US20070184740A1 - Insulating material element made of mineral fiber felt for clamping-like assembly between beams and the like - Google Patents
Insulating material element made of mineral fiber felt for clamping-like assembly between beams and the like Download PDFInfo
- Publication number
- US20070184740A1 US20070184740A1 US10/575,009 US57500904A US2007184740A1 US 20070184740 A1 US20070184740 A1 US 20070184740A1 US 57500904 A US57500904 A US 57500904A US 2007184740 A1 US2007184740 A1 US 2007184740A1
- Authority
- US
- United States
- Prior art keywords
- insulation material
- material element
- element according
- clamping
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002557 mineral fiber Substances 0.000 title claims abstract description 24
- 239000011810 insulating material Substances 0.000 title description 17
- 239000012774 insulation material Substances 0.000 claims abstract description 56
- 239000000835 fiber Substances 0.000 claims abstract description 54
- 239000011230 binding agent Substances 0.000 claims abstract description 17
- 239000003513 alkali Substances 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 12
- 230000006835 compression Effects 0.000 claims description 11
- 238000007906 compression Methods 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 239000011324 bead Substances 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 229910052593 corundum Inorganic materials 0.000 claims description 7
- 238000009413 insulation Methods 0.000 claims description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 7
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 5
- 229910052906 cristobalite Inorganic materials 0.000 claims description 5
- 238000005520 cutting process Methods 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 229910052682 stishovite Inorganic materials 0.000 claims description 5
- 229910052905 tridymite Inorganic materials 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 4
- 229910000272 alkali metal oxide Inorganic materials 0.000 claims description 3
- 230000004927 fusion Effects 0.000 claims description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 3
- 238000009963 fulling Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 239000011490 mineral wool Substances 0.000 description 39
- 239000011491 glass wool Substances 0.000 description 24
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000395 magnesium oxide Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/06—Mineral fibres, e.g. slag wool, mineral wool, rock wool
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7654—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
- E04B1/7658—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
- E04B1/7662—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2213/00—Glass fibres or filaments
- C03C2213/02—Biodegradable glass fibres
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/741—Insulation elements with markings, e.g. identification or cutting template
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B2001/742—Use of special materials; Materials having special structures or shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/50—FELT FABRIC
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/627—Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
- Y10T442/631—Glass strand or fiber material
Definitions
- the present invention refers to an insulation material element, according to preamble of claim 1 .
- Such a “clamping felt” is known, for example, from DE 36 12 857 and is being successfully used for many years, especially for insulation purposes between rafters in vertical roofs.
- a glass wool felt is being used, whose fibers are being obtained by internal centrifugation, according to the centrifuging basket process, bound with a binding agent quantity of approximately 6 to 7 weight % (dried, relative to the fiber mass), which is increased with respect to conventional glass wool, and the gross densities with nominal thickness of such insulating material sheets produced is between 10 and 30 kg/m3.
- the felt sheet produced is rolled up with an average compression of 1:5 as a roll felt and, compressed in this fashion, it is being packed in a foil.
- the foil is cut and the roll felt, as a result of its internal tension, rolls out in the form of a plane insulating material sheet with plate-like character, in a certain nominal thickness. From this rolled out insulating material sheet, normally supported by marking lines foreseen transversally to the longitudinal direction of said insulating material sheet, it is possible to cut off plates corresponding to the local width of a rafter area, which are then being mounted into said rafter area transversally towards the production and roll up direction (“The plate from the roll”).
- the cutting procedure takes place with a certain excessive measure, so that during introduction into the rafter area, the plate segment is laterally compressed against the rafters, which is reinforced by the relatively high tensions then arising inside the clamping felt, in the form of clamping forces, which, by friction at the contiguous rafter area, avoid falling of said plate segment. From this clamped assembly originates the expression “clamping felt”.
- the insulation material sheet there are also insulating plates made of mineral wool and being clamped between rafters available that feature marking lines, which serve here as a cutting aid for inserting the insulation material plates between the rafters.
- Said roll felt sheet also has to be manufactured with a certain excessive thickness, in order to insure that after rolling out, the sheet effectively attains the nominal thickness, required for assembly of the clamping felt plates. It must be observed, in this case, that opening of the roll does not take place immediately after packing, but after a warehousing period at the manufacturer, in the shop or consumer, comprising weeks or months. During this period, the internal tension of the material may progressively be lessened, as a result of aging factors, so that the insulating material sheet for the clamping felt, when being rolled out, does not recover its original thickness as desired, as would occur when the roll is immediately opened after its production.
- This possibly reduced resetting feature with the passage of time is being considered by am excessive thickness during the production phase.
- This excessive thickness which in addition to aging phenomena, also considers a partial fragmentation of fibers during the roll up procedure, as a consequence of the compression feature, is highly important. So, a clamping felt with a nominal thickness of 160 mm, may require a production in a thickness of 200 mm, in order to insure that also months later a resetting to the nominal thickness of 160 mm takes place surely.
- clamping felts of rock wool are known (DE 199 104 167), with the rock wool being produced in the so called nozzle blowing process or by means of other centrifuging, eventually with the so called cascade centrifuging process.
- the conventional rock wool fibers thus obtained consist of relatively short, however thick and therefore comparably less elastic fibers with a bead portion, i.e. a portion of not fiberized material of 10 to 30% of the fiber mass.
- the beads are of non-defibrated material, therefore rougher fiber components.
- the gross densities of this material are practically above 25 kg/m3, and the binding agent content of these clamping felts of conventional rock wool, compared to clamping felts of glass wool, with eventually 2 to 3 weight %, is relatively low.
- the integration of binding agent is comparable to the integration which takes places with clamping felts of glass wool.
- clamping felts of conventional rock wool in the way they have to be rolled for transportation in the form of roll felts, before the rolling up station, are eventually recompressed and decompressed, in order to render them more “elastic”. With such an elastification by means of application of pressure, however, there will forcibly result a fiber rupture.
- a gross density of approximately 40 to 45 kg/m3 is required, while with the same thermal conductivity group, with glass wool material, a gross density of less than 20 kg/m3 is being attained.
- a clamping felt plate of conventional rock wool felt is at least twice as heavy as a plate of conventional glass wool felt, which is negatively observed vis-a-vis the clamping condition, based on the higher specific weight of the rock wool felt.
- a characteristic feature of differentiation between glass and rock wool as subgroups of the category of mineral wool consists in the alkali/earth alkali mass relation of the composition, which in the case of rock wool is ⁇ 1 and in the case of glass wool >1.
- conventional rock wool has a high portion of CaO +MgO of 20 to 30 weight % and a relatively low portion of Na2O and K20 of approximately 5 weight %.
- conventional glass wool on its turn, features earth alkali components of approximately 10 weight % and alkali components above 15 weight %.
- the invention is distinguished by an alkali/earth alkali mass relation of the mineral fibers of ⁇ 1 and a fine fiber structure of the insulating element, determined by the factors of average geometric fiber diameter ⁇ 4 ⁇ m, gross density in the range of 8 to 25 kg/m3 and a binding agent portion in the range of 4% to 5,5 weight %, referred to the fiber mass of the insulating material element.
- the fibers Based on the chosen alkali/earth alkali mass relation of ⁇ 1, the fibers evidence a high temperature resistance, similar to conventional rock wool fibers.
- the fine fiber structure is essentially used due to the fact that fibers with an average geometric fiber diameter of ⁇ 4 ⁇ m are being used.
- Such a fiber structure may also be attained with glass wool, however as compared to rock wool, it is considerably less temperature resistant.
- the range of the average geometric diameter of conventional rock wool fibers is normally above 4 to 12 ⁇ m, so that the fibers are configured in relatively coarse fashion.
- this structure may be adjusted to a lower gross density, and the gross density range, according to the invention, is from 8 to 25 kg/m3 for the desired usage of the clamping felt.
- the insulating element is distinguished by a satisfactory insulation capacity.
- the use of a preferentially organic binding agent may be reduced with the product according to the invention, as compared to glass wool, i.e. to a range of 4 weight % up to 5,5 weight %, preferably to a range of 4,5 weight % until 5 weight %, with which the applied fire load is being reduced, without negatively affecting the clamping behavior.
- the insulation material element is sufficiently stiff. In the case of an insulation material sheet this is at the same time windable up to a roll without damaging the fibers.
- the insular mineral fiber plate, cut off from the roll, is thereby sufficiently rigid for clamped integration between beams, i.e. rafters.
- both the insulation material sheet and the insulation material plate are homogenously formed in the range applicable for the clamping effect, meaning that they feature the same density relations via the cross section.
- the fibers according to the invention distinguish themselves as a result of the alkali/earth alkali mass relation of ⁇ 1 by the high temperature resistance and correspond, therefore, to the properties of conventional rock wool. Based on the finer fiber structure, however, and on the comparably lower gross density, there results for the structure according to the invention, a far more elastic behavior.
- the insulation material sheet, before the roll up step does not require special treatment, eventually a fulling or flexing process, so that the compression and decompression steps, required with conventional rock wool, are no longer needed.
- the mineral wool felt, during the roll up phase is being compressed to a roll with a compression ratio of 1:3 to 1:8, preferably from 1:4 to 1:6.
- the clamping felt of the invention distinguishes itself by an outstanding resetting behavior, so that the required insulation material element advantageously may be produced with a comparably lower excessive thickness, than this takes place with conventional products.
- This resetting behavior remains preserved also after longer warehousing periods of the rolled up roll felt, so that the insulation material sheet, when being used, again is being reset advantageously to its nominal thickness, which is important also vis-a-vis the technical insulation features.
- insulation material sheet has to be broadly seen and it comprises a never-ending sheet, as it is coming out of the hardening oven for further mechanical processing, meaning edge-trimming, cut-outs, etc. therefore also to a roll convertible, meaning rolled insulation material sheets, which can be separated on the site at the right distance to the plates.
- the limiting parameter is a minimum gross density, technically predetermined by the hardening oven, being defined from the initiating configuration of heterogeneous phenomena in the fleece by the passage flux of hot air during the hardening process.
- clamping felt of the invention it is also possible to attain fire protection constructions of at least a fire resistance category EI 30 according to EN 131501, where the clamping felt is integrated between beams, such as roof rafters, without additional interior lining.
- the mineral fibers for the insulation material of the invention may especially be produced by internal centrifugation according to the centrifuging basket procedure, with a temperature at the centrifuging basket of at least 1.100° C., with the obtention of fibers with a fine fiber diameter in the indicated range.
- Mineral wool fibers, produced with the internal centrifugation according to the centrifuging basket process are known from EP 0 551 476, EP 0 583 792, WO 94/04468, as well as from U.S. Pat. No. 6,284,684, to which reference is expressly being made with a view to additional details.
- the reduced average geometric diameter, responsible for the fiber fineness, is being determined by the frequency distribution of the fiber diameter.
- the frequency distribution can be determined with the microscope, based on a wool sample.
- the diameter of a large number of fibers is being measured and applied, resulting in an oblique distribution towards the left side (see FIGS. 2, 3 and 4 ).
- the insulating element feature a fusion point according to DIN 4102, Part 17, of >1.000° C.
- the clamping felts are formed of mineral fibers, soluble in physiological milieu, corresponding to the requirements of the European Guideline 97/69/EG and/or the requirements of the German Dangerous Products Norm, Section IV, Nr. 22, insuring absence of dangers to the health of the clamped felts during their production, processing, utilization and elimination.
- Table 1 the preferred composition of the mineral fibers of a clamping felt according to the invention is shown, per range, in weight %: TABLE 1 SiO 2 39-55% preferably 39-52% Al 2 O 3 16-27% preferably 16-26% CaO 6-20% preferably 8-18% MgO 1-5% preferably 1-4.9% Na 2 O 0-15% preferably 2-12% K 2 O 0-15% preferably 2-12% R 2 O (Na 2 O + K 2 O) 10-14.7% preferably 10-13.5% P 2 O 5 0-3% preferably 0-2% Fe 2 O 3 (iron total) 1.5-15% preferably 3.2-8% B 2 O 3 0-2% preferably 0-1% TiO 2 0-2% preferably 0.4-1% Other 0-2.0%
- a preferred smaller range of SiO 2 is 39-44%, particularly 40-43%.
- a preferred smaller range for CaO is 9,5-20%, particularly 10-18%.
- composition according to the invention relies on the combination of a high Al 2 O 3 -content, of between 16 and 27%, preferably greater than 17% and/or preferably less than 25%, for a sum of the network-forming elements—SiO 2 and Al 2 O 3 —of between 57 and 75%, preferably greater than 60% and/or preferably less than 72%, with a quantity of alkali metal (sodium and potassium) oxides (R 2 O) that is relatively high but limited to between 10-14,7%, preferably 10 and 13,5%, with magnesia in an amount of at least 1%.
- a high Al 2 O 3 -content of between 16 and 27%, preferably greater than 17% and/or preferably less than 25%, for a sum of the network-forming elements—SiO 2 and Al 2 O 3 —of between 57 and 75%, preferably greater than 60% and/or preferably less than 72%
- R 2 O alkali metal oxides
- compositions exhibit remarkably improved behaviour at very high temperature.
- Al 2 O 3 is present in an amount of 17-25%, particularly 20-25%, in particular 21-24,5% and especially around 22-23 or 24% by weight.
- good refractoriness may be obtained by adjusting the magnesia-content, especially to at least 1,5%, in particular 2% and preferably 2-5% and particularly preferably >2,5% or 3%.
- a high magnesia-content has a positive effect which opposes the lowering of viscosity and therefore prevents the material from sintering.
- the amount of magnesia is preferably at least 1%, advantageously around 1-4%, preferably 1-2% and in particular 1,2-1,6%.
- the content of Al 2 O 3 is preferably limited to 25% in order to preserve a sufficiently low liquidus temperature.
- the amount of magnesia is preferably at least 2%, especially around 2-5%.
- the present invention combines, thus, the advantages of glass wool, relative to insulating capacity and compression, with those of rock wool, relative to temperature resistance and distinguishes itself also by an exceptional and predominant fire protection.
- rock wool also an essential economy of weight is important, which has indirect effects vis-a-vis the clamping insertion technique, since the clamping felts of the invention are practically exempt of beads not participating of the insulation effect, meaning that the bead proportion is ⁇ 1%. Due to this the specific load to be retained with the clamping effect of the clamping felt is lower.
- FIG. 1 perspective view of a roll of mineral fibers with rolled out terminal segment
- FIG. 2 a typical fiber histogram of a conventional rock wool
- FIG. 3 a typical fiber histogram of a conventional glass wool
- FIG. 4 a typical fiber histogram of the mineral wool according to the invention.
- the insulation material sheet 1 shown in FIG. 1 , consisting of mineral fibers, is partially rolled out, and the rolled out front terminal segment is designated with number 2.
- the insulation material sheet features a gross density of 13 kg/m3.
- the average geometric fiber diameter is of 3,2 ⁇ m and the binding agent portion is around 4,5 weight % referred to the fiber mass of the insulating material sheet.
- the insulation material sheet shown is not laminated and is formed of mineral fibers, where the alkali/earth alkali relation is ⁇ 1. Alternately, also a laminated version is possible according to EP 1223 031, to which reference is now expressly being made.
- the surface of the insulating material sheet, located inside hub is provided with modular marking lines 5 , aligned transversally to the longitudinal direction of the insulating material sheet and being disposed in uniform reciprocal distance d at the surface of said insulation material sheet.
- These marking lines which may be disposed in different forms on the insulating material sheet, are formed by optically active lines, which are differently colored in relation to the insulation material sheet, being produced especially by heated marking cylinders.
- marking lines 5 serve as cutting aids, so that simply the insulation material sheet may be cut at a predetermined length L of the terminal segment, and the cut is being made vertically towards the lateral borders 6 and parallel to the front border 7 of the insulation material sheet 1 , as indicated by a knife 8 in FIG. 1 .
- the knife is being conducted in the arrow direction 9 through the material, so that a terminal section with excessive measurement Ü is being produced, above 2 cm, for example, which is adequate as mineral fiber plate for clamping assembly between rafters.
- the marking can also be made in the form of pictograms and similar procedures, as long as these may act as cutting aids.
- the insulation material sheet 1 is rolled up with a compression rate of 1:4,5 to the roll. With the gross density of 13 kg/m3, the thermal conducting capacity of the insulating material section corresponds to thermal conductivity group 040 .
- composition in weight % of the conventional, i.e. insulation material sheet formed from conventional rock wool, as well as insulation material sheet formed of conventional glass wool and the insulation material sheet according to the invention results from Table 2, and the conventional rock wool as well as the insulation material sheet according to the invention, feature a fusion point of at least 1000° C. according to DIN 4102, Part 17.
- the composition is highlighted also by the fact that the fibers are biosoluble, i.e. they may be neutralized in a physiological milieu.
- the insulation material sheet with this composition is highlighted by intense resetting forces and corresponding rigidity. With comparable excessive measures as in the state of the art, sufficiently high resetting forces are attained at the assembly between rafters under compression, which insure a safe and firm retention of the insulation material plate also after longer periods of utilization.
- FIGS. 2 and 3 features for the conventional rock wool and glass wool, mentioned in the description, a typical fiber histogram of an insulation material sheet, and FIG. 4 indicates such a histogram of fibers of an insulation material sheet according to the invention.
- the measurement device was set to a clamping width of 1200 mm and the test sample was clamped between the rafters at a width of 1210 mm. If the felt does not clamp, the next smaller width is used at the measurement device and the test sample is cut to 1110 mm. The examination was continued until the test sample was clamped into the device resulting to the indicated figures for the clamping effect shown in table 3.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Glass Compositions (AREA)
- Building Environments (AREA)
- Inorganic Fibers (AREA)
- Organic Insulating Materials (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Thermal Insulation (AREA)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03022612.0 | 2003-10-06 | ||
EP03022612A EP1522642A1 (de) | 2003-10-06 | 2003-10-06 | Dämmstoffbahnen aus einem zu einer Rolle aufgewickelten Mineralfaserfilz für den klemmenden Einbau zwischen Balken |
FR0400084 | 2004-01-07 | ||
FR0400084A FR2864828B1 (fr) | 2004-01-07 | 2004-01-07 | Composition de laine minerale |
PCT/EP2004/011063 WO2005035896A1 (de) | 2003-10-06 | 2004-10-04 | Dämmstoffelement aus minearalfaserfilz für den klemmenden einbau zwischen balken und dgl. |
Publications (1)
Publication Number | Publication Date |
---|---|
US20070184740A1 true US20070184740A1 (en) | 2007-08-09 |
Family
ID=34436700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/575,009 Abandoned US20070184740A1 (en) | 2003-10-06 | 2004-10-04 | Insulating material element made of mineral fiber felt for clamping-like assembly between beams and the like |
Country Status (9)
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070093155A1 (en) * | 2003-10-22 | 2007-04-26 | Saint-Gobain Isover | "Vapor retarder with shielding against electromagnetic fields" |
US20080014422A1 (en) * | 2003-10-06 | 2008-01-17 | Isover Saint-Gobain | "Insulating Element From Mineral Fibers For Shipbuilding |
US20080178566A1 (en) * | 2007-01-26 | 2008-07-31 | Ibiden Co., Ltd. | Sheet member, forming method of the same, exhaust gas treatment apparatus, and muffling apparatus |
US20080196638A1 (en) * | 2003-10-06 | 2008-08-21 | Saint-Gobain Isover Les Miroirs | Fire Protection Gate and Correlated Fire Protection Inset |
US20100055457A1 (en) * | 2006-11-28 | 2010-03-04 | Gary Anthony Jubb | Inorganic fibre compositions |
US20100087571A1 (en) * | 2007-01-25 | 2010-04-08 | Roger Jackson | Composite wood board |
US8900495B2 (en) | 2009-08-07 | 2014-12-02 | Knauf Insulation | Molasses binder |
US8940089B2 (en) | 2007-08-03 | 2015-01-27 | Knauf Insulation Sprl | Binders |
US9040652B2 (en) | 2005-07-26 | 2015-05-26 | Knauf Insulation, Llc | Binders and materials made therewith |
US9309436B2 (en) | 2007-04-13 | 2016-04-12 | Knauf Insulation, Inc. | Composite maillard-resole binders |
US9493603B2 (en) | 2010-05-07 | 2016-11-15 | Knauf Insulation Sprl | Carbohydrate binders and materials made therewith |
US9492943B2 (en) | 2012-08-17 | 2016-11-15 | Knauf Insulation Sprl | Wood board and process for its production |
US9505883B2 (en) | 2010-05-07 | 2016-11-29 | Knauf Insulation Sprl | Carbohydrate polyamine binders and materials made therewith |
US9828287B2 (en) | 2007-01-25 | 2017-11-28 | Knauf Insulation, Inc. | Binders and materials made therewith |
US10287462B2 (en) | 2012-04-05 | 2019-05-14 | Knauf Insulation, Inc. | Binders and associated products |
US10508172B2 (en) | 2012-12-05 | 2019-12-17 | Knauf Insulation, Inc. | Binder |
US10767050B2 (en) | 2011-05-07 | 2020-09-08 | Knauf Insulation, Inc. | Liquid high solids binder composition |
US10864653B2 (en) | 2015-10-09 | 2020-12-15 | Knauf Insulation Sprl | Wood particle boards |
US10968629B2 (en) | 2007-01-25 | 2021-04-06 | Knauf Insulation, Inc. | Mineral fibre board |
US11060276B2 (en) | 2016-06-09 | 2021-07-13 | Knauf Insulation Sprl | Binders |
US11248108B2 (en) | 2017-01-31 | 2022-02-15 | Knauf Insulation Sprl | Binder compositions and uses thereof |
US11332577B2 (en) | 2014-05-20 | 2022-05-17 | Knauf Insulation Sprl | Binders |
US11401204B2 (en) | 2014-02-07 | 2022-08-02 | Knauf Insulation, Inc. | Uncured articles with improved shelf-life |
US20220341070A1 (en) * | 2019-09-27 | 2022-10-27 | Yoshino Gypsum Co., Ltd. | Heat-insulating sound-absorbing material, and partition wall |
EP2826903B1 (en) | 2007-01-25 | 2023-04-26 | Knauf Insulation SA | Method of manufacturing mineral fiber insulation product |
US11846097B2 (en) | 2010-06-07 | 2023-12-19 | Knauf Insulation, Inc. | Fiber products having temperature control additives |
US11939460B2 (en) | 2018-03-27 | 2024-03-26 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
US11945979B2 (en) | 2018-03-27 | 2024-04-02 | Knauf Insulation, Inc. | Composite products |
US12351738B2 (en) | 2014-07-17 | 2025-07-08 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4467005A (en) * | 1981-09-05 | 1984-08-21 | Gunter Pusch | IR-Reflecting, water vapor-permeable flexible web |
US4928898A (en) * | 1987-06-03 | 1990-05-29 | Isover Saint-Gobain | Compression coiling machine |
US5243126A (en) * | 1990-01-30 | 1993-09-07 | Canadian Forest Products Ltd. | Conductive panel |
US5346868A (en) * | 1992-08-26 | 1994-09-13 | Didier-Werke Ag | Inorganic fiber |
US5554324A (en) * | 1992-08-20 | 1996-09-10 | Isover Saint-Gobain | Method for producing mineral wool |
US5601628A (en) * | 1992-08-20 | 1997-02-11 | Isover Saint-Gobain | Method for the production of mineral wool |
US5614449A (en) * | 1994-02-11 | 1997-03-25 | Rockwool International A/S | Man-made vitreous fibres |
US5900298A (en) * | 1996-07-22 | 1999-05-04 | Guardian Fiberglass, Inc. | Mineral fiber insulation batt impregnated with extruded synthetic fibers, and apparatus for making same |
US5962354A (en) * | 1996-01-16 | 1999-10-05 | Fyles; Kenneth M. | Compositions for high temperature fiberisation |
US6074967A (en) * | 1996-01-05 | 2000-06-13 | Asset Associates Limited | Production of rock wool |
US6158249A (en) * | 1991-08-02 | 2000-12-12 | Isover Saint-Gobain | Apparatus for manufacturing mineral wool |
US6284684B1 (en) * | 1998-09-17 | 2001-09-04 | Isover Saint Gobain | Mineral wool composition |
US6358872B1 (en) * | 1990-11-23 | 2002-03-19 | Paroc Group Oy Ab | Mineral fiber composition |
US6512173B1 (en) * | 1997-10-28 | 2003-01-28 | Saint-Gobain Isover | Insulation plates with protection against electromagnetic fields |
US6797356B2 (en) * | 2001-02-27 | 2004-09-28 | Cgi Silvercote Inc. | Reflective insulation |
US6851283B2 (en) * | 1989-12-19 | 2005-02-08 | Isover Saint-Gobain | Thermoinsulating mat of mineral fibers with random orientation |
US20070093155A1 (en) * | 2003-10-22 | 2007-04-26 | Saint-Gobain Isover | "Vapor retarder with shielding against electromagnetic fields" |
US20080014422A1 (en) * | 2003-10-06 | 2008-01-17 | Isover Saint-Gobain | "Insulating Element From Mineral Fibers For Shipbuilding |
US20080196638A1 (en) * | 2003-10-06 | 2008-08-21 | Saint-Gobain Isover Les Miroirs | Fire Protection Gate and Correlated Fire Protection Inset |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2597531B1 (fr) † | 1986-04-16 | 1990-09-21 | Saint Gobain Isover | Procede de montage entre des pannes, comme de s chevrons de toiture, d'un materiau en fibres minerales se presentant sous forme de rouleaux, mat de fibres minerales pour la mise en oeuvre de celui-ci et son procede d'obtention |
DE3612857C3 (de) * | 1986-04-16 | 1999-07-29 | Gruenzweig & Hartmann | Dämmstoffbahn aus Mineralfaserfilz |
DE3917045A1 (de) * | 1989-05-25 | 1990-11-29 | Bayer Ag | Toxikologisch unbedenkliche glasfasern |
ES2111504T3 (es) * | 1994-11-08 | 1999-02-01 | Rockwool Int | Fibras vitreas artificiales. |
DE19512145C2 (de) † | 1995-03-31 | 1997-06-05 | Gruenzweig & Hartmann | Mineralfaserzusammensetzung |
DE19604238A1 (de) * | 1996-02-06 | 1997-08-07 | Gruenzweig & Hartmann | Mineralfaserzusammensetzung |
DE10041481B4 (de) * | 2000-08-24 | 2006-01-19 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Dämmstoffelement sowie Verfahren und Vorrichtung zur Herstellung eines Dämmstoffelementes, insbesondere einer roll- und/oder wickelbaren Dämmstoffbahn aus Mineralfasern |
-
2004
- 2004-10-04 DK DK04765796.0T patent/DK1678386T4/da active
- 2004-10-04 CA CA002541487A patent/CA2541487A1/en not_active Abandoned
- 2004-10-04 PL PL04765796T patent/PL1678386T5/pl unknown
- 2004-10-04 WO PCT/EP2004/011063 patent/WO2005035896A1/de active Application Filing
- 2004-10-04 US US10/575,009 patent/US20070184740A1/en not_active Abandoned
- 2004-10-04 EP EP04765796.0A patent/EP1678386B2/de not_active Expired - Lifetime
- 2004-10-04 JP JP2006530085A patent/JP4681558B2/ja not_active Expired - Fee Related
- 2004-10-04 BR BRPI0414847A patent/BRPI0414847B1/pt not_active IP Right Cessation
- 2004-10-06 AR ARP040103618 patent/AR056248A1/es unknown
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4467005A (en) * | 1981-09-05 | 1984-08-21 | Gunter Pusch | IR-Reflecting, water vapor-permeable flexible web |
US4928898A (en) * | 1987-06-03 | 1990-05-29 | Isover Saint-Gobain | Compression coiling machine |
US6851283B2 (en) * | 1989-12-19 | 2005-02-08 | Isover Saint-Gobain | Thermoinsulating mat of mineral fibers with random orientation |
US5243126A (en) * | 1990-01-30 | 1993-09-07 | Canadian Forest Products Ltd. | Conductive panel |
US6358872B1 (en) * | 1990-11-23 | 2002-03-19 | Paroc Group Oy Ab | Mineral fiber composition |
US6158249A (en) * | 1991-08-02 | 2000-12-12 | Isover Saint-Gobain | Apparatus for manufacturing mineral wool |
US5554324A (en) * | 1992-08-20 | 1996-09-10 | Isover Saint-Gobain | Method for producing mineral wool |
US5601628A (en) * | 1992-08-20 | 1997-02-11 | Isover Saint-Gobain | Method for the production of mineral wool |
US5346868A (en) * | 1992-08-26 | 1994-09-13 | Didier-Werke Ag | Inorganic fiber |
US5614449A (en) * | 1994-02-11 | 1997-03-25 | Rockwool International A/S | Man-made vitreous fibres |
US6074967A (en) * | 1996-01-05 | 2000-06-13 | Asset Associates Limited | Production of rock wool |
US5962354A (en) * | 1996-01-16 | 1999-10-05 | Fyles; Kenneth M. | Compositions for high temperature fiberisation |
US5900298A (en) * | 1996-07-22 | 1999-05-04 | Guardian Fiberglass, Inc. | Mineral fiber insulation batt impregnated with extruded synthetic fibers, and apparatus for making same |
US6512173B1 (en) * | 1997-10-28 | 2003-01-28 | Saint-Gobain Isover | Insulation plates with protection against electromagnetic fields |
US6284684B1 (en) * | 1998-09-17 | 2001-09-04 | Isover Saint Gobain | Mineral wool composition |
US6797356B2 (en) * | 2001-02-27 | 2004-09-28 | Cgi Silvercote Inc. | Reflective insulation |
US20080014422A1 (en) * | 2003-10-06 | 2008-01-17 | Isover Saint-Gobain | "Insulating Element From Mineral Fibers For Shipbuilding |
US20080196638A1 (en) * | 2003-10-06 | 2008-08-21 | Saint-Gobain Isover Les Miroirs | Fire Protection Gate and Correlated Fire Protection Inset |
US20070093155A1 (en) * | 2003-10-22 | 2007-04-26 | Saint-Gobain Isover | "Vapor retarder with shielding against electromagnetic fields" |
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7740931B2 (en) | 2003-10-06 | 2010-06-22 | Horst Keller | Fire protection gate and correlated fire protection inset |
US20080014422A1 (en) * | 2003-10-06 | 2008-01-17 | Isover Saint-Gobain | "Insulating Element From Mineral Fibers For Shipbuilding |
US8026190B2 (en) | 2003-10-06 | 2011-09-27 | Saint-Gobain Isover | Insulating element from mineral fibers for shipbuilding |
US20080196638A1 (en) * | 2003-10-06 | 2008-08-21 | Saint-Gobain Isover Les Miroirs | Fire Protection Gate and Correlated Fire Protection Inset |
US20110014839A1 (en) * | 2003-10-06 | 2011-01-20 | Saint-Gobain Isover | Insulating element from mineral fibers for shipbuilding |
US7803729B2 (en) | 2003-10-06 | 2010-09-28 | Saint-Gobain Isover | Insulating element from mineral fibers for shipbuilding |
US7585794B2 (en) | 2003-10-22 | 2009-09-08 | Saint-Gobain Isover | Vapor retarder with shielding against electromagnetic fields |
US20070093155A1 (en) * | 2003-10-22 | 2007-04-26 | Saint-Gobain Isover | "Vapor retarder with shielding against electromagnetic fields" |
US9434854B2 (en) | 2005-07-26 | 2016-09-06 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9464207B2 (en) | 2005-07-26 | 2016-10-11 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9926464B2 (en) | 2005-07-26 | 2018-03-27 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9745489B2 (en) | 2005-07-26 | 2017-08-29 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9260627B2 (en) | 2005-07-26 | 2016-02-16 | Knauf Insulation, Inc. | Binders and materials made therewith |
US9040652B2 (en) | 2005-07-26 | 2015-05-26 | Knauf Insulation, Llc | Binders and materials made therewith |
US20100055457A1 (en) * | 2006-11-28 | 2010-03-04 | Gary Anthony Jubb | Inorganic fibre compositions |
US8088701B2 (en) | 2006-11-28 | 2012-01-03 | The Morgan Crucible Company Plc | Inorganic fibre compositions |
US11905206B2 (en) | 2007-01-25 | 2024-02-20 | Knauf Insulation, Inc. | Binders and materials made therewith |
US10968629B2 (en) | 2007-01-25 | 2021-04-06 | Knauf Insulation, Inc. | Mineral fibre board |
US8501838B2 (en) | 2007-01-25 | 2013-08-06 | Knauf Insulation Sprl | Composite wood board |
EP2826903B1 (en) | 2007-01-25 | 2023-04-26 | Knauf Insulation SA | Method of manufacturing mineral fiber insulation product |
US9828287B2 (en) | 2007-01-25 | 2017-11-28 | Knauf Insulation, Inc. | Binders and materials made therewith |
US11459754B2 (en) | 2007-01-25 | 2022-10-04 | Knauf Insulation, Inc. | Mineral fibre board |
US10000639B2 (en) | 2007-01-25 | 2018-06-19 | Knauf Insulation Sprl | Composite wood board |
US10759695B2 (en) | 2007-01-25 | 2020-09-01 | Knauf Insulation, Inc. | Binders and materials made therewith |
US11453780B2 (en) | 2007-01-25 | 2022-09-27 | Knauf Insulation, Inc. | Composite wood board |
US8901208B2 (en) | 2007-01-25 | 2014-12-02 | Knauf Insulation Sprl | Composite wood board |
US9447281B2 (en) | 2007-01-25 | 2016-09-20 | Knauf Insulation Sprl | Composite wood board |
US20100087571A1 (en) * | 2007-01-25 | 2010-04-08 | Roger Jackson | Composite wood board |
US11401209B2 (en) | 2007-01-25 | 2022-08-02 | Knauf Insulation, Inc. | Binders and materials made therewith |
US20100115931A1 (en) * | 2007-01-26 | 2010-05-13 | Ibiden Co., Ltd. | Method of forming sheet member, exhaust gas treatment apparatus including the sheet member, and muffling apparatus including the sheet member |
US8262764B2 (en) | 2007-01-26 | 2012-09-11 | Ibiden Co., Ltd. | Sheet member, forming method of the same, exhaust gas treatmenet apparatus, and muffling apparatus |
US20080178566A1 (en) * | 2007-01-26 | 2008-07-31 | Ibiden Co., Ltd. | Sheet member, forming method of the same, exhaust gas treatment apparatus, and muffling apparatus |
US8308837B2 (en) * | 2007-01-26 | 2012-11-13 | Ibiden Co., Ltd. | Method of forming sheet member, exhaust gas treatment apparatus including the sheet member, and muffling apparatus including the sheet member |
US9309436B2 (en) | 2007-04-13 | 2016-04-12 | Knauf Insulation, Inc. | Composite maillard-resole binders |
US8940089B2 (en) | 2007-08-03 | 2015-01-27 | Knauf Insulation Sprl | Binders |
US9469747B2 (en) | 2007-08-03 | 2016-10-18 | Knauf Insulation Sprl | Mineral wool insulation |
US11946582B2 (en) | 2007-08-03 | 2024-04-02 | Knauf Insulation, Inc. | Binders |
US8979994B2 (en) | 2007-08-03 | 2015-03-17 | Knauf Insulation Sprl | Binders |
US9039827B2 (en) | 2007-08-03 | 2015-05-26 | Knauf Insulation, Llc | Binders |
US10053558B2 (en) | 2009-08-07 | 2018-08-21 | Knauf Insulation, Inc. | Molasses binder |
US8900495B2 (en) | 2009-08-07 | 2014-12-02 | Knauf Insulation | Molasses binder |
US9416248B2 (en) | 2009-08-07 | 2016-08-16 | Knauf Insulation, Inc. | Molasses binder |
US10913760B2 (en) | 2010-05-07 | 2021-02-09 | Knauf Insulation, Inc. | Carbohydrate binders and materials made therewith |
US9505883B2 (en) | 2010-05-07 | 2016-11-29 | Knauf Insulation Sprl | Carbohydrate polyamine binders and materials made therewith |
US9493603B2 (en) | 2010-05-07 | 2016-11-15 | Knauf Insulation Sprl | Carbohydrate binders and materials made therewith |
US12054514B2 (en) | 2010-05-07 | 2024-08-06 | Knauf Insulation, Inc. | Carbohydrate binders and materials made therewith |
US11078332B2 (en) | 2010-05-07 | 2021-08-03 | Knauf Insulation, Inc. | Carbohydrate polyamine binders and materials made therewith |
US12122878B2 (en) | 2010-05-07 | 2024-10-22 | Knauf Insulation, Inc. | Carbohydrate polyamine binders and materials made therewith |
US10738160B2 (en) | 2010-05-07 | 2020-08-11 | Knauf Insulation Sprl | Carbohydrate polyamine binders and materials made therewith |
US11814481B2 (en) | 2010-05-07 | 2023-11-14 | Knauf Insulation, Inc. | Carbohydrate polyamine binders and materials made therewith |
US11846097B2 (en) | 2010-06-07 | 2023-12-19 | Knauf Insulation, Inc. | Fiber products having temperature control additives |
US10767050B2 (en) | 2011-05-07 | 2020-09-08 | Knauf Insulation, Inc. | Liquid high solids binder composition |
US10287462B2 (en) | 2012-04-05 | 2019-05-14 | Knauf Insulation, Inc. | Binders and associated products |
US11725124B2 (en) | 2012-04-05 | 2023-08-15 | Knauf Insulation, Inc. | Binders and associated products |
US11453807B2 (en) | 2012-04-05 | 2022-09-27 | Knauf Insulation, Inc. | Binders and associated products |
US12104089B2 (en) | 2012-04-05 | 2024-10-01 | Knauf Insulation, Inc. | Binders and associated products |
US9492943B2 (en) | 2012-08-17 | 2016-11-15 | Knauf Insulation Sprl | Wood board and process for its production |
US10183416B2 (en) | 2012-08-17 | 2019-01-22 | Knauf Insulation, Inc. | Wood board and process for its production |
US10508172B2 (en) | 2012-12-05 | 2019-12-17 | Knauf Insulation, Inc. | Binder |
US11384203B2 (en) | 2012-12-05 | 2022-07-12 | Knauf Insulation, Inc. | Binder |
US11401204B2 (en) | 2014-02-07 | 2022-08-02 | Knauf Insulation, Inc. | Uncured articles with improved shelf-life |
US12338163B2 (en) | 2014-02-07 | 2025-06-24 | Knauf Insulation, Inc. | Uncured articles with improved shelf-life |
US11332577B2 (en) | 2014-05-20 | 2022-05-17 | Knauf Insulation Sprl | Binders |
US12351738B2 (en) | 2014-07-17 | 2025-07-08 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
US10864653B2 (en) | 2015-10-09 | 2020-12-15 | Knauf Insulation Sprl | Wood particle boards |
US11230031B2 (en) | 2015-10-09 | 2022-01-25 | Knauf Insulation Sprl | Wood particle boards |
US11060276B2 (en) | 2016-06-09 | 2021-07-13 | Knauf Insulation Sprl | Binders |
US11248108B2 (en) | 2017-01-31 | 2022-02-15 | Knauf Insulation Sprl | Binder compositions and uses thereof |
US11939460B2 (en) | 2018-03-27 | 2024-03-26 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
US11945979B2 (en) | 2018-03-27 | 2024-04-02 | Knauf Insulation, Inc. | Composite products |
US12325790B2 (en) | 2018-03-27 | 2025-06-10 | Knauf Insulation, Inc. | Binder compositions and uses thereof |
EP4036295A4 (en) * | 2019-09-27 | 2023-11-01 | Yoshino Gypsum Co., Ltd. | SOUND ABSORBING THERMAL INSULATING MATERIAL AND PARTITION |
US20220341070A1 (en) * | 2019-09-27 | 2022-10-27 | Yoshino Gypsum Co., Ltd. | Heat-insulating sound-absorbing material, and partition wall |
Also Published As
Publication number | Publication date |
---|---|
EP1678386A1 (de) | 2006-07-12 |
PL1678386T3 (pl) | 2013-06-28 |
EP1678386B2 (de) | 2020-11-18 |
JP4681558B2 (ja) | 2011-05-11 |
BRPI0414847B1 (pt) | 2016-04-12 |
JP2007509257A (ja) | 2007-04-12 |
BRPI0414847A (pt) | 2006-11-21 |
PL1678386T5 (pl) | 2021-08-16 |
DK1678386T4 (da) | 2021-02-15 |
EP1678386B1 (de) | 2012-12-05 |
DK1678386T3 (da) | 2013-03-18 |
WO2005035896A1 (de) | 2005-04-21 |
AR056248A1 (es) | 2007-10-03 |
CA2541487A1 (en) | 2005-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070184740A1 (en) | Insulating material element made of mineral fiber felt for clamping-like assembly between beams and the like | |
JP5053630B2 (ja) | 鉱物繊維に基づく製品、該繊維を得るための装置及び該製品を得るための方法 | |
US5683810A (en) | Pourable or blowable loose-fill insulation product | |
EP0833801B1 (en) | Irregularly shaped glass fibers and insulation therefrom | |
US6656861B1 (en) | Glass composition for ultrafine fiber formation | |
KR20030075190A (ko) | 광물성 울의 제조 방법과 장치 및 광물성 울 제품 | |
EP0682134B1 (en) | Method of making an insulation assembly | |
JP2007509257A5 (enrdf_load_stackoverflow) | ||
AU2004266860B2 (en) | Mineral fibre-based sandwich structure and method for the production thereof | |
DE102014110856B4 (de) | Verfahren und Vorrichtung zur Bestimmung der Kantenfestigkeit von scheibenförmigen Elementen aus sprödbrüchigem Material | |
KR19990008314A (ko) | 불규칙적으로 형상된 유리 섬유 및 유리 섬유 절연체 | |
CA2206056C (en) | Double fold insulation batt | |
JP5106854B2 (ja) | 防火扉および関連する防火インセット | |
EP0832045B1 (en) | Irregularly shaped glass fibers and insulation therefrom | |
JPH094785A (ja) | 真空断熱材 | |
DE60200345T2 (de) | Gipsdämmstoffplatte für Fassaden | |
RU2738698C2 (ru) | Стекловолокна | |
EP1674435B1 (de) | Holzfaserhaltige Lehmplatte und Verfahren zu deren Herstellung | |
EP1516032B1 (en) | Surfactant modified oils for dust control of loose-fill insulation | |
US20070253993A1 (en) | Climate, respectively ventilation channel | |
JP2757468B2 (ja) | 蓄電池用ガラスマット | |
DE10146765B4 (de) | Verfahren zur Herstellung einer Verpackungs- oder Transporteinheit für plattenförmige Dämmstoffe aus Mineralfasern, Verpackungs- oder Transporteinheit sowie Dämmstoffplatte | |
DE4427368C2 (de) | Mineralfaserzusammensetzung | |
FI126897B (en) | Method and system for manufacturing a blow insulating product and a blow insulating product | |
KR100573335B1 (ko) | 흡음단열 패널 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SAINT-GOBAIN ISOVER, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KELLER, HORST;SCHUMM, MICHAEL;BERNARD, JEAN-LUC;REEL/FRAME:018619/0965 Effective date: 20060518 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |