removing the poor solvent remaining on the surface was said phase separation, the heat-resistant polymer the method of producing a composite film which is characterized in that it consists of a step of forming a coating layer made of a porous material (B) is provided.

【0014】さらに、本発明の第6の発明によれば、ポリオレフィン微多孔膜(A)の少なくとも片方の面に耐熱性高分子溶液、又はその前駆体溶液を塗布する工程と、該塗布面を冷却することにより相分離させる工程と、該相分離させた面を加熱、乾燥させることにより耐熱性高分子の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする複合膜の製造方法が提供される。 Furthermore, according to the sixth aspect of the present invention, heat-resistant polymer solution on at least one surface of the polyolefin microporous film (A), or a step of applying the precursor solution, the coating surface to the step of the phase separation by cooling, said phase heating the separated was surface, characterized by comprising a step of forming a coating layer made of a porous material of a heat-resistant polymer (B) by drying method of manufacturing a composite membrane is provided.

【0015】一方、本発明の第7の発明によれば、第1 Meanwhile, according to the seventh aspect of the present invention, the first
〜3の発明のいずれかに記載の複合膜を用いてなる電池用セパレータが提供される。 Battery separator comprising a composite membrane according to any one of to 3 of the invention is provided.

【0016】さらに、本発明の第8の発明によれば、第1〜3の発明のいずれかに記載の複合膜を用いてなるガス分離、液液分離、又は固液分離用のフィルターが提供される。 Furthermore, according to the eighth aspect of the present invention, a composite membrane gas separation comprising using as claimed in any one of the first to third invention, liquid-liquid separation, or a solid-liquid filter for separation provided It is.

【0017】本発明は、上述したように複合膜等に関するものであるが、その好ましい態様としては、以下に示すものも包含される。 [0017] The present invention is concerned with the composite film or the like as described above, as the preferred embodiments thereof, are also encompassed those shown below. (1) ポリオレフィン微多孔膜(A)に用いられるポリオレフィンが、重量平均分子量1×10 〜15×1 (1) polyolefin used in the microporous polyolefin membrane (A) is a weight average molecular weight 1 × 10 6 to 15 × 1
であることを特徴とする複合膜。 Composite film which is a 0 6. (2) ポリオレフィン微多孔膜(A)に用いられるポリオレフィン又はポリオレフィン組成物の重量平均分子量/数平均分子量(Mw/Mn)が5〜300であることを特徴とする前記複合膜。 (2) the composite film having a weight average molecular weight / number average molecular weight of the polyolefin microporous film polyolefin or polyolefin composition used in the (A) (Mw / Mn) is characterized in that 5 to 300. (3) ポリオレフィン微多孔膜(A)に用いられるポリオレフィン又はポリオレフィン組成物に使用されるポリオレフィンが、ポリプロピレン又はポリエチレンであることを特徴とする前記複合膜。 (3) the composite membrane polyolefins used in the polyolefin or polyolefin composition used in the microporous polyolefin membrane (A), characterized in that it is polypropylene or polyethylene. (4) ポリオレフィン微多孔膜(A)に用いられるポリオレフィンが、重量平均分子量50万以上のポリオレフィンを含有するポリオレフィン組成物である前記複合膜。 (4) the composite membrane polyolefin used in the microporous polyolefin membrane (A) is a polyolefin composition containing a weight average molecular weight of 500,000 or more polyolefins. (5) ポリオレフィン微多孔膜(A)に用いられる重量平均分子量50万以上のポリオレフィンを含有するポリオレフィン組成物が、重量平均分子量50万以上の超高分子畳ポリエチレンと重量平均分子量1万以上50万未満の高密度ポリエチレンからなる組成物であることを特徴とする前記複合膜。 (5) a polyolefin microporous membrane polyolefin composition containing a weight average molecular weight of 500,000 or more polyolefins used in (A) is a weight average molecular weight of 500,000 or more ultra-high-molecular-tatami polyethylene and the weight average molecular weight of 10,000 to 500,000 the composite film which is a composition consisting of high density polyethylene below. (6) ポリオレフィン微多孔膜(A)に用いられる重量平均分子量50万以上のポリオレフィンを含有するポリオレフィン組成物が. (6) a polyolefin composition comprising a polyolefin microporous film (A) a weight average molecular weight of 500,000 or more polyolefins used in the. 重量平均分子量50万以上の超高分子量ポリエチレンと重量平均分子量1万以上50万未満の高密度ポリエチレンとシャットダウン機能を付与するポリオレフィンとからなり、一方、該シャットダウン機能を付与するポリオレフィンが、低密度ポリエチレン、線状低密度ポリエチレン、分子量1000〜400 Consists of a weight-average molecular weight of 500,000 or more ultra-high molecular weight polyethylene and the weight average molecular weight of 10,000 to 500,000 less than the polyolefin which imparts a high density polyethylene and shutdown functions, whereas, the polyolefin which imparts the shutdown function, low density polyethylene , linear low density polyethylene, the molecular weight from 1000 to 400
0の低分子量ポリエチレン又はシングルサイト触媒を用いて製造されたエチレン−αーオレフィン共重合体の中から選ばれる少なくとも1種であることを特徴とする前記複合膜。 The composite membrane, characterized in that 0 is a low molecular weight polyethylene, or at least one selected from the group consisting of manufacturing ethylene -α-olefin copolymer using a single site catalyst. (7) ポリオレフィン微多孔膜(A)の透気度が20 (7) air permeability of the polyolefin microporous film (A) is 20
00秒/100cc以下であることを特徴とする前記複合膜。 The composite membrane, characterized in that 00 seconds or less / 100 cc. (8) ポリオレフィン微多孔膜(A)の引張強度が、 (8) the tensile strength of the microporous polyolefin membrane (A),
80MPa以上で、突刺強度が3000mN/25μm In more than 80MPa, the piercing strength is 3000mN / 25μm
以上であることを特徴とする前記複合膜。 The composite membrane, characterized in that at least. (9) 多孔質体(B)を構成する耐熱性高分子物質が、ポリイミドであることを特徴とする前記複合膜。 (9) a heat-resistant polymer material constituting the porous body (B) is, the composite film which is a polyimide. (10) 多孔質体(B)を構成する耐熱性高分子物質がポリイミドであって、無水ピロメリット酸(PMD (10) heat resistant polymer material constituting the porous body (B) is a polyimide, pyromellitic anhydride (PMD
A)、ベンゾフェノンテトラカルボン酸二無水物(BT A), benzophenone tetracarboxylic acid dianhydride (BT
DA)、スルホニル・ノルボルナンジカルボン酸二無水物(SNDC)、ビフェニルテトラカルボン酸二無水物(BPDA)、トリカルボキシシクロペンチル二無水物(TCDA)の1種以上から選ばれる酸若しくは酸無水物と、ジアミノジフェニルエーテル(DADE)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルチオエーテル(DDS)、ビスアミノフェニルフェノキシプロパン(BAPP)、ジアミノジプロピルテトラメチルジシロキサン(DMS)の1種以上から選ばれたジアミノ化合物と、ジメチルアセトアミド溶剤から得られたポリアミック酸を原料としたポリイミドである前記複合膜。 DA), a sulfonyl-norbornane carboxylic acid dianhydride (SNDC), biphenyltetracarboxylic dianhydride (BPDA), tricarboxy cyclopentyl dianhydride acid or anhydride selected from one or more of (TCDA), diamino diphenyl ether (DADE), diaminodiphenylmethane (DDM), diaminodiphenyl thioether (DDS), bis aminophenyl phenoxy propane (BAPP), and diamino compounds selected from one or more diamino dipropyl tetramethyldisiloxane (DMS), dimethyl the composite membrane of the polyamic acid obtained from acetamide solvent is a polyimide which is a raw material. (11) 多孔質体(B)の最大孔径が0.1μm以上であることを特徴とする前記複合膜。 (11) the composite film maximum pore size of the porous body (B) is equal to or is 0.1μm or more.

【0018】 [0018]

【発明の実施の形態】以下、本発明の複合膜およびその製造方法等について詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the composite film and its manufacturing method and the like of the present invention will be described in detail.

【0019】1. [0019] 1. ポリオレフィン微多孔膜(A) 本発明の複合膜の基材として用いられるポリオレフィン微多孔膜は、特に限定されるものではなく、公知のものならば、いかなる材質の、いかなる製法によるものであってもよい。 Microporous polyolefin membrane (A) a polyolefin microporous membrane used as the base material of the composite membranes of the present invention is not limited in particular, if a known, any material, be by any method good. ポリオレフィン微多孔膜に使用されるポリオレフィンとしては、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した結晶性の単独重合体または共重合体が挙げられる。 The polyolefins used in the polyolefin microporous film, ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene crystalline homopolymer was polymerized and the like or copolymers thereof. その際、これらの単独重合体または共重合体は、単独で使用することができるが、2種以上のものを配合して用いてもよい。 At that time, these homopolymers or copolymers, can be used alone or may be used by blending of two or more kinds.

【0020】これらの中では、微多孔の形成性および機械的強度の観点などから、高分子量ポリエチレン、特に重量平均分子量が1×10 〜15×10 となるものを含有し、重量平均分子量/数平均分子量(Mw/M [0020] Among these, from such viewpoints of formability and mechanical strength of the microporous, contained the high molecular weight polyethylene, which is particularly weight-average molecular weight becomes 1 × 10 6 ~15 × 10 6 , a weight-average molecular weight / number average molecular weight (Mw / M
n)が5〜300の高密度の超高分子量ポリエチレンが好ましい。 n) is preferably a high-density ultra-high molecular weight polyethylene of 5 to 300. このようなポリエチレンは、単体または組成物のいずれであってもかまわない。 Such polyethylene may be either alone or composition.

【0021】ここで、2種以上のポリオレフィンを配合する好ましい態様としては、重量平均分子量50万以上の超高分子畳ポリエチレンと重量平均分子量1万以上5 [0021] Here, a preferred embodiment of blending two or more polyolefins, weight average molecular weight of 500,000 or more ultra-high-molecular-tatami polyethylene and the weight average molecular weight of 10,000 or more 5
0万未満の高密度ポリエチレンとからなる組成物がある。 0 there is a composition consisting of high density polyethylene of less than 250,000. その際、該組成物中に、さらに、シャットダウン機能を付与することのできる第3のポリオレフィン成分として、低密度ポリエチレン、線状低密度ポリエチレン、 At that time, in the composition, further, as a third polyolefin component capable of imparting a shutdown function, low density polyethylene, linear low density polyethylene,
分子量1000〜4000の低分子量ポリエチレン又はシングルサイト触媒を用いて製造されたエチレン−αーオレフィン共重合体の中から選ばれる少なくとも1種のポリオレフィンを配合してもよい。 At least one polyolefin selected from the produced using low molecular weight polyethylene or single site catalysts of the molecular weight 1000 to 4000 ethylene -α-olefin copolymer may be blended.

【0022】また、ポリオレフィン微多孔膜の製造方法は、限定されるものではないが、例えば、重量平均分子量が5×10 〜2.5×10 、重量平均分子量/数平均分子量が10未満のポリオレフィン5〜50重量% [0022] A method of manufacturing a microporous polyolefin membrane, but are not limited to, for example, a weight average molecular weight of 5 × 10 5 ~2.5 × 10 6 , a weight-average molecular weight / number average molecular weight of less than 10 of polyolefin 5 to 50 wt%
と、溶媒95〜50重量%からなる溶液を調製し、該溶液をダイより押出し、冷却してゲル状組成物を形成し、 When a solution comprising the solvent 95 to 50 wt% was prepared, the solution extruded from the die, cooling to form a gel composition,
該ゲル状組成物をポリオレフィンの融点+10℃以下の温度で延伸し、しかる後に残存溶媒を除去することにより製造したポリオレフィン微多孔膜を使用することが好ましい。 The gel composition was stretched at the melting point + 10 ° C. below the temperature of the polyolefin, it is preferred to use a polyolefin microporous membrane produced by removing the remaining solvent thereafter.

【0023】本発明に用いるポリオレフィン微多孔膜としては、通常、空孔率が30〜95%、膜厚25μmでの透気度が2000秒/100cc以下、好ましくは8 [0023] The polyolefin microporous membrane used in the present invention, usually, porosity 30 to 95% air permeability at a film thickness 25μm is 2000 sec / 100 cc or less, preferably 8
00秒/100cc以下、平均貫通孔径が0.005〜 00 sec / 100 cc or less, an average through-pore diameter of 0.005
1μm、引張破断強度が80MPa以上、好ましくは1 1 [mu] m, a tensile strength at break more than 80 MPa, preferably 1
00MPa以上、突刺強度が3000mN以上、好ましくは5500mN以上の機械物性を有する微多孔膜が望ましい。 00MPa or more, piercing strength is more 3000MN, preferably microporous membrane having the above mechanical properties 5500mN is desirable.

【0024】なお、ポリオレフィン微多孔膜の厚さは、 [0024] It should be noted that the thickness of the polyolefin microporous membrane,
適宜選択されるが、通常、0.1〜50μm、好ましくは1〜25μm程度である。 Is appropriately selected usually, 0.1 to 50 [mu] m, preferably about 1 to 25 m. 厚さが0.1μm未満では、膜の機械的強度不足から実用に供することが難しく、50μmを超えると、実効抵抗が大きくなり過ぎて好ましくない。 In less than 0.1μm in thickness, it is difficult to put into practical use from insufficient mechanical strength of the film, when it exceeds 50 [mu] m, undesirably effective resistance becomes too large.

【0025】2. [0025] 2. 多孔質体(B) 本発明の複合膜の被覆層として用いられる、耐熱性高分子物質の多孔質体(B)は、電池やフィルターを使用する一般的条件において熱的に安定であれば特に限定されるものではない。 Porous body (B) is used as the coating layer of the composite membrane of the present invention, a porous body of a heat-resistant polymer material (B) is particularly long thermally stable at typical conditions using batteries and filters the present invention is not limited. リチウム電池では約200℃以上でセパレータの熱溶融が問題となることが多いので、特に約200〜600℃の範囲で耐熱性のある多孔質体(B) The heat melting of the separator at about 200 ° C. or higher in the lithium battery and often becomes a problem, a porous body of particular heat resistance in the range of about 200 to 600 ° C. (B)
を採用する。 The adopted.

【0026】2−1. [0026] 2-1. 耐熱性高分子 本発明の複合膜の多孔質体を構成する耐熱性高分子としては、特に限定されず、種々の公知の樹脂が挙げられるが、例えば、本発明の複合膜をリチウム電池等の電池用セパレータに利用する場合は、電解液に対して親和性を有すると同時に電解液や電池反応に対しても安定である必要があって、ポリオレフィン徴多孔膜の透過抵抗に比べて低い透過抵抗であり、十分な耐熱性をもたせる必要がある。 The heat-resistant polymer constituting the porous body of the composite film of the heat-resistant polymer present invention is not particularly limited, but include various known resins, for example, a composite membrane of the present invention, such as a lithium battery when using the battery separator is, there must be stable to simultaneously electrolyte and battery reaction to have an affinity for the electrolyte, low permeation resistance as compared with the permeation resistance of the polyolefin symptoms membrane , and the need to have sufficient heat resistance. このような要求に応えるものとして、ポリイミド、ポリエーテルエーテルケトン、ポリアミド、ポリエーテルスルフィド、ポリエーテルイミド、ポリスルホン、及びポリフェニレンスルフィドなどを例示できる。 As to meet such requirements, polyimide, polyether ether ketone, polyamide, polyether sulfide, may be mentioned polyether, polysulfone, and polyphenylene sulfide and the like.
その際、これらは直鎖状ポリマー単独でもよいが、モノマーやオリゴマーやプレポリマーなど前駆体の状態であることが好ましく、これらを加熱などの方法で後重合させて架橋体としてもよい。 In that case, they may be linear polymer alone, it is preferable that the state of the precursor such as a monomer or oligomer or prepolymer may be cross-linked by postpolymerization of these by a method such as heating.

【0027】これら耐熱性ポリマーの中では、電池用セパレータや分離膜としての性能、機械的強度、成形加工性などの観点から、融点がポリオレフィン以上、例えば約200〜500℃にあるポリイミドが好ましい。 [0027] Among these heat-resistant polymers, the performance of the separator and the separation membrane for a battery, in terms of mechanical strength and moldability, the melting point polyolefin or, preferably polyimide in the example, about 200 to 500 ° C.. 特に融点が約250〜450℃にあるポリイミドが最適といえる。 In particular polyimide can be said optimum in the melting point of about 250 to 450 ° C.. 被覆層を構成する多孔質体の平均孔径は、通常、 The average pore size of the porous material constituting the coating layer is usually
0.1μm以上、好ましくは0.2μm以上である。 0.1μm or more, preferably 0.2μm or more.

【0028】2−2. [0028] 2-2. 多孔化方法 ポリオレフィン徴多孔膜の少なくとも片方の表面に、上記耐熱性高分子物質の多孔質体からなる被覆層を形成させる方法としては、分離膜の製法に一般的に用いられる製法である相分離法の他に、抽出法、延伸法、荷電粒子照射法などの利用が考えられるが、その形成過程でポリオレフィン徴多孔膜に損傷を与えたり、その形成によりポリオレフィン徴多孔膜の特性を阻害することは好ましくない。 On at least one surface of the porous methods polyolefin symptoms membrane, as a method for forming a coating layer comprising a porous body of the heat-resistant polymeric material, phase separation method of the separation membrane is generally process used in addition to the law, extraction method, drawing method is considered the use of such charged particle irradiation method, damage the polyolefin symptoms porous membrane in its formation process, inhibiting characteristics of the polyolefin symptoms membrane by its formation it is not preferable. そこで、ポリオレフィンの融点を越えるような温度に晒すことなく、化学劣化や放射線劣化を伴なわない、ポリオレフィン徴多孔膜の機械的特性や物質透過特性を損なわない方法として、例えば、以下の(a)〜 Therefore, without exposing to a temperature that exceeds the melting point of the polyolefin, not accompanied chemical degradation and radiation degradation, as a method that does not impair the mechanical properties and Permeation Properties of polyolefin symptoms porous membrane, for example, the following (a) ~
(c)に示すような高分子物質の相分離による多孔化方法が選択的に利用できる。 Porous method by phase separation of the polymeric material as shown in (c) can be selectively used. すなわち、 That is,

【0029】(a)ポリオレフィン微多孔膜の少なくとも片方の表面へ良溶剤に溶解した高分子物質を塗布し、 [0029] (a) a polymeric material dissolved in at least a good solvent to one surface of the polyolefin microporous film is applied,
貧溶剤に接触させることにより相分離した後、乾燥することにより多孔性高分子物質で少なくとも表面を被覆された複合膜を製造する方法。 After phase separation by contact with the poor solvent, a method of making a coated composite film at least the surface of a porous polymeric material by drying. (b)ポリオレフィン徴多孔膜の少なくとも片方の表面に良溶剤と貧溶剤の混合溶剤に溶解した高分子物質を塗布し、良溶剤を選択的に蒸発飛散させることにより相分離した後、残留する溶剤を除去することにより、多孔性高分子物質で少なくとも表面を被覆された複合膜を製造する方法。 (B) after the polymeric material dissolved in a mixed solvent of a good solvent and a poor solvent to at least one surface of the polyolefin symptoms porous film is applied, and phase separation by selectively evaporating scattered good solvent, the residual solvent by removing a method of making a coated composite film at least the surface of a porous polymeric material. (c)ポリオレフィン徴多孔膜の少なくとも片方の表面へ良溶剤に溶解した高分子物質を塗布し、冷却することにより相分離した後、乾燥することにより多孔性高分子物質で少なくとも表面を被覆された複合膜を製造する方法。 (C) applying a polymeric material dissolved in at least a good solvent to one surface of the polyolefin symptoms porous membrane, after phase separation by cooling, coated at least the surface of a porous polymeric material by drying method of making a composite membrane.

【0030】その際、(a)〜(c)における高分子物質の塗布は、通常、慣用の流延または塗布方法、例えば、ロールコーター、エヤナイフコーター、ブレードコーター、ロッドコーター、バーコーター、コンマコーター、グラビアコーター、シルクスクリーンコーター、ダイコーター、マイクログラビアコーター法などにより行われる。 [0030] At that time, (a) ~ coated polymeric material in (c) is usually carried out in a conventional casting or coating method, for example, a roll coater, Eya knife coater, a blade coater, a rod coater, a bar coater, a comma coater, gravure coater, silk screen coater, die coater, it is carried out by a micro gravure coater method.

【0031】本発明において好ましい耐熱性高分子であるポリイミドを製造するには、カルボン酸成分とジアミン成分とをモノマーとして用いこれらを重合反応させる。 [0031] To produce the polyimide is a preferred heat-resistant polymer in the present invention, the polymerization reaction of these with a carboxylic acid component and the diamine component as monomers.

【0032】カルボン酸成分は、トリカルボン酸、テトラカルボン酸、これらの無水物から適宜選択される。 The carboxylic acid component, tricarboxylic acid, tetracarboxylic acid, is suitably selected from their anhydrides. このような成分としては無水ピロメリット酸(PMD Examples of such ingredients pyromellitic anhydride (PMD
A)、ベンゾフェノンテトラカルボン酸二無水物(BT A), benzophenone tetracarboxylic acid dianhydride (BT
DA)、スルホニル・ノルボルナンジカルボン酸二無水物(SNDC)、ビフェニルテトラカルボン酸二無水物(BPDA)、トリカルボキシシクロペンチル二無水物(TCDA)が挙げられる。 DA), sulfonyl norbornane carboxylic acid dianhydride (SNDC), biphenyltetracarboxylic dianhydride (BPDA), tricarboxy cyclopentyl dianhydride (TCDA) and the like. カルボン酸は、無水酢酸で再結晶化し脱水閉環により酸無水物とするのが望ましい。 Carboxylic acid is desirably an acid anhydride by dehydration ring closure recrystallized with acetic anhydride. スルホニル・ノルボルナンジカルボン酸二無水物(SNDC)の場合は、80℃付近で無水酢酸と反応後、濾別し無水酢酸を除去することで精製して用いるとよい。 For sulfonyl norbornane carboxylic acid dianhydride (SNDC), after the reaction with acetic anhydride at around 80 ° C., it may be used and purified by removing the filtered off acetic anhydride.

【0033】ジアミン成分としては、芳香族環やシロキサン結合を有するジアミン化合物が使用できる。 [0033] As the diamine component, a diamine compound having an aromatic ring or a siloxane bond can be used. このような化合物として、ジアミノジフェニルエーテル(DA Such compounds, diaminodiphenyl ether (DA
DE)、ジアミノジフェニルメタン(DDM)、ジアミノジフェニルチオエーテル(DDS)、ビスアミノフェニルフェノキシプロパン(BAPP)、ジアミノジプロピルテトラメチルジシロキサン(DMS)などを挙げることができる。 DE), diaminodiphenylmethane (DDM), diaminodiphenyl thioether (DDS), bis aminophenyl phenoxy propane (BAPP), such as diamino dipropyl tetramethyldisiloxane (DMS) can be exemplified.

【0034】上記塗布液の溶剤は、次に示すように、耐熱性高分子の性状に応じ、どの相分離による多孔化方法を採用するかにより適宜選択される。 The solvent of the coating solution, as shown below, depending on the properties of the heat-resistant polymer is appropriately selected by either employing a porous method according any phase separation.

【0035】例えば、耐熱性高分子がポリイミドである場合、良溶剤としては、シクロヘキサノン、γ−ブチロラクトン、エチレンカーボネート、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジメチルスルホン、ヘキサメチルホスホルアミド、テトラメチル尿素等が挙げられ、特に好ましいのは、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドンである。 [0035] For example, when a heat-resistant polymer is a polyimide, as the good solvent, cyclohexanone, .gamma.-butyrolactone, ethylene carbonate, dimethylformamide, dimethylacetamide, N- methylpyrrolidone, dimethyl sulfoxide, dimethyl sulfone, hexamethylphosphoramide amides, tetramethylurea, and the like, especially preferred is dimethylformamide, dimethylacetamide, N- methylpyrrolidone. 純度が低い場合は、使用する前に減圧蒸留などにより精製しておくことが望ましい。 If the purity is low, it is desirable to give such vacuum distillation before use. また、水分が存在する場合は、加熱・脱水したモレキュラーシーブで処理することで、これを除去しておくことが好ましい。 Also, when water is present, by treatment with molecular sieves it was heated and dehydrated, it is preferable to remove them. 一方、貧溶剤としては、メタノール、エタノールなどのアルコール類、ベンゼン、メチルイソブチルケトン、ジメチルホルムアミド、水、等が挙げられ、好ましいのはアルコール類である。 Meanwhile, as the poor solvent, alcohols such as methanol, ethanol, benzene, methyl isobutyl ketone, dimethylformamide, water, etc., and preferred is an alcohol.

【0036】また、ポリエーテルエーテルケトン、ポリアミド、ポリエーテルスルホン、ポリエーテルイミド、 Further, polyether ether ketone, polyamide, polyethersulfone, polyetherimide,
ポリスルホン、ポリフェニレンスルフィドの場合、良溶剤としては、前記のシクロヘキサノン、γ−ブチロラクトン、エチレンカーボネート、ジメチルホルムアミド、 Polysulfones, For polyphenylene sulfide, as the good solvent, the cyclohexanone, .gamma.-butyrolactone, ethylene carbonate, dimethylformamide,
ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、ジメチルスルホン等が挙げられ、一方、貧溶剤としては、メタノール、エタノールなどのアルコール類等が挙げられる。 Dimethylacetamide, N- methylpyrrolidone, dimethyl sulfoxide, dimethyl sulfone and the like, whereas, as the poor solvent, methanol, and alcohols such as ethanol.

【0037】次に耐熱性高分子のポリイミドを例にとって、塗布層を相分離することによる多孔化方法の概要を説明する。 [0037] Next an example of polyimide of a heat-resistant polymer, an outline of porous methods due to phase separation of the coating layer. 前記のとおり、塗布後の塗膜は、(a)貧溶剤を用いる方法、(b)良溶剤を蒸発飛散させる方法、 As the coating film after coating, a method using (a) a poor solvent, a method of evaporating scattered (b) good solvent,
(c)冷却させる方法のいずれかによって溶液からポリマーを相分離させる。 (C) to phase separate the polymer from the solution by any of the methods for cooling.

【0038】カルボン酸(その無水物)成分、ジアミン成分からなるモノマーは、それぞれ等量を採り、室温付近で溶解させ約25〜35重量%の原料溶液を構成する。 The carboxylic acid (anhydride thereof) component, a monomer comprising a diamine component, respectively take an equal amount, constituting a raw material solution of about 25 to 35 wt% is dissolved at about room temperature. これを数分〜数時間かけて重合すれば、本発明の塗布層として好適なポリアミック酸が形成される。 If the polymerization over a period of several minutes to several hours this preferred polyamic acid is formed as a coating layer of the present invention. これはポリイミドの前駆体であるが、塗布前に重合反応させないように不活性ガス雰囲気下で保存する必要がある。 This is a precursor of polyimide, it is necessary to store so as not to polymerization reaction before the coating in an inert gas atmosphere. ポリアミック酸には、熱可塑性ポリイミドとして総称される市販品があり、溶液タイプ、フィルムタイプ、パウダータイプなどが知られている。 The polyamic acid, there is a commercial product known collectively as thermoplastic polyimide, solution type, film type, such as a powder type are known. 本発明に使用しうるポリアミック酸は、実用上、微多孔膜に塗布しうる溶液タイプが好ましく、このようなものに焼付けワニスがある。 Polyamic acid which can be used in the present invention, practically, the solution type which can applied to the microporous membrane is preferred, there is a baking varnish to such.
溶液タイプ以外のものは良溶剤への再溶解が必要となる。 Other than the solution type is required to re-dissolution in a good solvent.

【0039】なお、塗布液中の高分子物質の含有量は、 [0039] It should be noted that the content of the polymer material in the coating liquid,
塗布方法および形成すべき薄膜の厚みによって適宜調整されるが、通常、約1〜20重量%である。 Is adjusted appropriately depending on the thickness of the coating method and the thin film to be formed is typically about 1 to 20% by weight. ポリアミック酸の場合は約5〜15重量%に希釈すると塗布しやすいようである。 If the polyamic acid is as easy application and diluted to about 5-15% by weight. ポリオレフィン微多孔膜をガラス板、ステンレスメッシュ板などの平滑な板に貼り付け、この上に耐熱性高分子又は前駆体の溶液を約50〜100μm Microporous polyolefin membrane of the glass plate, affixed to a flat plate such as a stainless steel mesh plate, about a solution of a heat-resistant polymer or precursor thereon 50~100μm
程度の厚さに塗布すればよい。 The extent of may be applied to a thickness.

【0040】相分離するために行われる第一の方法は、 The first method is performed to phase separation,
(a)貧溶剤を用いる方法であるが、これは貧溶剤として例えば大量のメタノールなどを用い、これを塗膜と接触させる方法である。 Is a method of using (a) a poor solvent, which like using, for example, large amounts of methanol as a poor solvent, a method of contacting with coating it. 第二の方法は、(b)良溶剤を蒸発飛散させる方法であり、塗膜から良溶剤が蒸発飛散するように、塗膜表面へ不活性ガスを流通したり、加熱、 The second method is a method of (b) a good solvent evaporation scattered, so that the good solvent from the coating film evaporates scattered, or flowing inert gas into the coating surface, heated,
減圧する手段が採用できる。 It means for reducing the pressure can be employed. 第三の方法は、(c)冷却させる方法であって、塗膜を冷却することにより、ポリマーの溶解度を低下させて微多孔膜上に沈積させる方法である。 The third method is a method for cooling (c), by cooling the coating film, a method of depositing by lowering the solubility of the polymer on a microporous membrane.

【0041】相分離した塗膜は引き続いて、重合反応させポリイミド化するとともに、多孔化工程を完結させる。 The phase separated in coating subsequently while polyimidation by polymerization reaction, to complete the porous step. この工程は、ポリオレフィンの融点以下、例えば6 This process, polyolefin melting point or less, for example 6
0〜100℃において、1分〜数時間熱処理し、乾燥させる工程である。 In 0 to 100 ° C., and heat-treated for 1 minute to several hours, a step of drying. テトラカルボン酸成分が芳香族環をもつポリアミック酸の中には重合しにくいものがあるが、 Some tetracarboxylic acid component of the polyamic acid having an aromatic ring are those hard to polymerization but,
このようなものは、比較的高温、長時間の加熱を必要とする。 Such may require a relatively high temperature, the prolonged heating. テトラカルボン酸成分がビフェニルテトラカルボン酸二無水物であれば、60〜90℃の範囲で良く、熱処理時間は10分以内で済むために好適である。 If tetracarboxylic acid component biphenyltetracarboxylic dianhydride, can range from 60 to 90 ° C., the heat treatment time is suitable because it requires less than 10 minutes. カルボン酸成分が芳香族環をもたないポリアミック酸であれば、無水酢酸、ピリジンを触媒としてモノマー成分に対し5〜7倍モル加え、塗布後、窒素雰囲気下、100〜 If polyamic acid acid component does not have an aromatic ring, in addition 5-7 moles per mole monomer component acetic anhydride, pyridine as catalyst, after coating, under a nitrogen atmosphere, 100
150℃にて数時間加熱することで効率的に重合できることが多い。 It can often be efficiently polymerized by heating for several hours at 0.99 ° C..

【0042】ポリイミド以外の耐熱性高分子についても、2種の原料モノマーを含む溶液を調製し、これをポリオレフィン微多孔膜上に塗布して、上記と同様な工程を踏むことによって相分離させれば、微多孔膜上で容易に多孔化することができる。 [0042] The heat resistance polymers other than polyimide, a solution containing two kinds of the raw material monomer was prepared which was coated on the polyolefin microporous membrane, caused to phase separation by stepping similar to the above steps if, it is possible to easily porosified on microporous membranes.

【0043】このようにしてポリオレフィン微多孔膜の少なくとも一方の面に形成される、多孔質体からなる被覆層の厚みは、ポリオレフィン微多孔膜の孔径や空孔率によっても異なるが、通常、0.001〜50μmである。 [0043] In this manner is formed on at least one surface of the polyolefin microporous membrane, the thickness of the coating layer made of a porous material varies depending pore size and porosity of the polyolefin microporous membrane, typically, 0 it is .001~50μm. 被覆層の厚みが0.001μmよりも少ないと、欠陥の発生を避けることが困難となり、一方、50μmを超えると、物質透過抵抗が無視できなくなるので望ましくない。 When the thickness of the coating layer is less than 0.001 [mu] m, it is difficult to avoid the occurrence of defects, while when it exceeds 50 [mu] m, undesirably can not be ignored Permeation resistance.

【0044】本発明の複合膜の最も特徴とするところは、多孔質体(B)の平均孔径がポリオレフィン微多孔膜(A)の最大孔径よりも大きくなければならないという点にある。 [0044] the most significant characteristics of the composite membrane of the present invention is that the average pore diameter of the porous body (B) must be greater than the maximum pore size of the microporous polyolefin membrane (A). 本発明では、この要件は技術的に重要な意義をもち、この要件を満たすと、物質透過抵抗の大きな増大をきたすことなく複合膜に所望の機能を賦与することが可能となるのに対し、この要件を満たさなければ、 In the present invention, this requirement has a technical significance, satisfies this requirement, whereas it is possible to impart a desired function to the composite film without causing a large increase in the material permeability resistance, if not meet this requirement,
物質透過抵抗が大きくなり目的を達成することができない。 It can not Permeation resistance to achieve increased and interest. また、このような複合膜を得るには、微多孔膜へ耐熱性高分子溶液、又は前駆体溶液を塗布後、相分離させることで多孔化する方法を採用することが必須と言える。 Further, it can be said to obtain such composite membranes, microporous membrane to heat polymer solution, or after the precursor solution applied, phase be separated to adopt the method of pore formation is essential in.

【0045】3. [0045] 3. 複合膜 以上のようにして得られた複合膜は、ポリオレフィン微多孔膜(A)の少なくとも片面に耐熱性高分子物質の多孔質体(B)からなる被覆層を具備することにより、ポリオレフィン微多孔膜自体の特性を維持したまま、その問題点が是正されるため、ニッケル−水素電池、ニッケル−カドミウム電池、ニッケル−亜鉛電池、銀−亜鉛電池、リチウム2次電池、リチウムポリマー2次電池などのような2次電池の分野では、高温で膜形状維持特性が大きいことから、非常に高品質のセパレータとして使用できるばかりでなく、さらには、分離膜の分野でも、薬液に長時間接触させても性能が低下しにくい濾過フィルターとしても有効に使用することができる。 Composite membrane obtained as described above composite film, by having at least one surface made of a porous material of a heat-resistant polymer material (B) coating the microporous polyolefin membrane (A), the polyolefin microporous while maintaining the characteristics of the film itself, because the problem is corrected, nickel - hydrogen batteries, nickel - cadmium battery, a nickel - zinc battery, a silver - zinc batteries, lithium secondary batteries, such as lithium polymer secondary battery in the field of secondary batteries, such as, since the film shape retention characteristics at high temperature is large, not only it can very used as a high quality of the separator, and further, in the field of separation membranes, even by prolonged contact in the chemical performance can also be effectively used as difficult filtration filter which decreases.

【0046】なお、本発明の複合膜の膜厚は、使用用途、対象等によって幾分異なるが、通常は、基材として用いられるポリオレフィン微多孔膜の1.01〜10 [0046] The thickness of the composite membrane of the present invention, intended use, somewhat differ depending on the target or the like, usually, the microporous polyolefin film used as a substrate 1.01
倍、好ましくは、1.05〜5倍であり、一方、その透気度も、ポリオレフィン微多孔膜の1.01〜10倍、 Fold, preferably a 1.05 to 5 times, while also its air permeability, 1.01 times of the polyolefin microporous film,
特に1.05〜5倍であることが望ましい。 In particular it is desirable that 1.05 to 5 times.

【0047】 [0047]

【実施例】以下に、実施例に基づき本発明を具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, a detailed explanation of the present invention based on examples, the present invention is not limited by these examples. なお、実施例、比較例における測定は下記方法に依った。 In Examples, the measurement in the comparative example was based on the following method.

【0048】[1. [0048] [1. 多孔体の平均孔径] 試験片となる被覆層の表面を走査型電子顕微鏡(SEM)で5000 The average pore diameter] surface of the coating layer serving as a test piece of the porous body with a scanning electron microscope (SEM) 5000
倍の倍率で観察し、無作為に10箇所の空隙の間隔を測定し、それらの平均値を求めた後、その数値を平均孔径とした。 Was observed with magnification of randomly measures the gap spacing of 10 points, after obtaining the average value thereof was that number and the average pore diameter.

【0049】[2. [0049] [2. 透気度]JIS P8117に準拠して測定した(単位:sec/100cc)。 Air permeability] was measured according to JIS P8117 (Unit: sec / 100cc). また、 Also,
[3. [3. 破膜温度]は、四方を金枠に固定した状態で最高200℃までの温度に設定したエアーオーブンに10分間入れた後、取り出し、破膜の有無を目視で確認する方法で、破膜が確認される最低温度とした。 Rupture temperature], after placed for 10 minutes in an air oven set at a temperature of up to 200 ° C. in a state of fixing the four sides to the metal frame, taken out in a way that visually confirm the presence or absence of rupture, it is ruptured It was the lowest temperature to be confirmed.

【0050】参考例1 実施例、比較例で用いる塗布溶液を次の方法で製造した。 [0050] Reference Example 1 Example, the coating solution used in Comparative Example was prepared in the following manner. カルボン酸無水物モノマー成分として、BPDA As the carboxylic acid anhydride monomer component, BPDA
(ビフェニルテトラカルボン酸二無水物)、又はTCD (Biphenyltetracarboxylic dianhydride), or TCD
A(トリカルボキシシクロペンチル酢酸二無水物)のいずれかを選んで、これをジアミンモノマー成分であるD Select either A (tricarboxy cyclopentyl acetic dianhydride), which is a diamine monomer component D
ADE(ジアミノジフェニルエーテル)の等量と組合せ、全量に対して約30%のジメチルアセトアミドを加え、ポリアミック酸を重合した。 Equal amounts and combinations of ADE (diaminodiphenyl ether), about 30% of dimethylacetamide, based on the total amount added, and polymerization was polyamic acid. 得られたポリアミック酸溶液を約10%まで希釈し、濾過した。 The resulting polyamic acid solution was diluted to about 10%, and filtered. テトラカルボン酸成分が芳香族を有するBPDA(ビフェニルテトラカルボン酸二無水物)はイミド化反応で不溶化するので、得られたポリアミック酸溶液はそのまま塗布液として使用することになる。 Since the tetracarboxylic acid component is insoluble in BPDA (biphenyltetracarboxylic dianhydride) the imidization reaction with aromatic, obtained polyamic acid solution it will be directly used as a coating liquid. テトラカルボン酸成分が芳香族を有さないTCDA(トリカルボキシシクロペンチル酢酸二無水物)は、約10%のジメチルアセトアミド溶液を調製し、これに無水酢酸とピリジンを添加、反応させてポリイミドを得てこれを塗布溶液とした。 TCDA the tetracarboxylic acid component does not have an aromatic (tricarboxy cyclopentyl acetic dianhydride) is about 10% dimethylacetamide solution was prepared, to which acetic anhydride and pyridine to obtain a polyimide by reacting This was used as a coating solution.

【0051】実施例1 ポリエチレン微多孔膜(東燃化学(株)社製、膜厚2 [0051] Example 1 Polyethylene microporous membrane (Tonen Co., Ltd., thickness 2
3.5μm、最大孔径0.03μm、透気度878se 3.5 [mu] m, maximum pore size 0.03 .mu.m, air permeability 878se
c/100cc、破膜温度165℃)を平滑なステンレスメッシュ板(50メッシュ)に貼り付け、室温にてコントロールコーターを用いて、BPDA−DMDAポリアミック酸のジメチルアセトアミド(DMAc)溶液を75μmの厚さに塗布した後、室温にてメタノールに浸漬して相分離し、次いで室温にて風乾してから、80℃ c / 100 cc, affixed to rupture temperature 165 ° C.) a smooth stainless steel mesh plate (50 mesh), using a control coater at room temperature, thickness of 75μm dimethylacetamide (DMAc) solution of BPDA-DMDA polyamic acid after coating, the phases were separated and immersed in methanol at room temperature, then air dried at room temperature to, 80 ° C.
のエアーオーブンで乾燥した。 And then dried in an air oven. 得られた複合膜上に形成された塗布層を5000倍の走査型電子顕微鏡(SE The resulting composite coating layer formed on the film 5000 times the scanning electron microscope (SE
M)で観測したところ、平均0.50μmの空隙からなる疎な多孔性構造であることが確認できた。 Was observed at M), it was confirmed to be sparse porous structure consisting of the air gap of the average 0.50 .mu.m. さらに、得られた複合膜の膜厚、および複合膜の透気度を測定したところ、下記の表1に示すとおりであった。 Furthermore, when the film thickness of the obtained composite film, and the air permeability of the composite membrane was measured, it was as shown in Table 1 below.

【0052】実施例2 実施例1のBPDA−DMDAポリアミック酸溶液を、 [0052] The BPDA-DMDA polyamic acid solution of Example 1,
TCDA−DMDAポリイミド溶液に代えた以外は、前記と同様な条件で、ポリエチレン微多孔膜に塗布し複合膜を得た。 It was replaced TCDA-DMDA polyimide solution at the same conditions, to obtain a composite film was coated on a polyethylene microporous membrane. この塗布層を5000倍の走査型電子顕微鏡(SEM)で観測したところ、平均0.20μmの空隙からなる疎な多孔性構造であることが確認できた。 Was the coating layer was observed at 5000 times the scanning electron microscope (SEM), it was confirmed that the sparse porous structure consisting of the air gap of the average 0.20 [mu] m. さらに、得られた複合膜の膜厚、および複合膜の透気度を測定したところ、下記の表1に示すとおりであった。 Furthermore, when the film thickness of the obtained composite film, and the air permeability of the composite membrane was measured, it was as shown in Table 1 below.

【0053】比較例1 ポリエチレン微多孔膜(東燃化学(株)社製、膜厚2 [0053] Comparative Example 1 Polyethylene microporous membrane (Tonen Co., Ltd., thickness 2
3.5μm、最大孔径0.03μm、空孔率38%、透気度878sec/100cc)をガラス板に貼り付け、室温にてコントロールコーターを用いて、BPDA 3.5 [mu] m, maximum pore size 0.03 .mu.m, porosity 38%, pasted air permeability 878sec / 100cc) in a glass plate, using a control coater at room temperature, BPDA
−DADEアミック酸のジメチルアセトアミド(DMA Dimethylacetamide -DADE amic acid (DMA
c)溶液を75μmの厚さに塗布した後、室温にて風乾してから、室温にて真空乾燥後、80℃のエアーオーブンで乾燥した。 After applying the c) solution to a thickness of 75 [mu] m, from air dried at room temperature, after vacuum drying at room temperature and dried at 80 ° C. in an air oven. 得られた複合膜上に形成された被覆層を5000倍の走査型電子顕微鏡(SEM)で観測したところ、多孔性構造は確認されなかった。 The resulting coating layer formed on the composite film was observed at 5000 times the scanning electron microscope (SEM), the porous structure was not confirmed. また、得られた複合膜の膜厚は31.5μmであったが、透気度は測定不能であり、有効な透過性は認められなかった。 Further, the resulting thickness of the composite membrane has a had been 31.5Myuemu, air permeability is not measurable, effective permeability was observed.

【0054】 [0054]

【表1】 [Table 1]

【0055】上記表1に示すように、実施例1、2で得られた本発明の複合膜では、塗布層の平均孔径がポリエチレン微多孔膜の最大孔径よりも大きく、破膜温度が2 [0055] As shown in Table 1, the composite film of the present invention obtained in Examples 1 and 2, larger than the maximum pore size of the average pore diameter microporous polyethylene membrane of the coating layer, film rupture temperature 2
00℃以上と高い。 00 ℃ or higher and higher. その結果、透気度がポリエチレン微多孔膜の透気度の約1〜2倍に抑えられているのに対し、比較例では、塗布層に実質的に孔が観測されず、透過性が妨げられている。 As a result, while the air permeability is suppressed to about 1 to 2 times the air permeability of the microporous polyethylene membrane, in the comparative example, substantially pore was not observed, it disturbed permeable to the coating layer It is. このことから、本発明の複合膜によれば、透過性を大きく妨げることなく、十分な耐熱性を賦与できることが容易に判る。 Therefore, according to the composite membrane of the present invention, without disturbing the permeability increases, it is easy to see can be provide sufficient heat resistance.

【0056】 [0056]

【発明の効果】本発明によれば、ポリオレフィン微多孔膜の少なくとも片面に耐熱性高分子の多孔質体からなる被覆層を形成してなる複合膜において、多孔質体の平均孔径をポリオレフィン微多孔膜の最大孔径よりも大きくなるように調整した。 According to the present invention, at least one surface in the composite film obtained by forming a coating layer made of a porous material of a heat-resistant polymer, a polyolefin microporous an average pore diameter of the porous body of the polyolefin microporous membrane It was adjusted to be greater than the maximum pore size of the membrane. このため、リチウム電池のような化学電池の分野では、高温でも膜形状維持特性が大きい高品質セパレータとして使用でき、さらに分離膜の分野でも、高温の薬液と長時間接触しても性能が低下しにくい濾過フィルターとして使用することのできる複合膜が得られ、その工業的価値は極めて大きい。 Therefore, in the field of electrochemical cells such as lithium batteries, can be used as a high-quality separator film shape retention characteristics is greater at high temperatures, still in the field of separation membranes, also the performance is lowered in prolonged contact with high-temperature chemical liquid hard to composite membranes that can be used as a filtration filter is obtained, its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) B01D 71/66 B01D 71/66 71/68 71/68 B32B 5/32 B32B 5/32 31/00 31/00 H01M 2/16 H01M 2/16 P // H01M 10/40 10/40 Z (72)発明者 滝田 耕太郎 神奈川県横浜市磯子区岡村4−17−21 (72)発明者 山田 一博 神奈川県港北区下田町5−8−424 (72)発明者 野方 鉄郎 神奈川県川崎市川崎区本町1−13−11 ダ イパレス801 Fターム(参考) 4D006 GA01 GA41 GA44 MA03 MA09 MA21 MA31 MB11 MB15 MB18 MC22X MC23 MC45 MC47 MC54X MC58X MC61 MC62 MC63 MC88 NA05 NA10 NA34 NA40 NA46 NA62 NA64 PA05 PB13 PC80 4F100 AK01B AK01C AK03A AK04 AK46B AK46C AK49B AK49C AK55B AK55C AK56B AK56C AK57B AK57C BA02 BA03 BA10B BA10C DC11A DC11B DC11C EH462 EJ42 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) B01D 71/66 B01D 71/66 71/68 71/68 B32B 5/32 B32B 5/32 31/00 31 / 00 H01M 2/16 H01M 2/16 P // H01M 10/40 10/40 Z (72) inventor Takita Kotaro, Yokohama, Kanagawa Prefecture Isogo-ku, Okamura 4-17-21 (72) inventor Kazuhiro Yamada Kanagawa Prefecture Kohoku Subdivision Shimoda-cho 5-8-424 (72) inventor Tetsuro Nogata Kawasaki City, Kanagawa Prefecture Kawasaki-ku Honcho 1-13-11 da Iparesu 801 F-term (reference) 4D006 GA01 GA41 GA44 MA03 MA09 MA21 MA31 MB11 MB15 MB18 MC22X MC23 MC45 MC47 MC54X MC58X MC61 MC62 MC63 MC88 NA05 NA10 NA34 NA40 NA46 NA62 NA64 PA05 PB13 PC80 4F100 AK01B AK01C AK03A AK04 AK46B AK46C AK49B AK49C AK55B AK55C AK56B AK56C AK57B AK57C BA02 BA03 BA10B BA10C DC11A DC11B DC11C EH462 EJ42 2 EJ862 GB41 JD02 JJ03B JJ03C YY00 5H021 BB01 BB12 BB13 CC04 EE02 EE04 HH03 HH09 5H029 AJ11 AJ12 CJ02 CJ22 DJ04 DJ13 EJ12 HJ04 HJ06 2 EJ862 GB41 JD02 JJ03B JJ03C YY00 5H021 BB01 BB12 BB13 CC04 EE02 EE04 HH03 HH09 5H029 AJ11 AJ12 CJ02 CJ22 DJ04 DJ13 EJ12 HJ04 HJ06

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 ポリオレフィン微多孔膜(A)の少なくとも片面に耐熱性高分子の多孔質体(B)からなる被覆層を形成してなる複合膜において、多孔質体(B)の平均孔径がポリオレフィン微多孔膜(A)の最大孔径よりも大きいことを特徴とする複合膜。 1. A microporous polyolefin membrane (A) at least one surface in the porous body of a heat-resistant polymer (B) composite membranes coated layer was formed composed consisting of, the average pore diameter of the porous body (B) composite membrane being greater than the maximum pore size of the microporous polyolefin membrane (a).
  2. 【請求項2】 耐熱性高分子が、ポリイミド、ポリエーテルエーテルケトン、ポリアミド、ポリエーテルスルホン、ポリエーテルイミド、ポリスルホン、及びポリフェニレンスルフィドからなる群から選ばれる少なくとも1 2. A heat-resistant polymer, polyimide, polyether ether ketone, polyamide, polyethersulfone, polyetherimide, polysulfone, and at least one selected from the group consisting of polyphenylene sulfide
    種以上であることを特徴とする請求項1に記載の複合膜。 The composite membrane of claim 1, wherein the at species or more.
  3. 【請求項3】 膜厚がポリオレフィン微多孔膜(A)の1.01倍〜10倍で、かつ透気度がポリオレフィン微多孔膜(A)の1.01倍〜10倍であることを特徴とする請求項1又は2に記載の複合膜。 Wherein said film thickness is 1.01 to 10 times of the polyolefin microporous film (A), and is 1.01 to 10 times the air permeability microporous polyolefin membrane (A) the composite membrane of claim 1 or 2,.
  4. 【請求項4】 ポリオレフィン微多孔膜(A)の少なくとも片方の面に耐熱性高分子溶液又はその前駆体溶液を塗布する工程と、該塗布面を該高分子又はその前駆体の貧溶剤に接触させることにより相分離させる工程と、該相分離させた面を加熱、乾燥することにより、耐熱性高分子の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする複合膜の製造方法。 4. A contact a step of applying a heat-resistant polymer solution or a precursor solution on at least one surface of the polyolefin microporous film (A), the coating surface in a poor solvent of the polymer or a precursor thereof a step of phase separation by heating the surface obtained by said phase separated, and dried, characterized by comprising a step of forming a coating layer made of a porous material of a heat-resistant polymer (B) the method of producing a composite membrane.
  5. 【請求項5】 ポリオレフィン微多孔膜(A)の少なくとも片方の面に耐熱性高分子又はその前駆体、及びそれらの良溶剤と貧溶剤との混合物に溶解した溶液を塗布する工程と、当該塗布面から良溶剤を選択的に蒸発飛散させることにより相分離させる工程と、該相分離した面に残留する貧溶剤を除去することにより、耐熱性高分子の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする複合膜の製造方法。 5. The polyolefin microporous membrane at least one the surface heat-resistant polymer or its precursor (A), and a step of applying a solution in a mixture of their good solvent and a poor solvent, the coating a step of phase separation by selectively evaporating scattered good solvent from the surface, by removing the poor solvent remaining on the surface was said phase separation, the coating layer made of a porous material of a heat-resistant polymer (B) the method of producing a composite film which is characterized in that it consists of a step of forming a.
  6. 【請求項6】 ポリオレフィン微多孔膜(A)の少なくとも片方の面に耐熱性高分子溶液、又はその前駆体溶液を塗布する工程と、該塗布面を冷却させることにより相分離させる工程と、該相分離させた面を加熱、乾燥させることにより耐熱性高分子の多孔質体(B)からなる被覆層を形成させる工程とからなることを特徴とする複合膜の製造方法。 Heat-resistant polymer solution on at least one surface of 6. microporous polyolefin membrane (A), or a step of applying the precursor solution, a step of phase separation by cooling the coating surface, the the method of producing a composite film which is characterized in that it consists of a phase separated was surface heating, by drying the step of forming a coating layer made of a porous material of a heat-resistant polymer (B).
  7. 【請求項7】 請求項1〜3のいずれかに記載の複合膜を用いてなる電池用セパレータ。 7. A battery separator comprising a composite membrane according to claim 1.
  8. 【請求項8】 請求項1〜3のいずれかに記載の複合膜を用いてなるガス分離、液液分離、又は固液分離用のフィルター。 8. A gas separation comprising a composite membrane according to any one of claims 1 to 3, a liquid-liquid separation, or a solid-liquid filter for separation.
JP2001162047A 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter Pending JP2002355938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001162047A JP2002355938A (en) 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001162047A JP2002355938A (en) 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter

Publications (1)

Publication Number Publication Date
JP2002355938A true JP2002355938A (en) 2002-12-10

Family

ID=19005231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001162047A Pending JP2002355938A (en) 2001-05-30 2001-05-30 Composite film, its manufacturing method, and separator for battery using the same or filter

Country Status (1)

Country Link
JP (1) JP2002355938A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005190792A (en) * 2003-12-25 2005-07-14 Asahi Kasei Chemicals Corp Separator for battery
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
WO2006038503A1 (en) * 2004-10-04 2006-04-13 Nitto Denko Corporation Process for producing composite reverse osmosis membrane
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using the separator film was partially coated with a gel polymer
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007125821A (en) * 2005-11-04 2007-05-24 Toyobo Co Ltd Composite porous membrane, manufacturing method thereof, and battery separator using the same, battery, and capacitor
WO2007097249A1 (en) * 2006-02-20 2007-08-30 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
JP2007227364A (en) * 2006-01-24 2007-09-06 Sony Corp Separator and battery
WO2007125944A1 (en) * 2006-04-28 2007-11-08 Asahi Kasei Chemicals Corporation Gas separation membrane
JPWO2005088011A1 (en) * 2004-03-12 2008-01-31 三菱製紙株式会社 Heat-resistant nonwovens
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
US7399556B2 (en) * 2003-12-30 2008-07-15 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
WO2008149895A1 (en) 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2009054460A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane
JP2009187702A (en) * 2008-02-04 2009-08-20 Sony Corp Nonaqueous electrolyte battery
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2009286820A (en) * 2008-05-27 2009-12-10 Asahi Kasei E-Materials Corp Modified polyketone molded article, and thermally modified polyketone formed article
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
JP2010050024A (en) * 2008-08-25 2010-03-04 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2010067358A (en) * 2008-09-08 2010-03-25 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
EP2260523A2 (en) * 2008-04-08 2010-12-15 SK Energy Co., Ltd. Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
WO2010147407A2 (en) * 2009-06-17 2010-12-23 Sk Energy Co., Ltd. Microporous polyethylene film with thermally stable hybrid-composite layers
JP2011519385A (en) * 2008-04-08 2011-07-07 エスケー エナジー カンパニー リミテッド Polyolefin composite microporous membrane having a high heat resistance porous coating layer
US20120034509A1 (en) * 2008-09-03 2012-02-09 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US8189674B2 (en) 2006-07-26 2012-05-29 Sony Corporation Decoding method, program for decoding method, recording medium with recorded program for decoding method, and decoding device
US8409747B2 (en) 2005-07-25 2013-04-02 Teijin Limited Nonaqueous secondary battery separator and process for its fabrication
JP2013077385A (en) * 2011-09-29 2013-04-25 Dexerials Corp Separator sheet for battery, method for manufacturing the same, and battery
KR101269203B1 (en) 2008-01-23 2013-05-30 에스케이이노베이션 주식회사 And polyolefin-based composite microporous membrane has a heat-resistant coating
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
JP2014500144A (en) * 2011-05-20 2014-01-09 エルジー・ケム・リミテッド Production method and reverse osmosis separation membrane produced by this reverse osmosis separation membrane
WO2014021634A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
WO2014021635A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane comprising coating layer and battery using same
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
JP2015066790A (en) * 2013-09-27 2015-04-13 積水化学工業株式会社 Heat-resistant microporous film, and separator and cell using the same
WO2016024533A1 (en) * 2014-08-12 2016-02-18 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film and method for manufacturing same, separator for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
KR20160143665A (en) 2014-04-07 2016-12-14 유니티카 가부시끼가이샤 Laminated porous film and production method therefor
US9562164B2 (en) 2011-11-03 2017-02-07 Sk Innovation Co., Ltd. Micro-porous polyolefin composite film having excellent heat resistance and stability and method for producing the same
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
US9853273B2 (en) 2012-12-28 2017-12-26 Sk Innovation Co., Ltd. Micro-porous hybrid film having electro-chemical stability and method for preparing the same
EP3357109A4 (en) * 2015-12-18 2018-10-31 BYD Company Limited Composite film, method of preparing the same and lithium battery having the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914494B2 (en) * 1976-12-14 1984-04-04 Asahi Chemical Ind
JPH08236093A (en) * 1995-02-27 1996-09-13 Mitsubishi Chem Corp Battery separator
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JP2000223107A (en) * 1998-11-26 2000-08-11 Sumitomo Chem Co Ltd Separator for nonaqueous electrolyte secondary battery
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914494B2 (en) * 1976-12-14 1984-04-04 Asahi Chemical Ind
JPH08236093A (en) * 1995-02-27 1996-09-13 Mitsubishi Chem Corp Battery separator
JPH11207888A (en) * 1998-01-22 1999-08-03 Nitto Denko Corp Composite porous body
JP2000223107A (en) * 1998-11-26 2000-08-11 Sumitomo Chem Co Ltd Separator for nonaqueous electrolyte secondary battery
JP2000306568A (en) * 1999-04-23 2000-11-02 Ube Ind Ltd Porous film and battery separator used therewith

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525624A (en) * 2003-05-30 2006-11-09 エルジー・ケム・リミテッド Lithium secondary battery using the separator film was partially coated with a gel polymer
US8003263B2 (en) 2003-05-30 2011-08-23 Lg Chem, Ltd. Rechargeable lithium battery using separator partially coated with gel polymer
JP2005190792A (en) * 2003-12-25 2005-07-14 Asahi Kasei Chemicals Corp Separator for battery
JP4587270B2 (en) * 2003-12-25 2010-11-24 旭化成イーマテリアルズ株式会社 Battery separator
US7399556B2 (en) * 2003-12-30 2008-07-15 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
USRE44264E1 (en) * 2003-12-30 2013-06-04 Electronics And Telecommunications Research Institute Lithium cationic single-ion conducting filler-containing composite polymer electrolyte for lithium secondary battery and method of manufacturing the same
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP4739186B2 (en) * 2004-03-12 2011-08-03 三菱製紙株式会社 Heat-resistant nonwovens
JPWO2005088011A1 (en) * 2004-03-12 2008-01-31 三菱製紙株式会社 Heat-resistant nonwovens
JP2006027024A (en) * 2004-07-14 2006-02-02 Asahi Kasei Chemicals Corp Multi-layer porous film
JP2007026676A (en) * 2004-07-21 2007-02-01 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2006059733A (en) * 2004-08-23 2006-03-02 Tomoegawa Paper Co Ltd Separator for electronic component and its manufacturing method
WO2006038503A1 (en) * 2004-10-04 2006-04-13 Nitto Denko Corporation Process for producing composite reverse osmosis membrane
KR100885591B1 (en) * 2004-10-04 2009-02-24 닛토덴코 가부시키가이샤 Process for producing composite reverse osmosis membrane
JP2006130497A (en) * 2004-10-04 2006-05-25 Nitto Denko Corp Production method of composite reverse osmosis membrane
JP4656511B2 (en) * 2004-10-04 2011-03-23 日東電工株式会社 Method of producing a composite reverse osmosis membrane
US8409747B2 (en) 2005-07-25 2013-04-02 Teijin Limited Nonaqueous secondary battery separator and process for its fabrication
JP2007125821A (en) * 2005-11-04 2007-05-24 Toyobo Co Ltd Composite porous membrane, manufacturing method thereof, and battery separator using the same, battery, and capacitor
JP2007227364A (en) * 2006-01-24 2007-09-06 Sony Corp Separator and battery
US8294040B2 (en) 2006-02-20 2012-10-23 Daicel Chemical Industries, Ltd. Porous film and multilayer assembly using the same
WO2007097249A1 (en) * 2006-02-20 2007-08-30 Daicel Chemical Industries, Ltd. Porous film and layered product including porous film
KR101162403B1 (en) 2006-04-28 2012-07-04 아사히 가세이 케미칼즈 가부시키가이샤 Gas separation membrane
JP2013091065A (en) * 2006-04-28 2013-05-16 Asahi Kasei Chemicals Corp Gas separation membrane
US8092581B2 (en) 2006-04-28 2012-01-10 Asahi Kasei Chemicals Corporation Gas separation membrane
WO2007125944A1 (en) * 2006-04-28 2007-11-08 Asahi Kasei Chemicals Corporation Gas separation membrane
JP5507079B2 (en) * 2006-04-28 2014-05-28 旭化成ケミカルズ株式会社 Gas separation membrane
US8189674B2 (en) 2006-07-26 2012-05-29 Sony Corporation Decoding method, program for decoding method, recording medium with recorded program for decoding method, and decoding device
US8518310B2 (en) 2006-10-10 2013-08-27 Nitto Denko Corporation Process for producing a dried composite semipermeable membrane
US8851297B2 (en) 2006-10-10 2014-10-07 Nitto Denko Corporation Composite semipermeable membrane and process for producing the same
US8906537B2 (en) 2006-11-20 2014-12-09 Teijin Limited Separator for non-aqueous secondary battery, process for producing same, and non-aqueous secondary battery separator for non-aqueous secondary battery, process for producing same, and non-aqueous secondary battery
US8906538B2 (en) 2006-11-20 2014-12-09 Teijin Limited Separator for non-aqueous secondary battery, process for producing the same, and non-aqueous secondary battery
WO2008062727A1 (en) 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
US7892672B2 (en) 2007-06-06 2011-02-22 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
WO2008149895A1 (en) 2007-06-06 2008-12-11 Teijin Limited Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP2015037791A (en) * 2007-10-26 2015-02-26 旭化成ケミカルズ株式会社 Gas separation membrane
JPWO2009054460A1 (en) * 2007-10-26 2011-03-10 旭化成ケミカルズ株式会社 Gas separation membrane
US8206493B2 (en) 2007-10-26 2012-06-26 Asahi Kasei Chemicals Corporation Gas separation membrane
KR101151189B1 (en) 2007-10-26 2012-06-08 아사히 가세이 케미칼즈 가부시키가이샤 Gas separation membrane
WO2009054460A1 (en) * 2007-10-26 2009-04-30 Asahi Kasei Chemicals Corporation Gas separation membrane
KR101269203B1 (en) 2008-01-23 2013-05-30 에스케이이노베이션 주식회사 And polyolefin-based composite microporous membrane has a heat-resistant coating
JP2009187702A (en) * 2008-02-04 2009-08-20 Sony Corp Nonaqueous electrolyte battery
US8231999B2 (en) 2008-02-06 2012-07-31 Sony Corporation Separator and battery using the same
JP2009212086A (en) * 2008-02-06 2009-09-17 Sony Corp Separator and battery using the same
JP2014017261A (en) * 2008-02-06 2014-01-30 Sony Corp Separator and battery including the same
JP2011516684A (en) * 2008-04-08 2011-05-26 エスケー エナジー カンパニー リミテッド Process for producing a polyolefin composite microporous membrane having a high heat-resistant coating layer
CN102017233A (en) * 2008-04-08 2011-04-13 Sk能源株式会社 Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
US8795826B2 (en) 2008-04-08 2014-08-05 Sk Innovation Co., Ltd. Microporous polyolefin composite film with a thermally stable porous layer at high temperature
JP2011519385A (en) * 2008-04-08 2011-07-07 エスケー エナジー カンパニー リミテッド Polyolefin composite microporous membrane having a high heat resistance porous coating layer
EP2260523A2 (en) * 2008-04-08 2010-12-15 SK Energy Co., Ltd. Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
EP2260523A4 (en) * 2008-04-08 2011-11-02 Sk Energy Co Ltd Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
JP2009283273A (en) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd Separator for electrochemical cell, and battery
JP2009286820A (en) * 2008-05-27 2009-12-10 Asahi Kasei E-Materials Corp Modified polyketone molded article, and thermally modified polyketone formed article
US20110143185A1 (en) * 2008-08-19 2011-06-16 Teijin Limited Separator for nonaqueous secondary battery
WO2010021248A1 (en) * 2008-08-19 2010-02-25 帝人株式会社 Separator for nonaqueous secondary battery
TWI478420B (en) * 2008-08-19 2015-03-21 Teijin Ltd
KR20110050517A (en) 2008-08-19 2011-05-13 데이진 가부시키가이샤 Separator for nonaqueous secondary battery
JP2010092881A (en) * 2008-08-19 2010-04-22 Teijin Ltd Separator for nonaqueous secondary battery
US8815435B2 (en) 2008-08-19 2014-08-26 Teijin Limited Separator for nonaqueous secondary battery
CN102160211A (en) * 2008-08-19 2011-08-17 帝人株式会社 Separator for nonaqueous secondary battery
JP4653849B2 (en) * 2008-08-19 2011-03-16 帝人株式会社 The separator for a non-aqueous secondary battery
JP2010050024A (en) * 2008-08-25 2010-03-04 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
US20120034509A1 (en) * 2008-09-03 2012-02-09 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US9960400B2 (en) 2008-09-03 2018-05-01 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US9142819B2 (en) * 2008-09-03 2015-09-22 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
US20150357619A1 (en) * 2008-09-03 2015-12-10 Lg Chem, Ltd. Separator having porous coating layer, and electrochemical device containing the same
EP2333876B1 (en) 2008-09-03 2016-08-03 LG Chem, Ltd. Separator having porous coating layer and electrochemical device containing the same
JP2010067358A (en) * 2008-09-08 2010-03-25 Teijin Ltd Separator for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
WO2010147407A3 (en) * 2009-06-17 2011-03-31 Sk Innovation Co., Ltd. Microporous polyethylene film with thermally stable hybrid-composite layers
WO2010147407A2 (en) * 2009-06-17 2010-12-23 Sk Energy Co., Ltd. Microporous polyethylene film with thermally stable hybrid-composite layers
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
JP2014500144A (en) * 2011-05-20 2014-01-09 エルジー・ケム・リミテッド Production method and reverse osmosis separation membrane produced by this reverse osmosis separation membrane
JP2013077385A (en) * 2011-09-29 2013-04-25 Dexerials Corp Separator sheet for battery, method for manufacturing the same, and battery
US9562164B2 (en) 2011-11-03 2017-02-07 Sk Innovation Co., Ltd. Micro-porous polyolefin composite film having excellent heat resistance and stability and method for producing the same
US20150207123A1 (en) * 2012-08-01 2015-07-23 Samsung Sdi Co., Ltd. Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
WO2014021634A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
US10050247B2 (en) 2012-08-01 2018-08-14 Samsung Sdi Co., Ltd. Separation membrane coating agent composition, separation membrane made from coating agent composition, and battery using same
WO2014021635A1 (en) * 2012-08-01 2014-02-06 제일모직주식회사 Separation membrane comprising coating layer and battery using same
US9853273B2 (en) 2012-12-28 2017-12-26 Sk Innovation Co., Ltd. Micro-porous hybrid film having electro-chemical stability and method for preparing the same
JP2015066790A (en) * 2013-09-27 2015-04-13 積水化学工業株式会社 Heat-resistant microporous film, and separator and cell using the same
KR20160143665A (en) 2014-04-07 2016-12-14 유니티카 가부시끼가이샤 Laminated porous film and production method therefor
JPWO2015156261A1 (en) * 2014-04-07 2017-04-13 ユニチカ株式会社 Laminated porous film and a production method thereof
WO2016024533A1 (en) * 2014-08-12 2016-02-18 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous film and method for manufacturing same, separator for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
EP3357109A4 (en) * 2015-12-18 2018-10-31 BYD Company Limited Composite film, method of preparing the same and lithium battery having the same

Similar Documents

Publication Publication Date Title
US6566012B1 (en) Polyolefin microporous film and method for preparing the same
CN101511589B (en) Microporous membrane, battery separator and battery
JP3939778B2 (en) Battery separator
JP4902455B2 (en) Multi-layer, microporous polyolefin membrane The method for producing the same, a battery separator and a battery
CN100531874C (en) Multi-component composite membrane and method for preparing same
KR101406051B1 (en) Polyolefin multilayer microporous membrane, method for producing the same, battery separator and battery
KR101280342B1 (en) Polyolefin multilayer microporous membrane and battery separator
US20050058823A1 (en) Method of producing a microporous polyolefin membrane
RU2418623C2 (en) Method of producing microporous polyethylene membrane and storage battery separator
US8795826B2 (en) Microporous polyolefin composite film with a thermally stable porous layer at high temperature
JP3177744B2 (en) Short-circuit resistance polyethylene microporous membrane
JP5148093B2 (en) Multi-layer, microporous polyethylene membrane and a production method thereof, as well as a battery separator
US20150044541A1 (en) Laminated porous film, separator for battery, and battery
JP4931894B2 (en) The polyolefin microporous membrane and a method for evaluation
KR101372983B1 (en) Microporous polyolefin membrane, its production method, battery separator, and battery
JP5250261B2 (en) Microporous polyolefin membrane and a battery separator and a battery using the same
KR101110264B1 (en) Composite microporous film, and production method and use thereof
JP3347854B2 (en) Microporous polyolefin membrane, a manufacturing method thereof, battery separator and a filter using the same
CN101511588B (en) Multi-layer, microporous membrane, battery separator and battery
CA2213858C (en) Polyethylene microporous film and process for producing the same
JP2006289985A (en) Multi-component composite film, polymer separation membrane containing the same, and polymer electrolyte system containing the same
EP1097961A1 (en) Polyolefin microporous film and method for preparing the same
EP1946905B1 (en) Process for producing multilayered microporous polyolefin film
EP1920920B1 (en) Polyethylene multilayer microporous membrane, battery separator using same, and battery
JP2002321323A (en) Polyolefin micro-porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110322