US20070199628A1 - Nickel-Base Superalloy - Google Patents

Nickel-Base Superalloy Download PDF

Info

Publication number
US20070199628A1
US20070199628A1 US11/743,218 US74321807A US2007199628A1 US 20070199628 A1 US20070199628 A1 US 20070199628A1 US 74321807 A US74321807 A US 74321807A US 2007199628 A1 US2007199628 A1 US 2007199628A1
Authority
US
United States
Prior art keywords
ppm
nickel
alloy
base superalloy
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/743,218
Other languages
English (en)
Inventor
Mohamed Nazmy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to ALSTOM TECHNOLOGY LTD reassignment ALSTOM TECHNOLOGY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAZMY, MOHAMED YOUSSEF
Publication of US20070199628A1 publication Critical patent/US20070199628A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the invention deals with the field of materials science. It relates to a nickel-base superalloy, in particular for the production of single-crystal components (SX alloy) or components with a directionally solidified microstructure (DS alloy), such as for example blades or vanes for gas turbines.
  • SX alloy single-crystal components
  • DS alloy directionally solidified microstructure
  • the alloy according to the invention can also be used for conventionally cast components.
  • Nickel-base superalloys of this type are known. Single-crystal components produced from these alloys have a very good material strength at high temperatures. This makes it possible, for example, to increase the inlet temperature of gas turbines, which boosts the efficiency of the gas turbine.
  • Nickel-base superalloys for single-crystal components as are known from U.S. Pat. No. 4,643,782, EP 0 208 645 and U.S. Pat. No. 5,270,123, for this purpose contain alloying elements which strengthen the solid solution, for example Re, W, Mo, Co, Cr, as well as elements which form ⁇ ′ phases, for example Al, Ta, and Ti.
  • the level of high-melting alloying elements (W, Mo, Re) in the base matrix (austenitic ⁇ phase) increases continuously with the increase in the temperature to which the alloy is exposed.
  • standard nickel-base superalloys for single crystals contain 6-8% of W, up to 6% of Re and up to 2% of Mo (details in % by weight).
  • the alloys disclosed in the abovementioned documents have a high creep strength, good LCF (low cycle fatigue) and HCF (high cycle fatigue) properties and a high resistance to oxidation.
  • the alloy CMSX-4 from U.S. Pat. No. 4,643,782 when tested for use in a gas turbine at a temperature of over 1000° C., has a considerably coarsened ⁇ ′ phase after a load time of 300 hours, and this phenomenon is disadvantageously associated with an increase in the creep rate of the alloy.
  • a further problem of the known nickel-base superalloys is that in the case of large components, e.g., gas turbine blades or vanes with a length of more than 80 mm, the casting properties leave something to be desired.
  • the casting of a perfect, relatively large directionally solidified single-crystal component from a nickel-base superalloy is extremely difficult, since most of these components have defects, e.g., small-angle grain boundaries, freckles, i.e., defects caused by a series of identically directed grains with a high eutectic content, equiaxed limits of variation, microporosity, etc.
  • grain boundaries are particularly harmful to the high-temperature properties of the single-crystal items.
  • small-angle grain boundaries in relative terms have only a minor influence on the properties, they are highly relevant to the casting properties and oxidation properties of large SX or DS components at high temperatures.
  • Grain boundaries are regions with a high local disorder of the crystal lattice, since the neighboring grains collide in these regions, and therefore there is a certain misorientation between the crystal lattices.
  • Patent EP 1 359 231 A1 describes a nickel-base superalloy which has improved casting properties and a higher resistance to oxidation than known nickel-base superalloys. Moreover, this alloy is, for example, particularly suitable for large gas turbine single-crystal components with a length of >80 mm. It has the following chemical composition (details in % by weight):
  • TBC thermal barrier coating
  • One of numerous aspects of the present invention includes avoiding the abovementioned drawbacks of the prior art.
  • Another aspect includes further improving the nickel-base superalloy which is known from EP 1 359 231 A1, in particular with a view to achieving better compatibility with TBC layers to be applied to this superalloy combined with equally good casting properties and a high resistance to oxidation compared to the nickel-base superalloy which is known from EP 1 359 231 A1.
  • a nickel-base superalloy embodying principles of the present invention is characterized by the following chemical composition (details in % by weight):
  • the alloy has very good casting properties, a high resistance to oxidation at high temperatures, and is very compatible with TBC layers that are to be applied.
  • the alloy has the following composition (details in % by weight):
  • An advantageous alloy according to the invention has the following chemical composition (details in % by weight):
  • This alloy is eminently suitable for the production of large single-crystal components, for example blades or vanes for gas turbines.
  • Nickel-base superalloys which are known from the prior art (comparison alloys CA1 to CA5) and the alloy according to the invention A1, having the chemical composition listed in Table 1, were tested (details in % by weight): TABLE 1 chemical composition of the alloys tested CA5 (in accordance CA1 CA2 CA3 CA4 with (CMSX-11B) (CMSX-6) (CMSX-2) (René N5) EP 1359231A) Ni Remainder Remainder Remainder Remainder Remainder A1 Remainder Cr 12.4 9.7 7.9 7.12 7.7 7.7 Co 5.7 5.0 4.6 7.4 5.1 5.1 Mo 0.5 3.0 0.6 1.4 2.0 2.0 W 5.1 — 8.0 4.9 7.8 7.8 Ta 5.18 2.0 6.0 6.5 5.84 5.8 Al 3.59 4.81 5.58 6.07 5.0 5.0 Ti 4.18 4.71 0.99 0.03 1.4 1.4 Hf 0.04 0.05 — 0.17 0.12 0.12 C — — — 0.02 0.02 B — — —
  • the alloy A1 is a nickel-base superalloy for single-crystal components, the composition of which is described herein.
  • the alloys CA1, CA2, CA3, CA4 are comparison alloys which are prior art known under the designations CMSX-11B, CMSX-6, CMSX-2 and René N5. Inter alia, they differ from the alloy according to the invention primarily by virtue of the fact that they are not alloyed with C, B, Si, and Y and/or La.
  • the comparison alloy CA5 is known from EP 1 359 231 A1 and differs from the alloy according to the invention in terms of the S, Y, and/or La content.
  • Restricting the composition according to the invention to a sulfur content of ⁇ 5 ppm produces very good properties, in particular good bonding of the TBC layer which has been applied to the surface of the superalloy, for example by thermal spraying. If the sulfur content is >5 ppm, this has an adverse effect on the TBC bonding, and the layer quickly flakes off in the event of fluctuating thermal stresses.
  • Y and/or La in the specified range in each case 5 to 100 ppm, i.e., in total, that is to say Y+La, 10 to 200 ppm, if both elements are present produces very good bonding of the ceramic thermal barrier coating (TBC layer) which is to be applied.
  • the Y content of 50 ppm and the La content of 10 ppm specified for the alloy A1 is particularly advantageous, since A1 is particularly compatible with the TBC layers to be applied. Moreover, these two elements also increase the resistance to environmental influences. The addition of these elements in these low ranges stabilizes the aluminum/chromium oxide scale layer on the alloy surface and produces a significant resistance to oxidation. Y and La are oxygen-active elements which improve the bonding strength of the scale layer on the base material. The resistance to spalling during cyclic oxidation is the key factor for the stability of the TBC layer.
  • Table 2 in each case lists the number of cycles which it takes for the Al 2 O 3 and other oxide layers formed to flake off under cyclic oxidation at 1050° C./1 h/air cooling to room temperature for the alloys listed in Table 1: TABLE 2 number of cycles until spalling occurs Alloy Number of cycles until spalling occurs CA1 ⁇ 30 CA2 200 CA3 80 CA4 230 CA5 1500 A1 2500
  • the alloy according to the invention A1 compared to the alloys which are known from the prior art, has by far the highest number of cycles before the oxide layer flakes off. This implies a high stability of a TBC layer which is to be applied to the surface of the superalloy, for example by thermal spraying.
  • nickel-base superalloys with higher C and B contents at most 750 ppm of C and at most 400 ppm of B
  • the components produced from these alloys it is also possible for the components produced from these alloys to be cast conventionally, i.e., without them producing single crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
US11/743,218 2004-11-18 2007-05-02 Nickel-Base Superalloy Abandoned US20070199628A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH18972004 2004-11-18
CH1897/04 2004-11-18
PCT/EP2005/055676 WO2006053826A2 (de) 2004-11-18 2005-11-01 Nickel-basis-superlegierung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055676 Continuation-In-Part WO2006053826A2 (de) 2004-11-18 2005-11-01 Nickel-basis-superlegierung

Publications (1)

Publication Number Publication Date
US20070199628A1 true US20070199628A1 (en) 2007-08-30

Family

ID=34974189

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/743,218 Abandoned US20070199628A1 (en) 2004-11-18 2007-05-02 Nickel-Base Superalloy

Country Status (7)

Country Link
US (1) US20070199628A1 (de)
EP (1) EP1815035A2 (de)
JP (1) JP5186215B2 (de)
CN (1) CN101061244B (de)
AR (1) AR051423A1 (de)
CA (1) CA2586974C (de)
WO (1) WO2006053826A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241560A1 (en) * 2005-07-12 2008-10-02 Mohamed Youssef Nazmy Ceramic Thermal Barrier Coating
US11326231B2 (en) 2017-11-29 2022-05-10 Hitachi Metals, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008007605A1 (de) 2008-02-04 2009-08-06 Uhde Gmbh Modifiziertes Nickel
CN102676881A (zh) * 2012-06-12 2012-09-19 钢铁研究总院 消除原始颗粒边界的镍基粉末冶金高温合金
CN103539349B (zh) * 2012-07-16 2016-08-03 苏州宏久航空防热材料科技有限公司 一种非铂族耐高温合金漏板及其制备方法
EP2888531B1 (de) 2012-08-24 2020-06-17 Ansaldo Energia Switzerland AG Sequenzielle verbrennung mit verdünnungsgasmischer
CN103436740B (zh) * 2013-08-08 2015-12-09 南京理工大学 一种无铼镍基单晶高温合金及其制备方法
EP2949768B1 (de) * 2014-05-28 2019-07-17 Ansaldo Energia IP UK Limited Ausscheidungsgehärteten gamma-prime-superlegierung auf nickelbasis zur verwendung in verfahren zur herstellung pulverbasierter additive
CN111433378B (zh) * 2017-11-29 2021-10-08 日立金属株式会社 热作模具用Ni基合金以及使用其的热锻用模具、锻造制品的制造方法
CN112176225A (zh) * 2020-09-24 2021-01-05 中国科学院金属研究所 一种镍基单晶高温合金及其制备方法
JP7445622B2 (ja) 2021-04-30 2024-03-07 デノラ・ペルメレック株式会社 次亜塩素酸ナトリウム溶液の製造方法および製造装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643782A (en) * 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US4764225A (en) * 1979-05-29 1988-08-16 Howmet Corporation Alloys for high temperature applications
US4895201A (en) * 1987-07-07 1990-01-23 United Technologies Corporation Oxidation resistant superalloys containing low sulfur levels
US5270123A (en) * 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US5346563A (en) * 1991-11-25 1994-09-13 United Technologies Corporation Method for removing sulfur from superalloy articles to improve their oxidation resistance
US5435861A (en) * 1992-02-05 1995-07-25 Office National D'etudes Et De Recherches Aerospatiales Nickel-based monocrystalline superalloy with improved oxidation resistance and method of production
US5443789A (en) * 1992-09-14 1995-08-22 Cannon-Muskegon Corporation Low yttrium, high temperature alloy
US6706241B1 (en) * 2002-11-12 2004-03-16 Alstom Technology Ltd Nickel-base superalloy
US6740292B2 (en) * 2002-04-30 2004-05-25 Alstom Technology Ltd Nickel-base superalloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002167636A (ja) * 2000-10-30 2002-06-11 United Technol Corp <Utc> 接合被覆なしに断熱被覆を保持できる低密度耐酸化性超合金材料
JP4521610B2 (ja) * 2002-03-27 2010-08-11 独立行政法人物質・材料研究機構 Ni基一方向凝固超合金およびNi基単結晶超合金
CN1173058C (zh) * 2002-08-16 2004-10-27 钢铁研究总院 一种抗金属灰化的镍基高温合金

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764225A (en) * 1979-05-29 1988-08-16 Howmet Corporation Alloys for high temperature applications
US4643782A (en) * 1984-03-19 1987-02-17 Cannon Muskegon Corporation Single crystal alloy technology
US4895201A (en) * 1987-07-07 1990-01-23 United Technologies Corporation Oxidation resistant superalloys containing low sulfur levels
US5346563A (en) * 1991-11-25 1994-09-13 United Technologies Corporation Method for removing sulfur from superalloy articles to improve their oxidation resistance
US5435861A (en) * 1992-02-05 1995-07-25 Office National D'etudes Et De Recherches Aerospatiales Nickel-based monocrystalline superalloy with improved oxidation resistance and method of production
US5270123A (en) * 1992-03-05 1993-12-14 General Electric Company Nickel-base superalloy and article with high temperature strength and improved stability
US5443789A (en) * 1992-09-14 1995-08-22 Cannon-Muskegon Corporation Low yttrium, high temperature alloy
US6740292B2 (en) * 2002-04-30 2004-05-25 Alstom Technology Ltd Nickel-base superalloy
US6706241B1 (en) * 2002-11-12 2004-03-16 Alstom Technology Ltd Nickel-base superalloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241560A1 (en) * 2005-07-12 2008-10-02 Mohamed Youssef Nazmy Ceramic Thermal Barrier Coating
US7666516B2 (en) 2005-07-12 2010-02-23 Alstom Technology Ltd. Ceramic thermal barrier coating
US20100104764A1 (en) * 2005-07-12 2010-04-29 Mohamed Youssef Nazmy Method of forming a ceramic thermal barrier coating
US11326231B2 (en) 2017-11-29 2022-05-10 Hitachi Metals, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same
US11692246B2 (en) 2017-11-29 2023-07-04 Proterial, Ltd. Ni-based alloy for hot-working die, and hot-forging die using same

Also Published As

Publication number Publication date
EP1815035A2 (de) 2007-08-08
CN101061244A (zh) 2007-10-24
CN101061244B (zh) 2012-05-30
CA2586974C (en) 2013-06-25
JP5186215B2 (ja) 2013-04-17
CA2586974A1 (en) 2006-05-26
WO2006053826A2 (de) 2006-05-26
JP2008520829A (ja) 2008-06-19
AR051423A1 (es) 2007-01-10
WO2006053826A3 (de) 2007-05-31

Similar Documents

Publication Publication Date Title
US20070199628A1 (en) Nickel-Base Superalloy
US9574451B2 (en) Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
JP4885530B2 (ja) 高強度高延性Ni基超合金と、それを用いた部材及び製造方法
CA2663632C (en) Ni-based single crystal superalloy
CA2680650C (en) Ni-based single crystal superalloy and turbine blade incorporating the same
EP2420584B1 (de) Einkristall-Superlegierung auf Nickelbasis und diese Superlegierung enthaltende Turbinenschaufel
EP1433865A1 (de) Hochfeste Superlegierung auf Nickelbasis und Gasturbinenschaufeln
US6740292B2 (en) Nickel-base superalloy
WO2007122931A1 (ja) Ni基超合金とその製造方法
JP5597598B2 (ja) Ni基超合金と、それを用いたガスタービンのタービン動・静翼
JP5626920B2 (ja) ニッケル基合金の鋳造品、ガスタービン翼及びガスタービン
US8048368B2 (en) High temperature and oxidation resistant material
JP5063550B2 (ja) ニッケル基合金及びそれを用いたガスタービン翼
US9017605B2 (en) Nickel-based superalloy
US11268169B2 (en) Ni-based superalloy cast article and Ni-based superalloy product using same
JP2011174123A (ja) ニッケル基合金及びそれを用いたランド用ガスタービン部品
AU2003255216B8 (en) Nickel-base superalloy
JP5396445B2 (ja) ガスタービン
JP2013185210A (ja) ニッケル基合金及びそれを用いたガスタービン翼
MX2007005560A (en) Nickel-based superalloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TECHNOLOGY LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NAZMY, MOHAMED YOUSSEF;REEL/FRAME:019338/0166

Effective date: 20070514

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION