US20070135875A1 - Methods and apparatus for thermally-induced renal neuromodulation - Google Patents

Methods and apparatus for thermally-induced renal neuromodulation Download PDF

Info

Publication number
US20070135875A1
US20070135875A1 US11/599,723 US59972306A US2007135875A1 US 20070135875 A1 US20070135875 A1 US 20070135875A1 US 59972306 A US59972306 A US 59972306A US 2007135875 A1 US2007135875 A1 US 2007135875A1
Authority
US
United States
Prior art keywords
thermal
pulsed
electrode
neural fiber
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/599,723
Inventor
Denise Demarais
Andrew Wu
Hanson Gifford
Mark Deem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Ardian LLC
Original Assignee
Ardian Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/408,665 external-priority patent/US7162303B2/en
Priority claimed from US11/129,765 external-priority patent/US7653438B2/en
Priority claimed from US11/189,563 external-priority patent/US8145316B2/en
Priority claimed from US11/504,117 external-priority patent/US7617005B2/en
Application filed by Ardian Inc filed Critical Ardian Inc
Priority to US11/599,723 priority Critical patent/US20070135875A1/en
Assigned to ARDIAN, INC. reassignment ARDIAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEEM, MARK, GIFFORD, III, HANSON, WU, ANDREW, DEMARAIS, DENISE
Publication of US20070135875A1 publication Critical patent/US20070135875A1/en
Priority to EP07799148.7A priority patent/EP2037840B2/en
Priority to EP09156661.2A priority patent/EP2092957B2/en
Priority to DE602007011813T priority patent/DE602007011813D1/en
Priority to ES18171535T priority patent/ES2928065T3/en
Priority to DE202007019566U priority patent/DE202007019566U1/en
Priority to EP11191394.3A priority patent/EP2465470B1/en
Priority to EP20100159584 priority patent/EP2218479A3/en
Priority to EP18171535.0A priority patent/EP3395409B1/en
Priority to PL07799148T priority patent/PL2037840T3/en
Priority to CN200780031879.4A priority patent/CN101610735B/en
Priority to PCT/US2007/072396 priority patent/WO2008003058A2/en
Priority to US12/159,306 priority patent/US20090076409A1/en
Priority to ES09156661T priority patent/ES2361583T5/en
Priority to ES11191392.7T priority patent/ES2560180T3/en
Priority to ES11191394.3T priority patent/ES2560904T3/en
Priority to CN201310056646.7A priority patent/CN103222894B/en
Priority to EP14188428.8A priority patent/EP2842604A1/en
Priority to ES07799148T priority patent/ES2378956T5/en
Priority to AT07799148T priority patent/ATE536147T1/en
Priority to EP11191392.7A priority patent/EP2465574B1/en
Priority to AT09156661T priority patent/ATE494040T1/en
Priority to CN201510342199.0A priority patent/CN105056408B/en
Priority to US12/147,154 priority patent/US9314644B2/en
Assigned to ARDIAN, INC. reassignment ARDIAN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GELFAND, MARK, LEVIN, HOWARD R.
Priority to US13/046,595 priority patent/US8626300B2/en
Priority to US14/094,330 priority patent/US20140114305A1/en
Priority to US14/737,254 priority patent/US10034708B2/en
Priority to US15/132,424 priority patent/US10722288B2/en
Priority to US15/478,113 priority patent/US10441356B2/en
Priority to US16/019,380 priority patent/US20190000545A1/en
Priority to US16/938,404 priority patent/US11801085B2/en
Priority to US18/481,814 priority patent/US20240041512A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F7/123Devices for heating or cooling internal body cavities using a flexible balloon containing the thermal element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • A61N1/28Apparatus for applying thermoelectric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/326Applying electric currents by contact electrodes alternating or intermittent currents for promoting growth of cells, e.g. bone cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • A61N1/36117Cardiac control, e.g. by vagal stimulation for treating hypertension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/02Radiation therapy using microwaves
    • A61N5/04Radiators for near-field treatment
    • A61N5/045Radiators for near-field treatment specially adapted for treatment inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00404Blood vessels other than those in or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00511Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F2007/126Devices for heating or cooling internal body cavities for invasive application, e.g. for introducing into blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/10Trunk
    • A61M2210/1078Urinary tract
    • A61M2210/1082Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36114Cardiac control, e.g. by vagal stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3627Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0021Neural system treatment
    • A61N2007/003Destruction of nerve tissue

Definitions

  • the present invention relates to methods and apparatus for neuromodulation. More particularly, the present invention relates to methods and apparatus for achieving renal neuromodulation via thermal heating and/or cooling mechanisms.
  • Heart Failure or Chronic Heart Failure is a condition that occurs when the heart becomes damaged and reduces blood flow to the organs of the body. If blood flow decreases sufficiently, kidney function becomes altered, which results in fluid retention, abnormal hormone secretions and increased constriction of blood vessels. These results increase the workload of the heart and further decrease the capacity of the heart to pump blood through the kidneys and circulatory system.
  • kidneys In addition to their role in the progression of CHF, the kidneys play a significant role in the progression of Renal Failure or Chronic Renal Failure (“CRF”), Renal Disease or End-Stage Renal Disease (“ESRD”), Hypertension (pathologically high blood pressure) and other cardio-renal diseases.
  • CRF Renal Failure or Chronic Renal Failure
  • ESRD Renal Disease or End-Stage Renal Disease
  • the functions of the kidneys can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow.
  • a patient Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body. These conditions result from reduced renal function or renal failure (kidney failure) and are believed to increase the workload of the heart.
  • renal failure will cause the heart to further deteriorate as fluids are retained and blood toxins accumulate due to the poorly functioning kidney
  • a pulsed electric field may initiate renal denervation or other types of neuromodulation via irreversible electroporation or other processes.
  • the PEF may be delivered from apparatus positioned intravascularly, extravascularly, intra-to-extravascularly or a combination thereof. Additional methods and apparatus for achieving renal neuromodulation via localized drug delivery (such as by a drug pump or infusion catheter) or use of a stimulation electric field are described in co-owned and co-pending U.S. patent application Ser. No. 10/408,665, filed Apr. 8, 2003, and U.S. Pat. No. 6,978,174, both of which are incorporated herein by reference in their entireties.
  • a potential challenge of using non-thermal PEF systems for treating renal disorders is to selectively electroporate target cells without affecting other cells. For example, it may be desirable to irreversibly electroporate renal nerve cells that travel along or in proximity to renal vasculature, but it may not be desirable to damage the smooth muscle cells of which the vasculature is composed. As a result, an overly aggressive course of non-thermal PEF therapy may persistently injure the renal vasculature, but an overly conservative course of non-thermal PEF therapy may not achieve the desired renal neuromodulation.
  • Applicants have also described methods and apparatus for monitoring changes in tissue impedance or conductivity in order to determine the effects of pulsed electric field therapy.
  • Such changes in tissue can be used to determine an extent of electroporation and/or its degree of irreversibility in target or non-target tissue. See, for example, Applicant's co-pending U.S. patent application Ser. No. 11/233,814, filed Sep. 23, 2005, which is incorporated herein by reference in its entirety.
  • an overly aggressive course of relatively unmonitored or uncontrolled therapy may induce undesirable and/or persistent damage in non-target tissue.
  • FIG. 1 is a schematic view illustrating human renal anatomy.
  • FIG. 2 is a schematic isometric detail view showing the location of the renal nerves relative to the renal artery.
  • FIG. 3 is a schematic side view, partially in section, illustrating an example of an extravascular method and apparatus for thermal renal neuromodulation.
  • FIGS. 4A-4C are schematic side views, partially in section, illustrating examples of intravascular methods and apparatus for thermal renal neuromodulation.
  • FIGS. 5A and 5B are schematic side views, partially in section, illustrating an alternative embodiment of the intravascular methods and apparatus of FIGS. 4 comprising wall-contact electrodes.
  • FIGS. 6A and 6B are schematic side views, partially in section, illustrating an additional alternative embodiment of the intravascular methods and apparatus of FIG. 4 comprising alternative wall-contact electrodes.
  • FIGS. 7A and 7B are schematic side views, partially in section, illustrating other alternative embodiments of the intravascular methods and apparatus of FIG. 4 comprising multiple wall-contact electrodes.
  • FIGS. 8A-8H are schematic side views, partially in section, illustrating embodiments of the intravascular methods and apparatus of FIG. 4 comprising one or more wall-contact electrodes, as well as optional blood flow occlusion and thermal fluid injection.
  • FIG. 9 is a schematic side view, partially in section, illustrating an example of an intra-to-extravascular method and apparatus for thermal renal neuromodulation.
  • FIG. 10 is a schematic side view, partially in section, of an alternative embodiment of the method and apparatus of FIG. 8 configured for thermal renal neuromodulation via direct application of thermal energy.
  • FIG. 11 is a schematic side view, partially in section, illustrating a method and apparatus for thermal renal neuromodulation comprising a thermoelectric element suitable for direct application of thermal energy to target neural fibers.
  • FIG. 12 is a schematic side view, partially in section, illustrating another method and apparatus for thermal renal neuromodulation comprising a thermoelectric element.
  • FIGS. 13A and 13B are schematic side views, partially in section, illustrating a method and apparatus for thermal renal neuromodulation via high-intensity focused ultrasound.
  • FIG. 14 is a schematic side view, partially in section, illustrating an alternative embodiment of the apparatus and method of FIGS. 13 .
  • FIGS. 15A and 15B are schematic diagrams for classifying the various types of thermal neuromodulation that may be achieved with the apparatus and methods of the present invention.
  • Thermal heating and/or thermal cooling mechanisms may reduce renal sympathetic nerve activity.
  • Thermally-induced (via heating and/or cooling) neuromodulation may be achieved via apparatus positioned proximate target neural fibers, such as being positioned (a) within renal vasculature (i.e., positioned intravascularly), (b) extravascularly, (c) intra-to-extravascularly, or (d) a combination thereof.
  • Thermal neuromodulation by heating or cooling may be caused by directly effecting or otherwise altering the neural structures that are subject to the thermal stress.
  • the thermal neuromodulation may at least in part be due to alteration of arteries, arterioles, capillaries, or veins or other vascular structures which perfuse the target neural fibers or surrounding tissue. Furtherstill, the modulation may at least in part be caused by electroporation of the target neural fibers or of surrounding tissue.
  • thermal heating mechanisms for neuromodulation include both thermal ablation and non-ablative thermal injury or damage (e.g., via sustained heating or resistive heating).
  • Thermal heating mechanisms may include raising the temperature of target neural fibers above a desired threshold to achieve non-ablative thermal injury, or above a higher temperature) to achieve ablative thermal injury.
  • the target temperature can be above body temperature (e.g., approximately 37° C.) but less than about 45° C. for non-ablative thermal injury, or the target temperature can be about 45° C. or more for the ablative thermal injury.
  • thermal cooling mechanisms for neuromodulation include non-freezing thermal slowing of nerve conduction and/or non-freezing thermal nerve injury, as well as freezing thermal nerve injury.
  • Thermal cooling mechanisms may include reducing the temperature of target neural fibers below a desired threshold, for example, below the body temperature of about 37° C. (e.g., below about 20° C.) to achieve non-freezing thermal injury.
  • Thermal cooling mechanisms also may include reducing the temperature of the target neural fibers below about 0° C., e.g., to achieve freezing thermal injury.
  • the length of exposure to thermal stimuli may be specified to affect an extent or degree of efficacy of the thermal neuromodulation.
  • the length of exposure to thermal stimuli is longer than instantaneous exposure, such as longer than about 30 seconds, or even longer than 2 minutes.
  • the length of exposure can be less than 10 minutes, but this should in no way be construed as the upper limit of the exposure period. Exposure times measured in hours, days or longer, may be utilized to achieve desired thermal neuromodulation.
  • the temperature threshold discussed previously may be determined as a function of the duration of exposure to thermal stimuli. Additionally or alternatively, the length of exposure may be determined as a function of the desired temperature threshold. These and other parameters may be specified or calculated to achieve and control desired thermal neuromodulation.
  • thermally-induced renal neuromodulation may be achieved by directly applying thermal cooling or heating energy to the target neural fibers.
  • a chilled or heated fluid can be applied at least proximate to the target neural fiber, or heated or cooled elements (e.g., a thermoelectric element or a resistive heating element) can be placed in the vicinity of the neural fibers.
  • thermally-induced renal neuromodulation may be achieved via indirect generation and/or application of the thermal energy to the target neural fibers, such as through application of a ‘thermal’ electric field, high-intensity focused ultrasound, laser irradiation, or other suitable energy modalities to the target neural fibers.
  • thermally-induced renal neuromodulation may be achieved via delivery of a pulsed or continuous thermal electric field to the target neural fibers, the electric field being of sufficient magnitude and/or duration to thermally induce the neuromodulation in the target fibers (e.g., to heat or thermally ablate or necrose the fibers). Additional and alternative methods and apparatus may be utilized to achieve thermally-induced renal neuromodulation, as described hereinafter.
  • protective cooling elements such as convective cooling elements
  • protective cooling elements may be utilized to protect smooth muscle cells or other non-target tissue from undesired thermal effects during the thermally-induced renal neuromodulation.
  • protective heating elements such as convective heating elements
  • Non-target tissue additionally or alternatively may be protected by focusing the thermal heating or cooling energy on the target neural fibers so that the intensity of the thermal energy outside of the target zone is insufficient to induce undesired thermal effects in the non-target tissue.
  • the non-target tissue may be protected by utilizing blood flow as a conductive and/or convective heat sink that carries away excess thermal energy (hot or cold).
  • the circulating blood may remove excess thermal energy from the non-target tissue during the procedure.
  • the intravascularly-delivered thermal energy may heat or cool target neural fibers located proximate to the vessel to modulate the target neural fibers while blood flow within the vessel protects non-target tissue of the vessel wall from the thermal energy.
  • the thermal energy can target neural fibers within the adventitia to necrose or ablate the target fibers while the blood flow protects tissue in the vessel wall.
  • One drawback of using a continuous, intravascularly-delivered thermal energy therapy in the presence of blood flow to achieve desired intravascularly-induced neuromodulation is that the feasible thermal magnitude (e.g., power) and/or duration of the therapy may be limited or insufficient. This can be caused by the limited heat capacity of the blood flowing through the blood vessel to remove excess thermal energy from the vessel wall to mitigate damage or necrosis to the non-target tissue.
  • Pulsed RF electric fields or other types of pulsed thermal energy may facilitate greater thermal magnitude (e.g., higher power), longer total duration and/or better controlled intravascular renal neuromodulation therapy compared to a continuous thermal energy therapy.
  • a pulsed thermal therapy may allow for monitoring of effects of the therapy on target or non-target tissue during the interval between the pulses. This monitoring data optionally may be used in a feedback loop to better control therapy, e.g., to determine whether to continue or stop treatment, and it may facilitate controlled delivery of a higher power or longer duration therapy.
  • the time interval between delivery of thermal energy pulses may facilitate additional convective or other cooling of the non-target tissue of the vessel wall compared to applying an equivalent magnitude or duration of continuous thermal energy. Without being limited to theory, this may occur because blood flow through the blood vessel may convectively cool (heat) the non-target tissue of the vessel wall with which the blood contacts faster than target neural fibers positioned outside of the vessel.
  • this difference in the heat transfer rate between the tissue of the blood vessel wall and the relatively remote target neural fibers may be utilized to ablate, necrose or otherwise modulate the target neural fibers without undesirably affecting the non-target tissue.
  • the pulsed thermal energy therapy may be applied with greater thermal magnitude and/or of longer total duration (i.e., the cumulative duration of all thermal energy pulses within the therapy) than a continuous thermal therapy. Heat transfer from the vessel wall to the blood (or vice versa) during the off-time or low-energy interval between the thermal energy pulses facilitates the greater magnitude/longer duration delivery with moderated damage to the non-target tissue.
  • a thermal fluid (hot or cold) may be injected, infused or otherwise delivered into the vessel to remove excess thermal energy and protect the non-target tissues.
  • the thermal fluid may, for example, comprise a saline or other biocompatible fluid that is heated, chilled or at a room temperature.
  • the thermal fluid may, for example, be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element, or at other locations relative to the tissue for which protection is sought.
  • the thermal fluid may be injected in the presence of blood flow or with the flow temporarily occluded.
  • Occlusion of flow in combination with thermal fluid delivery may facilitate good control over the heat transfer kinetics along the non-target tissues.
  • the normal variability in blood flow rate between patients which would vary the heat transfer capacity of the blood flow, may be controlled for by transferring thermal energy between the vessel wall and a thermal fluid that is delivered at a controlled rate.
  • Use of injected thermal fluids to remove excess thermal energy from non-target tissues to relatively protect the non-target tissues during therapeutic treatment of target tissues may be utilized in body lumens other than blood vessels.
  • methods and apparatus for real-time monitoring of an extent or degree of neuromodulation or denervation e.g., an extent or degree of thermal damage
  • tissue innervated by the target neural fibers and/or of thermal damage in the non-target tissue may be provided.
  • real-time monitoring of the thermal energy delivery element may be provided.
  • Such methods and apparatus may, for example, comprise a thermocouple or other temperature sensor for measuring the temperature of the monitored tissue or of the thermal energy delivery element. Other parameters that can be measured include the power, total energy delivered, or impedance.
  • Monitoring data may be used for feedback control of the thermal therapy.
  • intravascularly-delivered thermal therapy may be monitored and controlled by acquiring temperature or impedance measurements along the wall of the vessel in the vicinity of the treatment zone, and/or by limiting the power or duration of the therapy.
  • the human renal anatomy includes the kidneys K, which are supplied with oxygenated blood by the renal arteries RA.
  • the renal arteries are connected to the heart via the abdominal aorta AA.
  • Deoxygenated blood flows from the kidneys to the heart via the renal veins RV and the inferior vena cava IVC.
  • FIG. 2 illustrates a portion of the renal anatomy in greater detail. More specifically, the renal anatomy also includes renal nerves RN extending longitudinally along the lengthwise dimension L of renal artery RA, generally within the adventitia of the artery.
  • the renal artery RA has smooth muscle cells SMC that surround the arterial circumference and spiral around the angular axis ⁇ of the artery.
  • the smooth muscle cells of the renal artery accordingly have a lengthwise or longer dimension extending transverse (i.e., non-parallel) to the lengthwise dimension of the renal artery.
  • the misalignment of the lengthwise dimensions of the renal nerves and the smooth muscle cells is defined as “cellular misalignment.”
  • FIGS. 3-14 illustrate examples of systems and methods for thermally-induced renal neuromodulation.
  • FIG. 3 shows one embodiment of an extravascular apparatus 200 that includes one or more electrodes configured to deliver a thermal electric field to renal neural fibers for renal neuromodulation via heating.
  • the apparatus 200 of FIG. 3 is configured for temporary extravascular placement; however, it should be understood that partially or completely implantable extravascular apparatus additionally or alternatively may be utilized.
  • Applicants have previously described extravascular pulsed electric field systems, for example, in co-pending U.S. patent application Ser. No. 11/189,563, filed Jul. 25, 2005, which has been incorporated herein by reference in its entirety.
  • the specific embodiment of the apparatus 200 shown in FIG. 3 comprises a laparoscopic or percutaneous system having a probe 210 configured for insertion in proximity to the track of the renal neural supply along the renal artery, vein, hilum and/or within Gerota's fascia under a suitable guidance system.
  • the probe 210 can have at least one electrode 212 for delivering a thermal electric field therapy.
  • the electrode(s) 212 may be mounted on a catheter and electrically coupled to a thermal electric field generator 50 via wires 211 .
  • the electrode 212 can be passed through the probe 210 , or in an alternative embodiment the electrode 212 may be mounted to the probe 210 .
  • the probe 210 may have an electrical connector to couple the electrode 212 to the field generator 50 .
  • the field generator 50 is located external to the patient.
  • the generator as well as any of the electrode embodiments described herein, may be utilized with any embodiment of the present invention for delivery of a thermal electric field with desired field parameters, e.g., parameters sufficient to thermally or otherwise induce renal neuromodulation in target neural fibers via heating and/or electroporation.
  • desired field parameters e.g., parameters sufficient to thermally or otherwise induce renal neuromodulation in target neural fibers via heating and/or electroporation.
  • desired field parameters e.g., parameters sufficient to thermally or otherwise induce renal neuromodulation in target neural fibers via heating and/or electroporation.
  • desired field parameters e.g., parameters sufficient to thermally or otherwise induce renal neuromodulation in target neural fibers via heating and/or electroporation.
  • electrodes of embodiments described hereinafter may be electrically connected to the generator even though the generator is not explicitly shown or described with each embodiment.
  • the field generator optionally may be positioned internally within the patient. Furtherstill, the field generator may
  • the electrode(s) 212 can be individual electrodes that are electrically independent of each other, a segmented electrode with commonly connected contacts, or a continuous electrode.
  • a segmented electrode may, for example, be formed by providing a slotted tube fitted onto the electrode, or by electrically connecting a series of individual electrodes.
  • Individual electrodes or groups of electrodes 212 may be configured to provide a bipolar signal.
  • the electrodes 212 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and a remote electrode. Such a remote electrode may be attached externally to the patient's skin, e.g., to the patient's leg or flank.
  • the electrodes 212 comprise a bipolar electrode pair.
  • the probe 210 and the electrodes 212 may be similar to the standard needle or trocar-type used clinically for RF nerve block.
  • the apparatus 200 may comprise a flexible and/or custom-designed probe for the renal application described herein.
  • the probe 210 has been advanced through a percutaneous access site P into proximity with a patient's renal artery RA.
  • the probe pierces the patient's Gerota's fascia F, and the electrodes 212 are advanced into position through the probe and along the annular space between the patient's artery and fascia.
  • the target neural fibers may be heated via a pulsed or continuous electric field delivered across the bipolar electrodes 212 .
  • Such heating may, for example, ablate or cause non-ablative thermal injury to the target neural fibers to at least partially denervate the kidney innervated by the target neural fibers.
  • the electric field also may induce reversible or irreversible electroporation in the target neural fibers, which may compliment the thermal injury induced in the neural fibers.
  • the apparatus 200 may be removed from the patient to conclude the procedure.
  • an apparatus 300 comprises a catheter 302 having an optional positioning element 304 , shaft electrodes 306 a and 306 b disposed along the shaft of the catheter, and optional radiopaque markers 308 disposed along the shaft of the catheter in the region of the positioning element 304 .
  • the positioning element 304 can be a balloon, an expandable wire basket, other mechanical expander that holds the electrodes 306 a - b at a desired location relative to the vessel.
  • the electrodes 306 a - b can be arranged such that the electrode 306 a is near a proximal end of the positioning element 304 and the electrode 306 b is near the distal end of the positioning element 304 .
  • the electrodes 306 are electrically coupled to the field generator 50 (see FIG. 3 ) for delivery of a thermal electric field for heating of target neural fibers.
  • one or more of the electrodes may comprise Peltier electrodes for cooling the target neural fibers to modulate the fibers.
  • the positioning element 304 optionally may center or otherwise position the electrodes 306 a and 306 b within a vessel. Additionally, as in FIG. 4A , the positioning element may comprise an impedance-altering element that alters the impedance between electrodes 306 a and 306 b during the therapy to direct the thermal electric field across the vessel wall. This may reduce the level of energy required to achieve desired renal neuromodulation and may reduce a risk of undesirably affecting non-target tissue. Applicants have previously described use of a suitable impedance-altering element in co-pending U.S. patent application Ser. No. 11/266,993, filed Nov. 4, 2005, which is incorporated herein by reference in its entirety. When the positioning element 304 comprises an inflatable balloon as in FIG.
  • the balloon may serve as both a centering element for the electrodes 306 and as an impedance-altering electrical insulator for directing an electric field delivered across the electrodes, e.g., for directing the electric field into or across the vessel wall for modulation of target neural fibers.
  • Electrical insulation provided by the positioning element 304 may reduce the magnitude of applied energy or other parameters of the thermal electric field necessary to achieve desired heating at the target fibers.
  • the positioning element 304 optionally may be utilized as a cooling element and/or a heating element.
  • the positioning element 304 may be inflated with a chilled fluid that serves as a heat sink for removing heat from tissue that contacts the element.
  • the positioning element 304 optionally may be a heating element by inflating it with a warmed fluid that heats tissue in contact with the element.
  • the thermal fluid optionally may be circulated and/or exchanged within the positioning element 304 to facilitate more efficient conductive and/or convective heat transfer. Thermal fluids also may be used to achieve thermal neuromodulation via thermal cooling or heating mechanisms, as described in greater detail herein below.
  • the positioning element 304 (or any other portion of apparatus 300 ) additionally or alternatively may comprise one or more sensors for monitoring the process.
  • the positioning element 304 has a wall-contact thermocouple 310 ( FIG. 4A ) for monitoring the temperature or other parameters of the target tissue, the non-target tissue, the electrodes, the positioning element and/or any other portion of the apparatus 300 .
  • the catheter 302 may be delivered to the renal artery RA as shown, or it may be delivered to a renal vein or to any other vessel in proximity to neural tissue contributing to renal function, in a low profile delivery configuration through a guide catheter or other device.
  • catheters may be positioned in multiple vessels for thermal renal neuromodulation, e.g., within both the renal artery and the renal vein. Techniques for pulsed electric field renal neuromodulation in multiple vessels have been described previously, for example, in co-pending U.S. patent application Ser. No. 11/451,728, filed Jul. 12, 2006, which is incorporated herein by reference in its entirety.
  • the positioning element 304 may be expanded into contact with an interior wall of the vessel.
  • a thermal electric field then may be delivered via the electrodes 306 across the wall of the artery.
  • the electric field thermally modulates the activity along neural fibers that contribute to renal function via heating.
  • the thermal modulation at least partially denervates the kidney innervated by the neural fibers via heating. This may be achieved, for example, via thermal ablation or non-ablative damage of the target neural fibers.
  • the electric field also may induce electroporation in the neural fibers.
  • the positioning element 304 illustratively comprises an inflatable balloon, which may preferentially direct the electric field as discussed.
  • the positioning element comprises an expandable wire basket that substantially centers the electrodes 306 within the vessel without blocking blood flow through the vessel.
  • the blood may act as a heat sink for conductive and/or convective heat transfer to remove excess thermal energy from the non-target tissue. This protects the non-target tissue from undesired thermal effects. This effect may be enhanced when blood flow is not blocked during energy delivery, as in the embodiment of FIG. 4B .
  • FIG. 4B illustratively comprises a positioning element for centering the electrodes without blocking flow, it should be understood that the positioning element may be eliminated and/or that the electrodes may be attached to the positioning element such that they are not centered in the vessel upon expansion of the centering element. In such embodiments, the patient's blood may still mitigate excess thermal heating or cooling to protect non-target tissues.
  • One drawback of using a continuous, intravascularly-delivered thermal energy therapy in the presence of blood flow to achieve desired intravascularly-induced neuromodulation is that the feasible thermal magnitude (e.g., power) and/or duration of the therapy may be limited or insufficient. This can occur because the capacity of the blood to remove heat is limited, and thus the blood flowing through the blood vessel may not remove enough excess thermal energy from the vessel wall to mitigate or avoid undesirable effects in the non-target tissue.
  • Use of a pulsed thermal energy therapy such as a pulsed thermal RF electric field, may facilitate greater thermal magnitude (e.g., higher power), longer total duration and/or better controlled intravascular renal neuromodulation therapy compared to a continuous thermal energy therapy.
  • the effects of the therapy on target or non-target tissue may be monitored during the intervals between the pulses.
  • This monitoring data optionally may be used in a feedback loop to better control the therapy, e.g., to determine whether to continue or stop treatment, and it may facilitate controlled delivery of a higher power or longer duration therapy.
  • the off-time or low-energy intervals between thermal energy pulses may facilitate additional convective or other cooling of the non-target tissue of the vessel wall compared to use of a continuous thermal therapy of equivalent magnitude or duration. This may occur because blood flow through the blood vessel can convectively cool (heat) the non-target tissue of the vessel wall faster than the target neural fibers positioned outside of the vessel wall.
  • the difference in heat transfer rates between tissue of the blood vessel wall and the relatively remote target neural fibers may be utilized to ablate, necrose or otherwise modulate the target neural fibers without producing undesirable effects in the non-target tissue.
  • the pulsed thermal energy therapy may be applied with greater thermal magnitude and/or of longer total duration (i.e., the cumulative duration of all thermal energy pulses) compared to a continuous thermal therapy.
  • the higher heat transfer rate at the vessel wall during the intervals between the thermal energy pulses facilitates the greater magnitude/longer duration delivery.
  • a thermal fluid (hot or cold) may be injected, infused or otherwise delivered into the vessel to remove excess thermal energy and protect the non-target tissues.
  • the thermal fluid may, for example, comprise saline or another biocompatible fluid that is heated, chilled or at room temperature.
  • the thermal fluid may, for example, be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element, or at other locations relative to the tissue for which protection is sought.
  • the thermal fluid may be injected in the presence of blood flow or with the blood flow temporarily occluded.
  • the occlusion of the blood flow in combination with thermal fluid delivery may facilitate good control over the heat transfer kinetics along the non-target tissues.
  • the normal variability in blood flow rate between patients which would vary the heat transfer capacity of the blood flow, may be controlled for by transferring thermal energy between the vessel wall and a thermal fluid that is delivered at a controlled rate.
  • this method of using an injected thermal fluid to remove excess thermal energy from non-target tissues in order to protect the non-target tissues during therapeutic treatment of target tissues may be utilized in body lumens other than blood vessels.
  • One or more sensors may be used to monitor the temperature(s) or other parameter(s) at the electrodes 306 , the wall of the vessel and/or at other desired locations along the apparatus or the patient's anatomy.
  • the thermal neuromodulation may be controlled using the measured parameter(s) as feedback.
  • This feedback may be used, for example, to maintain the parameter(s) below a desired threshold.
  • the parameter(s) may be maintained below a threshold that may cause undesired effects in the non-target tissues.
  • more thermal energy may be carried away, which may allow for longer or higher energy treatments than when blood flow is blocked in the vessel.
  • the electrode(s) when utilizing intravascular apparatus to achieve thermal neuromodulation, in addition or as an alternative to central positioning of the electrode(s) within a blood vessel, the electrode(s) optionally may be configured to contact an internal wall of the blood vessel.
  • Wall-contact electrode(s) may facilitate more efficient transfer of a thermal electric field across the vessel wall to target neural fibers, as compared to centrally-positioned electrode(s).
  • the wall-contact electrode(s) may be delivered to the vessel treatment site in a reduced profile configuration, then expanded in vivo to a deployed configuration wherein the electrode(s) contact the vessel wall.
  • expansion of the electrode(s) is at least partially reversible to facilitate retrieval of the electrode(s) from the patient's vessel.
  • FIG. 4C depicts an embodiment of an apparatus 400 having one or more wall-contact electrodes 306 .
  • One or more of the struts of the expandable basket positioning element 304 may comprise a conductive material that is insulated in regions other than along segments that contact the vessel wall and form electrode(s) 306 .
  • the electrode(s) may be used in either a bipolar or a monopolar configuration.
  • the electrode(s) may comprise sensor(s), e.g., impedance or temperature sensors, for monitoring and/or controlling the effects of the thermal energy delivery.
  • the sensors for example, can be thermocouples.
  • FIGS. 5A and 5B depict an alternative embodiment of intravascular apparatus 500 having electrodes configured to contact the interior wall of a vessel.
  • the apparatus 500 of FIGS. 5A and 5B is an alternative embodiment of the apparatus 300 of FIGS. 4A and 4B wherein the proximal electrode 306 a of FIGS. 4A and 4B has been replaced with a wall-contact electrode 306 a ′.
  • the wall-contact electrode 306 a ′ comprises a proximal connector 312 a that connects the electrode to the shaft of the catheter 302 and is electrically coupled to the pulse generator.
  • the apparatus 500 also has a plurality of extensions 314 a that extend from the proximal connector 312 a and at least partially extend over a surface of positioning element 304 .
  • the extensions 314 a optionally may be selectively insulated such that only a selective portion of the extensions, e.g., the distal tips of the extensions, are electrically active.
  • the electrode 306 a ′ optionally may be fabricated from a slotted tube, such as a stainless steel or shape-memory (e.g., NiTi) slotted tube. Furthermore, all or a portion of the electrode may be gold-plated to improve radiopacity and/or conductivity.
  • the catheter 302 may be delivered over a guidewire G to a treatment site within the patient's vessel with the electrode 306 a ′ positioned in a reduced profile configuration.
  • the catheter 302 optionally may be delivered through a guide catheter 303 to facilitate such reduced profile delivery of the wall-contact electrode.
  • the electrode 306 a ′ When positioned as desired at a treatment site, the electrode 306 a ′ may be expanded into contact with the vessel wall by expanding the positioning element 304 (shown in FIG. 5B ).
  • a thermal monopolar or bipolar electric field then may be delivered across the vessel wall and between the electrodes 306 a ′ and 306 b to induce thermal neuromodulation, as discussed previously.
  • the optional positioning element 304 may alter impedance within the blood vessel and more efficiently route the electrical energy across the vessel wall to the target neural fibers.
  • the electrode 306 a ′ may be returned to a reduced profile, and the apparatus 300 may be removed from the patient or repositioned in the vessel.
  • the positioning element 304 may be collapsed (e.g., deflated), and the electrode 306 a ′ may be contracted by withdrawing the catheter 302 within the guide catheter 303 .
  • the electrode may be fabricated from a shape-memory material biased to the collapsed configuration, such that the electrode self-collapses upon collapse of the positioning element.
  • the electrode 306 a ′ is expanded into contact with the vessel wall
  • the electrode alternatively may be fabricated from a self-expanding material biased such that the electrode self-expands into contact with the vessel wall upon positioning of the electrode distal of the guide catheter 303 .
  • a self-expanding embodiment of the electrode 306 a ′ may obviate a need for the positioning element 304 and/or may facilitate maintenance of blood flow through the blood vessel during delivery of an electric field via the electrode.
  • the self-expanding electrode 306 a ′ may be returned to a reduced profile to facilitate removal of the apparatus 300 from the patient by withdrawing the catheter 302 within the guide catheter 303 .
  • FIGS. 6A and 6B depict another embodiment of an apparatus 600 and methods for delivering a field using a wall-contact electrode.
  • the electrode 306 a ′′ of FIGS. 6 comprises a distal connector 316 a for coupling the electrode to the shaft of catheter 302 on the distal side of the positioning element 304 .
  • the distal connector enables the electrode to extend over the entirety of the positioning element 304 and may facilitate contraction of the electrode 306 a ′′ after thermal neuromodulation.
  • the electrode 306 a ′′ can be contracted by proximally retracting the proximal connector 312 a relative to the catheter 302 during or after contraction of the positioning element 304 .
  • FIG. 6A shows the electrode 306 a ′′ in the reduced profile configuration
  • FIG. 6B shows the electrode in the expanded configuration in which the conductive portions contact the vessel wall.
  • FIGS. 7A and 7B show additional alternative embodiments of methods and an apparatus 700 .
  • the apparatus 700 comprises the proximal electrode 306 a ′ of FIGS. 5A and 5B , and a distal wall-contact electrode 306 b ′.
  • the embodiment of FIG. 7A comprises proximal and distal positioning elements 304 a and 304 b , respectively, for expanding the proximal and distal wall-contact electrodes 306 a ′ and 306 b ′, respectively, into contact with the vessel wall.
  • FIG. 7A comprises proximal and distal positioning elements 304 a and 304 b , respectively, for expanding the proximal and distal wall-contact electrodes 306 a ′ and 306 b ′, respectively, into contact with the vessel wall.
  • FIG. 7A comprises proximal and distal positioning elements 304 a and 304 b , respectively, for expanding the proximal and distal wall-contact electrodes 306 a ′ and
  • the distal wall-contact electrode 306 b ′ is proximal facing and positioned over the distal portion of the positioning element 304 to facilitate expansion of the distal electrode 306 b ′.
  • the extensions of the proximal and distal electrodes optionally may be connected along non-conductive connectors 318 to facilitate collapse and retrieval of the electrodes post-treatment.
  • a bipolar electric field may be delivered between the proximal and distal wall-contact electrodes, or a monopolar electric field may be delivered between the proximal and/or distal electrode(s) and an external ground. Having both the proximal and distal electrodes in contact with the wall of the vessel may facilitate more efficient energy transfer across the wall during delivery of a thermal electric field, as compared to having one or both of the proximal and distal electrodes centered within the vessel.
  • FIGS. 8A-8H illustrate additional embodiments of the apparatus and methods that can comprise one or more wall-contact electrodes, blood flow occlusion features, and thermal fluid injection functions.
  • the embodiments of FIGS. 8 are described as monopolar devices, but it should be understood that any or all of the embodiments may be configured or operated as bipolar devices.
  • blood flow occlusion and thermal fluid injection are described in combination with wall-contact electrode(s), it should be understood that such occlusion and injection features may be provided in combination with electrode(s) that do not contact the vessel wall.
  • a thermal fluid hot or cold
  • the thermal fluid may further remove excess thermal energy and protect the non-target tissues.
  • the thermal fluid may, for example, comprise chilled or room temperature saline (e.g., saline at a temperature lower than the temperature of the vessel wall during the therapy delivery).
  • the thermal fluid may be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element, or at other locations relative to the tissue for which protection is sought.
  • the thermal fluid may be injected in the presence of blood flow or with blood flow temporarily occluded.
  • the occlusion of blood flow in combination with thermal fluid delivery may facilitate good control over the heat transfer kinetics along the non-target tissues, as well as injection of fluid from a downstream location.
  • FIGS. 8A and 8B show an embodiment of an apparatus 800 that comprises the catheter 802 having an element 804 , which may be used to position the apparatus within the vessel and/or to occlude blood flow.
  • the element 304 element 804 can be an inflatable balloon.
  • the apparatus 800 can further have an active monopolar electrode 806 located proximally from the element 804 such that inflation of the element 804 blocks blood flow downstream of the electrode 806 .
  • the monopolar electrode 806 illustratively comprises multiple extensions 814 , and it should be understood that any desired number of extensions may be provided, including a single extension.
  • the monopolar electrode is utilized in combination with a remote electrode, such as a ground pad, positioned external to the patient.
  • the apparatus can also comprise an infusion port 805 between the element 804 and the monopolar electrode 806 .
  • the catheter 802 may be advanced within the renal artery RA in a reduced profile delivery configuration.
  • the electrode 806 may be actively expanded, or it may self-expand by removing a sheath, the guide catheter or another type of restraint from the electrode.
  • the expanded electrode 806 contacts the vessel wall.
  • the element 804 may be expanded before, during or after expansion of the electrode to properly position the electrode within the vessel and/or to occlude blood flow within the renal artery downstream of the electrode.
  • a monopolar electric field may be delivered between the active electrode 806 and the external ground.
  • the electric field may, for example, comprise a pulsed or continuous RF electric field that thermally induces neuromodulation (e.g., necrosis or ablation) in the target neural fibers.
  • the thermal therapy may be monitored and controlled, for example, via data collected with thermocouples 810 , impedance sensors or other sensors.
  • a thermal fluid infusate I may be injected through injection port 805 of the catheter 802 to cool (heat) the non-target tissue. This is expected to mitigate undesired effects in the non-target tissue.
  • the infusate may, for example, comprise chilled saline that removes excess thermal energy (hot or cold) from the wall of the vessel during thermal RF therapy.
  • Convective or other heat transfer between the non-target vessel wall tissue and the infusate I may facilitate cooling (heating) of the vessel wall at a faster rate than cooling (heating) occurs at the target neural fibers.
  • This difference in the heat transfer rates between the wall of the vessel and the target neural fibers may be utilized to modulate the neural fibers.
  • the higher heat transfer rate at the wall relative to the target neural fibers may allow for relatively higher power or longer duration therapies compared to continuous thermal therapies.
  • the interval between pulses may be used to monitor and/or control effects of the therapy.
  • FIG. 8C shows an embodiment of another apparatus 801 with wall-contact electrodes, a flow occlusion feature, and a thermal fluid injection function.
  • the occlusion element 804 is coupled to the guide wire G, which may comprise an inflation lumen, and the infusate I is delivered through a distal outlet of the catheter 802 .
  • the occlusion element alternatively may be coupled to a separate catheter or sheath rather than to the guide wire.
  • the infusate may, for example, be delivered through the guide wire lumen or through an additional lumen or annulus of the catheter 802 .
  • FIG. 8D illustrates another embodiment of an apparatus 830 wherein the occlusion element 804 is positioned proximal or upstream of the electrode(s) 806 , and the infusate I is delivered at a position distal of the occlusion element but proximal of the electrode(s).
  • FIG. 8E is an embodiment of an apparatus 840 with occlusion elements 804 positioned both proximal and distal of the electrode(s) 806 .
  • the catheter 802 comprises an aspiration port 805 b.
  • Separate lumens can extend through the catheter for injection and aspiration of the infusate I via the ports 805 .
  • Providing both injection and aspiration of the infusate facilitates good control over the flow dynamics of the infusate, and thereby the heat transfer kinetics of the infusate. For example, providing aspiration and injection at the same rate may provide consistent heat transfer kinetics between the vessel and the electrode(s).
  • FIG. 8F illustrates another embodiment of an apparatus 850 having a catheter 852 comprising a wall-contact electrode 856 that may be moved into contact with the vessel wall via an elongated member 857 .
  • the elongated member 857 is distally connected to the catheter in the vicinity of the electrode 856 .
  • the elongated member may be configured for self expansion, or it may extend through port 805 of the catheter 852 and through a lumen of the catheter to a proximal location for manipulation by a medical practitioner.
  • the proximal section of the elongated member may be advanced relative to the catheter 852 by the medical practitioner such that the member assumes the illustrated curved profile.
  • the catheter 852 Upon expansion of the elongated member, the catheter 852 is deflected such that the electrode 856 coupled to the catheter shaft contacts the vessel wall.
  • element 804 may be expanded to facilitate positioning of the electrode via the elongated member and/or to block flow through the vessel.
  • the element 804 can be coupled to the guide or delivery catheter 803 .
  • Infusate I optionally may be delivered through the catheter 803 as shown.
  • FIG. 8G is an embodiment of an apparatus 860 comprising a shaped or self-expanding electrode 866 .
  • the electrode 866 may be delivered to a treatment site within catheter 803 , and then it moves to a preselected shape after it has been removed from the lumen of the catheter 803 .
  • the electrode 866 can be removed from the catheter by advancing the catheter 802 and/or retracting the catheter 803 .
  • the electrode 866 contacts the vessel wall for delivery of therapy.
  • the catheter 802 may be rotated to rotate the electrode relative to the vessel wall and angularly reposition the electrode.
  • the therapy may be delivered at a singular angular position or at multiple angular positions.
  • multiple angularly spaced electrodes 866 may be positioned within the vasculature, as shown in FIG. 8H .
  • the electrodes may be longitudinally spaced to facilitate treatment over a longitudinal segment of the vessel, e.g., to achieve a circumferential treatment along the longitudinal segment rather than along a cross-section.
  • intra-to-extravascular systems may be provided.
  • the intra-to-extravascular systems may, for example, have electrode(s) that are delivered to an intravascular position, and then at least partially passed through/across the vessel wall to an extravascular position prior to delivery of a thermal electric field.
  • Intra-to-extravascular positioning of the electrode(s) may place the electrode(s) in closer proximity to target neural fibers for delivery of a thermal electric field, as compared to fully intravascular positioning of the electrode(s).
  • Applicants have previously described intra-to-extravascular pulsed electric field systems, for example, in co-pending U.S. patent application Ser. No. 11/324,188, filed Dec. 29, 2005, which is incorporated herein by reference in its entirety.
  • FIG. 9 illustrates one embodiment of an intra-to-extravascular (“ITEV”) system for thermally-induced renal neuromodulation is described.
  • ITEV system 900 comprising a catheter 922 having (a) a plurality of proximal electrode lumens terminating at proximal side ports 924 , (b) a plurality of distal electrode lumens terminating at distal side ports 926 , and (c) a guidewire lumen 923 .
  • the catheter 922 preferably comprises an equal number of proximal and distal electrode lumens and side ports.
  • the ITEV system 900 also includes proximal needle electrodes 928 that may be advanced through the proximal electrode lumens and the proximal side ports 924 , as well as distal needle electrodes 929 that may be advanced through the distal electrode lumens and the distal side ports 926 .
  • the catheter 922 comprises an optional expandable positioning element 930 , which may comprise an inflatable balloon or an expandable basket or cage.
  • the positioning element 930 may be expanded prior to deployment of the needle electrodes 928 and 929 in order to position or center the catheter 922 within the patient's vessel (e.g., within renal artery RA). Centering the catheter 922 is expected to facilitate delivery of all needle electrodes to desired depths within/external to the patient's vessel (e.g., to deliver all of the needle electrodes approximately to the same depth).
  • the illustrated positioning element 930 is between the proximal side ports 924 and the distal side ports 926 , and thus the positioning element 930 is between the delivery positions of the proximal and distal electrodes.
  • the positioning element 930 additionally or alternatively may be positioned at a different location or at multiple locations along the length of the catheter 922 (e.g., at a location proximal of the side ports 924 and/or at a location distal of the side ports 926 ).
  • the catheter 922 may be advanced to a treatment site within the patient's vasculature over a guidewire (not shown) via the lumen 323 .
  • the electrodes 928 and 929 may be positioned such that their non-insulated and sharpened distal regions are positioned within the proximal and distal lumens, respectively.
  • a medical practitioner may advance the electrodes via their proximal regions that are located external to the patient. Such advancement causes the distal regions of the electrodes 928 and 929 to exit side ports 924 and 926 , respectively, and pierce the wall of the patient's vasculature such that the electrodes are positioned extravascularly via an ITEV approach.
  • the proximal electrodes 928 can be connected to an electric field generator 50 as active electrodes, and the distal electrodes 929 can serve as return electrodes. In this manner, the proximal and distal electrodes form bipolar electrode pairs that align the thermal electric field with a longitudinal axis or direction of the patient's vasculature.
  • the distal electrodes 929 alternatively may comprise the active electrodes and the proximal electrodes 928 may comprise the return electrodes.
  • the proximal and/or the distal electrodes may comprise both active and return electrodes. Furtherstill, the proximal and/or the distal electrodes may be utilized in combination with an external ground for delivery of a monopolar thermal electric field. Any combination of active and distal electrodes may be utilized, as desired.
  • the electrodes 928 and 929 are connected to an electric field generator and positioned extravascularly, and with the positioning element 930 optionally expanded, delivery of the thermal electric field may proceed to achieve desired renal neuromodulation via heating.
  • the electric field also may induce electroporation.
  • the electrodes may be retracted within the proximal and distal lumens, and the positioning element 930 may be collapsed for retrieval.
  • the ITEV system 900 then may be removed from the patient to complete the procedure. Additionally or alternatively, the system may be repositioned to provide therapy at another treatment site, such as to provide bilateral renal neuromodulation.
  • Cooling elements such as convective cooling elements, may be utilized to protect non-target tissues like smooth muscle cells from thermal damage during thermally-induced renal neuromodulation via heat generation.
  • Non-target tissues may be protected by focusing the thermal energy on the target neural fibers such that an intensity of the thermal energy is insufficient to induce thermal damage in non-target tissues distant from the target neural fibers.
  • FIGS. 3-7 and 9 illustratively show bipolar apparatus, it should be understood that monopolar apparatus alternatively may be utilized as in FIGS. 8A-8H .
  • an active monopolar electrode may be positioned intravascularly, extravascularly or intra-to-extravascularly in proximity to target neural fibers that contribute to renal function.
  • a return electrode may be attached to the exterior of the patient or positioned in the patient apart from the active electrodes.
  • a thermal electric field may be delivered between the in vivo monopolar electrode and the remote electrode to effectuate desired thermally-induced renal neuromodulation.
  • Monopolar apparatus additionally may be utilized for bilateral renal neuromodulation.
  • FIGS. 3-9 illustratively describe methods and apparatus for thermally-induced renal neuromodulation via delivery of thermal electric fields that modulate the target neural fibers.
  • alternative methods and apparatus for thermally-induced (via both heating and cooling) renal neuromodulation may be provided.
  • electric fields may be used to cool and modulate the neural fibers with thermoelectric or Peltier elements.
  • thermally-induced renal neuromodulation optionally may be achieved via direct application of thermal energy to the target neural fibers.
  • Such direct thermal energy may be generated and/or transferred in a variety of ways, such as via resistive heating, via delivery of a heated or chilled fluid (see FIGS. 10 and 12 ), via a Peltier element (see FIG. 11 ), etc.
  • Thermally-induced renal neuromodulation additionally or alternatively may be achieved via application of high-intensity focused ultrasound to the target neural fibers (see FIG. 13 ). Additional and alternative methods and apparatus for thermally-induced renal neuromodulation may be used in accordance with the present invention.
  • FIG. 10 an alternative embodiment of an apparatus 1000 and methods for thermally-induced neuromodulation via direct application of thermal energy is described.
  • the electrodes 928 and 929 of FIG. 9 have been replaced with infusion needles 1028 and 1029 , respectively.
  • a thermal fluid F may be delivered through the needles to the target neural fibers.
  • the thermal fluid may be heated in order to raise the temperature of the target neural fibers above a desired threshold.
  • the temperature of the neural fibers can be raised above a body temperature of about 37° C., or above a temperature of about 45° C.
  • the thermal fluid may be chilled to reduce the temperature of the target neural fibers below a desired threshold.
  • the neural fibers can be cooled to below the body temperature of about 37° C., or further cooled below about 20° C., or still further cooled below a freezing temperature of about 0° C.
  • the thermal fluid may be delivered intravascularly (e.g., may inflate and/or be circulated through a balloon member), extravascularly (e.g., may be circulated through a vascular cuff), or a combination thereof.
  • an alternative neuromodulatory agent such as a drug or medicament
  • a thermal fluid to the target neural fibers through infusion needles 1028 and 1029
  • an alternative neuromodulatory agent such as a drug or medicament
  • alternative neuromodulatory agents include, but are not limited to, phenol and neurotoxins, such as botulinum toxin. Additional neuromodulatory agents, per se known, will be apparent to those of skill in the art.
  • FIG. 11 shows another method and apparatus 1100 for thermal renal neuromodulation via direct application of thermal energy to the target neural fibers.
  • the apparatus 1100 comprises renal artery cuff 1102 having one or more integrated thermoelectric elements that are electrically coupled to an internal or external power supply 1104 .
  • the thermoelectric element utilizes the well-known Peltier effect (i.e., the establishment of a thermal gradient induced by an electric voltage) to achieve thermal renal neuromodulation.
  • thermoelectric element of the cuff 1102 .
  • the thermoelectric element can comprise two different metals (e.g., a p-type and an n-type semiconductor) that are connected to each other at two junctions.
  • the current induces a thermal gradient between the two junctions, such that one junction cools while the other is heated. Reversal of the polarity of the voltage applied across the two junctions reverses the direction of the thermal gradient.
  • Either the hot side or the cold side of the thermoelectric element faces radially inward in order to heat or cool, respectively, the target neural fibers that travel along the renal artery to achieve thermal renal neuromodulation.
  • the radially outward surface of the thermoelectric element may be insulated to reduce a risk of thermal damage to the non-target tissues.
  • the cuff 1102 may comprise one or more temperature sensors, such as thermocouples, for monitoring the temperature of the target neural fibers and/or of the non-target tissues.
  • FIG. 12 shows another method and apparatus 1200 utilizing the Peltier effect.
  • the apparatus 1200 comprises an implanted or external pump 1202 connected to a renal artery cuff 1204 via inlet fluid conduit 1206 a and outlet fluid conduit 1206 b .
  • the inlet fluid conduit transfers fluid from the pump to the cuff, while the outlet fluid conduit transfers fluid from the cuff to the pump to circulate fluid through the cuff.
  • a reservoir of fluid may be located in the cuff, the pump and/or in the fluid conduits.
  • the pump 1202 further comprises one or more thermoelectric or other thermal elements in heat exchange contact with the fluid reservoir for cooling or heating the fluid that is transferred to the cuff to thermally modulate the target neural fibers.
  • the apparatus 1200 optionally may have controls for automatic or manual control of fluid heating or cooling, as well as fluid circulation within the cuff.
  • the apparatus may comprise temperature and/or renal sympathetic neural activity monitoring or feedback control.
  • the apparatus illustratively is shown unilaterally treating neural fibers innervating a single kidney, it should be understood that bilateral treatment of neural fibers innervating both kidneys alternatively may be provided.
  • Thermal renal neuromodulation alternatively may be achieved via pulsed or continuous high-intensity focused ultrasound.
  • High intensity focused ultrasound also may induce reversible or irreversible electroporation in the target neural fibers.
  • the ultrasound may be delivered over a full 360° (e.g. when delivered intravascularly) or over a radial segment of less than 360° (e.g., when delivered intravascularly, extravascularly, intra-to-extravascularly, or a combination thereof).
  • FIGS. 13A and B illustrate an embodiment of an ultrasonic apparatus 1300 comprising a catheter 1302 , one or more ultrasound transducers 1304 positioned along the shaft of the catheter, and an inflatable balloon 1306 around the transducers 1304 .
  • the ultrasound transducers 1304 are coupled to an ultrasound signal generator via conductors 1307 .
  • the balloon 1306 can have an acoustically reflective portion 1308 for reflecting an ultrasound wave and an acoustically transmissive portion 1309 the wave through which the ultrasonic energy can pass. In this manner, the wave may be focused as shown at a focal point or radius P positioned a desired focal distance from the catheter shaft.
  • the transducers may be attached directly to the balloon.
  • the focal distance may be specified or dynamically variable such that the ultrasonic wave is focused at a desired depth on target neural fibers outside of the vessel.
  • a family of catheter sizes may be provided to allow for a range of specified focal distances.
  • a dynamically variable focal distance may be achieved, for example, via calibrated expansion of the balloon.
  • FIG. 13A shows the apparatus 1300 in a reduced delivery and retrieval configuration
  • FIG. 13B shows the apparatus 1300 in an expanded deployed configuration.
  • FIG. 14 shows an alternative embodiment of an ultrasonic apparatus 1400 having a catheter 1402 , a conductor 1403 , and concave ultrasound transducers 1401 .
  • the concave ultrasound transducers 1404 direct the energy to a specific focal point P, and as such the concave transducers 1404 eliminate the need of the reflective portion of the balloon 366 (e.g., the balloon may be acoustically transmissive at all points).
  • the apparatus described above with respect to FIGS. 3-14 optionally may be used to quantify the efficacy, extent or cell selectivity of thermally-induced renal neuromodulation in order to monitor and/or control the neuromodulation.
  • the apparatus may further comprise one or more sensors, such as thermocouples or imaging transducers, for measuring and monitoring one or more parameters of (a) the apparatus, (b) target neural fibers and/or (c) non-target tissues. For example, a temperature rise or drop above or below certain thresholds is expected to thermally ablate, non-ablatively injure, freeze or otherwise damage the target neural fibers to thereby modulate the target neural fibers.
  • FIGS. 15A and 15B classify the various types of thermal neuromodulation that may be achieved with the apparatus and methods of the present invention.
  • FIGS. 15A and 15B are provided only for the sake of illustration and should in no way be construed as limiting.
  • FIG. 15A classifies thermal neuromodulation due to heat exposure. As shown, exposure to heat in excess of a body temperature of about 37° C., but below a temperature of about 45° C., may induce thermal injury via moderate heating of the target neural fibers or of vascular structures that perfuse the target fibers. For example, this may induce non-ablative thermal injury in the fibers or structures. Exposure to heat above a temperature of about 45° C., or above about 60° C., may induce thermal injury via substantial heating of the fibers or structures.
  • such higher temperatures may thermally ablate the target neural fibers or the vascular structures.
  • RSNA renal sympathetic nerve activity
  • thermal cooling for neuromodulation includes non-freezing thermal slowing of nerve conduction and/or nerve injury, as well as freezing thermal nerve injury.
  • Non-freezing thermal cooling may include reducing the temperature of the target neural fibers or of the vascular structures that feed the fibers to temperatures below the body temperature of about 37° C., or below about 20° C., but above the freezing temperature of about 0° C.
  • This non-freezing thermal cooling may either slow nerve conduction or may cause direct neural injury.
  • Slowed nerve conduction may use continuous or intermittent cooling of the target neural fibers to sustain the desired thermal neuromodulation, while direct neural injury may require only a discrete treatment to achieve sustained thermal neuromodulation.
  • Thermal cooling for neuromodulation also may include freezing thermal nerve injury by reducing the temperature of the target neural fibers or of the vascular structures that feed the fibers to temperatures below the freezing point of about 0° C. Regardless of the type of cold exposure utilized to induce the thermal neuromodulation (freezing or non-freezing), a reduction in renal sympathetic nerve activity (“RSNA”) is expected.
  • RSNA renal sympathetic nerve activity
  • thermally-induced renal neuromodulation may alleviate clinical symptoms of CHF, hypertension, renal disease, myocardial infarction, atrial fibrillation, contrast nephropathy and/or other cardio-renal diseases for a period of months (potentially up to six months or more). This time period may be sufficient to allow the body to heal; for example, this period may reduce the risk of CHF onset after an acute myocardial infarction to thereby alleviate a need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient may receive repeat therapy. Thermally-induced renal neuromodulation also may systemically reduce sympathetic tone.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Thermal Sciences (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Molecular Biology (AREA)
  • Otolaryngology (AREA)
  • Medical Informatics (AREA)
  • Plasma & Fusion (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Surgical Instruments (AREA)

Abstract

Methods and apparatus are provided for thermally-induced renal neuromodulation. Thermally-induced renal neuromodulation may be achieved via direct and/or via indirect application of thermal energy to heat or cool neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers. In some embodiments, parameters of the neural fibers, of non-target tissue, or of the thermal energy delivery element, may be monitored via one or more sensors for controlling the thermally-induced neuromodulation. In some embodiments, protective elements may be provided to reduce a degree of thermal damage induced in the non-target tissues. In some embodiments, thermally-induced renal neuromodulation is achieved via delivery of a pulsed thermal therapy.

Description

    REFERENCE TO RELATED APPLICATIONS
  • The present application claims the benefit of U.S. Provisional Application No. 60/816,999 filed on Jun. 28, 2006. The present application is also a Continuation-In-Part application of co-pending U.S. patent application Ser. No. 10/408,665, filed on Apr. 8, 2003, which claims the benefit of U.S. Provisional Application Nos. (a) 60/370,190, filed on Apr. 8, 2002, (b) 60/415,575, filed on Oct. 3, 2002, and (c) 60/442,970, filed on Jan. 29, 2003. Furthermore, this application is a Continuation-In-Part application of co-pending U.S. patent application Ser. No. 11/189,563, filed on Jul. 25, 2005, which is a Continuation-In-Part application of U.S. patent application Ser. No. 11/129,765, filed on May 13, 2005, and which claims the benefit of U.S. Provisional Application Nos. (a) 60/616,254, filed on Oct. 5, 2004, and (b) 60/624,793, filed on Nov. 2, 2004. Furtherstill, this application is a Continuation-In-Part application of co-pending U.S. patent application Ser. No. 11/504,117, filed on Aug. 14, 2006.
  • All of these applications are incorporated herein by reference in their entireties.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • TECHNICAL FIELD
  • The present invention relates to methods and apparatus for neuromodulation. More particularly, the present invention relates to methods and apparatus for achieving renal neuromodulation via thermal heating and/or cooling mechanisms.
  • BACKGROUND
  • Heart Failure or Chronic Heart Failure (“CHF”) is a condition that occurs when the heart becomes damaged and reduces blood flow to the organs of the body. If blood flow decreases sufficiently, kidney function becomes altered, which results in fluid retention, abnormal hormone secretions and increased constriction of blood vessels. These results increase the workload of the heart and further decrease the capacity of the heart to pump blood through the kidneys and circulatory system.
  • It is believed that progressively decreasing perfusion of the kidneys is a principal non-cardiac cause perpetuating the downward spiral of CHF. Moreover, the fluid overload and associated clinical symptoms resulting from these physiologic changes result in additional hospital admissions, poor quality of life and additional costs to the health care system.
  • In addition to their role in the progression of CHF, the kidneys play a significant role in the progression of Renal Failure or Chronic Renal Failure (“CRF”), Renal Disease or End-Stage Renal Disease (“ESRD”), Hypertension (pathologically high blood pressure) and other cardio-renal diseases. The functions of the kidneys can be summarized under three broad categories: filtering blood and excreting waste products generated by the body's metabolism; regulating salt, water, electrolyte and acid-base balance; and secreting hormones to maintain vital organ blood flow. Without properly functioning kidneys, a patient will suffer water retention, reduced urine flow and an accumulation of waste toxins in the blood and body. These conditions result from reduced renal function or renal failure (kidney failure) and are believed to increase the workload of the heart. In a CHF patient, renal failure will cause the heart to further deteriorate as fluids are retained and blood toxins accumulate due to the poorly functioning kidneys.
  • It has been established in animal models that the heart failure condition results in abnormally high sympathetic activation of the kidneys. An increase in renal sympathetic nerve activity leads to decreased removal of water and sodium from the body, as well as increased renin secretion. Increased renin secretion leads to vasoconstriction of blood vessels supplying the kidneys, which causes decreased renal blood flow. Reduction of sympathetic renal nerve activity, e.g., via denervation, may reverse these processes.
  • Applicants have described methods and apparatus for treating renal disorders by applying a pulsed electric field, preferably non-thermal, to neural fibers that contribute to renal function. See, for example, Applicants' co-pending U.S. patent application Ser. Nos. (a) 11/129,765, filed on May 13, 2005, (b) Ser. No. 11/189,563, filed on Jul. 25, 2005, and (c) Ser. No. 11/363,867, filed Feb. 27, 2006, all of which are incorporated herein by reference in their entireties. A pulsed electric field (“PEF”) may initiate renal denervation or other types of neuromodulation via irreversible electroporation or other processes. The PEF may be delivered from apparatus positioned intravascularly, extravascularly, intra-to-extravascularly or a combination thereof. Additional methods and apparatus for achieving renal neuromodulation via localized drug delivery (such as by a drug pump or infusion catheter) or use of a stimulation electric field are described in co-owned and co-pending U.S. patent application Ser. No. 10/408,665, filed Apr. 8, 2003, and U.S. Pat. No. 6,978,174, both of which are incorporated herein by reference in their entireties.
  • A potential challenge of using non-thermal PEF systems for treating renal disorders is to selectively electroporate target cells without affecting other cells. For example, it may be desirable to irreversibly electroporate renal nerve cells that travel along or in proximity to renal vasculature, but it may not be desirable to damage the smooth muscle cells of which the vasculature is composed. As a result, an overly aggressive course of non-thermal PEF therapy may persistently injure the renal vasculature, but an overly conservative course of non-thermal PEF therapy may not achieve the desired renal neuromodulation.
  • Applicants have also described methods and apparatus for monitoring changes in tissue impedance or conductivity in order to determine the effects of pulsed electric field therapy. Such changes in tissue can be used to determine an extent of electroporation and/or its degree of irreversibility in target or non-target tissue. See, for example, Applicant's co-pending U.S. patent application Ser. No. 11/233,814, filed Sep. 23, 2005, which is incorporated herein by reference in its entirety. However, in some patients it may be difficult or impractical to achieve such real-time monitoring when utilizing non-thermal pulsed electric field neuromodulatory mechanisms. This can result in insufficient neuromodulation to achieve a desired treatment outcome, and thus re-intervention may be necessary to complete the treatment. Conversely, an overly aggressive course of relatively unmonitored or uncontrolled therapy may induce undesirable and/or persistent damage in non-target tissue. Thus, it would be desirable to achieve renal neuromodulation via more easily monitored and/or controlled neuromodulatory mechanisms.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Several embodiments of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
  • FIG. 1 is a schematic view illustrating human renal anatomy.
  • FIG. 2 is a schematic isometric detail view showing the location of the renal nerves relative to the renal artery.
  • FIG. 3 is a schematic side view, partially in section, illustrating an example of an extravascular method and apparatus for thermal renal neuromodulation.
  • FIGS. 4A-4C are schematic side views, partially in section, illustrating examples of intravascular methods and apparatus for thermal renal neuromodulation.
  • FIGS. 5A and 5B are schematic side views, partially in section, illustrating an alternative embodiment of the intravascular methods and apparatus of FIGS. 4 comprising wall-contact electrodes.
  • FIGS. 6A and 6B are schematic side views, partially in section, illustrating an additional alternative embodiment of the intravascular methods and apparatus of FIG. 4 comprising alternative wall-contact electrodes.
  • FIGS. 7A and 7B are schematic side views, partially in section, illustrating other alternative embodiments of the intravascular methods and apparatus of FIG. 4 comprising multiple wall-contact electrodes.
  • FIGS. 8A-8H are schematic side views, partially in section, illustrating embodiments of the intravascular methods and apparatus of FIG. 4 comprising one or more wall-contact electrodes, as well as optional blood flow occlusion and thermal fluid injection.
  • FIG. 9 is a schematic side view, partially in section, illustrating an example of an intra-to-extravascular method and apparatus for thermal renal neuromodulation.
  • FIG. 10 is a schematic side view, partially in section, of an alternative embodiment of the method and apparatus of FIG. 8 configured for thermal renal neuromodulation via direct application of thermal energy.
  • FIG. 11 is a schematic side view, partially in section, illustrating a method and apparatus for thermal renal neuromodulation comprising a thermoelectric element suitable for direct application of thermal energy to target neural fibers.
  • FIG. 12 is a schematic side view, partially in section, illustrating another method and apparatus for thermal renal neuromodulation comprising a thermoelectric element.
  • FIGS. 13A and 13B are schematic side views, partially in section, illustrating a method and apparatus for thermal renal neuromodulation via high-intensity focused ultrasound.
  • FIG. 14 is a schematic side view, partially in section, illustrating an alternative embodiment of the apparatus and method of FIGS. 13.
  • FIGS. 15A and 15B are schematic diagrams for classifying the various types of thermal neuromodulation that may be achieved with the apparatus and methods of the present invention.
  • DETAILED DESCRIPTION
  • A. Overview
  • The following describes several embodiments of methods and apparatus for renal neuromodulation via thermal heating and/or thermal cooling mechanisms. Many embodiments of such methods and apparatus may reduce renal sympathetic nerve activity. Thermally-induced (via heating and/or cooling) neuromodulation may be achieved via apparatus positioned proximate target neural fibers, such as being positioned (a) within renal vasculature (i.e., positioned intravascularly), (b) extravascularly, (c) intra-to-extravascularly, or (d) a combination thereof. Thermal neuromodulation by heating or cooling may be caused by directly effecting or otherwise altering the neural structures that are subject to the thermal stress. Additionally or alternatively, the thermal neuromodulation may at least in part be due to alteration of arteries, arterioles, capillaries, or veins or other vascular structures which perfuse the target neural fibers or surrounding tissue. Furtherstill, the modulation may at least in part be caused by electroporation of the target neural fibers or of surrounding tissue.
  • As used herein, thermal heating mechanisms for neuromodulation include both thermal ablation and non-ablative thermal injury or damage (e.g., via sustained heating or resistive heating). Thermal heating mechanisms may include raising the temperature of target neural fibers above a desired threshold to achieve non-ablative thermal injury, or above a higher temperature) to achieve ablative thermal injury. For example, the target temperature can be above body temperature (e.g., approximately 37° C.) but less than about 45° C. for non-ablative thermal injury, or the target temperature can be about 45° C. or more for the ablative thermal injury.
  • As used herein, thermal cooling mechanisms for neuromodulation include non-freezing thermal slowing of nerve conduction and/or non-freezing thermal nerve injury, as well as freezing thermal nerve injury. Thermal cooling mechanisms may include reducing the temperature of target neural fibers below a desired threshold, for example, below the body temperature of about 37° C. (e.g., below about 20° C.) to achieve non-freezing thermal injury. Thermal cooling mechanisms also may include reducing the temperature of the target neural fibers below about 0° C., e.g., to achieve freezing thermal injury.
  • In addition to monitoring or controlling the temperature during thermal neuromodulation, the length of exposure to thermal stimuli may be specified to affect an extent or degree of efficacy of the thermal neuromodulation. In many embodiments, the length of exposure to thermal stimuli is longer than instantaneous exposure, such as longer than about 30 seconds, or even longer than 2 minutes. In certain specific embodiments, the length of exposure can be less than 10 minutes, but this should in no way be construed as the upper limit of the exposure period. Exposure times measured in hours, days or longer, may be utilized to achieve desired thermal neuromodulation.
  • When conducting neuromodulation via thermal mechanisms, the temperature threshold discussed previously may be determined as a function of the duration of exposure to thermal stimuli. Additionally or alternatively, the length of exposure may be determined as a function of the desired temperature threshold. These and other parameters may be specified or calculated to achieve and control desired thermal neuromodulation.
  • In some embodiments, thermally-induced renal neuromodulation may be achieved by directly applying thermal cooling or heating energy to the target neural fibers. For example, a chilled or heated fluid can be applied at least proximate to the target neural fiber, or heated or cooled elements (e.g., a thermoelectric element or a resistive heating element) can be placed in the vicinity of the neural fibers. In other embodiments, thermally-induced renal neuromodulation may be achieved via indirect generation and/or application of the thermal energy to the target neural fibers, such as through application of a ‘thermal’ electric field, high-intensity focused ultrasound, laser irradiation, or other suitable energy modalities to the target neural fibers. For example, thermally-induced renal neuromodulation may be achieved via delivery of a pulsed or continuous thermal electric field to the target neural fibers, the electric field being of sufficient magnitude and/or duration to thermally induce the neuromodulation in the target fibers (e.g., to heat or thermally ablate or necrose the fibers). Additional and alternative methods and apparatus may be utilized to achieve thermally-induced renal neuromodulation, as described hereinafter.
  • When utilizing thermal heating mechanisms for thermal neuromodulation, protective cooling elements, such as convective cooling elements, optionally may be utilized to protect smooth muscle cells or other non-target tissue from undesired thermal effects during the thermally-induced renal neuromodulation. Likewise, when utilizing thermal cooling mechanisms, protective heating elements, such as convective heating elements, may be utilized to protect the non-target tissue. Non-target tissue additionally or alternatively may be protected by focusing the thermal heating or cooling energy on the target neural fibers so that the intensity of the thermal energy outside of the target zone is insufficient to induce undesired thermal effects in the non-target tissue. When thermal neuromodulation is achieved via thermal energy delivered intravascularly, the non-target tissue may be protected by utilizing blood flow as a conductive and/or convective heat sink that carries away excess thermal energy (hot or cold). For example, when blood flow is not blocked, the circulating blood may remove excess thermal energy from the non-target tissue during the procedure. The intravascularly-delivered thermal energy may heat or cool target neural fibers located proximate to the vessel to modulate the target neural fibers while blood flow within the vessel protects non-target tissue of the vessel wall from the thermal energy. For example, the thermal energy can target neural fibers within the adventitia to necrose or ablate the target fibers while the blood flow protects tissue in the vessel wall.
  • One drawback of using a continuous, intravascularly-delivered thermal energy therapy in the presence of blood flow to achieve desired intravascularly-induced neuromodulation is that the feasible thermal magnitude (e.g., power) and/or duration of the therapy may be limited or insufficient. This can be caused by the limited heat capacity of the blood flowing through the blood vessel to remove excess thermal energy from the vessel wall to mitigate damage or necrosis to the non-target tissue. Pulsed RF electric fields or other types of pulsed thermal energy may facilitate greater thermal magnitude (e.g., higher power), longer total duration and/or better controlled intravascular renal neuromodulation therapy compared to a continuous thermal energy therapy. For example, a pulsed thermal therapy may allow for monitoring of effects of the therapy on target or non-target tissue during the interval between the pulses. This monitoring data optionally may be used in a feedback loop to better control therapy, e.g., to determine whether to continue or stop treatment, and it may facilitate controlled delivery of a higher power or longer duration therapy.
  • Furthermore, the time interval between delivery of thermal energy pulses may facilitate additional convective or other cooling of the non-target tissue of the vessel wall compared to applying an equivalent magnitude or duration of continuous thermal energy. Without being limited to theory, this may occur because blood flow through the blood vessel may convectively cool (heat) the non-target tissue of the vessel wall with which the blood contacts faster than target neural fibers positioned outside of the vessel.
  • When providing a pulsed thermal therapy, this difference in the heat transfer rate between the tissue of the blood vessel wall and the relatively remote target neural fibers may be utilized to ablate, necrose or otherwise modulate the target neural fibers without undesirably affecting the non-target tissue. The pulsed thermal energy therapy may be applied with greater thermal magnitude and/or of longer total duration (i.e., the cumulative duration of all thermal energy pulses within the therapy) than a continuous thermal therapy. Heat transfer from the vessel wall to the blood (or vice versa) during the off-time or low-energy interval between the thermal energy pulses facilitates the greater magnitude/longer duration delivery with moderated damage to the non-target tissue.
  • In addition or as an alternative to utilizing the patient's blood as a heat sink to establish the difference in heat transfer rates, a thermal fluid (hot or cold) may be injected, infused or otherwise delivered into the vessel to remove excess thermal energy and protect the non-target tissues. The thermal fluid may, for example, comprise a saline or other biocompatible fluid that is heated, chilled or at a room temperature. The thermal fluid may, for example, be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element, or at other locations relative to the tissue for which protection is sought. The thermal fluid may be injected in the presence of blood flow or with the flow temporarily occluded.
  • Occlusion of flow in combination with thermal fluid delivery may facilitate good control over the heat transfer kinetics along the non-target tissues. For example, the normal variability in blood flow rate between patients, which would vary the heat transfer capacity of the blood flow, may be controlled for by transferring thermal energy between the vessel wall and a thermal fluid that is delivered at a controlled rate. Use of injected thermal fluids to remove excess thermal energy from non-target tissues to relatively protect the non-target tissues during therapeutic treatment of target tissues may be utilized in body lumens other than blood vessels.
  • In some embodiments, methods and apparatus for real-time monitoring of an extent or degree of neuromodulation or denervation (e.g., an extent or degree of thermal damage) in tissue innervated by the target neural fibers and/or of thermal damage in the non-target tissue may be provided. Likewise, real-time monitoring of the thermal energy delivery element may be provided. Such methods and apparatus may, for example, comprise a thermocouple or other temperature sensor for measuring the temperature of the monitored tissue or of the thermal energy delivery element. Other parameters that can be measured include the power, total energy delivered, or impedance. Monitoring data may be used for feedback control of the thermal therapy. For example, intravascularly-delivered thermal therapy may be monitored and controlled by acquiring temperature or impedance measurements along the wall of the vessel in the vicinity of the treatment zone, and/or by limiting the power or duration of the therapy.
  • To better understand the structures of several embodiments of devices described below, as well as the methods of using such devices for thermally-induced renal neuromodulation, a description of the renal anatomy in humans is provided.
  • B. Renal Anatomy Summary
  • With reference to FIG. 1, the human renal anatomy includes the kidneys K, which are supplied with oxygenated blood by the renal arteries RA. The renal arteries are connected to the heart via the abdominal aorta AA. Deoxygenated blood flows from the kidneys to the heart via the renal veins RV and the inferior vena cava IVC.
  • FIG. 2 illustrates a portion of the renal anatomy in greater detail. More specifically, the renal anatomy also includes renal nerves RN extending longitudinally along the lengthwise dimension L of renal artery RA, generally within the adventitia of the artery. The renal artery RA has smooth muscle cells SMC that surround the arterial circumference and spiral around the angular axis θ of the artery. The smooth muscle cells of the renal artery accordingly have a lengthwise or longer dimension extending transverse (i.e., non-parallel) to the lengthwise dimension of the renal artery. The misalignment of the lengthwise dimensions of the renal nerves and the smooth muscle cells is defined as “cellular misalignment.”
  • C. Embodiments of Apparatus and Methods for Neuromodulation
  • FIGS. 3-14 illustrate examples of systems and methods for thermally-induced renal neuromodulation. FIG. 3 shows one embodiment of an extravascular apparatus 200 that includes one or more electrodes configured to deliver a thermal electric field to renal neural fibers for renal neuromodulation via heating. The apparatus 200 of FIG. 3 is configured for temporary extravascular placement; however, it should be understood that partially or completely implantable extravascular apparatus additionally or alternatively may be utilized. Applicants have previously described extravascular pulsed electric field systems, for example, in co-pending U.S. patent application Ser. No. 11/189,563, filed Jul. 25, 2005, which has been incorporated herein by reference in its entirety.
  • The specific embodiment of the apparatus 200 shown in FIG. 3 comprises a laparoscopic or percutaneous system having a probe 210 configured for insertion in proximity to the track of the renal neural supply along the renal artery, vein, hilum and/or within Gerota's fascia under a suitable guidance system. The probe 210 can have at least one electrode 212 for delivering a thermal electric field therapy. The electrode(s) 212, for example, may be mounted on a catheter and electrically coupled to a thermal electric field generator 50 via wires 211. The electrode 212 can be passed through the probe 210, or in an alternative embodiment the electrode 212 may be mounted to the probe 210. The probe 210 may have an electrical connector to couple the electrode 212 to the field generator 50.
  • The field generator 50 is located external to the patient. The generator, as well as any of the electrode embodiments described herein, may be utilized with any embodiment of the present invention for delivery of a thermal electric field with desired field parameters, e.g., parameters sufficient to thermally or otherwise induce renal neuromodulation in target neural fibers via heating and/or electroporation. It should be understood that electrodes of embodiments described hereinafter may be electrically connected to the generator even though the generator is not explicitly shown or described with each embodiment. Furthermore, the field generator optionally may be positioned internally within the patient. Furtherstill, the field generator may additionally comprise or may be substituted with an alternative thermal energy generator, such as a thermoelectric generator for heating or cooling (e.g., a Peltier device), or a thermal fluid injection system for heating or cooling, etc.
  • The electrode(s) 212 can be individual electrodes that are electrically independent of each other, a segmented electrode with commonly connected contacts, or a continuous electrode. A segmented electrode may, for example, be formed by providing a slotted tube fitted onto the electrode, or by electrically connecting a series of individual electrodes. Individual electrodes or groups of electrodes 212 may be configured to provide a bipolar signal. The electrodes 212 may be dynamically assignable to facilitate monopolar and/or bipolar energy delivery between any of the electrodes and/or between any of the electrodes and a remote electrode. Such a remote electrode may be attached externally to the patient's skin, e.g., to the patient's leg or flank. In FIG. 3, the electrodes 212 comprise a bipolar electrode pair. The probe 210 and the electrodes 212 may be similar to the standard needle or trocar-type used clinically for RF nerve block. Alternatively, the apparatus 200 may comprise a flexible and/or custom-designed probe for the renal application described herein.
  • In FIG. 3, the probe 210 has been advanced through a percutaneous access site P into proximity with a patient's renal artery RA. The probe pierces the patient's Gerota's fascia F, and the electrodes 212 are advanced into position through the probe and along the annular space between the patient's artery and fascia. Once properly positioned, the target neural fibers may be heated via a pulsed or continuous electric field delivered across the bipolar electrodes 212. Such heating may, for example, ablate or cause non-ablative thermal injury to the target neural fibers to at least partially denervate the kidney innervated by the target neural fibers. The electric field also may induce reversible or irreversible electroporation in the target neural fibers, which may compliment the thermal injury induced in the neural fibers. After treatment, the apparatus 200 may be removed from the patient to conclude the procedure.
  • Referring now to FIGS. 4A and 4B, several embodiments of intravascular systems for thermally-induced renal neuromodulation are described. Applicants have previously described intravascular pulsed electric field systems, for example, in co-pending U.S. patent application Ser. No. 11/129,765, filed May 13, 2005, which has been incorporated herein by reference in its entirety. In one embodiment, an apparatus 300 comprises a catheter 302 having an optional positioning element 304, shaft electrodes 306 a and 306 b disposed along the shaft of the catheter, and optional radiopaque markers 308 disposed along the shaft of the catheter in the region of the positioning element 304. The positioning element 304 can be a balloon, an expandable wire basket, other mechanical expander that holds the electrodes 306 a-b at a desired location relative to the vessel. The electrodes 306 a-b can be arranged such that the electrode 306 a is near a proximal end of the positioning element 304 and the electrode 306 b is near the distal end of the positioning element 304. The electrodes 306 are electrically coupled to the field generator 50 (see FIG. 3) for delivery of a thermal electric field for heating of target neural fibers. In an alternative embodiment, one or more of the electrodes may comprise Peltier electrodes for cooling the target neural fibers to modulate the fibers.
  • The positioning element 304 optionally may center or otherwise position the electrodes 306 a and 306 b within a vessel. Additionally, as in FIG. 4A, the positioning element may comprise an impedance-altering element that alters the impedance between electrodes 306 a and 306 b during the therapy to direct the thermal electric field across the vessel wall. This may reduce the level of energy required to achieve desired renal neuromodulation and may reduce a risk of undesirably affecting non-target tissue. Applicants have previously described use of a suitable impedance-altering element in co-pending U.S. patent application Ser. No. 11/266,993, filed Nov. 4, 2005, which is incorporated herein by reference in its entirety. When the positioning element 304 comprises an inflatable balloon as in FIG. 4A, the balloon may serve as both a centering element for the electrodes 306 and as an impedance-altering electrical insulator for directing an electric field delivered across the electrodes, e.g., for directing the electric field into or across the vessel wall for modulation of target neural fibers. Electrical insulation provided by the positioning element 304 may reduce the magnitude of applied energy or other parameters of the thermal electric field necessary to achieve desired heating at the target fibers.
  • Furthermore, the positioning element 304 optionally may be utilized as a cooling element and/or a heating element. For example, the positioning element 304 may be inflated with a chilled fluid that serves as a heat sink for removing heat from tissue that contacts the element. Conversely, the positioning element 304 optionally may be a heating element by inflating it with a warmed fluid that heats tissue in contact with the element. The thermal fluid optionally may be circulated and/or exchanged within the positioning element 304 to facilitate more efficient conductive and/or convective heat transfer. Thermal fluids also may be used to achieve thermal neuromodulation via thermal cooling or heating mechanisms, as described in greater detail herein below. The positioning element 304 (or any other portion of apparatus 300) additionally or alternatively may comprise one or more sensors for monitoring the process. In one embodiment, the positioning element 304 has a wall-contact thermocouple 310 (FIG. 4A) for monitoring the temperature or other parameters of the target tissue, the non-target tissue, the electrodes, the positioning element and/or any other portion of the apparatus 300.
  • The electrodes 306 can be individual electrodes (i.e., independent contacts), a segmented electrode with commonly connected contacts, or a single continuous electrode. Furthermore, the electrodes 306 may be configured to provide a bipolar signal, or the electrodes 306 may be used together or individually in conjunction with a separate patient ground pad for monopolar use. As an alternative or in addition to placement of the electrodes 306 along the central shaft of the catheter 302, as in FIGS. 4A and 4B, the electrodes 306 may be attached to the positioning element 304 such that they contact the wall of the renal artery RA. In such a variation, the electrodes may, for example, be affixed to the inside surface, outside surface or at least partially embedded within the wall of the positioning element. FIG. 4C, described hereinafter, illustrates one example of wall-contact electrodes, while FIGS. 5-8 illustrate alternative examples of wall-contact electrodes.
  • In use, the catheter 302 may be delivered to the renal artery RA as shown, or it may be delivered to a renal vein or to any other vessel in proximity to neural tissue contributing to renal function, in a low profile delivery configuration through a guide catheter or other device. Alternatively, catheters may be positioned in multiple vessels for thermal renal neuromodulation, e.g., within both the renal artery and the renal vein. Techniques for pulsed electric field renal neuromodulation in multiple vessels have been described previously, for example, in co-pending U.S. patent application Ser. No. 11/451,728, filed Jul. 12, 2006, which is incorporated herein by reference in its entirety.
  • Once the positioning element 304 is at a desired location within the renal vasculature, it may be expanded into contact with an interior wall of the vessel. A thermal electric field then may be delivered via the electrodes 306 across the wall of the artery. The electric field thermally modulates the activity along neural fibers that contribute to renal function via heating. In several embodiments, the thermal modulation at least partially denervates the kidney innervated by the neural fibers via heating. This may be achieved, for example, via thermal ablation or non-ablative damage of the target neural fibers. The electric field also may induce electroporation in the neural fibers.
  • In the embodiment of FIG. 4A, the positioning element 304 illustratively comprises an inflatable balloon, which may preferentially direct the electric field as discussed. In the embodiment of FIG. 4B, the positioning element comprises an expandable wire basket that substantially centers the electrodes 306 within the vessel without blocking blood flow through the vessel. During delivery of the thermal electric field (or of other thermal energy), the blood may act as a heat sink for conductive and/or convective heat transfer to remove excess thermal energy from the non-target tissue. This protects the non-target tissue from undesired thermal effects. This effect may be enhanced when blood flow is not blocked during energy delivery, as in the embodiment of FIG. 4B.
  • Using the patient's blood as a heat sink is expected to facilitate delivery of longer or greater magnitude thermal treatments with reduced risk of undesired effects to the non-target tissue, which may enhance the efficacy of the treatment at the target neural fibers. Although the embodiment of FIG. 4B illustratively comprises a positioning element for centering the electrodes without blocking flow, it should be understood that the positioning element may be eliminated and/or that the electrodes may be attached to the positioning element such that they are not centered in the vessel upon expansion of the centering element. In such embodiments, the patient's blood may still mitigate excess thermal heating or cooling to protect non-target tissues.
  • One drawback of using a continuous, intravascularly-delivered thermal energy therapy in the presence of blood flow to achieve desired intravascularly-induced neuromodulation is that the feasible thermal magnitude (e.g., power) and/or duration of the therapy may be limited or insufficient. This can occur because the capacity of the blood to remove heat is limited, and thus the blood flowing through the blood vessel may not remove enough excess thermal energy from the vessel wall to mitigate or avoid undesirable effects in the non-target tissue. Use of a pulsed thermal energy therapy, such as a pulsed thermal RF electric field, may facilitate greater thermal magnitude (e.g., higher power), longer total duration and/or better controlled intravascular renal neuromodulation therapy compared to a continuous thermal energy therapy. For example, the effects of the therapy on target or non-target tissue may be monitored during the intervals between the pulses. This monitoring data optionally may be used in a feedback loop to better control the therapy, e.g., to determine whether to continue or stop treatment, and it may facilitate controlled delivery of a higher power or longer duration therapy.
  • Furthermore, the off-time or low-energy intervals between thermal energy pulses may facilitate additional convective or other cooling of the non-target tissue of the vessel wall compared to use of a continuous thermal therapy of equivalent magnitude or duration. This may occur because blood flow through the blood vessel can convectively cool (heat) the non-target tissue of the vessel wall faster than the target neural fibers positioned outside of the vessel wall.
  • When providing a pulsed thermal therapy, the difference in heat transfer rates between tissue of the blood vessel wall and the relatively remote target neural fibers may be utilized to ablate, necrose or otherwise modulate the target neural fibers without producing undesirable effects in the non-target tissue. As a result, the pulsed thermal energy therapy may be applied with greater thermal magnitude and/or of longer total duration (i.e., the cumulative duration of all thermal energy pulses) compared to a continuous thermal therapy. The higher heat transfer rate at the vessel wall during the intervals between the thermal energy pulses facilitates the greater magnitude/longer duration delivery.
  • In addition or as an alternative to utilizing the patient's blood as a heat sink to create a difference in the heat transfer rates, a thermal fluid (hot or cold) may be injected, infused or otherwise delivered into the vessel to remove excess thermal energy and protect the non-target tissues. The thermal fluid may, for example, comprise saline or another biocompatible fluid that is heated, chilled or at room temperature. The thermal fluid may, for example, be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element, or at other locations relative to the tissue for which protection is sought. The thermal fluid may be injected in the presence of blood flow or with the blood flow temporarily occluded.
  • In several embodiments, the occlusion of the blood flow in combination with thermal fluid delivery may facilitate good control over the heat transfer kinetics along the non-target tissues. For example, the normal variability in blood flow rate between patients, which would vary the heat transfer capacity of the blood flow, may be controlled for by transferring thermal energy between the vessel wall and a thermal fluid that is delivered at a controlled rate. Furthermore, this method of using an injected thermal fluid to remove excess thermal energy from non-target tissues in order to protect the non-target tissues during therapeutic treatment of target tissues may be utilized in body lumens other than blood vessels.
  • One or more sensors, such as the thermocouple 310 of FIG. 4A, may be used to monitor the temperature(s) or other parameter(s) at the electrodes 306, the wall of the vessel and/or at other desired locations along the apparatus or the patient's anatomy. The thermal neuromodulation may be controlled using the measured parameter(s) as feedback. This feedback may be used, for example, to maintain the parameter(s) below a desired threshold. For example, the parameter(s) may be maintained below a threshold that may cause undesired effects in the non-target tissues. With blood flowing through the vessel, more thermal energy may be carried away, which may allow for longer or higher energy treatments than when blood flow is blocked in the vessel.
  • As discussed, when utilizing intravascular apparatus to achieve thermal neuromodulation, in addition or as an alternative to central positioning of the electrode(s) within a blood vessel, the electrode(s) optionally may be configured to contact an internal wall of the blood vessel. Wall-contact electrode(s) may facilitate more efficient transfer of a thermal electric field across the vessel wall to target neural fibers, as compared to centrally-positioned electrode(s). In some embodiments, the wall-contact electrode(s) may be delivered to the vessel treatment site in a reduced profile configuration, then expanded in vivo to a deployed configuration wherein the electrode(s) contact the vessel wall. In some embodiments, expansion of the electrode(s) is at least partially reversible to facilitate retrieval of the electrode(s) from the patient's vessel.
  • FIG. 4C depicts an embodiment of an apparatus 400 having one or more wall-contact electrodes 306. One or more of the struts of the expandable basket positioning element 304 may comprise a conductive material that is insulated in regions other than along segments that contact the vessel wall and form electrode(s) 306. The electrode(s) may be used in either a bipolar or a monopolar configuration. Furthermore, the electrode(s) may comprise sensor(s), e.g., impedance or temperature sensors, for monitoring and/or controlling the effects of the thermal energy delivery. The sensors, for example, can be thermocouples.
  • FIGS. 5A and 5B depict an alternative embodiment of intravascular apparatus 500 having electrodes configured to contact the interior wall of a vessel. The apparatus 500 of FIGS. 5A and 5B is an alternative embodiment of the apparatus 300 of FIGS. 4A and 4B wherein the proximal electrode 306 a of FIGS. 4A and 4B has been replaced with a wall-contact electrode 306 a′. The wall-contact electrode 306 a′ comprises a proximal connector 312 a that connects the electrode to the shaft of the catheter 302 and is electrically coupled to the pulse generator. The apparatus 500 also has a plurality of extensions 314 a that extend from the proximal connector 312 a and at least partially extend over a surface of positioning element 304. The extensions 314 a optionally may be selectively insulated such that only a selective portion of the extensions, e.g., the distal tips of the extensions, are electrically active. The electrode 306 a′ optionally may be fabricated from a slotted tube, such as a stainless steel or shape-memory (e.g., NiTi) slotted tube. Furthermore, all or a portion of the electrode may be gold-plated to improve radiopacity and/or conductivity.
  • As seen in FIG. 5A, the catheter 302 may be delivered over a guidewire G to a treatment site within the patient's vessel with the electrode 306 a′ positioned in a reduced profile configuration. The catheter 302 optionally may be delivered through a guide catheter 303 to facilitate such reduced profile delivery of the wall-contact electrode. When positioned as desired at a treatment site, the electrode 306 a′ may be expanded into contact with the vessel wall by expanding the positioning element 304 (shown in FIG. 5B). A thermal monopolar or bipolar electric field then may be delivered across the vessel wall and between the electrodes 306 a′ and 306 b to induce thermal neuromodulation, as discussed previously. The optional positioning element 304 may alter impedance within the blood vessel and more efficiently route the electrical energy across the vessel wall to the target neural fibers.
  • After terminating the electric field, the electrode 306 a′ may be returned to a reduced profile, and the apparatus 300 may be removed from the patient or repositioned in the vessel. For example, the positioning element 304 may be collapsed (e.g., deflated), and the electrode 306 a′ may be contracted by withdrawing the catheter 302 within the guide catheter 303. Alternatively, the electrode may be fabricated from a shape-memory material biased to the collapsed configuration, such that the electrode self-collapses upon collapse of the positioning element.
  • Although in FIGS. 5A and 5B the electrode 306 a′ is expanded into contact with the vessel wall, it should be understood that the electrode alternatively may be fabricated from a self-expanding material biased such that the electrode self-expands into contact with the vessel wall upon positioning of the electrode distal of the guide catheter 303. A self-expanding embodiment of the electrode 306 a′ may obviate a need for the positioning element 304 and/or may facilitate maintenance of blood flow through the blood vessel during delivery of an electric field via the electrode. After delivery of the electric field, the self-expanding electrode 306 a′ may be returned to a reduced profile to facilitate removal of the apparatus 300 from the patient by withdrawing the catheter 302 within the guide catheter 303.
  • FIGS. 6A and 6B depict another embodiment of an apparatus 600 and methods for delivering a field using a wall-contact electrode. As an alternative to the proximal connector 312 a of the electrode 306 a′ of FIGS. 5A and 5B, the electrode 306 a″ of FIGS. 6 comprises a distal connector 316 a for coupling the electrode to the shaft of catheter 302 on the distal side of the positioning element 304. The distal connector enables the electrode to extend over the entirety of the positioning element 304 and may facilitate contraction of the electrode 306 a″ after thermal neuromodulation. For example, the electrode 306 a″ can be contracted by proximally retracting the proximal connector 312 a relative to the catheter 302 during or after contraction of the positioning element 304. FIG. 6A shows the electrode 306 a″ in the reduced profile configuration, and FIG. 6B shows the electrode in the expanded configuration in which the conductive portions contact the vessel wall.
  • FIGS. 7A and 7B show additional alternative embodiments of methods and an apparatus 700. In FIGS. 7A and 7B, the apparatus 700 comprises the proximal electrode 306 a′ of FIGS. 5A and 5B, and a distal wall-contact electrode 306 b′. The embodiment of FIG. 7A comprises proximal and distal positioning elements 304 a and 304 b, respectively, for expanding the proximal and distal wall-contact electrodes 306 a′ and 306 b′, respectively, into contact with the vessel wall. The embodiment of FIG. 7B comprises only a single positioning element 304, but the distal wall-contact electrode 306 b′ is proximal facing and positioned over the distal portion of the positioning element 304 to facilitate expansion of the distal electrode 306 b′. In the embodiment of FIG. 7B, the extensions of the proximal and distal electrodes optionally may be connected along non-conductive connectors 318 to facilitate collapse and retrieval of the electrodes post-treatment.
  • A bipolar electric field may be delivered between the proximal and distal wall-contact electrodes, or a monopolar electric field may be delivered between the proximal and/or distal electrode(s) and an external ground. Having both the proximal and distal electrodes in contact with the wall of the vessel may facilitate more efficient energy transfer across the wall during delivery of a thermal electric field, as compared to having one or both of the proximal and distal electrodes centered within the vessel.
  • FIGS. 8A-8H illustrate additional embodiments of the apparatus and methods that can comprise one or more wall-contact electrodes, blood flow occlusion features, and thermal fluid injection functions. The embodiments of FIGS. 8 are described as monopolar devices, but it should be understood that any or all of the embodiments may be configured or operated as bipolar devices. Furthermore, although blood flow occlusion and thermal fluid injection are described in combination with wall-contact electrode(s), it should be understood that such occlusion and injection features may be provided in combination with electrode(s) that do not contact the vessel wall.
  • As discussed previously, in addition or as an alternative to utilizing the patient's blood as a heat sink to create different heat transfer rates between target neural fibers and non-target tissue of the wall of the vessel within which thermal energy is delivered, a thermal fluid (hot or cold) may be injected, infused or otherwise delivered into the vessel. The thermal fluid may further remove excess thermal energy and protect the non-target tissues. When delivering thermal RF therapy, the thermal fluid may, for example, comprise chilled or room temperature saline (e.g., saline at a temperature lower than the temperature of the vessel wall during the therapy delivery). The thermal fluid may be injected through the device catheter or through a guide catheter at a location upstream from an energy delivery element, or at other locations relative to the tissue for which protection is sought. The thermal fluid may be injected in the presence of blood flow or with blood flow temporarily occluded. The occlusion of blood flow in combination with thermal fluid delivery may facilitate good control over the heat transfer kinetics along the non-target tissues, as well as injection of fluid from a downstream location.
  • FIGS. 8A and 8B show an embodiment of an apparatus 800 that comprises the catheter 802 having an element 804, which may be used to position the apparatus within the vessel and/or to occlude blood flow. The element 304 element 804 can be an inflatable balloon. The apparatus 800 can further have an active monopolar electrode 806 located proximally from the element 804 such that inflation of the element 804 blocks blood flow downstream of the electrode 806. The monopolar electrode 806 illustratively comprises multiple extensions 814, and it should be understood that any desired number of extensions may be provided, including a single extension. The monopolar electrode is utilized in combination with a remote electrode, such as a ground pad, positioned external to the patient. The apparatus can also comprise an infusion port 805 between the element 804 and the monopolar electrode 806.
  • In FIG. 8A, the catheter 802 may be advanced within the renal artery RA in a reduced profile delivery configuration. In FIG. 8B, once properly positioned, the electrode 806 may be actively expanded, or it may self-expand by removing a sheath, the guide catheter or another type of restraint from the electrode. The expanded electrode 806 contacts the vessel wall. The element 804 may be expanded before, during or after expansion of the electrode to properly position the electrode within the vessel and/or to occlude blood flow within the renal artery downstream of the electrode. A monopolar electric field may be delivered between the active electrode 806 and the external ground. The electric field may, for example, comprise a pulsed or continuous RF electric field that thermally induces neuromodulation (e.g., necrosis or ablation) in the target neural fibers. The thermal therapy may be monitored and controlled, for example, via data collected with thermocouples 810, impedance sensors or other sensors.
  • To increase the power that may be delivered or the duration of the thermal treatment without undesirably affecting non-target tissue, a thermal fluid infusate I may be injected through injection port 805 of the catheter 802 to cool (heat) the non-target tissue. This is expected to mitigate undesired effects in the non-target tissue. The infusate may, for example, comprise chilled saline that removes excess thermal energy (hot or cold) from the wall of the vessel during thermal RF therapy.
  • Convective or other heat transfer between the non-target vessel wall tissue and the infusate I may facilitate cooling (heating) of the vessel wall at a faster rate than cooling (heating) occurs at the target neural fibers. This difference in the heat transfer rates between the wall of the vessel and the target neural fibers may be utilized to modulate the neural fibers. Furthermore, when utilizing a pulsed thermal therapy, the higher heat transfer rate at the wall relative to the target neural fibers may allow for relatively higher power or longer duration therapies compared to continuous thermal therapies. Also, the interval between pulses may be used to monitor and/or control effects of the therapy.
  • FIG. 8C shows an embodiment of another apparatus 801 with wall-contact electrodes, a flow occlusion feature, and a thermal fluid injection function. In FIG. 8C, the occlusion element 804 is coupled to the guide wire G, which may comprise an inflation lumen, and the infusate I is delivered through a distal outlet of the catheter 802. As will be apparent, the occlusion element alternatively may be coupled to a separate catheter or sheath rather than to the guide wire. Also, the infusate may, for example, be delivered through the guide wire lumen or through an additional lumen or annulus of the catheter 802. FIG. 8D illustrates another embodiment of an apparatus 830 wherein the occlusion element 804 is positioned proximal or upstream of the electrode(s) 806, and the infusate I is delivered at a position distal of the occlusion element but proximal of the electrode(s).
  • FIG. 8E is an embodiment of an apparatus 840 with occlusion elements 804 positioned both proximal and distal of the electrode(s) 806. In addition to having a first injection port 805 a, the catheter 802 comprises an aspiration port 805 b. Separate lumens can extend through the catheter for injection and aspiration of the infusate I via the ports 805. Providing both injection and aspiration of the infusate facilitates good control over the flow dynamics of the infusate, and thereby the heat transfer kinetics of the infusate. For example, providing aspiration and injection at the same rate may provide consistent heat transfer kinetics between the vessel and the electrode(s).
  • FIG. 8F illustrates another embodiment of an apparatus 850 having a catheter 852 comprising a wall-contact electrode 856 that may be moved into contact with the vessel wall via an elongated member 857. In this embodiment, the elongated member 857 is distally connected to the catheter in the vicinity of the electrode 856. The elongated member may be configured for self expansion, or it may extend through port 805 of the catheter 852 and through a lumen of the catheter to a proximal location for manipulation by a medical practitioner. The proximal section of the elongated member may be advanced relative to the catheter 852 by the medical practitioner such that the member assumes the illustrated curved profile.
  • Upon expansion of the elongated member, the catheter 852 is deflected such that the electrode 856 coupled to the catheter shaft contacts the vessel wall. Optionally, element 804 may be expanded to facilitate positioning of the electrode via the elongated member and/or to block flow through the vessel. The element 804 can be coupled to the guide or delivery catheter 803. Infusate I optionally may be delivered through the catheter 803 as shown.
  • FIG. 8G is an embodiment of an apparatus 860 comprising a shaped or self-expanding electrode 866. The electrode 866 may be delivered to a treatment site within catheter 803, and then it moves to a preselected shape after it has been removed from the lumen of the catheter 803. For example, the electrode 866 can be removed from the catheter by advancing the catheter 802 and/or retracting the catheter 803. The electrode 866 contacts the vessel wall for delivery of therapy. Optionally, the catheter 802 may be rotated to rotate the electrode relative to the vessel wall and angularly reposition the electrode. The therapy may be delivered at a singular angular position or at multiple angular positions. Additionally or alternatively, multiple angularly spaced electrodes 866 may be positioned within the vasculature, as shown in FIG. 8H. In addition to angular spacing, the electrodes may be longitudinally spaced to facilitate treatment over a longitudinal segment of the vessel, e.g., to achieve a circumferential treatment along the longitudinal segment rather than along a cross-section.
  • In addition to extravascular and intravascular systems for thermally-induced renal neuromodulation, intra-to-extravascular systems may be provided. The intra-to-extravascular systems may, for example, have electrode(s) that are delivered to an intravascular position, and then at least partially passed through/across the vessel wall to an extravascular position prior to delivery of a thermal electric field. Intra-to-extravascular positioning of the electrode(s) may place the electrode(s) in closer proximity to target neural fibers for delivery of a thermal electric field, as compared to fully intravascular positioning of the electrode(s). Applicants have previously described intra-to-extravascular pulsed electric field systems, for example, in co-pending U.S. patent application Ser. No. 11/324,188, filed Dec. 29, 2005, which is incorporated herein by reference in its entirety.
  • FIG. 9 illustrates one embodiment of an intra-to-extravascular (“ITEV”) system for thermally-induced renal neuromodulation is described. ITEV system 900 comprising a catheter 922 having (a) a plurality of proximal electrode lumens terminating at proximal side ports 924, (b) a plurality of distal electrode lumens terminating at distal side ports 926, and (c) a guidewire lumen 923. The catheter 922 preferably comprises an equal number of proximal and distal electrode lumens and side ports. The ITEV system 900 also includes proximal needle electrodes 928 that may be advanced through the proximal electrode lumens and the proximal side ports 924, as well as distal needle electrodes 929 that may be advanced through the distal electrode lumens and the distal side ports 926.
  • The catheter 922 comprises an optional expandable positioning element 930, which may comprise an inflatable balloon or an expandable basket or cage. In use, the positioning element 930 may be expanded prior to deployment of the needle electrodes 928 and 929 in order to position or center the catheter 922 within the patient's vessel (e.g., within renal artery RA). Centering the catheter 922 is expected to facilitate delivery of all needle electrodes to desired depths within/external to the patient's vessel (e.g., to deliver all of the needle electrodes approximately to the same depth). In FIG. 9, the illustrated positioning element 930 is between the proximal side ports 924 and the distal side ports 926, and thus the positioning element 930 is between the delivery positions of the proximal and distal electrodes. However, it should be understood that the positioning element 930 additionally or alternatively may be positioned at a different location or at multiple locations along the length of the catheter 922 (e.g., at a location proximal of the side ports 924 and/or at a location distal of the side ports 926).
  • As illustrated in FIG. 9, the catheter 922 may be advanced to a treatment site within the patient's vasculature over a guidewire (not shown) via the lumen 323. During intravascular delivery, the electrodes 928 and 929 may be positioned such that their non-insulated and sharpened distal regions are positioned within the proximal and distal lumens, respectively. Once at a treatment site, a medical practitioner may advance the electrodes via their proximal regions that are located external to the patient. Such advancement causes the distal regions of the electrodes 928 and 929 to exit side ports 924 and 926, respectively, and pierce the wall of the patient's vasculature such that the electrodes are positioned extravascularly via an ITEV approach.
  • The proximal electrodes 928 can be connected to an electric field generator 50 as active electrodes, and the distal electrodes 929 can serve as return electrodes. In this manner, the proximal and distal electrodes form bipolar electrode pairs that align the thermal electric field with a longitudinal axis or direction of the patient's vasculature. As will be apparent, the distal electrodes 929 alternatively may comprise the active electrodes and the proximal electrodes 928 may comprise the return electrodes. Furthermore, the proximal and/or the distal electrodes may comprise both active and return electrodes. Furtherstill, the proximal and/or the distal electrodes may be utilized in combination with an external ground for delivery of a monopolar thermal electric field. Any combination of active and distal electrodes may be utilized, as desired.
  • When the electrodes 928 and 929 are connected to an electric field generator and positioned extravascularly, and with the positioning element 930 optionally expanded, delivery of the thermal electric field may proceed to achieve desired renal neuromodulation via heating. The electric field also may induce electroporation. After achievement of the thermally-induced renal neuromodulation, the electrodes may be retracted within the proximal and distal lumens, and the positioning element 930 may be collapsed for retrieval. The ITEV system 900 then may be removed from the patient to complete the procedure. Additionally or alternatively, the system may be repositioned to provide therapy at another treatment site, such as to provide bilateral renal neuromodulation.
  • Cooling elements, such as convective cooling elements, may be utilized to protect non-target tissues like smooth muscle cells from thermal damage during thermally-induced renal neuromodulation via heat generation. Non-target tissues may be protected by focusing the thermal energy on the target neural fibers such that an intensity of the thermal energy is insufficient to induce thermal damage in non-target tissues distant from the target neural fibers.
  • Although FIGS. 3-7 and 9 illustratively show bipolar apparatus, it should be understood that monopolar apparatus alternatively may be utilized as in FIGS. 8A-8H. For example, an active monopolar electrode may be positioned intravascularly, extravascularly or intra-to-extravascularly in proximity to target neural fibers that contribute to renal function. A return electrode may be attached to the exterior of the patient or positioned in the patient apart from the active electrodes. Finally, a thermal electric field may be delivered between the in vivo monopolar electrode and the remote electrode to effectuate desired thermally-induced renal neuromodulation. Monopolar apparatus additionally may be utilized for bilateral renal neuromodulation.
  • The embodiments of FIGS. 3-9 illustratively describe methods and apparatus for thermally-induced renal neuromodulation via delivery of thermal electric fields that modulate the target neural fibers. However, it should be understood that alternative methods and apparatus for thermally-induced (via both heating and cooling) renal neuromodulation may be provided. For example, electric fields may be used to cool and modulate the neural fibers with thermoelectric or Peltier elements. Also, thermally-induced renal neuromodulation optionally may be achieved via direct application of thermal energy to the target neural fibers. Such direct thermal energy may be generated and/or transferred in a variety of ways, such as via resistive heating, via delivery of a heated or chilled fluid (see FIGS. 10 and 12), via a Peltier element (see FIG. 11), etc. Thermally-induced renal neuromodulation additionally or alternatively may be achieved via application of high-intensity focused ultrasound to the target neural fibers (see FIG. 13). Additional and alternative methods and apparatus for thermally-induced renal neuromodulation may be used in accordance with the present invention.
  • With reference now to FIG. 10, an alternative embodiment of an apparatus 1000 and methods for thermally-induced neuromodulation via direct application of thermal energy is described. In the embodiment of FIG. 10, the electrodes 928 and 929 of FIG. 9 have been replaced with infusion needles 1028 and 1029, respectively. A thermal fluid F may be delivered through the needles to the target neural fibers. The thermal fluid may be heated in order to raise the temperature of the target neural fibers above a desired threshold. For example, the temperature of the neural fibers can be raised above a body temperature of about 37° C., or above a temperature of about 45° C. Alternatively, the thermal fluid may be chilled to reduce the temperature of the target neural fibers below a desired threshold. For example, the neural fibers can be cooled to below the body temperature of about 37° C., or further cooled below about 20° C., or still further cooled below a freezing temperature of about 0° C. As will be apparent, in addition to intra-to-extravascular delivery of a thermal fluid, the thermal fluid may be delivered intravascularly (e.g., may inflate and/or be circulated through a balloon member), extravascularly (e.g., may be circulated through a vascular cuff), or a combination thereof.
  • In addition or as alternative to injection of a thermal fluid to the target neural fibers through infusion needles 1028 and 1029, an alternative neuromodulatory agent, such as a drug or medicament, may be injected to modulate, necrose or otherwise block or reduce transmission along the target neural fibers. Examples of alternative neuromodulatory agents include, but are not limited to, phenol and neurotoxins, such as botulinum toxin. Additional neuromodulatory agents, per se known, will be apparent to those of skill in the art.
  • FIG. 11 shows another method and apparatus 1100 for thermal renal neuromodulation via direct application of thermal energy to the target neural fibers. The apparatus 1100 comprises renal artery cuff 1102 having one or more integrated thermoelectric elements that are electrically coupled to an internal or external power supply 1104. The thermoelectric element utilizes the well-known Peltier effect (i.e., the establishment of a thermal gradient induced by an electric voltage) to achieve thermal renal neuromodulation.
  • An electric current is passed from the power supply 1104 to the thermoelectric element of the cuff 1102. The thermoelectric element can comprise two different metals (e.g., a p-type and an n-type semiconductor) that are connected to each other at two junctions. The current induces a thermal gradient between the two junctions, such that one junction cools while the other is heated. Reversal of the polarity of the voltage applied across the two junctions reverses the direction of the thermal gradient. Either the hot side or the cold side of the thermoelectric element faces radially inward in order to heat or cool, respectively, the target neural fibers that travel along the renal artery to achieve thermal renal neuromodulation. Optionally, the radially outward surface of the thermoelectric element may be insulated to reduce a risk of thermal damage to the non-target tissues. The cuff 1102 may comprise one or more temperature sensors, such as thermocouples, for monitoring the temperature of the target neural fibers and/or of the non-target tissues.
  • FIG. 12 shows another method and apparatus 1200 utilizing the Peltier effect. The apparatus 1200 comprises an implanted or external pump 1202 connected to a renal artery cuff 1204 via inlet fluid conduit 1206 a and outlet fluid conduit 1206 b. The inlet fluid conduit transfers fluid from the pump to the cuff, while the outlet fluid conduit transfers fluid from the cuff to the pump to circulate fluid through the cuff. A reservoir of fluid may be located in the cuff, the pump and/or in the fluid conduits.
  • The pump 1202 further comprises one or more thermoelectric or other thermal elements in heat exchange contact with the fluid reservoir for cooling or heating the fluid that is transferred to the cuff to thermally modulate the target neural fibers. The apparatus 1200 optionally may have controls for automatic or manual control of fluid heating or cooling, as well as fluid circulation within the cuff. Furthermore, the apparatus may comprise temperature and/or renal sympathetic neural activity monitoring or feedback control. Although the apparatus illustratively is shown unilaterally treating neural fibers innervating a single kidney, it should be understood that bilateral treatment of neural fibers innervating both kidneys alternatively may be provided.
  • Thermal renal neuromodulation alternatively may be achieved via pulsed or continuous high-intensity focused ultrasound. High intensity focused ultrasound also may induce reversible or irreversible electroporation in the target neural fibers. Furthermore, the ultrasound may be delivered over a full 360° (e.g. when delivered intravascularly) or over a radial segment of less than 360° (e.g., when delivered intravascularly, extravascularly, intra-to-extravascularly, or a combination thereof). FIGS. 13A and B illustrate an embodiment of an ultrasonic apparatus 1300 comprising a catheter 1302, one or more ultrasound transducers 1304 positioned along the shaft of the catheter, and an inflatable balloon 1306 around the transducers 1304. The ultrasound transducers 1304 are coupled to an ultrasound signal generator via conductors 1307. The balloon 1306 can have an acoustically reflective portion 1308 for reflecting an ultrasound wave and an acoustically transmissive portion 1309 the wave through which the ultrasonic energy can pass. In this manner, the wave may be focused as shown at a focal point or radius P positioned a desired focal distance from the catheter shaft. In an alternative embodiment, the transducers may be attached directly to the balloon.
  • The focal distance may be specified or dynamically variable such that the ultrasonic wave is focused at a desired depth on target neural fibers outside of the vessel. For example, a family of catheter sizes may be provided to allow for a range of specified focal distances. A dynamically variable focal distance may be achieved, for example, via calibrated expansion of the balloon.
  • Focusing the ultrasound wave may produce a reverse thermal gradient that protects the non-target tissues and selectively affect the target neural fibers to achieve thermal renal neuromodulation via heating. As a result, the temperature at the vessel wall may be less than the temperature at the target tissue. FIG. 13A shows the apparatus 1300 in a reduced delivery and retrieval configuration, and FIG. 13B shows the apparatus 1300 in an expanded deployed configuration.
  • FIG. 14 shows an alternative embodiment of an ultrasonic apparatus 1400 having a catheter 1402, a conductor 1403, and concave ultrasound transducers 1401. The concave ultrasound transducers 1404 direct the energy to a specific focal point P, and as such the concave transducers 1404 eliminate the need of the reflective portion of the balloon 366 (e.g., the balloon may be acoustically transmissive at all points).
  • The apparatus described above with respect to FIGS. 3-14 optionally may be used to quantify the efficacy, extent or cell selectivity of thermally-induced renal neuromodulation in order to monitor and/or control the neuromodulation. As discussed previously, the apparatus may further comprise one or more sensors, such as thermocouples or imaging transducers, for measuring and monitoring one or more parameters of (a) the apparatus, (b) target neural fibers and/or (c) non-target tissues. For example, a temperature rise or drop above or below certain thresholds is expected to thermally ablate, non-ablatively injure, freeze or otherwise damage the target neural fibers to thereby modulate the target neural fibers.
  • FIGS. 15A and 15B classify the various types of thermal neuromodulation that may be achieved with the apparatus and methods of the present invention. FIGS. 15A and 15B are provided only for the sake of illustration and should in no way be construed as limiting. FIG. 15A classifies thermal neuromodulation due to heat exposure. As shown, exposure to heat in excess of a body temperature of about 37° C., but below a temperature of about 45° C., may induce thermal injury via moderate heating of the target neural fibers or of vascular structures that perfuse the target fibers. For example, this may induce non-ablative thermal injury in the fibers or structures. Exposure to heat above a temperature of about 45° C., or above about 60° C., may induce thermal injury via substantial heating of the fibers or structures. For example, such higher temperatures may thermally ablate the target neural fibers or the vascular structures. In some patients, it may be desirable to achieve temperatures that thermally ablate the target neural fibers or the vascular structures, but that are less than about 90° C., or less than about 85° C., or less than about 80° C., and/or less than about 75° C. Regardless of the type of heat exposure utilized to induce the thermal neuromodulation, a reduction in renal sympathetic nerve activity (“RSNA”) is expected.
  • As seen in FIG. 15B, thermal cooling for neuromodulation includes non-freezing thermal slowing of nerve conduction and/or nerve injury, as well as freezing thermal nerve injury. Non-freezing thermal cooling may include reducing the temperature of the target neural fibers or of the vascular structures that feed the fibers to temperatures below the body temperature of about 37° C., or below about 20° C., but above the freezing temperature of about 0° C. This non-freezing thermal cooling may either slow nerve conduction or may cause direct neural injury. Slowed nerve conduction may use continuous or intermittent cooling of the target neural fibers to sustain the desired thermal neuromodulation, while direct neural injury may require only a discrete treatment to achieve sustained thermal neuromodulation. Thermal cooling for neuromodulation also may include freezing thermal nerve injury by reducing the temperature of the target neural fibers or of the vascular structures that feed the fibers to temperatures below the freezing point of about 0° C. Regardless of the type of cold exposure utilized to induce the thermal neuromodulation (freezing or non-freezing), a reduction in renal sympathetic nerve activity (“RSNA”) is expected.
  • It is expected that thermally-induced renal neuromodulation, whether delivered extravascularly, intravascularly, intra-to-extravascularly or a combination thereof, may alleviate clinical symptoms of CHF, hypertension, renal disease, myocardial infarction, atrial fibrillation, contrast nephropathy and/or other cardio-renal diseases for a period of months (potentially up to six months or more). This time period may be sufficient to allow the body to heal; for example, this period may reduce the risk of CHF onset after an acute myocardial infarction to thereby alleviate a need for subsequent re-treatment. Alternatively, as symptoms reoccur, or at regularly scheduled intervals, the patient may receive repeat therapy. Thermally-induced renal neuromodulation also may systemically reduce sympathetic tone.
  • Although preferred illustrative variations of the present invention are described above, it will be apparent to those skilled in the art that various changes and modifications may be made thereto without departing from the invention. It is intended in the appended claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims (32)

1. A method for thermally-induced renal neuromodulation, the method comprising:
positioning a thermal apparatus at least proximate to a neural fiber that contributes to renal function; and
delivering pulsed energy via the thermal apparatus to modulate a function of the neural fiber via thermal effects.
2. The method of claim 1, wherein positioning the thermal apparatus further comprises delivering the device via an approach chosen from the group consisting of intravascularly, extravascularly, intra-to-extravascularly and combinations thereof.
3. The method of claim 1, wherein delivering the pulsed energy further comprises directly applying pulsed thermal energy to the neural fiber.
4. The method of claim 1, wherein delivering the pulsed energy further comprises indirectly applying pulsed thermal energy to the neural fiber.
5. The method of claim 1, wherein delivering the pulsed energy further comprises delivering a pulsed thermal electric field to the neural fiber via at least one electrode.
6. The method of claim 5, wherein positioning the thermal apparatus further comprises intravascularly delivering the device, and wherein delivering a pulsed thermal electric field to the neural fiber via at least one electrode further comprises delivering the pulsed thermal electric field via at least one wall-contact electrode.
7. The method of claim 1 further comprising monitoring a parameter of at least one of the neural fiber, a non-target tissue or the apparatus during thermally-induced modulation of the function of the neural fiber.
8. The method of claim 7 further comprising controlling the delivery of the pulsed energy in response to the monitored parameter.
9. The method of claim 1 further comprising actively protecting non-target tissue during thermal modulation of the neural fiber.
10. The method of claim 9, wherein actively protecting the non-target tissue further comprises reducing a degree of thermal damage induced in the non-target tissue.
11. The method of claim 9, wherein actively protecting the non-target tissue further comprises delivering a thermal fluid to a vicinity of the non-target tissue.
12. The method of claim 9, wherein actively protecting the non-target tissue further comprises establishing a heat transfer rate discrepancy between the non-target tissue and the neural fiber.
13. The method of claim 1, wherein delivering the pulsed energy further comprises delivering pulsed high intensity focused ultrasound to the neural fiber.
14. The method of claim 1, wherein delivering the pulsed energy further comprises heating the neural fiber via the pulsed thermal energy.
15. The method of claim 1, wherein delivering the pulsed energy further comprises cooling the neural fiber via the pulsed thermal energy.
16. Apparatus for thermally-induced renal neuromodulation, the apparatus comprising:
a pulse generator configured to provide pulsed thermal energy;
a device configured for delivery within a blood vessel to a vicinity of a neural fiber that contributes to renal function; and
a thermal modulation element supported by the device, the thermal modulation element being configured to expand from a first dimension to a second dimension, wherein the thermal modulation element is configured to (a) contact a wall of the blood vessel upon expansion of the thermal modulation element to the second dimension within the blood vessel, and (b) transmit the pulsed thermal energy relative to the neural fiber to thermally induce modulation of a function of the neural fiber upon expansion of the thermal modulation element to the second dimension within the blood vessel.
17. The apparatus of claim 16, wherein the thermal modulation element is configured to self-expand from the first dimension to the second dimension.
18. The apparatus of claim 16, wherein the device further comprises an expandable member that is at least proximate to the thermal modulation element, the expandable member being configured to expand the thermal modulation element from the first dimension to the second dimension.
19. The apparatus of claim 16, wherein the thermal modulation element is configured for direct application of the pulsed thermal energy relative to the neural fiber.
20. The apparatus of claim 16, wherein the thermal modulation element is configured for indirect application of the pulsed thermal energy relative to the neural fiber.
21. The apparatus of claim 16, wherein the thermal modulation element further comprises at least one electrode configured to deliver a pulsed thermal electric field relative to the neural fiber.
22. The apparatus of claim 16, wherein the apparatus further comprises at least one sensor.
23. The apparatus of claim 22, wherein the sensor is configured to monitor a physiological parameter of the neural fiber.
24. The apparatus of claim 22, wherein the sensor is configured to monitor a physiological parameter of non-target tissue.
25. The apparatus of claim 22, wherein the sensor is configured to monitor a parameter of the apparatus.
26. The apparatus of claim 22 further comprising a feedback control in communication with the sensor.
27. The apparatus of claim 16, wherein the apparatus further comprises a protective element configured to reduce a degree of thermal damage induced in non-target tissue.
28. The apparatus of claim 16, wherein the thermal modulation element further comprises at least one thermoelectric element configured to deliver the pulsed thermal energy relative to the neural fiber.
29. The apparatus of claim 16, wherein the thermal modulation element further comprises a high intensity focused ultrasound element.
30. The apparatus of claim 16, wherein the thermal modulation element further comprises a thermal fluid.
31. The apparatus of claim 27, wherein the protective element comprises an infusion element configured to infuse a thermal fluid in a vicinity of the non-target tissue.
32. The apparatus of claim 16 further comprising an occlusion element configured to temporarily occlude blood flow within the blood vessel.
US11/599,723 2002-04-08 2006-11-14 Methods and apparatus for thermally-induced renal neuromodulation Abandoned US20070135875A1 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
US11/599,723 US20070135875A1 (en) 2002-04-08 2006-11-14 Methods and apparatus for thermally-induced renal neuromodulation
EP14188428.8A EP2842604A1 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
ES07799148T ES2378956T5 (en) 2006-06-28 2007-06-28 Systems for thermally induced renal neuromodulation
AT07799148T ATE536147T1 (en) 2006-06-28 2007-06-28 SYSTEMS FOR HEAT-INDUCED RENAL NEUROMODULATION
EP11191392.7A EP2465574B1 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
AT09156661T ATE494040T1 (en) 2006-06-28 2007-06-28 SYSTEMS FOR HEAT-INDUCED RENAL NEUROMODULATION
EP09156661.2A EP2092957B2 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
ES09156661T ES2361583T5 (en) 2006-06-28 2007-06-28 System for thermally induced renal neuromodulation
CN201510342199.0A CN105056408B (en) 2006-06-28 2007-06-28 The system that renal nerve for thermal induction is modulated
DE602007011813T DE602007011813D1 (en) 2006-06-28 2007-06-28 Systems for heat-induced renal neuromodulation
ES18171535T ES2928065T3 (en) 2006-06-28 2007-06-28 Thermally induced renal neuromodulation systems
DE202007019566U DE202007019566U1 (en) 2006-06-28 2007-06-28 Devices and systems for thermally-induced renal neuromodulation
EP11191394.3A EP2465470B1 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
EP20100159584 EP2218479A3 (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
EP18171535.0A EP3395409B1 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
PL07799148T PL2037840T3 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
CN200780031879.4A CN101610735B (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
PCT/US2007/072396 WO2008003058A2 (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
US12/159,306 US20090076409A1 (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
EP07799148.7A EP2037840B2 (en) 2006-06-28 2007-06-28 Systems for thermally-induced renal neuromodulation
ES11191392.7T ES2560180T3 (en) 2006-06-28 2007-06-28 Systems for thermally induced renal neuromodulation
ES11191394.3T ES2560904T3 (en) 2006-06-28 2007-06-28 Systems for thermally induced renal neuromodulation
CN201310056646.7A CN103222894B (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
US12/147,154 US9314644B2 (en) 2006-06-28 2008-06-26 Methods and systems for thermally-induced renal neuromodulation
US13/046,595 US8626300B2 (en) 2002-04-08 2011-03-11 Methods and apparatus for thermally-induced renal neuromodulation
US14/094,330 US20140114305A1 (en) 2002-04-08 2013-12-02 Methods and apparatus for thermally-induced renal neuromodulation
US14/737,254 US10034708B2 (en) 2002-04-08 2015-06-11 Methods and apparatus for thermally-induced renal neuromodulation
US15/132,424 US10722288B2 (en) 2006-06-28 2016-04-19 Devices for thermally-induced renal neuromodulation
US15/478,113 US10441356B2 (en) 2002-04-08 2017-04-03 Methods for renal neuromodulation via neuromodulatory agents
US16/019,380 US20190000545A1 (en) 2002-04-08 2018-06-26 Methods and apparatus for thermally-induced renal neuromodulation
US16/938,404 US11801085B2 (en) 2006-06-28 2020-07-24 Devices for thermally-induced renal neuromodulation
US18/481,814 US20240041512A1 (en) 2006-06-28 2023-10-05 Devices for thermally-induced renal neuromodulation

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US37019002P 2002-04-08 2002-04-08
US41557502P 2002-10-03 2002-10-03
US44297003P 2003-01-29 2003-01-29
US10/408,665 US7162303B2 (en) 2002-04-08 2003-04-08 Renal nerve stimulation method and apparatus for treatment of patients
US61625404P 2004-10-05 2004-10-05
US62479304P 2004-11-02 2004-11-02
US11/129,765 US7653438B2 (en) 2002-04-08 2005-05-13 Methods and apparatus for renal neuromodulation
US11/189,563 US8145316B2 (en) 2002-04-08 2005-07-25 Methods and apparatus for renal neuromodulation
US81699906P 2006-06-28 2006-06-28
US11/504,117 US7617005B2 (en) 2002-04-08 2006-08-14 Methods and apparatus for thermally-induced renal neuromodulation
US11/599,723 US20070135875A1 (en) 2002-04-08 2006-11-14 Methods and apparatus for thermally-induced renal neuromodulation

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US10/408,665 Continuation-In-Part US7162303B2 (en) 2002-04-08 2003-04-08 Renal nerve stimulation method and apparatus for treatment of patients
US11/189,563 Continuation-In-Part US8145316B2 (en) 2002-04-08 2005-07-25 Methods and apparatus for renal neuromodulation
US11/504,117 Continuation-In-Part US7617005B2 (en) 2002-04-08 2006-08-14 Methods and apparatus for thermally-induced renal neuromodulation

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/159,306 Continuation-In-Part US20090076409A1 (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
PCT/US2007/072396 Continuation-In-Part WO2008003058A2 (en) 2006-06-28 2007-06-28 Methods and systems for thermally-induced renal neuromodulation
US13/046,595 Continuation US8626300B2 (en) 2002-04-08 2011-03-11 Methods and apparatus for thermally-induced renal neuromodulation

Publications (1)

Publication Number Publication Date
US20070135875A1 true US20070135875A1 (en) 2007-06-14

Family

ID=46326579

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/599,723 Abandoned US20070135875A1 (en) 2002-04-08 2006-11-14 Methods and apparatus for thermally-induced renal neuromodulation
US13/046,595 Expired - Lifetime US8626300B2 (en) 2002-04-08 2011-03-11 Methods and apparatus for thermally-induced renal neuromodulation
US14/094,330 Abandoned US20140114305A1 (en) 2002-04-08 2013-12-02 Methods and apparatus for thermally-induced renal neuromodulation
US14/737,254 Expired - Lifetime US10034708B2 (en) 2002-04-08 2015-06-11 Methods and apparatus for thermally-induced renal neuromodulation
US15/478,113 Expired - Lifetime US10441356B2 (en) 2002-04-08 2017-04-03 Methods for renal neuromodulation via neuromodulatory agents
US16/019,380 Abandoned US20190000545A1 (en) 2002-04-08 2018-06-26 Methods and apparatus for thermally-induced renal neuromodulation

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/046,595 Expired - Lifetime US8626300B2 (en) 2002-04-08 2011-03-11 Methods and apparatus for thermally-induced renal neuromodulation
US14/094,330 Abandoned US20140114305A1 (en) 2002-04-08 2013-12-02 Methods and apparatus for thermally-induced renal neuromodulation
US14/737,254 Expired - Lifetime US10034708B2 (en) 2002-04-08 2015-06-11 Methods and apparatus for thermally-induced renal neuromodulation
US15/478,113 Expired - Lifetime US10441356B2 (en) 2002-04-08 2017-04-03 Methods for renal neuromodulation via neuromodulatory agents
US16/019,380 Abandoned US20190000545A1 (en) 2002-04-08 2018-06-26 Methods and apparatus for thermally-induced renal neuromodulation

Country Status (1)

Country Link
US (6) US20070135875A1 (en)

Cited By (307)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054319A1 (en) * 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US20070156129A1 (en) * 2006-01-03 2007-07-05 Alcon, Inc. System For Dissociation and Removal of Proteinaceous Tissue
US20070255379A1 (en) * 2003-06-04 2007-11-01 Williams Michael S Intravascular device for neuromodulation
US20070265687A1 (en) * 2002-04-08 2007-11-15 Ardian, Inc. Apparatuses for renal neuromodulation
US20080025006A1 (en) * 2006-07-27 2008-01-31 Denso Corporation Electronic apparatus
US20080227139A1 (en) * 2007-02-14 2008-09-18 Karl Deisseroth System, method and applications involving identification of biological circuits such as neurological characteristics
WO2009011738A1 (en) * 2007-07-17 2009-01-22 Cardiac Pacemakers, Inc. Systems for modulating temperature for vasoactive response
US20090036948A1 (en) * 2002-04-08 2009-02-05 Ardian, Inc. Renal nerve stimulation methods for treatment of patients
US20090062873A1 (en) * 2006-06-28 2009-03-05 Ardian, Inc. Methods and systems for thermally-induced renal neuromodulation
US20090088680A1 (en) * 2005-07-22 2009-04-02 Alexander Aravanis Optical tissue interface method and apparatus for stimulating cells
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
US20090118800A1 (en) * 2007-10-31 2009-05-07 Karl Deisseroth Implantable optical stimulators
US20090149897A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for transdermal chemical modulation of neural activity
WO2009073208A1 (en) * 2007-12-05 2009-06-11 Searete Llc System for thermal modulation of neural activity
US20090149797A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for reversible chemical modulation of neural activity
US20090149896A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for chemical modulation of neural activity
US20090149694A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for magnetic modulation of neural conduction
US20090149799A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for chemical modulation of neural activity
US20090313303A1 (en) * 2008-06-13 2009-12-17 Spence Richard C Method for playing digital media files with a digital media player using a plurality of playlists
US20100010567A1 (en) * 2005-07-22 2010-01-14 The Foundry, Llc Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US20100076299A1 (en) * 2008-09-22 2010-03-25 Minnow Medical, Inc. Inducing Desirable Temperature Effects On Body Tissue Using Alternate Energy Sources
US7717948B2 (en) 2002-04-08 2010-05-18 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20100137860A1 (en) * 2002-04-08 2010-06-03 Ardian, Inc. Apparatus for performing a non-continuous circumferential treatment of a body lumen
US20100145418A1 (en) * 2007-01-10 2010-06-10 Feng Zhang System for optical stimulation of target cells
US20100168739A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20100168731A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20100190229A1 (en) * 2005-07-22 2010-07-29 Feng Zhang System for optical stimulation of target cells
US20100204741A1 (en) * 2008-08-08 2010-08-12 Tweden Katherine S Systems for regulation of blood pressure and heart rate
US20100331776A1 (en) * 2009-06-24 2010-12-30 Amr Salahieh Steerable Medical Delivery Devices and Methods of Use
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US20110092880A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
WO2011046880A2 (en) 2009-10-12 2011-04-21 Kona Medical, Inc. Energetic modulation of nerves
US20110092781A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
WO2011053757A1 (en) * 2009-10-30 2011-05-05 Sound Interventions, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US20110105998A1 (en) * 2008-04-23 2011-05-05 The Board Of Trustees Of The Leland Stanford Junio Systems, methods and compositions for optical stimulation of target cells
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US20110112179A1 (en) * 2008-05-29 2011-05-12 Airan Raag D Cell line, system and method for optical control of secondary messengers
US20110118734A1 (en) * 2009-11-16 2011-05-19 Alcon Research, Ltd. Capsularhexis device using pulsed electric fields
US20110118600A1 (en) * 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US20110118729A1 (en) * 2009-11-13 2011-05-19 Alcon Research, Ltd High-intensity pulsed electric field vitrectomy apparatus with load detection
US20110135626A1 (en) * 2009-12-08 2011-06-09 Alcon Research, Ltd. Localized Chemical Lysis of Ocular Tissue
US20110144641A1 (en) * 2009-12-15 2011-06-16 Alcon Research, Ltd. High-Intensity Pulsed Electric Field Vitrectomy Apparatus
US20110144562A1 (en) * 2009-12-14 2011-06-16 Alcon Research, Ltd. Localized Pharmacological Treatment of Ocular Tissue Using High-Intensity Pulsed Electrical Fields
US20110159562A1 (en) * 2008-06-17 2011-06-30 Karl Deisseroth Apparatus and methods for controlling cellular development
US20110166632A1 (en) * 2008-07-08 2011-07-07 Delp Scott L Materials and approaches for optical stimulation of the peripheral nervous system
US20110166499A1 (en) * 2005-09-20 2011-07-07 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US20110172653A1 (en) * 2008-06-17 2011-07-14 Schneider M Bret Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US20110200171A1 (en) * 2010-01-19 2011-08-18 Ardian, Inc. Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
US20110202098A1 (en) * 2002-04-08 2011-08-18 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
WO2011119857A2 (en) 2010-03-24 2011-09-29 Shifamed, Llc Intravascular tissue disruption
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
WO2012016135A1 (en) * 2010-07-30 2012-02-02 Boston Scientific Scimed, Inc. Balloon with surface electrodes and integral cooling for renal nerve ablation
US8165668B2 (en) 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
US8170658B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for electrical modulation of neural conduction
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US8180446B2 (en) 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method and system for cyclical neural modulation based on activity state
US20120123261A1 (en) * 2010-11-16 2012-05-17 Jenson Mark L Renal Nerve Ablation Using Mild Freezing and Vibration
US8195287B2 (en) 2007-12-05 2012-06-05 The Invention Science Fund I, Llc Method for electrical modulation of neural conduction
ITPD20110125A1 (en) * 2011-04-15 2012-10-16 Elvido Medical Technology Srl CENTRAL VENOUS CATHETER
US8295902B2 (en) 2008-11-11 2012-10-23 Shifamed Holdings, Llc Low profile electrode assembly
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US20130090563A1 (en) * 2011-10-11 2013-04-11 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system
US20130103026A1 (en) * 2011-10-19 2013-04-25 Stephen J. Kleshinski Tissue treatment device and related methods
US8433423B2 (en) 2004-10-05 2013-04-30 Ardian, Inc. Methods for multi-vessel renal neuromodulation
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US20130165990A1 (en) * 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US8546979B2 (en) 2010-08-11 2013-10-01 Alcon Research, Ltd. Self-matching pulse generator with adjustable pulse width and pulse frequency
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US20140005706A1 (en) * 2012-06-30 2014-01-02 Mark Gelfand Carotid Body Ablation Via Directed Energy
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8708953B2 (en) 2009-06-24 2014-04-29 Shifamed Holdings, Llc Steerable medical delivery devices and methods of use
US8716447B2 (en) 2008-11-14 2014-05-06 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US20140128865A1 (en) * 2012-11-05 2014-05-08 Yossi Gross Controlled renal artery ablation
US8725249B2 (en) 2008-12-09 2014-05-13 Nephera Ltd. Stimulation of the urinary system
US8728075B2 (en) 2010-04-26 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Multi-directional deflectable catheter apparatuses, systems, and methods for renal neuromodulation
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8805466B2 (en) 2008-11-11 2014-08-12 Shifamed Holdings, Llc Low profile electrode assembly
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US20140277305A1 (en) * 2013-03-13 2014-09-18 Advanced Cooling Therapy, Llc Devices, Systems, and Methods for Managing Patient Temperature and Correcting Cardiac Arrhythmia
WO2014163990A1 (en) * 2013-03-12 2014-10-09 Boston Scientific Scimed, Inc. Medical systems and methods for modulating nerves
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US8909316B2 (en) 2011-05-18 2014-12-09 St. Jude Medical, Cardiology Division, Inc. Apparatus and method of assessing transvascular denervation
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US8923970B2 (en) 2008-12-09 2014-12-30 Nephera Ltd. Stimulation of the urinary system
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8934988B2 (en) 2012-03-16 2015-01-13 St. Jude Medical Ab Ablation stent with meander structure
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US8961550B2 (en) 2012-04-17 2015-02-24 Indian Wells Medical, Inc. Steerable endoluminal punch
US8974445B2 (en) 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US8979839B2 (en) 2009-11-13 2015-03-17 St. Jude Medical, Inc. Assembly of staggered ablation elements
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8992447B2 (en) 2009-10-12 2015-03-31 Kona Medical, Inc. Energetic modulation of nerves
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US20150164401A1 (en) * 2012-06-14 2015-06-18 Autonomix Medical, Inc. Devices, systems, and methods for diagnosis and treatment of overactive bladder
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US9113929B2 (en) 2012-04-19 2015-08-25 St. Jude Medical, Cardiology Division, Inc. Non-electric field renal denervation electrode
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US9175095B2 (en) 2010-11-05 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9179997B2 (en) 2013-03-06 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Thermochromic polyvinyl alcohol based hydrogel artery
US9186212B2 (en) 2013-03-15 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods utilizing two or more sites along denervation catheter
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
USD747491S1 (en) 2013-10-23 2016-01-12 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9333031B2 (en) 2013-04-08 2016-05-10 Apama Medical, Inc. Visualization inside an expandable medical device
WO2015179634A3 (en) * 2014-05-22 2016-05-19 CARDIONOMIC, Inc. Catheter and catheter system for electrical neuromodulation
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9393070B2 (en) 2012-04-24 2016-07-19 Cibiem, Inc. Endovascular catheters and methods for carotid body ablation
US9398930B2 (en) 2012-06-01 2016-07-26 Cibiem, Inc. Percutaneous methods and devices for carotid body ablation
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9402677B2 (en) 2012-06-01 2016-08-02 Cibiem, Inc. Methods and devices for cryogenic carotid body ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9427579B2 (en) 2011-09-29 2016-08-30 Pacesetter, Inc. System and method for performing renal denervation verification
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US9433784B2 (en) 2008-08-11 2016-09-06 Cibiem, Inc. Systems and methods for treating dyspnea, including via electrical afferent signal blocking
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US9480790B2 (en) 2005-09-12 2016-11-01 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US20160338724A1 (en) * 2012-06-30 2016-11-24 Yegor D. Sinelnikov Carotid septum ablation with ultrasound imaging and ablation catheters
US9510902B2 (en) 2013-03-13 2016-12-06 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
USD774043S1 (en) 2013-10-23 2016-12-13 St. Jude Medical, Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9561070B2 (en) 2013-03-15 2017-02-07 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
EP3175808A1 (en) * 2010-04-26 2017-06-07 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses and systems for renal neuromodulation
WO2017093926A1 (en) * 2015-12-01 2017-06-08 Symap Medical (Suzhou), Ltd System and method for mapping functional nerves innervating wall of arteries,3-d mapping and catheters for same
EP2214607A4 (en) * 2007-10-11 2017-06-21 Kirk Promotion LTD. System and method for thermal treatment of hypertension, hypotension or aneurysm
US20170173338A1 (en) * 2014-09-08 2017-06-22 CARDIONOMIC, Inc. Catheter and electrode systems for electrical neuromodulation
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US20170182165A1 (en) * 2015-12-23 2017-06-29 Rhode Island Hospital Thermal accelerant compositions and methods of use
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9700372B2 (en) 2002-07-01 2017-07-11 Recor Medical, Inc. Intraluminal methods of ablating nerve tissue
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US9743845B2 (en) 2011-08-26 2017-08-29 Symap Medical (Suzhou), Ltd Mapping sympathetic nerve distribution for renal ablation and catheters for same
US9750568B2 (en) 2012-03-08 2017-09-05 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9775966B2 (en) 2013-03-12 2017-10-03 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9775663B2 (en) 2013-03-15 2017-10-03 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US9827042B2 (en) 2011-12-02 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US9855097B2 (en) 2010-10-21 2018-01-02 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US9861433B2 (en) 2013-11-05 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Helical-shaped ablation catheter and methods of use
US9872728B2 (en) 2013-06-28 2018-01-23 St. Jude Medical, Cardiology Division, Inc. Apparatuses and methods for affixing electrodes to an intravascular balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US9913961B2 (en) 2013-10-24 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9955946B2 (en) 2014-03-12 2018-05-01 Cibiem, Inc. Carotid body ablation with a transvenous ultrasound imaging and ablation catheter
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US9974477B2 (en) 2013-03-15 2018-05-22 St. Jude Medical, Cardiology Division, Inc. Quantification of renal denervation via alterations in renal blood flow pre/post ablation
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US9999748B2 (en) 2013-10-24 2018-06-19 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10004557B2 (en) 2012-11-05 2018-06-26 Pythagoras Medical Ltd. Controlled tissue ablation
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
EP3348220A1 (en) * 2012-03-08 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. Biomarker sampling in the context of neuromodulation devices and associated systems
US10034705B2 (en) 2013-10-24 2018-07-31 St. Jude Medical, Cardiology Division, Inc. High strength electrode assembly for catheter system including novel electrode
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
US10111708B2 (en) 2011-08-26 2018-10-30 Symap Medical (Suzhou), Ltd System and method for locating and identifying the functional nerves innervating the wall of arteries and catheters for same
US10117580B1 (en) * 2017-05-06 2018-11-06 Synerfuse, Inc. Systems, devices and methods that affect neural tissue through the delivery of a pulsed radio frequency signal generated by an implantable medical device
US20180344518A1 (en) * 2015-12-03 2018-12-06 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Device and Method for Nerve Block by Local Cooling to Room Temperature
US10172549B2 (en) 2016-03-09 2019-01-08 CARDIONOMIC, Inc. Methods of facilitating positioning of electrodes
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
WO2019043494A1 (en) * 2017-08-29 2019-03-07 Biosense Webster (Israel) Ltd. Balloon advancement mechanism
US10230041B2 (en) 2013-03-14 2019-03-12 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
US10238446B2 (en) 2010-11-09 2019-03-26 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
AU2017202750B2 (en) * 2007-10-11 2019-05-23 Implantica Patent Ltd. System And Method For Thermal Treatment Of Hypertension, Hypotension Or Aneurysm
US10299856B2 (en) 2014-05-22 2019-05-28 Aegea Medical Inc. Systems and methods for performing endometrial ablation
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US10328238B2 (en) 2013-03-12 2019-06-25 St. Jude Medical, Cardiology Division, Inc. Catheter system
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10350002B2 (en) 2013-04-25 2019-07-16 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US10350440B2 (en) 2013-03-14 2019-07-16 Recor Medical, Inc. Ultrasound-based neuromodulation system
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10398501B2 (en) 2014-04-24 2019-09-03 St. Jude Medical, Cardiology Division, Inc. Ablation systems including pulse rate detector and feedback mechanism and methods of use
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10420537B2 (en) 2015-03-27 2019-09-24 Shifamed Holdings, Llc Steerable medical devices, systems, and methods of use
US10420604B2 (en) 2013-10-28 2019-09-24 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including interlinked struts
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
US10493278B2 (en) 2015-01-05 2019-12-03 CARDIONOMIC, Inc. Cardiac modulation facilitation methods and systems
US10499937B2 (en) 2006-05-19 2019-12-10 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10716914B2 (en) 2013-03-12 2020-07-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
US10722716B2 (en) 2014-09-08 2020-07-28 Cardionomia Inc. Methods for electrical neuromodulation of the heart
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US10722303B2 (en) 2011-08-26 2020-07-28 Symap Medical (Suzhou), Limited System and method for mapping the functional nerves innervating the wall of arteries, 3-D mapping and catheters for same
US10736693B2 (en) 2015-11-16 2020-08-11 Apama Medical, Inc. Energy delivery devices
US10758292B2 (en) 2007-08-23 2020-09-01 Aegea Medical Inc. Uterine therapy device and method
US10772681B2 (en) 2009-10-12 2020-09-15 Utsuka Medical Devices Co., Ltd. Energy delivery to intraparenchymal regions of the kidney
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10856936B2 (en) 2013-10-23 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including thermoplastic-based struts
US10881442B2 (en) 2011-10-07 2021-01-05 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
US10933221B2 (en) 2015-11-09 2021-03-02 Kalila Medical, Inc. Steering assemblies for medical devices, and methods of use
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
USD914883S1 (en) 2013-10-23 2021-03-30 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US11052226B2 (en) 2015-04-24 2021-07-06 Kalila Medical, Inc. Steerable medical devices, systems, and methods of use
US11077298B2 (en) 2018-08-13 2021-08-03 CARDIONOMIC, Inc. Partially woven expandable members
CN113226206A (en) * 2018-10-17 2021-08-06 佛罗里达大学研究基金会 Controlling esophageal temperature during cardiac ablation
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US11154712B2 (en) 2014-08-28 2021-10-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for assessing efficacy of renal neuromodulation and associated systems and devices
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
EP3925573A1 (en) * 2007-10-11 2021-12-22 Implantica Patent Ltd. A system for treating a sexual dysfunctional female patient
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US11272981B2 (en) 2013-07-03 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US11439460B2 (en) 2016-06-23 2022-09-13 St. Jude Medical, Cardiology Division, Inc. Catheter system and electrode assembly for intraprocedural evaluation of renal denervation
US11559687B2 (en) 2017-09-13 2023-01-24 CARDIONOMIC, Inc. Methods for detecting catheter movement
US11607176B2 (en) 2019-05-06 2023-03-21 CARDIONOMIC, Inc. Systems and methods for denoising physiological signals during electrical neuromodulation
US20230100876A1 (en) * 2015-11-23 2023-03-30 Regents Of The University Of Minnesota Devices and methods for enhanced denervation procedures
US11678932B2 (en) 2016-05-18 2023-06-20 Symap Medical (Suzhou) Limited Electrode catheter with incremental advancement
US11832965B2 (en) 2018-10-06 2023-12-05 Symap Medical (Suzhou), Limited System and method for mapping the functional nerves innervating the wall of arteries, 3-D mapping and catheters for same
CN117796895A (en) * 2024-02-29 2024-04-02 浙江伽奈维医疗科技有限公司 Steep pulse ablation catheter and equipment
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
US12016624B2 (en) 2015-12-23 2024-06-25 Rhode Island Hospital Thermal accelerant compositions and methods of use
WO2024138313A1 (en) * 2022-12-26 2024-07-04 赵治宇 Heating apparatus for intermittent thermal action on nervous tissues of living animals or human bodies

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190175268A1 (en) 2002-04-08 2019-06-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
EP1762259B1 (en) 2005-09-12 2010-09-08 Unomedical A/S Inserter for an infusion set with a first and second spring units
US20100004623A1 (en) * 2008-03-27 2010-01-07 Angiodynamics, Inc. Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
MX2012011085A (en) 2010-03-30 2012-10-10 Unomedical As Medical device.
US9700368B2 (en) 2010-10-13 2017-07-11 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US10194938B2 (en) 2011-03-14 2019-02-05 UnoMedical, AS Inserter system with transport protection
US9237925B2 (en) 2011-04-22 2016-01-19 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US8663190B2 (en) 2011-04-22 2014-03-04 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US9387031B2 (en) * 2011-07-29 2016-07-12 Medtronic Ablation Frontiers Llc Mesh-overlayed ablation and mapping device
US9056185B2 (en) 2011-08-24 2015-06-16 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US20130053792A1 (en) 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US9278196B2 (en) 2011-08-24 2016-03-08 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
WO2013050277A1 (en) 2011-10-05 2013-04-11 Unomedical A/S Inserter for simultaneous insertion of multiple transcutaneous parts
EP2583715A1 (en) 2011-10-19 2013-04-24 Unomedical A/S Infusion tube system and method for manufacture
AU2012347470B2 (en) 2011-12-09 2017-02-02 Medtronic Ireland Manufacturing Unlimited Company Therapeutic neuromodulation of the hepatic system
EP2809399B1 (en) 2012-01-30 2023-04-19 Auris Health, Inc. Tissue necrosis apparatus
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US8951296B2 (en) * 2012-06-29 2015-02-10 Medtronic Ardian Luxembourg S.A.R.L. Devices and methods for photodynamically modulating neural function in a human
WO2014007871A1 (en) 2012-07-05 2014-01-09 Mc10, Inc. Catheter device including flow sensing
US9295842B2 (en) 2012-07-05 2016-03-29 Mc10, Inc. Catheter or guidewire device including flow sensing and use thereof
US9333035B2 (en) 2012-09-19 2016-05-10 Denervx LLC Cooled microwave denervation
US9526827B2 (en) 2012-10-29 2016-12-27 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US10881458B2 (en) 2012-10-29 2021-01-05 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US9554849B2 (en) 2012-10-29 2017-01-31 Ablative Solutions, Inc. Transvascular method of treating hypertension
US10226278B2 (en) 2012-10-29 2019-03-12 Ablative Solutions, Inc. Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US9301795B2 (en) 2012-10-29 2016-04-05 Ablative Solutions, Inc. Transvascular catheter for extravascular delivery
US10736656B2 (en) 2012-10-29 2020-08-11 Ablative Solutions Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US10945787B2 (en) 2012-10-29 2021-03-16 Ablative Solutions, Inc. Peri-vascular tissue ablation catheters
US9888956B2 (en) 2013-01-22 2018-02-13 Angiodynamics, Inc. Integrated pump and generator device and method of use
US20140277310A1 (en) * 2013-03-15 2014-09-18 Medtronic Ardian Luxembourg S.a.r.I. Catheters Having Tethered Neuromodulation Units and Associated Devices, Systems, and Methods
CN105473089A (en) 2013-06-05 2016-04-06 麦特文申公司 Modulation of targeted nerve fibers
US20150025524A1 (en) * 2013-07-18 2015-01-22 St. Jude Medical, Cardiology Division, Inc. Renal denervation monitoring and feedback apparatus, system and method
WO2015039104A2 (en) 2013-09-16 2015-03-19 Neuraxis, Llc Methods and devices for applying localized thermal therapy
WO2015038200A1 (en) 2013-09-16 2015-03-19 Neuraxis, Llc Implantable devices for thermal therapy and related methods
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US10517666B2 (en) 2013-10-25 2019-12-31 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
US10390881B2 (en) 2013-10-25 2019-08-27 Denervx LLC Cooled microwave denervation catheter with insertion feature
US9931046B2 (en) 2013-10-25 2018-04-03 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
US20150209107A1 (en) 2014-01-24 2015-07-30 Denervx LLC Cooled microwave denervation catheter configuration
EP2959937A1 (en) * 2014-06-26 2015-12-30 BIOTRONIK SE & Co. KG Cuff electrode comprising a sensor and contacts for vagus nerve stimulation
US12114911B2 (en) 2014-08-28 2024-10-15 Angiodynamics, Inc. System and method for ablating a tissue site by electroporation with real-time pulse monitoring
US11357912B2 (en) 2016-01-19 2022-06-14 Unomedical A/S Cannula and infusion devices
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
WO2018089795A1 (en) 2016-11-10 2018-05-17 Qoravita LLC System and method for applying a low frequency magnetic field to biological tissues
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
WO2018148844A1 (en) 2017-02-17 2018-08-23 The University Of British Columbia Apparatus and methods for maintaining physiological functions
DE20168827T1 (en) 2017-06-30 2021-01-21 Gtx Medical B.V. NEUROMODULATION SYSTEM
US11160982B2 (en) * 2017-07-05 2021-11-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating post-traumatic stress disorder in patients via renal neuromodulation
WO2019110400A1 (en) 2017-12-05 2019-06-13 Ecole Polytechnique Federale De Lausanne (Epfl) A system for planning and/or providing neuromodulation
US10849685B2 (en) 2018-07-18 2020-12-01 Ablative Solutions, Inc. Peri-vascular tissue access catheter with locking handle
EP3653256B1 (en) 2018-11-13 2022-03-30 ONWARD Medical N.V. Control system for movement reconstruction and/or restoration for a patient
EP3653260A1 (en) 2018-11-13 2020-05-20 GTX medical B.V. Sensor in clothing of limbs or footwear
EP3695878B1 (en) 2019-02-12 2023-04-19 ONWARD Medical N.V. A system for neuromodulation
CN113950341B (en) 2019-05-20 2024-03-19 优诺医疗有限公司 Rotatable infusion device and method therefor
DE19211698T1 (en) 2019-11-27 2021-09-02 Onward Medical B.V. Neuromodulation system
US20240099769A1 (en) * 2022-09-28 2024-03-28 Virender K. Sharma Methods and Systems for Thermal Enhancement of Electroporation
EP4445855A1 (en) * 2023-04-13 2024-10-16 BIOTRONIK SE & Co. KG Method and catheter for renal denervation

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423744A (en) * 1992-12-22 1995-06-13 Gencheff; Nelson Catheter system for the deployment of biological material
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5676662A (en) * 1995-03-17 1997-10-14 Daig Corporation Ablation catheter
US5713917A (en) * 1995-10-30 1998-02-03 Leonhardt; Howard J. Apparatus and method for engrafting a blood vessel
US5824041A (en) * 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US6041252A (en) * 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
US6066134A (en) * 1992-01-07 2000-05-23 Arthrocare Corporation Method for electrosurgical cutting and ablation
US20010020174A1 (en) * 1999-11-22 2001-09-06 Scimed Life Systems, Inc. Helical and pre-oriented loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6292695B1 (en) * 1998-06-19 2001-09-18 Wilton W. Webster, Jr. Method and apparatus for transvascular treatment of tachycardia and fibrillation
US6325797B1 (en) * 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US20020062124A1 (en) * 1999-09-15 2002-05-23 David Keane Coiled ablation catheter system
US6497704B2 (en) * 2001-04-04 2002-12-24 Moshe Ein-Gal Electrosurgical apparatus
US20030018367A1 (en) * 2001-07-23 2003-01-23 Dilorenzo Daniel John Method and apparatus for neuromodulation and phsyiologic modulation for the treatment of metabolic and neuropsychiatric disease
US6517811B2 (en) * 1993-05-06 2003-02-11 Research Corporation Technologies, Inc. Compounds for cancer imaging and therapy
US6522926B1 (en) * 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US20030060857A1 (en) * 2000-09-27 2003-03-27 Perrson Bruce J. Electrode designs and methods of use for cardiovascular reflex control devices
US20030060858A1 (en) * 2000-09-27 2003-03-27 Kieval Robert S. Stimulus regimens for cardiovascular reflex control
US20030060848A1 (en) * 2001-09-26 2003-03-27 Kieval Robert S. Mapping methods for cardiovascular reflex control devices
US20030181963A1 (en) * 2002-03-21 2003-09-25 Pellegrino Richard C. Novel early intervention spinal treatment methods and devices for use therein
US20030216792A1 (en) * 2002-04-08 2003-11-20 Levin Howard R. Renal nerve stimulation method and apparatus for treatment of patients
US6702811B2 (en) * 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US20040127942A1 (en) * 2002-10-04 2004-07-01 Yomtov Barry M. Medical device for neural stimulation and controlled drug delivery
US6845267B2 (en) * 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US6972016B2 (en) * 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
US20060167498A1 (en) * 2001-07-23 2006-07-27 Dilorenzo Daniel J Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of disease
US7191015B2 (en) * 2002-04-11 2007-03-13 Medtronic Vascular, Inc. Devices and methods for transluminal or transthoracic interstitial electrode placement

Family Cites Families (697)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2130758A (en) 1935-06-01 1938-09-20 E J Rose Mfg Company Of Califo Electrode for diathermy treatment and the like
US2276995A (en) 1938-01-22 1942-03-17 A J Ginsberg Electrotherapy
US2276996A (en) 1940-11-30 1942-03-17 A J Ginsberg Non-radio-interfering therapeutic apparatus
US3181535A (en) 1957-10-04 1965-05-04 Diapulse Mfg Corp Of America Athermapeutic apparatus
US3043310A (en) 1959-04-24 1962-07-10 Diapulse Mfg Corp Of America Treatment head for athermapeutic apparatus
US3127895A (en) 1962-07-02 1964-04-07 Dynapower System Corp Therapeutic pulse generation and control circuit
US3270746A (en) 1963-08-26 1966-09-06 Dynapower Systems Corp High-performance electrotherapeutic treatment head
US3329149A (en) 1964-10-28 1967-07-04 Dynapower Systems Corp Of Cali Supporting arm for electrotherapeutic treatment head
US3563246A (en) 1967-04-24 1971-02-16 Intelectron Corp Method and apparatus for improving neural performance in human subjects by electrotherapy
US3522811A (en) 1969-02-13 1970-08-04 Medtronic Inc Implantable nerve stimulator and method of use
SE346468B (en) 1969-02-24 1972-07-10 Lkb Medical Ab
US3670737A (en) 1970-07-02 1972-06-20 Diapulse Corp Of America Ultra-short wave athermapeutic apparatus
US3760812A (en) 1971-03-19 1973-09-25 Univ Minnesota Implantable spiral wound stimulation electrodes
US3774620A (en) 1971-06-14 1973-11-27 Nemectron Gmbh Electromedicinal apparatus for interference current therapy
US3895639A (en) 1971-09-07 1975-07-22 Rodler Ing Hans Apparatus for producing an interference signal at a selected location
US3800802A (en) 1972-01-07 1974-04-02 Int Medical Electronics Ltd Short-wave therapy apparatus
US3752162A (en) 1972-04-10 1973-08-14 Dow Corning Artificial cutaneous stoma
US3794022A (en) 1972-06-30 1974-02-26 E Nawracaj Dual oscillator, variable pulse duration electrotherapeutic device
US3803463A (en) 1972-07-10 1974-04-09 J Cover Weapon for immobilization and capture
US3897789A (en) 1973-09-13 1975-08-05 Stanley J Blanchard Acupuncture apparatus
US3894532A (en) 1974-01-17 1975-07-15 Acupulse Inc Instruments for transcutaneous and subcutaneous investigation and treatment
US3911930A (en) 1974-03-01 1975-10-14 Stimulation Tech Method and structure of preventing and treating ileus, and reducing acute pain by electrical pulse stimulation
US4011861A (en) 1974-04-03 1977-03-15 Case Western Reserve University Implantable electric terminal for organic tissue
US4055190A (en) 1974-12-19 1977-10-25 Michio Tany Electrical therapeutic apparatus
US3952751A (en) 1975-01-08 1976-04-27 W. Denis Kendall High-performance electrotherapeutic apparatus
US4026300A (en) 1975-03-14 1977-05-31 Liberty Mutual Method and apparatus for interfacing to nerves
US3987790A (en) 1975-10-01 1976-10-26 Alza Corporation Osmotically driven fluid dispenser
US4105017A (en) 1976-11-17 1978-08-08 Electro-Biology, Inc. Modification of the growth repair and maintenance behavior of living tissue and cells by a specific and selective change in electrical environment
US4266532A (en) 1976-11-17 1981-05-12 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4315503A (en) 1976-11-17 1982-02-16 Electro-Biology, Inc. Modification of the growth, repair and maintenance behavior of living tissues and cells by a specific and selective change in electrical environment
US4071033A (en) 1976-12-20 1978-01-31 Nawracaj Edward P Electrotherapeutic device with modulated dual signals
US4141365A (en) 1977-02-24 1979-02-27 The Johns Hopkins University Epidural lead electrode and insertion needle
US4360019A (en) 1979-02-28 1982-11-23 Andros Incorporated Implantable infusion device
US4305115A (en) 1979-03-14 1981-12-08 Harry H. Leveen Electrostatic shield
US4692147A (en) 1980-04-02 1987-09-08 Medtronic, Inc. Drug administration device
US4405305A (en) 1980-10-27 1983-09-20 University Of Utah Research Foundation Subcutaneous peritoneal injection catheter
US4379462A (en) 1980-10-29 1983-04-12 Neuromed, Inc. Multi-electrode catheter assembly for spinal cord stimulation
CS226514B1 (en) 1981-01-28 1984-04-16 Petr Ing Csc Slovak Apparatus for stimulating live tissues
US4454883A (en) 1982-02-16 1984-06-19 Therafield Holdings Limited Electrotherapeutic apparatus
US4530840A (en) 1982-07-29 1985-07-23 The Stolle Research And Development Corporation Injectable, long-acting microparticle formulation for the delivery of anti-inflammatory agents
US4467808A (en) 1982-09-17 1984-08-28 Biolectron, Inc. Method for preventing and treating osteoporosis in a living body by using electrical stimulation non-invasively
US4487603A (en) 1982-11-26 1984-12-11 Cordis Corporation Implantable microinfusion pump system
FR2541902B1 (en) 1983-03-04 1986-02-07 Cofrem International Sa THERMAL THERAPEUTIC APPARATUS
AU577549B2 (en) 1983-09-14 1988-09-29 Jacob Zabara Neurocybernetic prothesis
JPS60100516A (en) 1983-11-04 1985-06-04 Takeda Chem Ind Ltd Preparation of sustained release microcapsule
US4816016A (en) 1984-03-16 1989-03-28 Pudenz-Schulte Medical Research Corp. Subcutaneous infusion reservoir and pump system
US4618600A (en) 1984-04-19 1986-10-21 Biotechnology Research Associates, J.V. Novel polypeptide diuretic/vasodilators
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4674482A (en) 1984-09-12 1987-06-23 Irt, Inc. Pulse electro-magnetic field therapy device with auto bias circuit
US4602624A (en) 1984-10-11 1986-07-29 Case Western Reserve University Implantable cuff, method of manufacture, and method of installation
US4649936A (en) 1984-10-11 1987-03-17 Case Western Reserve University Asymmetric single electrode cuff for generation of unidirectionally propagating action potentials for collision blocking
US4608985A (en) 1984-10-11 1986-09-02 Case Western Reserve University Antidromic pulse generating wave form for collision blocking
US4824436A (en) 1985-04-09 1989-04-25 Harvey Wolinsky Method for the prevention of restenosis
JPS6218122A (en) 1985-07-16 1987-01-27 Matsushita Electric Ind Co Ltd Two-way amplifier
FR2592791A1 (en) 1986-01-14 1987-07-17 Ire Celltarg Sa PHARMACEUTICAL COMPOSITION CONTAINING A LOCAL ANESTHETIC AND / OR A CENTRAL ANALGESIC ENCAPSULATED IN LIPOSOMES
US4865845A (en) 1986-03-21 1989-09-12 Alza Corporation Release rate adjustment of osmotic or diffusional delivery devices
US4709698A (en) 1986-05-14 1987-12-01 Thomas J. Fogarty Heatable dilation catheter
US5014699A (en) 1986-05-23 1991-05-14 Trustees Of The University Of Pennsylvania Electromagnetic method and apparatus for healing living tissue
US4998532A (en) 1986-05-23 1991-03-12 Lti Biomedical, Inc. Portable electro-therapy system
US4715852A (en) 1986-07-21 1987-12-29 Eaton Corporation Implanted medication infusion device
US4774967A (en) 1986-09-09 1988-10-04 American Biointerface Corporation Method and apparatus for mammalian nerve regeneration
US4791931A (en) 1987-08-13 1988-12-20 Pacesetter Infusion, Ltd. Demand pacemaker using an artificial baroreceptor reflex
US4852573A (en) 1987-12-04 1989-08-01 Kennedy Philip R Implantable neural electrode
EP0398960B1 (en) 1988-01-21 1995-12-06 Massachusetts Institute Of Technology Transport of molecules across tissue using electroporation
US5389069A (en) 1988-01-21 1995-02-14 Massachusetts Institute Of Technology Method and apparatus for in vivo electroporation of remote cells and tissue
US4890623A (en) 1988-03-14 1990-01-02 C. R. Bard, Inc. Biopotential sensing device and method for making
CA1319174C (en) 1988-04-21 1993-06-15 Lawrence E. Bertolucci Electrical nerve stimulation device for nausea control
US4955377A (en) 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
US5094242A (en) 1988-11-07 1992-03-10 Regents Of The University Of California Implantable nerve stimulation device
US5059423A (en) 1988-12-13 1991-10-22 Alza Corporation Delivery system comprising biocompatible beneficial agent formulation
US5057318A (en) 1988-12-13 1991-10-15 Alza Corporation Delivery system for beneficial agent over a broad range of rates
US5458631A (en) 1989-01-06 1995-10-17 Xavier; Ravi Implantable catheter with electrical pulse nerve stimulators and drug delivery system
AU4945490A (en) 1989-01-06 1990-08-01 Angioplasty Systems Inc. Electrosurgical catheter for resolving atherosclerotic plaque
US5779698A (en) 1989-01-18 1998-07-14 Applied Medical Resources Corporation Angioplasty catheter system and method for making same
US5087244A (en) 1989-01-31 1992-02-11 C. R. Bard, Inc. Catheter and method for locally applying medication to the wall of a blood vessel or other body lumen
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5006119A (en) 1989-05-25 1991-04-09 Engineering & Research Associates, Inc. Hollow core coaxial catheter
JPH0341967A (en) 1989-07-11 1991-02-22 Olympus Optical Co Ltd Gradual drug releasing device
US20030220521A1 (en) 1989-07-27 2003-11-27 G.D. Searle & Co. Renal-selective prodrugs for control of renal sympathetic nerve activity in the treatment of hypertension
US5112614A (en) 1989-09-14 1992-05-12 Alza Corporation Implantable delivery dispenser
RU1785710C (en) 1989-10-06 1993-01-07 Vremennyj Nauchnyj Kollektiv O Microwave resonant therapeutic device
US4979511A (en) 1989-11-03 1990-12-25 Cyberonics, Inc. Strain relief tether for implantable electrode
US5344395A (en) 1989-11-13 1994-09-06 Scimed Life Systems, Inc. Apparatus for intravascular cavitation or delivery of low frequency mechanical energy
US5188837A (en) 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
US5851206A (en) 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
US5084006A (en) 1990-03-30 1992-01-28 Alza Corporation Iontopheretic delivery device
US5193048A (en) 1990-04-27 1993-03-09 Kaufman Dennis R Stun gun with low battery indicator and shutoff timer
US5236413B1 (en) 1990-05-07 1996-06-18 Andrew J Feiring Method and apparatus for inducing the permeation of medication into internal tissue
US5184617A (en) 1990-06-05 1993-02-09 Staodyn, Inc. Output pulse compensation for therapeutic-type electronic devices
US5095905A (en) 1990-06-07 1992-03-17 Medtronic, Inc. Implantable neural electrode
US5498238A (en) 1990-06-15 1996-03-12 Cortrak Medical, Inc. Simultaneous angioplasty and phoretic drug delivery
DE69110467T2 (en) 1990-06-15 1996-02-01 Cortrak Medical Inc DEVICE FOR DISPENSING MEDICINES.
US5499971A (en) 1990-06-15 1996-03-19 Cortrak Medical, Inc. Method for iontophoretically delivering drug adjacent to a heart
US5234692A (en) 1990-07-11 1993-08-10 Alza Corporation Delivery device with a protective sleeve
US5234693A (en) 1990-07-11 1993-08-10 Alza Corporation Delivery device with a protective sleeve
US5058584A (en) 1990-08-30 1991-10-22 Medtronic, Inc. Method and apparatus for epidural burst stimulation for angina pectoris
US5111815A (en) 1990-10-15 1992-05-12 Cardiac Pacemakers, Inc. Method and apparatus for cardioverter/pacer utilizing neurosensing
EP0491979A1 (en) 1990-12-22 1992-07-01 Peter Dr. Ing. Osypka Pacemaker catheter with two poles
US6524274B1 (en) 1990-12-28 2003-02-25 Scimed Life Systems, Inc. Triggered release hydrogel drug delivery system
US5102402A (en) 1991-01-04 1992-04-07 Medtronic, Inc. Releasable coatings on balloon catheters
US5997497A (en) 1991-01-11 1999-12-07 Advanced Cardiovascular Systems Ultrasound catheter having integrated drug delivery system and methods of using same
US5324255A (en) 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
EP0497041B1 (en) 1991-01-31 1997-01-08 Baxter International Inc. Automated infusion pump with replaceable memory cartridges
US5263480A (en) 1991-02-01 1993-11-23 Cyberonics, Inc. Treatment of eating disorders by nerve stimulation
US5269303A (en) 1991-02-22 1993-12-14 Cyberonics, Inc. Treatment of dementia by nerve stimulation
US5199428A (en) 1991-03-22 1993-04-06 Medtronic, Inc. Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload
US5299569A (en) 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US5335657A (en) 1991-05-03 1994-08-09 Cyberonics, Inc. Therapeutic treatment of sleep disorder by nerve stimulation
US5251634A (en) 1991-05-03 1993-10-12 Cyberonics, Inc. Helical nerve electrode
US5215086A (en) 1991-05-03 1993-06-01 Cyberonics, Inc. Therapeutic treatment of migraine symptoms by stimulation
US6309379B1 (en) 1991-05-23 2001-10-30 Lloyd K. Willard Sheath for selective delivery of multiple intravascular devices and methods of use thereof
US5458568A (en) 1991-05-24 1995-10-17 Cortrak Medical, Inc. Porous balloon for selective dilatation and drug delivery
WO1992020291A1 (en) 1991-05-24 1992-11-26 Applied Medical Resources, Inc. Articulating tissue cutter assembly
US5137727A (en) 1991-06-12 1992-08-11 Alza Corporation Delivery device providing beneficial agent stability
US5213098A (en) 1991-07-26 1993-05-25 Medtronic, Inc. Post-extrasystolic potentiation stimulation with physiologic sensor feedback
US5222494A (en) 1991-07-31 1993-06-29 Cyberonics, Inc. Implantable tissue stimulator output stabilization system
US5231988A (en) 1991-08-09 1993-08-03 Cyberonics, Inc. Treatment of endocrine disorders by nerve stimulation
WO1993006780A1 (en) 1991-10-03 1993-04-15 The General Hospital Corporation Apparatus and method for vasodilation
US5215089A (en) 1991-10-21 1993-06-01 Cyberonics, Inc. Electrode assembly for nerve stimulation
AU3067292A (en) 1991-11-08 1993-06-07 Ep Technologies Inc Ablation electrode with insulated temperature sensing elements
US5304206A (en) 1991-11-18 1994-04-19 Cyberonics, Inc. Activation techniques for implantable medical device
US5358514A (en) 1991-12-18 1994-10-25 Alfred E. Mann Foundation For Scientific Research Implantable microdevice with self-attaching electrodes
US5193539A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Implantable microstimulator
US5193540A (en) 1991-12-18 1993-03-16 Alfred E. Mann Foundation For Scientific Research Structure and method of manufacture of an implantable microstimulator
US5203326A (en) 1991-12-18 1993-04-20 Telectronics Pacing Systems, Inc. Antiarrhythmia pacer using antiarrhythmia pacing and autonomic nerve stimulation therapy
US5419767A (en) 1992-01-07 1995-05-30 Thapliyal And Eggers Partners Methods and apparatus for advancing catheters through severely occluded body lumens
DE69325508T2 (en) 1992-03-09 2000-01-27 St. Georg's Hospital Medical School, London NEUROGRAPHIC IMAGING METHOD AND DIFFUSION ANISTROPY
US5306250A (en) 1992-04-02 1994-04-26 Indiana University Foundation Method and apparatus for intravascular drug delivery
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5370680A (en) 1992-05-27 1994-12-06 Magnetic Resonance Therapeutics, Inc. Athermapeutic apparatus employing electro-magnetic fields
JP3493196B2 (en) 1992-06-24 2004-02-03 サイベロニクス,インク. Treatment of neuropsychiatric disorders by nerve stimulation
US5772590A (en) 1992-06-30 1998-06-30 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire
US5304120A (en) 1992-07-01 1994-04-19 Btx Inc. Electroporation method and apparatus for insertion of drugs and genes into endothelial cells
US5507724A (en) 1992-07-01 1996-04-16 Genetronics, Inc. Electroporation and iontophoresis apparatus and method for insertion of drugs and genes into cells
US5538504A (en) 1992-07-14 1996-07-23 Scimed Life Systems, Inc. Intra-extravascular drug delivery catheter and method
US5484400A (en) 1992-08-12 1996-01-16 Vidamed, Inc. Dual channel RF delivery system
US5542916A (en) 1992-08-12 1996-08-06 Vidamed, Inc. Dual-channel RF power delivery system
DE4229693A1 (en) 1992-09-05 1994-03-10 Achim Dr Hansjuergens Electrotherapeutic device
DE69331387T2 (en) 1992-09-10 2002-08-22 Childrens Medical Center BIODEGRADABLE POLYMER MATRICATES WITH DELAYED RELEASE OF LOCALANE AESTHETICS
US5922340A (en) 1992-09-10 1999-07-13 Children's Medical Center Corporation High load formulations and methods for providing prolonged local anesthesia
US5700485A (en) 1992-09-10 1997-12-23 Children's Medical Center Corporation Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid
US5478303A (en) 1992-09-18 1995-12-26 Foley-Nolan; Darragh Electromagnetic apparatus for use in therapy
US5338662A (en) 1992-09-21 1994-08-16 Bio-Preserve Medical Corporation Organ perfusion device
US5553611A (en) 1994-01-06 1996-09-10 Endocardial Solutions, Inc. Endocardial measurement method
WO1994007446A1 (en) 1992-10-05 1994-04-14 Boston Scientific Corporation Device and method for heating tissue
US5634899A (en) 1993-08-20 1997-06-03 Cortrak Medical, Inc. Simultaneous cardiac pacing and local drug delivery method
CA2107741C (en) 1992-10-07 2000-06-27 Peter T. Keith Ablation devices and methods of use
US5634901A (en) 1992-11-02 1997-06-03 Localmed, Inc. Method of using a catheter sleeve
US5807306A (en) 1992-11-09 1998-09-15 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
CA2109980A1 (en) 1992-12-01 1994-06-02 Mir A. Imran Steerable catheter with adjustable bend location and/or radius and method
US5317155A (en) 1992-12-29 1994-05-31 The Electrogesic Corporation Corona discharge apparatus
US5429634A (en) 1993-09-09 1995-07-04 Pdt Systems Biogenic implant for drug delivery and method
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5792187A (en) 1993-02-22 1998-08-11 Angeion Corporation Neuro-stimulation to control pain during cardioversion defibrillation
US5397338A (en) 1993-03-29 1995-03-14 Maven Labs, Inc. Electrotherapy device
US5439440A (en) 1993-04-01 1995-08-08 Genetronics, Inc. Electroporation system with voltage control feedback for clinical applications
US5523092A (en) 1993-04-14 1996-06-04 Emory University Device for local drug delivery and methods for using the same
US5906817A (en) 1993-04-21 1999-05-25 Institut Pasteur Biocompatible implant for the expression and in vivo secretion of a therapeutic substance
FR2704151B1 (en) 1993-04-21 1995-07-13 Klotz Antoine Olivier Electronic device intended for the adrenergic stimulation of the sympathetic system relating to the venous media.
US5590654A (en) 1993-06-07 1997-01-07 Prince; Martin R. Method and apparatus for magnetic resonance imaging of arteries using a magnetic resonance contrast agent
US5584863A (en) 1993-06-24 1996-12-17 Electropharmacology, Inc. Pulsed radio frequency electrotherapeutic system
EP0706345B1 (en) 1993-07-01 2003-02-19 Boston Scientific Limited Imaging, electrical potential sensing, and ablation catheters
US5860974A (en) 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
US5507791A (en) 1993-08-31 1996-04-16 Sit'ko; Sergei P. Microwave resonance therapy
US5582609A (en) 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
US5400784A (en) 1993-10-15 1995-03-28 Case Western Reserve University Slowly penetrating inter-fascicular nerve cuff electrode and method of using
US5397308A (en) 1993-10-22 1995-03-14 Scimed Life Systems, Inc. Balloon inflation measurement apparatus
US5470352A (en) 1993-10-29 1995-11-28 Northeastern University Balloon angioplasty device
US5571147A (en) 1993-11-02 1996-11-05 Sluijter; Menno E. Thermal denervation of an intervertebral disc for relief of back pain
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
US5730127A (en) 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
JPH07157424A (en) 1993-12-03 1995-06-20 Lintec Corp Gel formulation for local anesthesia
US5458626A (en) 1993-12-27 1995-10-17 Krause; Horst E. Method of electrical nerve stimulation for acceleration of tissue healing
US6099524A (en) 1994-01-28 2000-08-08 Cardiac Pacemakers, Inc. Electrophysiological mapping and ablation catheter and method
US5697975A (en) 1994-02-09 1997-12-16 The University Of Iowa Research Foundation Human cerebral cortex neural prosthetic for tinnitus
US6858024B1 (en) 1994-02-14 2005-02-22 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
DE4408108A1 (en) 1994-03-10 1995-09-14 Bavaria Med Tech Catheter for injecting a fluid or a drug
US5588962A (en) 1994-03-29 1996-12-31 Boston Scientific Corporation Drug treatment of diseased sites deep within the body
US5464395A (en) 1994-04-05 1995-11-07 Faxon; David P. Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway
GB9407135D0 (en) 1994-04-11 1994-06-01 Aberdeen University And Plasma Treatment of osteoporosis
US5505201A (en) 1994-04-20 1996-04-09 Case Western Reserve University Implantable helical spiral cuff electrode
WO1995033514A1 (en) 1994-06-09 1995-12-14 Magnetic Resonance Therapeutics, Inc. Electro-therapeutic method
US5505700A (en) 1994-06-14 1996-04-09 Cordis Corporation Electro-osmotic infusion catheter
US6009877A (en) 1994-06-24 2000-01-04 Edwards; Stuart D. Method for treating a sphincter
US6405732B1 (en) 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US6056744A (en) 1994-06-24 2000-05-02 Conway Stuart Medical, Inc. Sphincter treatment apparatus
CA2194061C (en) 1994-06-27 2006-04-11 David K. Swanson Systems and methods for sensing temperature within the body
US5857998A (en) 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
US5626862A (en) 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5810802A (en) 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5514092A (en) 1994-08-08 1996-05-07 Schneider (Usa) Inc. Drug delivery and dilatation-drug delivery catheters in a rapid exchange configuration
US5454782A (en) 1994-08-11 1995-10-03 Perkins; Rodney C. Translumenal circumferential energy delivery device
EP0776235A4 (en) 1994-08-17 1999-08-25 Magnetic Resonance Therapeutic Electrotherapeutic system
US5531778A (en) 1994-09-20 1996-07-02 Cyberonics, Inc. Circumneural electrode assembly
US5540734A (en) 1994-09-28 1996-07-30 Zabara; Jacob Cranial nerve stimulation treatments using neurocybernetic prosthesis
WO1996011723A1 (en) 1994-10-17 1996-04-25 Australasian Medical Technology Limited Devices and methods for implementation of pulsed electromagnetic field therapy
US5722401A (en) 1994-10-19 1998-03-03 Cardiac Pathways Corporation Endocardial mapping and/or ablation catheter probe
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6689086B1 (en) 1994-10-27 2004-02-10 Advanced Cardiovascular Systems, Inc. Method of using a catheter for delivery of ultrasonic energy and medicament
US5660848A (en) 1994-11-02 1997-08-26 The Population Council, Center For Biomedical Research Subdermally implantable device
PT788351E (en) 1994-11-10 2003-06-30 Univ Kentucky Res Foundation T LIBERTACAOCONTROLADA RECHARGEABLE IMPLANTABLE DEVICE FOR ADMINISTERING MEDICATIONS DIRECTLY ON AN INTERNAL PORTION OF THE BODY
US5588960A (en) 1994-12-01 1996-12-31 Vidamed, Inc. Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5571150A (en) 1994-12-19 1996-11-05 Cyberonics, Inc. Treatment of patients in coma by nerve stimulation
US5569198A (en) 1995-01-23 1996-10-29 Cortrak Medical Inc. Microporous catheter
ATE308930T1 (en) 1995-05-04 2005-11-15 Sherwood Serv Ag THERMO-SURGERY SYSTEM WITH COLD ELECTRIC TIP
US6251104B1 (en) 1995-05-10 2001-06-26 Eclipse Surgical Technologies, Inc. Guiding catheter system for ablating heart tissue
US5540730A (en) 1995-06-06 1996-07-30 Cyberonics, Inc. Treatment of motility disorders by nerve stimulation
AU6251196A (en) 1995-06-07 1996-12-30 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical dev ice and method for loading and reloading the device therein
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
HUP9700322A3 (en) 1995-06-09 2001-03-28 Euro Celtique Sa Formulations and methods for providing prolonged local anesthesia
US6322558B1 (en) 1995-06-09 2001-11-27 Engineering & Research Associates, Inc. Apparatus and method for predicting ablation depth
US5865801A (en) 1995-07-18 1999-02-02 Houser; Russell A. Multiple compartmented balloon catheter with external pressure sensing
US5983131A (en) 1995-08-11 1999-11-09 Massachusetts Institute Of Technology Apparatus and method for electroporation of tissue
US5672174A (en) 1995-08-15 1997-09-30 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5711326A (en) 1995-08-25 1998-01-27 Whirlpool Corporation Dishwasher accumulator soil removal grating for a filter system
US5707400A (en) 1995-09-19 1998-01-13 Cyberonics, Inc. Treating refractory hypertension by nerve stimulation
DE69622764T2 (en) 1995-09-20 2003-04-24 California Institute Of Technology, Pasadena y DISPLAY OF THERMAL DISCONTINUITY ON VESSEL WALLS
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
EP0954248B1 (en) 1995-10-13 2004-09-15 Transvascular, Inc. Apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US6283951B1 (en) 1996-10-11 2001-09-04 Transvascular, Inc. Systems and methods for delivering drugs to selected locations within the body
US5700282A (en) 1995-10-13 1997-12-23 Zabara; Jacob Heart rhythm stabilization using a neurocybernetic prosthesis
US5755750A (en) 1995-11-13 1998-05-26 University Of Florida Method and apparatus for selectively inhibiting activity in nerve fibers
US6073048A (en) 1995-11-17 2000-06-06 Medtronic, Inc. Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure
US6010613A (en) 1995-12-08 2000-01-04 Cyto Pulse Sciences, Inc. Method of treating materials with pulsed electrical fields
CN2291164Y (en) 1996-12-23 1998-09-16 祝强 Instrument for bringing high blood pressure down
IL125415A (en) 1996-02-02 2004-02-19 Transvascular Inc Device and system for interstitial transvascular intervention
NZ331186A (en) 1996-02-02 2000-04-28 Alza Corp Osmotically driven sustained delivery drug delivery capsule
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5913876A (en) 1996-02-20 1999-06-22 Cardiothoracic Systems, Inc. Method and apparatus for using vagus nerve stimulation in surgery
US6036687A (en) 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US5843016A (en) 1996-03-18 1998-12-01 Physion S.R.L. Electromotive drug administration for treatment of acute urinary outflow obstruction
US5747060A (en) 1996-03-26 1998-05-05 Euro-Celtique, S.A. Prolonged local anesthesia with colchicine
US5690681A (en) 1996-03-29 1997-11-25 Purdue Research Foundation Method and apparatus using vagal stimulation for control of ventricular rate during atrial fibrillation
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6449507B1 (en) 1996-04-30 2002-09-10 Medtronic, Inc. Method and system for nerve stimulation prior to and during a medical procedure
US6735471B2 (en) 1996-04-30 2004-05-11 Medtronic, Inc. Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
US5713923A (en) 1996-05-13 1998-02-03 Medtronic, Inc. Techniques for treating epilepsy by brain stimulation and drug infusion
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
US5861021A (en) 1996-06-17 1999-01-19 Urologix Inc Microwave thermal therapy of cardiac tissue
US5944710A (en) 1996-06-24 1999-08-31 Genetronics, Inc. Electroporation-mediated intravascular delivery
US20020040204A1 (en) 1996-06-24 2002-04-04 Dev Nagendu B. Electroporation-enhanced inhibition of vascular neointimal hyperplasia
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
US5924997A (en) 1996-07-29 1999-07-20 Campbell; Thomas Henderson Catheter and method for the thermal mapping of hot spots in vascular lesions of the human body
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US6058328A (en) 1996-08-06 2000-05-02 Pacesetter, Inc. Implantable stimulation device having means for operating in a preemptive pacing mode to prevent tachyarrhythmias and method thereof
US5906636A (en) 1996-09-20 1999-05-25 Texas Heart Institute Heat treatment of inflamed tissue
US5800464A (en) 1996-10-03 1998-09-01 Medtronic, Inc. System for providing hyperpolarization of cardiac to enhance cardiac function
US5814079A (en) 1996-10-04 1998-09-29 Medtronic, Inc. Cardiac arrhythmia management by application of adnodal stimulation for hyperpolarization of myocardial cells
US5704908A (en) 1996-10-10 1998-01-06 Genetronics, Inc. Electroporation and iontophoresis catheter with porous balloon
US5893885A (en) 1996-11-01 1999-04-13 Cordis Webster, Inc. Multi-electrode ablation catheter
US6091995A (en) 1996-11-08 2000-07-18 Surx, Inc. Devices, methods, and systems for shrinking tissues
US5954719A (en) 1996-12-11 1999-09-21 Irvine Biomedical, Inc. System for operating a RF ablation generator
CA2225521C (en) 1996-12-27 2004-04-06 Eclipse Surgical Technologies, Inc. Laser assisted drug delivery apparatus
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US6366815B1 (en) 1997-01-13 2002-04-02 Neurodan A /S Implantable nerve stimulator electrode
US6026326A (en) 1997-01-13 2000-02-15 Medtronic, Inc. Apparatus and method for treating chronic constipation
JP2002515801A (en) 1997-02-12 2002-05-28 オーレイテック インターヴェンションズ インコーポレイテッド Concave tip for arthroscopic surgery
DE69832713T2 (en) 1997-02-26 2006-07-27 Alfred E. Mann Foundation For Scientific Research, Santa Clarita BATTERY OPERATING DEVICE FOR IMPLANTING IN A PATIENT
US6208894B1 (en) 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6416510B1 (en) 1997-03-13 2002-07-09 Biocardia, Inc. Drug delivery catheters that attach to tissue and methods for their use
US5954761A (en) 1997-03-25 1999-09-21 Intermedics Inc. Implantable endocardial lead assembly having a stent
JP4157168B2 (en) 1997-03-27 2008-09-24 アルフレッド イー マン ファウンデーション フォア サイエンティフィック リサーチ Implantable device system for monitoring and / or acting on body parameters
JP3041967U (en) 1997-03-28 1997-10-03 明男 中村 Flame detection system
US6261281B1 (en) 1997-04-03 2001-07-17 Electrofect As Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells
US7027869B2 (en) 1998-01-07 2006-04-11 Asthmatx, Inc. Method for treating an asthma attack
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US6723063B1 (en) 1998-06-29 2004-04-20 Ekos Corporation Sheath for use with an ultrasound element
US6024740A (en) 1997-07-08 2000-02-15 The Regents Of The University Of California Circumferential ablation device assembly
AU7389098A (en) 1997-05-16 1998-12-08 Brigham And Women's Hospital Local anesthetic formulations
US5989208A (en) 1997-05-16 1999-11-23 Nita; Henry Therapeutic ultrasound system
EP0998217B1 (en) 1997-05-23 2009-01-07 ProRhythm, Inc. Disposable high intensity focused ultrasound applicator
USRE40279E1 (en) * 1997-06-26 2008-04-29 Sherwood Services Ag Method and system for neural tissue modification
WO1999000060A1 (en) 1997-06-26 1999-01-07 Advanced Coronary Intervention Electrosurgical catheter for resolving obstructions by radio frequency ablation
BR9815499A (en) 1997-07-02 2001-01-02 Euro Celtique Sa Prolonged anesthesia in joints and body spaces.
US6869431B2 (en) 1997-07-08 2005-03-22 Atrionix, Inc. Medical device with sensor cooperating with expandable member
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
IL133902A0 (en) 1997-07-16 2001-04-30 Impulse Dynamics Ltd Smooth muscle controller
US6258084B1 (en) 1997-09-11 2001-07-10 Vnus Medical Technologies, Inc. Method for applying energy to biological tissue including the use of tumescent tissue compression
US8257725B2 (en) 1997-09-26 2012-09-04 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
US6231516B1 (en) 1997-10-14 2001-05-15 Vacusense, Inc. Endoluminal implant with therapeutic and diagnostic capability
US6917834B2 (en) 1997-12-03 2005-07-12 Boston Scientific Scimed, Inc. Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates
WO1999033407A1 (en) 1997-12-31 1999-07-08 Heartport, Inc. Methods and apparatus for perfusion of isolated tissue structure
US6699231B1 (en) * 1997-12-31 2004-03-02 Heartport, Inc. Methods and apparatus for perfusion of isolated tissue structure
US6146380A (en) 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
DE69941557D1 (en) 1998-01-15 2009-12-03 Regenesis Biomedical Inc IMPROVED DEVICE FOR TREATMENT BY PULSED ELECTROMAGNETIC ENERGY
US6251130B1 (en) 1998-03-24 2001-06-26 Innercool Therapies, Inc. Device for applications of selective organ cooling
US6205361B1 (en) 1998-02-10 2001-03-20 Advanced Bionics Corporation Implantable expandable multicontact electrodes
US6415187B1 (en) 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
US6522932B1 (en) 1998-02-10 2003-02-18 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and tools for use therewith
US6258087B1 (en) 1998-02-19 2001-07-10 Curon Medical, Inc. Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions
US6273886B1 (en) * 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
AU3212199A (en) 1998-03-31 1999-10-18 Scimed Life Systems, Inc. Temperature controlled solute delivery system
US6086527A (en) 1998-04-02 2000-07-11 Scimed Life Systems, Inc. System for treating congestive heart failure
US6314325B1 (en) 1998-04-07 2001-11-06 William R. Fitz Nerve hyperpolarization method and apparatus for pain relief
US6364856B1 (en) 1998-04-14 2002-04-02 Boston Scientific Corporation Medical device with sponge coating for controlled drug release
US6219577B1 (en) 1998-04-14 2001-04-17 Global Vascular Concepts, Inc. Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
CA2326786A1 (en) 1998-04-14 1999-10-21 Charles L. Brown, Iii Iontophoresis, electroporation and combination catheters for local drug delivery to arteries and other body tissues
US5916154A (en) 1998-04-22 1999-06-29 Nellcor Puritan Bennett Method of enhancing performance in pulse oximetry via electrical stimulation
US6269269B1 (en) 1998-04-23 2001-07-31 Medtronic Inc. Method and apparatus for synchronized treatment of obstructive sleep apnea
US6058331A (en) 1998-04-27 2000-05-02 Medtronic, Inc. Apparatus and method for treating peripheral vascular disease and organ ischemia by electrical stimulation with closed loop feedback control
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US5928272A (en) 1998-05-02 1999-07-27 Cyberonics, Inc. Automatic activation of a neurostimulator device using a detection algorithm based on cardiac activity
US6192889B1 (en) 1998-05-05 2001-02-27 Woodside Biomedical, Inc. Method of suppression and prevention of the gag reflex
US6347247B1 (en) 1998-05-08 2002-02-12 Genetronics Inc. Electrically induced vessel vasodilation
US6022901A (en) 1998-05-13 2000-02-08 Pharmascience Inc. Administration of resveratrol to prevent or treat restenosis following coronary intervention
US7198635B2 (en) 2000-10-17 2007-04-03 Asthmatx, Inc. Modification of airways by application of energy
US6322559B1 (en) 1998-07-06 2001-11-27 Vnus Medical Technologies, Inc. Electrode catheter having coil structure
JP2003505114A (en) 1998-07-13 2003-02-12 ジェネトロニクス、インコーポレーテッド Gene therapy targeting the skin and muscle with a pulsed electric field
US6972013B1 (en) 1998-07-13 2005-12-06 Genetronics, Inc. Enhanced delivery of naked DNA to skin by non-invasive in vivo electroporation
US6152943A (en) 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US6304787B1 (en) 1998-08-26 2001-10-16 Advanced Bionics Corporation Cochlear electrode array having current-focusing and tissue-treating features
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US20060240070A1 (en) 1998-09-24 2006-10-26 Cromack Keith R Delivery of highly lipophilic agents via medical devices
US8257724B2 (en) 1998-09-24 2012-09-04 Abbott Laboratories Delivery of highly lipophilic agents via medical devices
US6123718A (en) 1998-11-02 2000-09-26 Polymerex Medical Corp. Balloon catheter
US7313444B2 (en) 1998-11-20 2007-12-25 Pacesetter, Inc. Self-anchoring coronary sinus lead
US20070066972A1 (en) 2001-11-29 2007-03-22 Medwaves, Inc. Ablation catheter apparatus with one or more electrodes
US6077227A (en) 1998-12-28 2000-06-20 Medtronic, Inc. Method for manufacture and implant of an implantable blood vessel cuff
US6296619B1 (en) 1998-12-30 2001-10-02 Pharmasonics, Inc. Therapeutic ultrasonic catheter for delivering a uniform energy dose
US6749598B1 (en) 1999-01-11 2004-06-15 Flowmedica, Inc. Apparatus and methods for treating congestive heart disease
US7122019B1 (en) 2000-11-28 2006-10-17 Flowmedica Inc. Intra-aortic renal drug delivery catheter
US7780628B1 (en) 1999-01-11 2010-08-24 Angiodynamics, Inc. Apparatus and methods for treating congestive heart disease
US7329236B2 (en) 1999-01-11 2008-02-12 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US7481803B2 (en) 2000-11-28 2009-01-27 Flowmedica, Inc. Intra-aortic renal drug delivery catheter
US6695830B2 (en) 1999-01-15 2004-02-24 Scimed Life Systems, Inc. Method for delivering medication into an arterial wall for prevention of restenosis
CN1338909A (en) 1999-02-02 2002-03-06 外科器械股份有限公司 Intrabody HIFU applicator
US6464687B1 (en) 1999-03-09 2002-10-15 Ball Semiconductor, Inc. Implantable drug delivery system
JP4102031B2 (en) 1999-03-09 2008-06-18 サーメイジ インコーポレイテッド Apparatus and method for treating tissue
US6508774B1 (en) 1999-03-09 2003-01-21 Transurgical, Inc. Hifu applications with feedback control
US6678558B1 (en) 1999-03-25 2004-01-13 Genetronics, Inc. Method and apparatus for reducing electroporation-mediated muscle reaction and pain response
US6484052B1 (en) 1999-03-30 2002-11-19 The Regents Of The University Of California Optically generated ultrasound for enhanced drug delivery
US6366808B1 (en) 2000-03-13 2002-04-02 Edward A. Schroeppel Implantable device and method for the electrical treatment of cancer
US6738663B2 (en) 1999-04-09 2004-05-18 Oncostim, A Minnesota Corporation Implantable device and method for the electrical treatment of cancer
US6178349B1 (en) 1999-04-15 2001-01-23 Medtronic, Inc. Drug delivery neural stimulation device for treatment of cardiovascular disorders
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6595959B1 (en) 1999-04-23 2003-07-22 Alexander A. Stratienko Cardiovascular sheath/catheter
US6245045B1 (en) 1999-04-23 2001-06-12 Alexander Andrew Stratienko Combination sheath and catheter for cardiovascular use
US6514236B1 (en) 1999-04-23 2003-02-04 Alexander A. Stratienko Method for treating a cardiovascular condition
US6302870B1 (en) 1999-04-29 2001-10-16 Precision Vascular Systems, Inc. Apparatus for injecting fluids into the walls of blood vessels, body cavities, and the like
US6341236B1 (en) 1999-04-30 2002-01-22 Ivan Osorio Vagal nerve stimulation techniques for treatment of epileptic seizures
US6923784B2 (en) 1999-04-30 2005-08-02 Medtronic, Inc. Therapeutic treatment of disorders based on timing information
WO2000066017A1 (en) 1999-05-04 2000-11-09 Curon Medical, Inc. Electrodes for creating lesions in tissue regions at or near a sphincter
US6178352B1 (en) 1999-05-07 2001-01-23 Woodside Biomedical, Inc. Method of blood pressure moderation
US6442424B1 (en) 1999-05-26 2002-08-27 Impulse Dynamics N.V. Local cardiac motion control using applied electrical signals
US6304777B1 (en) 1999-05-26 2001-10-16 Impulse Dynamics N.V. Induction of cardioplegia applied electrical signals
US7171263B2 (en) 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
JP2003503119A (en) 1999-06-25 2003-01-28 エモリ ユニバーシティ Vagal nerve stimulation device and method
US6272383B1 (en) 1999-06-28 2001-08-07 Woodside Biomedical, Inc. Electro-acupuncture method using an electrical stimulator
US6283947B1 (en) 1999-07-13 2001-09-04 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
US6927049B2 (en) 1999-07-21 2005-08-09 The Regents Of The University Of California Cell viability detection using electrical measurements
US6300108B1 (en) 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US7053063B2 (en) 1999-07-21 2006-05-30 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes in tissue
US6326177B1 (en) 1999-08-04 2001-12-04 Eastern Virginia Medical School Of The Medical College Of Hampton Roads Method and apparatus for intracellular electro-manipulation
US6767544B2 (en) * 2002-04-01 2004-07-27 Allergan, Inc. Methods for treating cardiovascular diseases with botulinum toxin
US6450942B1 (en) 1999-08-20 2002-09-17 Cardiorest International Ltd. Method for reducing heart loads in mammals
AU7362400A (en) 1999-09-10 2001-04-10 Transurgical, Inc. Occlusion of tubular anatomical structures by energy application
US7510536B2 (en) 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
AU7735200A (en) 1999-09-28 2001-04-30 Novasys Medical, Inc. Treatment of tissue by application of energy and drugs
US6272377B1 (en) 1999-10-01 2001-08-07 Cardiac Pacemakers, Inc. Cardiac rhythm management system with arrhythmia prediction and prevention
US6473644B1 (en) 1999-10-13 2002-10-29 Cyberonics, Inc. Method to enhance cardiac capillary growth in heart failure patients
US6287304B1 (en) 1999-10-15 2001-09-11 Neothermia Corporation Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes
US6669655B1 (en) 1999-10-20 2003-12-30 Transurgical, Inc. Sonic element and catheter incorporating same
CA2389363A1 (en) 1999-10-29 2001-05-10 Universitat Zurich Method of volumetric blood flow measurement
US6436091B1 (en) 1999-11-16 2002-08-20 Microsolutions, Inc. Methods and implantable devices and systems for long term delivery of a pharmaceutical agent
US6542781B1 (en) 1999-11-22 2003-04-01 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US6711444B2 (en) 1999-11-22 2004-03-23 Scimed Life Systems, Inc. Methods of deploying helical diagnostic and therapeutic element supporting structures within the body
US6690971B2 (en) 1999-11-30 2004-02-10 Biotronik Mess - Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin Device for regulating heart rate and heart pumping force
US20020026228A1 (en) 1999-11-30 2002-02-28 Patrick Schauerte Electrode for intravascular stimulation, cardioversion and/or defibrillation
US6592567B1 (en) 1999-12-07 2003-07-15 Chf Solutions, Inc. Kidney perfusion catheter
US6415183B1 (en) 1999-12-09 2002-07-02 Cardiac Pacemakers, Inc. Method and apparatus for diaphragmatic pacing
US20030150464A1 (en) 1999-12-17 2003-08-14 Casscells S. Ward Inducing apoptosis of atrial myocytes to treat atrial fibrillation
US6328699B1 (en) 2000-01-11 2001-12-11 Cedars-Sinai Medical Center Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure
US6447443B1 (en) 2001-01-13 2002-09-10 Medtronic, Inc. Method for organ positioning and stabilization
US6623453B1 (en) 2000-01-19 2003-09-23 Vanny Corporation Chemo-thermo applicator for cancer treatment
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US20060085046A1 (en) 2000-01-20 2006-04-20 Ali Rezai Methods of treating medical conditions by transvascular neuromodulation of the autonomic nervous system
US6356786B1 (en) 2000-01-20 2002-03-12 Electrocore Techniques, Llc Method of treating palmar hyperhydrosis by electrical stimulation of the sympathetic nervous chain
US6438423B1 (en) 2000-01-20 2002-08-20 Electrocore Technique, Llc Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain
US6356787B1 (en) 2000-02-24 2002-03-12 Electro Core Techniques, Llc Method of treating facial blushing by electrical stimulation of the sympathetic nerve chain
US6885888B2 (en) 2000-01-20 2005-04-26 The Cleveland Clinic Foundation Electrical stimulation of the sympathetic nerve chain
WO2001055212A2 (en) 2000-01-27 2001-08-02 The General Hospital Corporation Delivery of therapeutic biological from implantable tissue matrices
US6514226B1 (en) 2000-02-10 2003-02-04 Chf Solutions, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
US6868289B2 (en) 2002-10-02 2005-03-15 Standen Ltd. Apparatus for treating a tumor or the like and articles incorporating the apparatus for treatment of the tumor
US6536949B1 (en) 2000-03-07 2003-03-25 Richard R. Heuser Catheter for thermal evaluation of arteriosclerotic plaque
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
AU2001245971A1 (en) 2000-03-24 2001-10-08 Transurgical, Inc. Apparatus and method for intrabody thermal treatment
US6287608B1 (en) 2000-04-11 2001-09-11 Intellicardia, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney by infusion of a vasodilator
WO2001082812A1 (en) 2000-04-27 2001-11-08 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US6558382B2 (en) 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
US20010044596A1 (en) 2000-05-10 2001-11-22 Ali Jaafar Apparatus and method for treatment of vascular restenosis by electroporation
AU2001261486A1 (en) 2000-05-12 2001-11-26 Cardima, Inc. Multi-channel rf energy delivery with coagulum reduction
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
AU2001266824B2 (en) 2000-06-13 2005-05-12 Atrionix, Inc. Surgical ablation probe for forming a circumferential lesion
US6477426B1 (en) 2000-06-20 2002-11-05 Celsion Corporation System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors
US7837720B2 (en) 2000-06-20 2010-11-23 Boston Scientific Corporation Apparatus for treatment of tissue adjacent a bodily conduit with a gene or drug-coated compression balloon
JP4099388B2 (en) 2000-07-13 2008-06-11 プロリズム,インコーポレイテッド A device for applying energy to the body of a living organism
WO2002009808A1 (en) 2000-07-26 2002-02-07 Advanced Bionics Corporation Rechargeable spinal cord stimulator system
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
US6697670B2 (en) 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
EP1311188A1 (en) 2000-08-24 2003-05-21 Volcano Therapeutics, Inc. Thermography catheter with flexible circuit temperature sensors
US6862479B1 (en) 2000-08-30 2005-03-01 Advanced Bionics Corporation Spinal cord stimulation as a therapy for sexual dysfunction
AU2001224345B2 (en) 2000-09-07 2005-11-17 Covidien Ag Apparatus for and treatment of the intervertebral disc
US6405079B1 (en) 2000-09-22 2002-06-11 Mehdi M. Ansarinia Stimulation method for the dural venous sinuses and adjacent dura for treatment of medical conditions
US7616997B2 (en) 2000-09-27 2009-11-10 Kieval Robert S Devices and methods for cardiovascular reflex control via coupled electrodes
US7840271B2 (en) 2000-09-27 2010-11-23 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
US7499742B2 (en) 2001-09-26 2009-03-03 Cvrx, Inc. Electrode structures and methods for their use in cardiovascular reflex control
US7623926B2 (en) 2000-09-27 2009-11-24 Cvrx, Inc. Stimulus regimens for cardiovascular reflex control
DE10048580A1 (en) 2000-09-30 2002-04-11 Volkswagen Ag Exhaust system of an internal combustion engine with a catalyst
US7306591B2 (en) 2000-10-02 2007-12-11 Novasys Medical, Inc. Apparatus and methods for treating female urinary incontinence
US6640120B1 (en) 2000-10-05 2003-10-28 Scimed Life Systems, Inc. Probe assembly for mapping and ablating pulmonary vein tissue and method of using same
US7104987B2 (en) 2000-10-17 2006-09-12 Asthmatx, Inc. Control system and process for application of energy to airway walls and other mediums
US8417334B2 (en) 2000-10-26 2013-04-09 Medtronic, Inc. Method and apparatus for electrically stimulating the nervous system to improve ventricular dysfunction, heart failure, and other cardiac conditions
EP1339451B1 (en) 2000-10-26 2009-09-30 Medtronic, Inc. Apparatus to minimize the effects of a cardiac insult
US6616624B1 (en) 2000-10-30 2003-09-09 Cvrx, Inc. Systems and method for controlling renovascular perfusion
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
US6681136B2 (en) 2000-12-04 2004-01-20 Science Medicus, Inc. Device and method to modulate blood pressure by electrical waveforms
US6676657B2 (en) 2000-12-07 2004-01-13 The United States Of America As Represented By The Department Of Health And Human Services Endoluminal radiofrequency cauterization system
US6623452B2 (en) 2000-12-19 2003-09-23 Scimed Life Systems, Inc. Drug delivery catheter having a highly compliant balloon with infusion holes
US6666845B2 (en) 2001-01-04 2003-12-23 Advanced Neuromodulation Systems, Inc. Implantable infusion pump
WO2002053207A2 (en) 2001-01-04 2002-07-11 Advanced Neuromodulation Systems, Inc. Implantable infusion pump
US6544223B1 (en) 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
CA2434151C (en) 2001-01-11 2009-12-22 Rita Medical Systems, Inc. Bone-treatment instrument and method
US6600954B2 (en) 2001-01-25 2003-07-29 Biocontrol Medical Bcm Ltd. Method and apparatus for selective control of nerve fibers
DE10103503A1 (en) 2001-01-26 2002-08-14 Fraunhofer Ges Forschung Endoluminal expandable implant with integrated sensors
US6672312B2 (en) 2001-01-31 2004-01-06 Transurgical, Inc. Pulmonary vein ablation with myocardial tissue locating
US6564096B2 (en) 2001-02-28 2003-05-13 Robert A. Mest Method and system for treatment of tachycardia and fibrillation
US6620151B2 (en) 2001-03-01 2003-09-16 Advanced Neuromodulation Systems, Inc. Non-constant pressure infusion pump
WO2002070039A2 (en) 2001-03-01 2002-09-12 Three Arch Partners Intravascular device for treatment of hypertension
US20020177846A1 (en) 2001-03-06 2002-11-28 Mulier Peter M.J. Vaporous delivery of thermal energy to tissue sites
US6786904B2 (en) 2002-01-10 2004-09-07 Triton Biosystems, Inc. Method and device to treat vulnerable plaque
US6623444B2 (en) 2001-03-21 2003-09-23 Advanced Medical Applications, Inc. Ultrasonic catheter drug delivery method and device
US20030009145A1 (en) 2001-03-23 2003-01-09 Struijker-Boudier Harry A.J. Delivery of drugs from sustained release devices implanted in myocardial tissue or in the pericardial space
WO2002085448A2 (en) 2001-04-20 2002-10-31 The Board Of Regents Of The University Of Oklahoma Cardiac neuromodulation and methods of using same
WO2002085192A2 (en) 2001-04-23 2002-10-31 Transurgical, Inc. Improvements in ablation therapy
US6684105B2 (en) 2001-08-31 2004-01-27 Biocontrol Medical, Ltd. Treatment of disorders by unidirectional nerve stimulation
JP2004533297A (en) 2001-05-29 2004-11-04 メドトロニック・インコーポレーテッド Closed loop neuromodulation system for prevention and treatment of heart disease
US7127284B2 (en) 2001-06-11 2006-10-24 Mercator Medsystems, Inc. Electroporation microneedle and methods for its use
EP1412022B1 (en) 2001-07-27 2005-04-13 Impella Cardiotechnik AG Neurostimulation unit for immobilizing the heart during cardiosurgical operations
US20040043030A1 (en) 2001-07-31 2004-03-04 Immunomedics, Inc. Polymeric delivery systems
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
US6600956B2 (en) 2001-08-21 2003-07-29 Cyberonics, Inc. Circumneural electrode assembly
US6622041B2 (en) 2001-08-21 2003-09-16 Cyberonics, Inc. Treatment of congestive heart failure and autonomic cardiovascular drive disorders
US20030050635A1 (en) 2001-08-22 2003-03-13 Csaba Truckai Embolization systems and techniques for treating tumors
AU2002254269A1 (en) 2001-08-31 2003-03-18 Cyto Pulse Sciences, Inc. Non-linear amplitude dielectrophoresis waveform for cell fusion
US7778703B2 (en) 2001-08-31 2010-08-17 Bio Control Medical (B.C.M.) Ltd. Selective nerve fiber stimulation for treating heart conditions
US6547803B2 (en) 2001-09-20 2003-04-15 The Regents Of The University Of California Microfabricated surgical device for interventional procedures
US7547294B2 (en) 2001-09-20 2009-06-16 The Regents Of The University Of California Microfabricated surgical device for interventional procedures
WO2003028802A2 (en) 2001-10-01 2003-04-10 Am Discovery, Incorporated Devices for treating atrial fibrilation
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US20030082225A1 (en) 2001-10-19 2003-05-01 Mason Paul Arthur Sterile, breathable patch for treating wound pain
US7488313B2 (en) 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
US6849075B2 (en) 2001-12-04 2005-02-01 Estech, Inc. Cardiac ablation devices and methods
US20030125790A1 (en) 2001-12-27 2003-07-03 Vitaly Fastovsky Deployment device, system and method for medical implantation
US6893436B2 (en) 2002-01-03 2005-05-17 Afx, Inc. Ablation instrument having a flexible distal portion
WO2003061731A2 (en) 2002-01-22 2003-07-31 Endobionics, Inc. Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia
US20060189941A1 (en) 2002-01-22 2006-08-24 Mercator Medsystems, Inc. Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation
US7744584B2 (en) 2002-01-22 2010-06-29 Mercator Medsystems, Inc. Methods and kits for volumetric distribution of pharmaceutical agents via the vascular adventitia and microcirculation
US7155284B1 (en) 2002-01-24 2006-12-26 Advanced Bionics Corporation Treatment of hypertension
CA2474926A1 (en) 2002-02-01 2003-08-14 Ali Rezai Neural stimulation delivery device with independently moveable delivery structures
WO2003066155A2 (en) 2002-02-01 2003-08-14 The Cleveland Clinic Foundation Methods of affecting hypothalamic-related conditions
CA2474950A1 (en) 2002-02-01 2003-08-07 Ali Rezai Delivery device for stimulating the sympathetic nerve chain
US8133501B2 (en) 2002-02-08 2012-03-13 Boston Scientific Scimed, Inc. Implantable or insertable medical devices for controlled drug delivery
US20070078620A1 (en) 2002-02-13 2007-04-05 Mercator Medsystems Inc. Methods and kits for delivering pharmaceutical agents into the coronary vascular adventitia
US7236821B2 (en) 2002-02-19 2007-06-26 Cardiac Pacemakers, Inc. Chronically-implanted device for sensing and therapy
EP1483018A1 (en) 2002-03-14 2004-12-08 Brainsgate Ltd. Technique for blood pressure regulation
WO2003082403A2 (en) 2002-03-27 2003-10-09 Cvrx, Inc. Devices and methods for cardiovascular reflex control via coupled electrodes
US6978174B2 (en) 2002-04-08 2005-12-20 Ardian, Inc. Methods and devices for renal nerve blocking
US7620451B2 (en) 2005-12-29 2009-11-17 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8150519B2 (en) 2002-04-08 2012-04-03 Ardian, Inc. Methods and apparatus for bilateral renal neuromodulation
US8145317B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods for renal neuromodulation
US7853333B2 (en) 2002-04-08 2010-12-14 Ardian, Inc. Methods and apparatus for multi-vessel renal neuromodulation
US7617005B2 (en) 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8175711B2 (en) 2002-04-08 2012-05-08 Ardian, Inc. Methods for treating a condition or disease associated with cardio-renal function
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20070129761A1 (en) * 2002-04-08 2007-06-07 Ardian, Inc. Methods for treating heart arrhythmia
US8145316B2 (en) 2002-04-08 2012-03-27 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7653438B2 (en) 2002-04-08 2010-01-26 Ardian, Inc. Methods and apparatus for renal neuromodulation
US8131371B2 (en) 2002-04-08 2012-03-06 Ardian, Inc. Methods and apparatus for monopolar renal neuromodulation
US20080213331A1 (en) 2002-04-08 2008-09-04 Ardian, Inc. Methods and devices for renal nerve blocking
US8774913B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravasculary-induced neuromodulation
AU2003223351A1 (en) 2002-04-16 2003-11-03 Cyto Pulse Sciences, Inc. Method of treating biological materials with translating electrical fields and electrode polarity reversal
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199747A1 (en) 2002-04-19 2003-10-23 Michlitsch Kenneth J. Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199768A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US20030199767A1 (en) 2002-04-19 2003-10-23 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US7141041B2 (en) 2003-03-19 2006-11-28 Mercator Medsystems, Inc. Catheters having laterally deployable needles
US20030204161A1 (en) 2002-04-25 2003-10-30 Bozidar Ferek-Petric Implantable electroporation therapy device and method for using same
WO2003099352A2 (en) 2002-05-28 2003-12-04 Endobionics, Inc. Methods and apparatus for aspiration and priming of inflatable structures in catheters
US6748953B2 (en) 2002-06-11 2004-06-15 Scimed Life Systems, Inc. Method for thermal treatment of type II endoleaks in arterial aneurysms
JP2004016333A (en) 2002-06-13 2004-01-22 Unique Medical Co Ltd Catheter for extradural anesthesia, and electrostimulator using the catheter for extradural anesthesia
US7465298B2 (en) 2002-06-28 2008-12-16 Mercator Medsystems, Inc. Methods and systems for delivering liquid substances to tissues surrounding body lumens
US6893414B2 (en) 2002-08-12 2005-05-17 Breg, Inc. Integrated infusion and aspiration system and method
US6991617B2 (en) 2002-08-21 2006-01-31 Hektner Thomas R Vascular treatment method and device
US20040193228A1 (en) 2003-03-31 2004-09-30 Gerber Martin T. Method, system and device for treating various disorders of the pelvic floor by electrical stimulation of the left and right pudendal nerves
EP1585572A4 (en) 2002-09-20 2010-02-24 Flowmedica Inc Method and apparatus for intra aortic substance delivery to a branch vessel
WO2004032791A2 (en) 2002-09-20 2004-04-22 Flowmedica, Inc. Method and apparatus for selective material delivery via an intra-renal catheter
WO2004034767A2 (en) 2002-09-20 2004-04-29 Flowmedica, Inc. Catheter system for renal therapy
US7063679B2 (en) 2002-09-20 2006-06-20 Flowmedica, Inc. Intra-aortic renal delivery catheter
US7150741B2 (en) 2002-09-20 2006-12-19 Advanced Neuromodulation Systems, Inc. Programmable dose control module
US20050197624A1 (en) 2004-03-04 2005-09-08 Flowmedica, Inc. Sheath for use in peripheral interventions
WO2004107965A2 (en) 2002-09-20 2004-12-16 Flowmedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7993325B2 (en) 2002-09-20 2011-08-09 Angio Dynamics, Inc. Renal infusion systems and methods
AU2003278858A1 (en) 2002-09-20 2004-04-08 Flowmedica, Inc. Method and apparatus for selective drug infusion via an intraaortic flow diverter delivery catheter
MXPA05003183A (en) 2002-09-26 2005-06-08 Angiotech Int Ag Perivascular wraps.
US7282213B2 (en) 2002-09-30 2007-10-16 Medtronic, Inc. Method for applying a drug coating to a medical device
US7917208B2 (en) 2002-10-04 2011-03-29 Microchips, Inc. Medical device for controlled drug delivery and cardiac monitoring and/or stimulation
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20040106952A1 (en) 2002-12-03 2004-06-03 Lafontaine Daniel M. Treating arrhythmias by altering properties of tissue
US20040162590A1 (en) 2002-12-19 2004-08-19 Whitehurst Todd K. Fully implantable miniature neurostimulator for intercostal nerve stimulation as a therapy for angina pectoris
US6695630B1 (en) 2002-12-23 2004-02-24 Egbon Electronics Ltd. Connector assembly for a memory module
WO2004062470A2 (en) 2003-01-03 2004-07-29 Advanced Neuromodulation Systems, Inc. System and method for stimulation of a person’s brain stem
WO2004066903A2 (en) 2003-01-29 2004-08-12 E-Pill Pharma Ltd. Active drug delivery in the gastrointestinal tract
US7167750B2 (en) 2003-02-03 2007-01-23 Enteromedics, Inc. Obesity treatment with electrically induced vagal down regulation
EP1596746B1 (en) 2003-02-20 2016-10-19 ReCor Medical, Inc. Ultrasonic ablation devices
US20040163655A1 (en) 2003-02-24 2004-08-26 Plc Systems Inc. Method and catheter system applicable to acute renal failure
US7004911B1 (en) 2003-02-24 2006-02-28 Hosheng Tu Optical thermal mapping for detecting vulnerable plaque
US6923808B2 (en) 2003-02-24 2005-08-02 Boston Scientific Scimed, Inc. Probes having helical and loop shaped inflatable therapeutic elements
US20040176699A1 (en) 2003-03-03 2004-09-09 Volcano Therapeutics, Inc. Thermography catheter with improved wall contact
US7097643B2 (en) 2003-03-03 2006-08-29 Sinus Rhythm Technologies, Inc. Electrical block positioning devices and methods of use therefor
US20040213770A1 (en) 2003-04-22 2004-10-28 Endobionics, Inc. Methods and systems for treating ischemic cardiac and other tissues
US7517342B2 (en) 2003-04-29 2009-04-14 Boston Scientific Scimed, Inc. Polymer coated device for electrically medicated drug delivery
US7221979B2 (en) 2003-04-30 2007-05-22 Medtronic, Inc. Methods and apparatus for the regulation of hormone release
JP4212949B2 (en) 2003-05-06 2009-01-21 朝日インテック株式会社 Chemical injection device
JP2004337400A (en) 2003-05-16 2004-12-02 Terumo Corp Medication kit
EP1633434B1 (en) 2003-06-04 2014-11-19 Synecor Intravascular electrophysiological system
EP1635736A2 (en) 2003-06-05 2006-03-22 FlowMedica, Inc. Systems and methods for performing bi-lateral interventions or diagnosis in branched body lumens
US7738952B2 (en) 2003-06-09 2010-06-15 Palo Alto Investors Treatment of conditions through modulation of the autonomic nervous system
US7149574B2 (en) 2003-06-09 2006-12-12 Palo Alto Investors Treatment of conditions through electrical modulation of the autonomic nervous system
US20060167437A1 (en) 2003-06-17 2006-07-27 Flowmedica, Inc. Method and apparatus for intra aortic substance delivery to a branch vessel
CA2533116C (en) 2003-07-18 2016-06-07 Eastern Virginia Medical School Apparatus for generating electrical pulses and methods of using the same
AU2003275052A1 (en) 2003-08-05 2005-03-07 Flowmedica, Inc. System and method for prevention of radiocontrast induced nephropathy
US7742809B2 (en) 2003-08-25 2010-06-22 Medtronic, Inc. Electroporation catheter with sensing capabilities
CA2938411C (en) 2003-09-12 2019-03-05 Minnow Medical, Llc Selectable eccentric remodeling and/or ablation of atherosclerotic material
US7502650B2 (en) 2003-09-22 2009-03-10 Cvrx, Inc. Baroreceptor activation for epilepsy control
US7435248B2 (en) 2003-09-26 2008-10-14 Boston Scientific Scimed, Inc. Medical probes for creating and diagnosing circumferential lesions within or around the ostium of a vessel
US20050153885A1 (en) 2003-10-08 2005-07-14 Yun Anthony J. Treatment of conditions through modulation of the autonomic nervous system
US7186209B2 (en) 2003-10-09 2007-03-06 Jacobson Jerry I Cardioelectromagnetic treatment
US7416549B2 (en) 2003-10-10 2008-08-26 Boston Scientific Scimed, Inc. Multi-zone bipolar ablation probe assembly
US7480532B2 (en) 2003-10-22 2009-01-20 Cvrx, Inc. Baroreflex activation for pain control, sedation and sleep
WO2005044142A2 (en) 2003-11-10 2005-05-19 Angiotech International Ag Intravascular devices and fibrosis-inducing agents
EP1691852A2 (en) 2003-11-10 2006-08-23 Angiotech International AG Medical implants and fibrosis-inducing agents
US7783353B2 (en) 2003-12-24 2010-08-24 Cardiac Pacemakers, Inc. Automatic neural stimulation modulation based on activity and circadian rhythm
US8396560B2 (en) 2004-11-18 2013-03-12 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US20080015659A1 (en) 2003-12-24 2008-01-17 Yi Zhang Neurostimulation systems and methods for cardiac conditions
AU2004311842C1 (en) 2003-12-24 2011-01-06 The Regents Of The University Of California Tissue ablation with irreversible electroporation
US7273469B1 (en) 2003-12-31 2007-09-25 Advanced Cardiovascular Systems, Inc. Modified needle catheter for directional orientation delivery
US20050182479A1 (en) 2004-02-13 2005-08-18 Craig Bonsignore Connector members for stents
EP1742700A4 (en) 2004-03-02 2008-05-28 Cvrx Inc External baroreflex activation
US20050209548A1 (en) 2004-03-19 2005-09-22 Dev Sukhendu B Electroporation-mediated intravascular delivery
US20050228286A1 (en) 2004-04-07 2005-10-13 Messerly Jeffrey D Medical system having a rotatable ultrasound source and a piercing tip
US20060018949A1 (en) 2004-04-07 2006-01-26 Bausch & Lomb Incorporated Injectable biodegradable drug delivery system
CA2563817C (en) 2004-04-23 2018-07-10 Yoram Palti Treating a tumor or the like with electric fields at different frequencies
EP1750799A2 (en) 2004-05-04 2007-02-14 The Cleveland Clinic Foundation Methods of treating medical conditions by neuromodulation of the sympathetic nervous system
US7231260B2 (en) 2004-05-06 2007-06-12 Boston Scientific Scimed, Inc. Intravascular self-anchoring electrode body with arcuate springs, spring loops, or arms
JP2007537298A (en) 2004-05-14 2007-12-20 フロウメディカ, インコーポレイテッド Bilateral local renal delivery for the treatment of congestive heart failure and BNP therapy
US20050261672A1 (en) 2004-05-18 2005-11-24 Mark Deem Systems and methods for selective denervation of heart dysrhythmias
US20050267556A1 (en) 2004-05-28 2005-12-01 Allan Shuros Drug eluting implants to prevent cardiac apoptosis
US20050277868A1 (en) 2004-06-11 2005-12-15 University Of South Florida Electroporation Device and Method for Delivery to Ocular Tissue
US7640046B2 (en) 2004-06-18 2009-12-29 Cardiac Pacemakers, Inc. Methods and apparatuses for localizing myocardial infarction during catheterization
US7197354B2 (en) 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
US20060067972A1 (en) 2004-06-23 2006-03-30 Flowmedica, Inc. Devices for renal-based heart failure treatment
WO2006012050A2 (en) 2004-06-30 2006-02-02 Cvrx, Inc. Connection structures for extra-vascular electrode lead body
US20060004417A1 (en) 2004-06-30 2006-01-05 Cvrx, Inc. Baroreflex activation for arrhythmia treatment
FR2873385B1 (en) 2004-07-23 2006-10-27 Centre Nat Rech Scient Cnrse MONITORING AND CONTROL OF ELECTROPORATION
CA2575458C (en) 2004-07-28 2015-06-02 Ardian, Inc. Methods and devices for renal nerve blocking
US7373204B2 (en) 2004-08-19 2008-05-13 Lifestim, Inc. Implantable device and method for treatment of hypertension
EP1796568A1 (en) 2004-09-09 2007-06-20 Vnus Medical Technologies, Inc. Methods and apparatus for treatment of hollow anatomical structures
EP1804907A2 (en) 2004-09-10 2007-07-11 The Cleveland Clinic Foundation Methods and systems of achieving hemodynamic control through neuromodulation
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
US20060069323A1 (en) 2004-09-24 2006-03-30 Flowmedica, Inc. Systems and methods for bi-lateral guidewire cannulation of branched body lumens
US20060074453A1 (en) 2004-10-04 2006-04-06 Cvrx, Inc. Baroreflex activation and cardiac resychronization for heart failure treatment
EP1809272A4 (en) 2004-10-18 2008-01-02 Maroon Biotech Corp Methods and compositions for treatment of free radical injury
US7524318B2 (en) 2004-10-28 2009-04-28 Boston Scientific Scimed, Inc. Ablation probe with flared electrodes
US20070083239A1 (en) 2005-09-23 2007-04-12 Denise Demarais Methods and apparatus for inducing, monitoring and controlling renal neuromodulation
US7937143B2 (en) 2004-11-02 2011-05-03 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
WO2006055845A1 (en) 2004-11-15 2006-05-26 Cytyc Corporation System for drug delivery
CA2587780A1 (en) 2004-11-18 2006-05-26 Transpharma Medical Ltd. Combined micro-channel generation and iontophoresis for transdermal delivery of pharmaceutical agents
US8332047B2 (en) 2004-11-18 2012-12-11 Cardiac Pacemakers, Inc. System and method for closed-loop neural stimulation
US20060116720A1 (en) 2004-12-01 2006-06-01 Penny Knoblich Method and apparatus for improving renal function
JP5111116B2 (en) 2004-12-21 2012-12-26 イービーアール システムズ, インコーポレイテッド Leadless cardiac system for pacing and arrhythmia treatment
EP1833554A2 (en) 2004-12-27 2007-09-19 Standen Ltd. Treating a tumor or the like with electric fields at different orientations
US9833618B2 (en) 2005-02-04 2017-12-05 Palo Alto Investors Methods and compositions for treating a disease condition in a subject
US7548780B2 (en) 2005-02-22 2009-06-16 Cardiac Pacemakers, Inc. Cell therapy and neural stimulation for cardiac repair
JP5271697B2 (en) 2005-03-23 2013-08-21 アボット ラボラトリーズ Delivery of highly lipophilic drugs through medical devices
CN101511292B (en) 2005-03-28 2011-04-06 明诺医学有限公司 Intraluminal electrical tissue characterization and tuned RF energy for selective treatment of atheroma and other target tissues
US7499748B2 (en) 2005-04-11 2009-03-03 Cardiac Pacemakers, Inc. Transvascular neural stimulation device
US20070248639A1 (en) 2005-05-20 2007-10-25 Omeros Corporation Cyclooxygenase inhibitor and calcium channel antagonist compositions and methods for use in urological procedures
WO2007002304A2 (en) 2005-06-22 2007-01-04 Vnus Medical Technologies, Inc. Methods and apparatus for introducing tumescent fluid to body tissue
US8834461B2 (en) 2005-07-11 2014-09-16 Medtronic Ablation Frontiers Llc Low power tissue ablation system
US20070021803A1 (en) 2005-07-22 2007-01-25 The Foundry Inc. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
JP4251163B2 (en) 2005-07-27 2009-04-08 ソニー株式会社 Camera device
CA2621824C (en) 2005-09-09 2014-10-07 Ottawa Health Research Institute Interpenetrating networks, and related methods and compositions
WO2007041593A2 (en) 2005-10-03 2007-04-12 Combinatorx, Incorporated Anti-scarring drug combinations and use thereof
US20070299043A1 (en) 2005-10-03 2007-12-27 Hunter William L Anti-scarring drug combinations and use thereof
US8257338B2 (en) 2006-10-27 2012-09-04 Artenga, Inc. Medical microbubble generation
EP1782852A1 (en) 2005-11-04 2007-05-09 F.Hoffmann-La Roche Ag Device for automatic delivery of a liquid medicament into the body of a patient
US20080045890A1 (en) 2005-12-16 2008-02-21 Mercator Medsystems, Inc. Methods and systems for ablating tissue
US20070156200A1 (en) 2005-12-29 2007-07-05 Lilian Kornet System and method for regulating blood pressure and electrolyte balance
CA2641117C (en) 2006-01-31 2018-01-02 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US8571650B2 (en) 2006-03-03 2013-10-29 Palo Alto Investors Methods and compositions for treating a renal associated condition in a subject
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US20070219576A1 (en) 2006-03-16 2007-09-20 Medtronic Vascular, Inc. Reversibly and Radially Expandable Electroactive Polymer Element for Temporary Occlusion of a Vessel
US20080004673A1 (en) 2006-04-03 2008-01-03 Cvrx, Inc. Implantable extravascular electrostimulation system having a resilient cuff
US20070269385A1 (en) 2006-05-18 2007-11-22 Mercator Medsystems, Inc Devices, methods, and systems for delivering therapeutic agents for the treatment of sinusitis, rhinitis, and other disorders
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US20080004596A1 (en) 2006-05-25 2008-01-03 Palo Alto Institute Delivery of agents by microneedle catheter
US20070282376A1 (en) 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US7647101B2 (en) 2006-06-09 2010-01-12 Cardiac Pacemakers, Inc. Physical conditioning system, device and method
ES2928065T3 (en) 2006-06-28 2022-11-15 Medtronic Ardian Luxembourg Thermally induced renal neuromodulation systems
US20090221955A1 (en) 2006-08-08 2009-09-03 Bacoustics, Llc Ablative ultrasonic-cryogenic methods
US20080039727A1 (en) 2006-08-08 2008-02-14 Eilaz Babaev Ablative Cardiac Catheter System
US20080039904A1 (en) 2006-08-08 2008-02-14 Cherik Bulkes Intravascular implant system
EP2061629B1 (en) 2006-09-11 2011-05-18 Enbio Limited Method of doping surfaces
US7691080B2 (en) 2006-09-21 2010-04-06 Mercator Medsystems, Inc. Dual modulus balloon for interventional procedures
US8641660B2 (en) 2006-10-04 2014-02-04 P Tech, Llc Methods and devices for controlling biologic microenvironments
US20080091255A1 (en) 2006-10-11 2008-04-17 Cardiac Pacemakers Implantable neurostimulator for modulating cardiovascular function
US8388680B2 (en) 2006-10-18 2013-03-05 Guided Delivery Systems, Inc. Methods and devices for catheter advancement and delivery of substances therethrough
EP2076193A4 (en) 2006-10-18 2010-02-03 Minnow Medical Inc Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
US8226648B2 (en) 2007-12-31 2012-07-24 St. Jude Medical, Atrial Fibrillation Division, Inc. Pressure-sensitive flexible polymer bipolar electrode
US20080208162A1 (en) 2007-02-26 2008-08-28 Joshi Ashok V Device and Method For Thermophoretic Fluid Delivery
WO2008124632A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Amphiphilic compound assisted nanoparticles for targeted delivery
US9259233B2 (en) 2007-04-06 2016-02-16 Hologic, Inc. Method and device for distending a gynecological cavity
WO2008128070A2 (en) 2007-04-11 2008-10-23 The Cleveland Clinic Foundation Method and apparatus for renal neuromodulation
US8263104B2 (en) 2007-06-08 2012-09-11 Northwestern University Polymer nanofilm coatings
US7850260B2 (en) 2007-06-22 2010-12-14 Oracle America, Inc. Injection/ejection mechanism
US8630704B2 (en) 2007-06-25 2014-01-14 Cardiac Pacemakers, Inc. Neural stimulation with respiratory rhythm management
WO2009065078A1 (en) 2007-11-14 2009-05-22 Pathway Medical Technologies, Inc. Delivery and administration of compositions using interventional catheters
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
JP2010021134A (en) 2008-06-11 2010-01-28 Sumitomo Chemical Co Ltd Method for manufacturing lithium complex metal oxide
US20100069837A1 (en) 2008-09-16 2010-03-18 Boston Scientific Scimed, Inc. Balloon Assembly and Method for Therapeutic Agent Delivery
JP5646492B2 (en) 2008-10-07 2014-12-24 エムシー10 インコーポレイテッドMc10,Inc. Stretchable integrated circuit and device with sensor array
US20100168739A1 (en) 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20100249702A1 (en) 2009-03-24 2010-09-30 Abbott Cardiovascular Systems Inc. Porous catheter balloon and method of making same
WO2010124120A1 (en) 2009-04-22 2010-10-28 Mercator Medsystems, Inc. Use of guanethidine for treating hypertension by local vascular delivery
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
EP2483209A4 (en) 2009-09-09 2014-05-21 Septicosol Inc Apparatus for waste water treatment
EP3132828B1 (en) 2009-10-30 2017-10-11 ReCor Medical, Inc. Apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US20110112400A1 (en) 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US20110137155A1 (en) 2009-12-09 2011-06-09 Boston Scientific Scimed, Inc. Delivery device for localized delivery of a therapeutic agent
CN102883659A (en) 2010-01-19 2013-01-16 美敦力阿迪安卢森堡有限公司 Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
CA2787062C (en) 2010-01-26 2017-07-11 Michael A. Evans Methods, devices, and agents for denervation
WO2013169741A1 (en) 2012-05-08 2013-11-14 Stein Emily A Agents and devices for affecting nerve function
US20160008387A9 (en) 2010-01-26 2016-01-14 Northwind Medical, Inc. Agents and devices for affecting nerve function
WO2011119857A2 (en) 2010-03-24 2011-09-29 Shifamed, Llc Intravascular tissue disruption
CN103108665A (en) 2010-04-20 2013-05-15 迷你泵有限责任公司 Electrolytically driven drug pump devices
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8473067B2 (en) * 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
WO2012086492A1 (en) 2010-12-21 2012-06-28 テルモ株式会社 Balloon catheter and electrification system
JP2014505737A (en) 2011-02-18 2014-03-06 メディベイション テクノロジーズ, インコーポレイテッド Compounds and methods for treating diabetes
CN103517731B (en) 2011-04-08 2016-08-31 柯惠有限合伙公司 For removing iontophoresis formula drug delivery system and the method for renal sympathetic nerve and iontophoresis formula drug delivery
US9237925B2 (en) 2011-04-22 2016-01-19 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
US8663190B2 (en) 2011-04-22 2014-03-04 Ablative Solutions, Inc. Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation
SG194623A1 (en) 2011-04-28 2013-12-30 Abraxis Bioscience Llc Intravascular delivery of nanoparticle compositions and uses thereof
US9278196B2 (en) 2011-08-24 2016-03-08 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US20130053792A1 (en) 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
US20130274673A1 (en) 2011-08-24 2013-10-17 Ablative Solutions, Inc. Intravascular ablation catheter with enhanced fluoroscopic visibility
US9056185B2 (en) 2011-08-24 2015-06-16 Ablative Solutions, Inc. Expandable catheter system for fluid injection into and deep to the wall of a blood vessel
US20130274674A1 (en) 2011-08-24 2013-10-17 Ablative Solutions, Inc. Intravascular ablation catheter with precision depth of penetration calibration
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
WO2013059735A1 (en) 2011-10-19 2013-04-25 Mercator Medsystems, Inc. Localized modulation of tissues and cells to enhance therapeutic effects including renal denervation
CA2853466A1 (en) 2011-10-26 2013-05-02 Emily A. Stein Agents, methods, and devices for affecting nerve function
AU2012347470B2 (en) 2011-12-09 2017-02-02 Medtronic Ireland Manufacturing Unlimited Company Therapeutic neuromodulation of the hepatic system
AU2013211951B2 (en) 2012-01-26 2017-02-16 Autonomix Medical, Inc. Controlled sympathectomy and micro-ablation systems and methods
US8562573B1 (en) 2012-06-05 2013-10-22 Fischell Innovations, Llc Guiding catheter for accessing the renal arteries
US20150151077A1 (en) 2012-06-13 2015-06-04 Douglas C. Harrington Devices And Methods For Renal Denervation
US9033917B2 (en) 2012-08-15 2015-05-19 Abbott Cardiovascular Systems Inc. Needle catheter for delivery of agents directly into vessel wall
US20150315188A1 (en) 2012-08-22 2015-11-05 Medivation Technologies, Inc. Compounds and methods for treatment of hypertension
US8740849B1 (en) 2012-10-29 2014-06-03 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US9301795B2 (en) 2012-10-29 2016-04-05 Ablative Solutions, Inc. Transvascular catheter for extravascular delivery
US9554849B2 (en) 2012-10-29 2017-01-31 Ablative Solutions, Inc. Transvascular method of treating hypertension
US9526827B2 (en) 2012-10-29 2016-12-27 Ablative Solutions, Inc. Peri-vascular tissue ablation catheter with support structures
US10226278B2 (en) 2012-10-29 2019-03-12 Ablative Solutions, Inc. Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures
US20150272666A1 (en) 2012-11-02 2015-10-01 Lixiao Wang Chemical Ablation Formulations and Methods of Treatments for Various Diseases
US10537375B2 (en) 2015-04-24 2020-01-21 Neurotronic, Inc. Chemical ablation and method of treatment for various diseases
AU2013337879B2 (en) 2012-11-05 2018-05-17 Autonomix Medical, Inc. Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall
WO2014078301A1 (en) 2012-11-13 2014-05-22 Silk Road Medical, Inc. Devices and methods for endoluminal delivery of either fluid or energy for denervation
US10478236B2 (en) 2013-01-04 2019-11-19 Elemental Orthopedics Llc Metal alloy mono and poly-filament wire reinforced carbon fiber plating system
US9108030B2 (en) 2013-03-14 2015-08-18 Covidien Lp Fluid delivery catheter with pressure-actuating needle deployment and retraction
US20140271717A1 (en) 2013-03-14 2014-09-18 Kyphon Sarl Devices containing a chemical denervation agent and methods for treating chronic back pain using chemical denervation
US10390879B2 (en) 2013-05-20 2019-08-27 Mayo Foundation For Medical Education And Research Devices and methods for ablation of tissue
US9949652B2 (en) 2013-10-25 2018-04-24 Ablative Solutions, Inc. Apparatus for effective ablation and nerve sensing associated with denervation
WO2015061614A1 (en) 2013-10-25 2015-04-30 Ablative Solutions, Inc. Intravascular catheter with peri-vascular nerve activity sensors
JP6218122B2 (en) 2015-12-24 2017-10-25 マツダ株式会社 Fuel injection control method and fuel injection control device for compression self-ignition engine

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066134A (en) * 1992-01-07 2000-05-23 Arthrocare Corporation Method for electrosurgical cutting and ablation
US5423744A (en) * 1992-12-22 1995-06-13 Gencheff; Nelson Catheter system for the deployment of biological material
US6517811B2 (en) * 1993-05-06 2003-02-11 Research Corporation Technologies, Inc. Compounds for cancer imaging and therapy
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5871523A (en) * 1993-10-15 1999-02-16 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
US5824041A (en) * 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
US5676662A (en) * 1995-03-17 1997-10-14 Daig Corporation Ablation catheter
US6041252A (en) * 1995-06-07 2000-03-21 Ichor Medical Systems Inc. Drug delivery system and method
US5713917A (en) * 1995-10-30 1998-02-03 Leonhardt; Howard J. Apparatus and method for engrafting a blood vessel
US6292695B1 (en) * 1998-06-19 2001-09-18 Wilton W. Webster, Jr. Method and apparatus for transvascular treatment of tachycardia and fibrillation
US6702811B2 (en) * 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US6325797B1 (en) * 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US20020062124A1 (en) * 1999-09-15 2002-05-23 David Keane Coiled ablation catheter system
US20010020174A1 (en) * 1999-11-22 2001-09-06 Scimed Life Systems, Inc. Helical and pre-oriented loop structures for supporting diagnostic and therapeutic elements in contact with body tissue
US20030060858A1 (en) * 2000-09-27 2003-03-27 Kieval Robert S. Stimulus regimens for cardiovascular reflex control
US6522926B1 (en) * 2000-09-27 2003-02-18 Cvrx, Inc. Devices and methods for cardiovascular reflex control
US20030060857A1 (en) * 2000-09-27 2003-03-27 Perrson Bruce J. Electrode designs and methods of use for cardiovascular reflex control devices
US6845267B2 (en) * 2000-09-28 2005-01-18 Advanced Bionics Corporation Systems and methods for modulation of circulatory perfusion by electrical and/or drug stimulation
US6497704B2 (en) * 2001-04-04 2002-12-24 Moshe Ein-Gal Electrosurgical apparatus
US6972016B2 (en) * 2001-05-01 2005-12-06 Cardima, Inc. Helically shaped electrophysiology catheter
US20030018367A1 (en) * 2001-07-23 2003-01-23 Dilorenzo Daniel John Method and apparatus for neuromodulation and phsyiologic modulation for the treatment of metabolic and neuropsychiatric disease
US20060167498A1 (en) * 2001-07-23 2006-07-27 Dilorenzo Daniel J Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of disease
US6850801B2 (en) * 2001-09-26 2005-02-01 Cvrx, Inc. Mapping methods for cardiovascular reflex control devices
US20030060848A1 (en) * 2001-09-26 2003-03-27 Kieval Robert S. Mapping methods for cardiovascular reflex control devices
US20030181963A1 (en) * 2002-03-21 2003-09-25 Pellegrino Richard C. Novel early intervention spinal treatment methods and devices for use therein
US20030216792A1 (en) * 2002-04-08 2003-11-20 Levin Howard R. Renal nerve stimulation method and apparatus for treatment of patients
US7162303B2 (en) * 2002-04-08 2007-01-09 Ardian, Inc. Renal nerve stimulation method and apparatus for treatment of patients
US7191015B2 (en) * 2002-04-11 2007-03-13 Medtronic Vascular, Inc. Devices and methods for transluminal or transthoracic interstitial electrode placement
US20040127942A1 (en) * 2002-10-04 2004-07-01 Yomtov Barry M. Medical device for neural stimulation and controlled drug delivery

Cited By (672)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204889B2 (en) 1998-03-27 2015-12-08 Tsunami Medtech, Llc Medical instrument and method of use
US10335280B2 (en) 2000-01-19 2019-07-02 Medtronic, Inc. Method for ablating target tissue of a patient
US9615875B2 (en) 2000-12-09 2017-04-11 Tsunami Med Tech, LLC Medical instruments and techniques for thermally-mediated therapies
US9433457B2 (en) 2000-12-09 2016-09-06 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US10524847B2 (en) 2000-12-09 2020-01-07 Tsunami Medtech, Llc Medical instruments and techniques for thermally-mediated therapies
US8974446B2 (en) 2001-10-11 2015-03-10 St. Jude Medical, Inc. Ultrasound ablation apparatus with discrete staggered ablation zones
US9468487B2 (en) 2001-12-07 2016-10-18 Tsunami Medtech, Llc Medical instrument and method of use
US10034708B2 (en) 2002-04-08 2018-07-31 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US8771252B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US8684998B2 (en) 2002-04-08 2014-04-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for inhibiting renal nerve activity
US9138281B2 (en) 2002-04-08 2015-09-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation via catheter apparatuses having expandable baskets
US8626300B2 (en) 2002-04-08 2014-01-07 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for thermally-induced renal neuromodulation
US9474563B2 (en) 2002-04-08 2016-10-25 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9186198B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods
US9072527B2 (en) 2002-04-08 2015-07-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses and methods for renal neuromodulation
US11033328B2 (en) 2002-04-08 2021-06-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9186213B2 (en) 2002-04-08 2015-11-17 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9192715B2 (en) 2002-04-08 2015-11-24 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal nerve blocking
US20090036948A1 (en) * 2002-04-08 2009-02-05 Ardian, Inc. Renal nerve stimulation methods for treatment of patients
US9023037B2 (en) 2002-04-08 2015-05-05 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US8620423B2 (en) 2002-04-08 2013-12-31 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermal modulation of nerves contributing to renal function
US9131978B2 (en) 2002-04-08 2015-09-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9265558B2 (en) 2002-04-08 2016-02-23 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US7717948B2 (en) 2002-04-08 2010-05-18 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US20100137860A1 (en) * 2002-04-08 2010-06-03 Ardian, Inc. Apparatus for performing a non-continuous circumferential treatment of a body lumen
US8986294B2 (en) 2002-04-08 2015-03-24 Medtronic Ardian Luxembourg S.a.rl. Apparatuses for thermally-induced renal neuromodulation
US9827041B2 (en) 2002-04-08 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatuses for renal denervation
US8983595B2 (en) 2002-04-08 2015-03-17 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US9125661B2 (en) 2002-04-08 2015-09-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9827040B2 (en) 2002-04-08 2017-11-28 Medtronic Adrian Luxembourg S.a.r.l. Methods and apparatus for intravascularly-induced neuromodulation
US10441356B2 (en) 2002-04-08 2019-10-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via neuromodulatory agents
US20100222851A1 (en) * 2002-04-08 2010-09-02 Ardian, Inc. Methods for monitoring renal neuromodulation
US20100222854A1 (en) * 2002-04-08 2010-09-02 Ardian, Inc. Apparatuses for inhibiting renal nerve activity via an intra-to-extravascular approach
US9289255B2 (en) 2002-04-08 2016-03-22 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9308043B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9308044B2 (en) 2002-04-08 2016-04-12 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8958871B2 (en) 2002-04-08 2015-02-17 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US9895195B2 (en) 2002-04-08 2018-02-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US9814873B2 (en) 2002-04-08 2017-11-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US8948865B2 (en) 2002-04-08 2015-02-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US10039596B2 (en) 2002-04-08 2018-08-07 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for renal neuromodulation via an intra-to-extravascular approach
US8548600B2 (en) 2002-04-08 2013-10-01 Medtronic Ardian Luxembourg S.A.R.L. Apparatuses for renal neuromodulation and associated systems and methods
US9907611B2 (en) 2002-04-08 2018-03-06 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US8934978B2 (en) 2002-04-08 2015-01-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9314630B2 (en) 2002-04-08 2016-04-19 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9468497B2 (en) 2002-04-08 2016-10-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for monopolar renal neuromodulation
US9956410B2 (en) 2002-04-08 2018-05-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9757193B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Balloon catheter apparatus for renal neuromodulation
US9968611B2 (en) 2002-04-08 2018-05-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US9757192B2 (en) 2002-04-08 2017-09-12 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US20110202098A1 (en) * 2002-04-08 2011-08-18 Ardian, Inc. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US9326817B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating heart arrhythmia
US9743983B2 (en) 2002-04-08 2017-08-29 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients
US9731132B2 (en) 2002-04-08 2017-08-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US9327122B2 (en) 2002-04-08 2016-05-03 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10179235B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US10420606B2 (en) 2002-04-08 2019-09-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US8880186B2 (en) 2002-04-08 2014-11-04 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of patients with chronic heart failure
US9486270B2 (en) 2002-04-08 2016-11-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US10179027B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable baskets for renal neuromodulation and associated systems and methods
US9707035B2 (en) 2002-04-08 2017-07-18 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US9320561B2 (en) 2002-04-08 2016-04-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US9463066B2 (en) 2002-04-08 2016-10-11 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation
US10850091B2 (en) 2002-04-08 2020-12-01 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for bilateral renal neuromodulation
US9456869B2 (en) 2002-04-08 2016-10-04 Medtronic Ardian Luxembourg S.A.R.L. Methods for bilateral renal neuromodulation
US10376312B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for monopolar renal neuromodulation
US9445867B1 (en) 2002-04-08 2016-09-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for renal neuromodulation via catheters having expandable treatment members
US8852163B2 (en) 2002-04-08 2014-10-07 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation via drugs and neuromodulatory agents and associated systems and methods
US8845629B2 (en) 2002-04-08 2014-09-30 Medtronic Ardian Luxembourg S.A.R.L. Ultrasound apparatuses for thermally-induced renal neuromodulation
US9364280B2 (en) 2002-04-08 2016-06-14 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach
US8818514B2 (en) 2002-04-08 2014-08-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for intravascularly-induced neuromodulation
US10376516B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and devices for renal nerve blocking
US10376311B2 (en) 2002-04-08 2019-08-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US8721637B2 (en) 2002-04-08 2014-05-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US10179028B2 (en) 2002-04-08 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Methods for treating patients via renal neuromodulation
US8454594B2 (en) 2002-04-08 2013-06-04 Medtronic Ardian Luxembourg S.A.R.L. Apparatus for performing a non-continuous circumferential treatment of a body lumen
US8444640B2 (en) 2002-04-08 2013-05-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US9439726B2 (en) 2002-04-08 2016-09-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US8784463B2 (en) 2002-04-08 2014-07-22 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10293190B2 (en) 2002-04-08 2019-05-21 Medtronic Ardian Luxembourg S.A.R.L. Thermally-induced renal neuromodulation and associated systems and methods
US10130792B2 (en) 2002-04-08 2018-11-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation using neuromodulatory agents or drugs
US9675413B2 (en) 2002-04-08 2017-06-13 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US8774922B2 (en) 2002-04-08 2014-07-08 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses having expandable balloons for renal neuromodulation and associated systems and methods
US8768470B2 (en) 2002-04-08 2014-07-01 Medtronic Ardian Luxembourg S.A.R.L. Methods for monitoring renal neuromodulation
US10272246B2 (en) 2002-04-08 2019-04-30 Medtronic Adrian Luxembourg S.a.r.l Methods for extravascular renal neuromodulation
US20070265687A1 (en) * 2002-04-08 2007-11-15 Ardian, Inc. Apparatuses for renal neuromodulation
US10105180B2 (en) 2002-04-08 2018-10-23 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for intravascularly-induced neuromodulation
US9636174B2 (en) 2002-04-08 2017-05-02 Medtronic Ardian Luxembourg S.A.R.L. Methods for therapeutic renal neuromodulation
US10111707B2 (en) 2002-04-08 2018-10-30 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation for treatment of human patients
US8740896B2 (en) 2002-04-08 2014-06-03 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing renal neuromodulation via catheter apparatuses having inflatable balloons
US8728138B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10124195B2 (en) 2002-04-08 2018-11-13 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US8728137B2 (en) 2002-04-08 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Methods for thermally-induced renal neuromodulation
US10245429B2 (en) 2002-04-08 2019-04-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for renal neuromodulation
US9707034B2 (en) 2002-07-01 2017-07-18 Recor Medical, Inc. Intraluminal method and apparatus for ablating nerve tissue
US9700372B2 (en) 2002-07-01 2017-07-11 Recor Medical, Inc. Intraluminal methods of ablating nerve tissue
US10368944B2 (en) 2002-07-01 2019-08-06 Recor Medical, Inc. Intraluminal method and apparatus for ablating nerve tissue
US9113944B2 (en) 2003-01-18 2015-08-25 Tsunami Medtech, Llc Method for performing lung volume reduction
US8172827B2 (en) 2003-05-13 2012-05-08 Innovative Pulmonary Solutions, Inc. Apparatus for treating asthma using neurotoxin
US9339618B2 (en) 2003-05-13 2016-05-17 Holaira, Inc. Method and apparatus for controlling narrowing of at least one airway
US10953170B2 (en) 2003-05-13 2021-03-23 Nuvaira, Inc. Apparatus for treating asthma using neurotoxin
US20070255379A1 (en) * 2003-06-04 2007-11-01 Williams Michael S Intravascular device for neuromodulation
US8116883B2 (en) 2003-06-04 2012-02-14 Synecor Llc Intravascular device for neuromodulation
US9125666B2 (en) 2003-09-12 2015-09-08 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation of atherosclerotic material
US9510901B2 (en) 2003-09-12 2016-12-06 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US10188457B2 (en) 2003-09-12 2019-01-29 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
US9907599B2 (en) 2003-10-07 2018-03-06 Tsunami Medtech, Llc Medical system and method of use
US9125667B2 (en) 2004-09-10 2015-09-08 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8939970B2 (en) 2004-09-10 2015-01-27 Vessix Vascular, Inc. Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
US9402992B2 (en) 2004-10-05 2016-08-02 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US9950161B2 (en) 2004-10-05 2018-04-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8805545B2 (en) 2004-10-05 2014-08-12 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US10537734B2 (en) 2004-10-05 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US8433423B2 (en) 2004-10-05 2013-04-30 Ardian, Inc. Methods for multi-vessel renal neuromodulation
US9108040B2 (en) 2004-10-05 2015-08-18 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for multi-vessel renal neuromodulation
US9486355B2 (en) 2005-05-03 2016-11-08 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
US10036758B2 (en) 2005-07-22 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Delivery of a light-activated cation channel into the brain of a subject
US9274099B2 (en) 2005-07-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Screening test drugs to identify their effects on cell membrane voltage-gated ion channel
US9360472B2 (en) 2005-07-22 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US10627410B2 (en) 2005-07-22 2020-04-21 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9238150B2 (en) 2005-07-22 2016-01-19 The Board Of Trustees Of The Leland Stanford Junior University Optical tissue interface method and apparatus for stimulating cells
US20070054319A1 (en) * 2005-07-22 2007-03-08 Boyden Edward S Light-activated cation channel and uses thereof
US8504147B2 (en) 2005-07-22 2013-08-06 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US8926959B2 (en) 2005-07-22 2015-01-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9278159B2 (en) 2005-07-22 2016-03-08 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9829492B2 (en) 2005-07-22 2017-11-28 The Board Of Trustees Of The Leland Stanford Junior University Implantable prosthetic device comprising a cell expressing a channelrhodopsin
US20100190229A1 (en) * 2005-07-22 2010-07-29 Feng Zhang System for optical stimulation of target cells
US9101690B2 (en) 2005-07-22 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US20100234273A1 (en) * 2005-07-22 2010-09-16 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US8906360B2 (en) 2005-07-22 2014-12-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US10046174B2 (en) 2005-07-22 2018-08-14 The Board Of Trustees Of The Leland Stanford Junior University System for electrically stimulating target neuronal cells of a living animal in vivo
US20100010567A1 (en) * 2005-07-22 2010-01-14 The Foundry, Llc Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US10451608B2 (en) 2005-07-22 2019-10-22 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical-based screening of ion-channel modulators
US8676309B2 (en) 2005-07-22 2014-03-18 Medtronic Ardian Luxembourg S.A.R.L. Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction
US10569099B2 (en) 2005-07-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10094840B2 (en) 2005-07-22 2018-10-09 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US20090088680A1 (en) * 2005-07-22 2009-04-02 Alexander Aravanis Optical tissue interface method and apparatus for stimulating cells
US10052497B2 (en) 2005-07-22 2018-08-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10422803B2 (en) 2005-07-22 2019-09-24 The Board Of Trustees Of The Leland Stanford Junior University Light-activated cation channel and uses thereof
US9480790B2 (en) 2005-09-12 2016-11-01 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
US9878150B2 (en) 2005-09-12 2018-01-30 The Cleveland Clinic Foundation Methods and systems for increasing heart contractility by neuromodulation
US20110166499A1 (en) * 2005-09-20 2011-07-07 Ardian, Inc. Methods and apparatus for inducing controlled renal neuromodulation
US7824870B2 (en) 2006-01-03 2010-11-02 Alcon, Inc. System for dissociation and removal of proteinaceous tissue
US20100331911A1 (en) * 2006-01-03 2010-12-30 Kovalcheck Steven W System for Dissociation and Removal of Proteinaceous Tissue
US20070156129A1 (en) * 2006-01-03 2007-07-05 Alcon, Inc. System For Dissociation and Removal of Proteinaceous Tissue
US9808300B2 (en) 2006-05-02 2017-11-07 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
US12076033B2 (en) 2006-05-19 2024-09-03 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US10499937B2 (en) 2006-05-19 2019-12-10 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US10589130B2 (en) 2006-05-25 2020-03-17 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9345900B2 (en) 2006-06-28 2016-05-24 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for thermally-induced renal neuromodulation
US11801085B2 (en) 2006-06-28 2023-10-31 Medtronic Ireland Manufacturing Unlimited Company Devices for thermally-induced renal neuromodulation
US10722288B2 (en) 2006-06-28 2020-07-28 Medtronic Ardian Luxembourg S.A.R.L. Devices for thermally-induced renal neuromodulation
US20090062873A1 (en) * 2006-06-28 2009-03-05 Ardian, Inc. Methods and systems for thermally-induced renal neuromodulation
US9314644B2 (en) 2006-06-28 2016-04-19 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for thermally-induced renal neuromodulation
US20090076409A1 (en) * 2006-06-28 2009-03-19 Ardian, Inc. Methods and systems for thermally-induced renal neuromodulation
US20080025006A1 (en) * 2006-07-27 2008-01-31 Denso Corporation Electronic apparatus
US10213252B2 (en) 2006-10-18 2019-02-26 Vessix, Inc. Inducing desirable temperature effects on body tissue
US10413356B2 (en) 2006-10-18 2019-09-17 Boston Scientific Scimed, Inc. System for inducing desirable temperature effects on body tissue
US9974607B2 (en) 2006-10-18 2018-05-22 Vessix Vascular, Inc. Inducing desirable temperature effects on body tissue
US10905873B2 (en) 2006-12-06 2021-02-02 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
US11986650B2 (en) 2006-12-06 2024-05-21 The Cleveland Clinic Foundation Methods and systems for treating acute heart failure by neuromodulation
US10369378B2 (en) 2007-01-10 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US9187745B2 (en) 2007-01-10 2015-11-17 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8398692B2 (en) 2007-01-10 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US20100145418A1 (en) * 2007-01-10 2010-06-10 Feng Zhang System for optical stimulation of target cells
US11007374B2 (en) 2007-01-10 2021-05-18 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US10105551B2 (en) 2007-01-10 2018-10-23 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US8864805B2 (en) 2007-01-10 2014-10-21 The Board Of Trustees Of The Leland Stanford Junior University System for optical stimulation of target cells
US20080227139A1 (en) * 2007-02-14 2008-09-18 Karl Deisseroth System, method and applications involving identification of biological circuits such as neurological characteristics
US8401609B2 (en) 2007-02-14 2013-03-19 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US9693692B2 (en) 2007-02-14 2017-07-04 The Board Of Trustees Of The Leland Stanford Junior University System, method and applications involving identification of biological circuits such as neurological characteristics
US9757587B2 (en) 2007-03-01 2017-09-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic method for generating an inhibitory current in a mammalian neuron
US9284353B2 (en) 2007-03-01 2016-03-15 The Board Of Trustees Of The Leland Stanford Junior University Mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from Natromonas pharaonis (NpHR)
US10589123B2 (en) 2007-03-01 2020-03-17 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US9855442B2 (en) 2007-03-01 2018-01-02 The Board Of Trustees Of The Leland Stanford Junior University Method for optically controlling a neuron with a mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from natromonas pharaonis (NpHR)
US11207118B2 (en) 2007-07-06 2021-12-28 Tsunami Medtech, Llc Medical system and method of use
WO2009011738A1 (en) * 2007-07-17 2009-01-22 Cardiac Pacemakers, Inc. Systems for modulating temperature for vasoactive response
US8828068B2 (en) 2007-07-17 2014-09-09 Cardiac Pacemakers, Inc. Systems and methods for local vasoactive response using temperature modulation
JP2010531203A (en) * 2007-07-17 2010-09-24 カーディアック ペースメイカーズ, インコーポレイテッド A system that regulates temperature for vasoactive reactions
US11213338B2 (en) 2007-08-23 2022-01-04 Aegea Medical Inc. Uterine therapy device and method
US10758292B2 (en) 2007-08-23 2020-09-01 Aegea Medical Inc. Uterine therapy device and method
EP3925573A1 (en) * 2007-10-11 2021-12-22 Implantica Patent Ltd. A system for treating a sexual dysfunctional female patient
AU2017202750B2 (en) * 2007-10-11 2019-05-23 Implantica Patent Ltd. System And Method For Thermal Treatment Of Hypertension, Hypotension Or Aneurysm
AU2021254640B2 (en) * 2007-10-11 2023-11-02 Implantica Patent Ltd System And Method For Thermal Treatment Of Hypertension, Hypotension Or Aneurysm
EP2214607A4 (en) * 2007-10-11 2017-06-21 Kirk Promotion LTD. System and method for thermal treatment of hypertension, hypotension or aneurysm
EP4018979A1 (en) * 2007-10-11 2022-06-29 Implantica Patent Ltd. System and method for thermal treatment of hypertension or aneurysm
US20090112133A1 (en) * 2007-10-31 2009-04-30 Karl Deisseroth Device and method for non-invasive neuromodulation
US10434327B2 (en) 2007-10-31 2019-10-08 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10426970B2 (en) 2007-10-31 2019-10-01 The Board Of Trustees Of The Leland Stanford Junior University Implantable optical stimulators
US10035027B2 (en) * 2007-10-31 2018-07-31 The Board Of Trustees Of The Leland Stanford Junior University Device and method for ultrasonic neuromodulation via stereotactic frame based technique
US20090118800A1 (en) * 2007-10-31 2009-05-07 Karl Deisseroth Implantable optical stimulators
US8180447B2 (en) 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method for reversible chemical modulation of neural activity
US20090149897A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for transdermal chemical modulation of neural activity
GB2467882A (en) * 2007-12-05 2010-08-18 Searete Llc System for thermal modulation of neural activity
US9014802B2 (en) 2007-12-05 2015-04-21 The Invention Science Fund I, Llc Method and system for modulating neural activity in a limb
US9020591B2 (en) 2007-12-05 2015-04-28 The Invention Science Fund I, Llc Method and system for ultrasonic neural modulation in a limb
US9020592B2 (en) 2007-12-05 2015-04-28 The Invention Science Fund I, Llc Method and system for blocking nerve conduction
US8630706B2 (en) 2007-12-05 2014-01-14 The Invention Science Fund I, Llc Method and system for reversible chemical modulation of neural activity
GB2467882B (en) * 2007-12-05 2012-12-05 Searete Llc System for thermal modulation of neural activity
US20090149799A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for chemical modulation of neural activity
US20090149694A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for magnetic modulation of neural conduction
US20090149914A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Method for reversible chemical modulation of neural activity
US9789315B2 (en) 2007-12-05 2017-10-17 Gearbox, Llc Method and system for modulating neural activity
US20090149896A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for chemical modulation of neural activity
US10092692B2 (en) 2007-12-05 2018-10-09 Gearbox, Llc Method and system for modulating neural activity
US20090149797A1 (en) * 2007-12-05 2009-06-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System for reversible chemical modulation of neural activity
US8160695B2 (en) 2007-12-05 2012-04-17 The Invention Science Fund I, Llc System for chemical modulation of neural activity
WO2009073208A1 (en) * 2007-12-05 2009-06-11 Searete Llc System for thermal modulation of neural activity
US8989858B2 (en) 2007-12-05 2015-03-24 The Invention Science Fund I, Llc Implant system for chemical modulation of neural activity
US8165668B2 (en) 2007-12-05 2012-04-24 The Invention Science Fund I, Llc Method for magnetic modulation of neural conduction
US9358374B2 (en) 2007-12-05 2016-06-07 Gearbox, Llc Method and system for blocking nerve conduction
US8165669B2 (en) 2007-12-05 2012-04-24 The Invention Science Fund I, Llc System for magnetic modulation of neural conduction
US8170659B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc Method for thermal modulation of neural activity
US8170658B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for electrical modulation of neural conduction
US8233976B2 (en) 2007-12-05 2012-07-31 The Invention Science Fund I, Llc System for transdermal chemical modulation of neural activity
US8170660B2 (en) 2007-12-05 2012-05-01 The Invention Science Fund I, Llc System for thermal modulation of neural activity
US8180446B2 (en) 2007-12-05 2012-05-15 The Invention Science Fund I, Llc Method and system for cyclical neural modulation based on activity state
US8195287B2 (en) 2007-12-05 2012-06-05 The Invention Science Fund I, Llc Method for electrical modulation of neural conduction
US11058879B2 (en) 2008-02-15 2021-07-13 Nuvaira, Inc. System and method for bronchial dilation
US8731672B2 (en) 2008-02-15 2014-05-20 Holaira, Inc. System and method for bronchial dilation
US8483831B1 (en) 2008-02-15 2013-07-09 Holaira, Inc. System and method for bronchial dilation
US8489192B1 (en) 2008-02-15 2013-07-16 Holaira, Inc. System and method for bronchial dilation
US9125643B2 (en) 2008-02-15 2015-09-08 Holaira, Inc. System and method for bronchial dilation
US10595925B2 (en) 2008-02-20 2020-03-24 Tsunami Medtech, Llc Medical system and method of use
US9924992B2 (en) 2008-02-20 2018-03-27 Tsunami Medtech, Llc Medical system and method of use
US8369954B2 (en) 2008-03-27 2013-02-05 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US7925352B2 (en) 2008-03-27 2011-04-12 Synecor Llc System and method for transvascularly stimulating contents of the carotid sheath
US10350430B2 (en) 2008-04-23 2019-07-16 The Board Of Trustees Of The Leland Stanford Junior University System comprising a nucleotide sequence encoding a volvox carteri light-activated ion channel protein (VCHR1)
US9878176B2 (en) 2008-04-23 2018-01-30 The Board Of Trustees Of The Leland Stanford Junior University System utilizing Volvox carteri light-activated ion channel protein (VChR1) for optical stimulation of target cells
US9249200B2 (en) 2008-04-23 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Expression vector comprising a nucleotide sequence encoding a Volvox carteri light-activated ion channel protein (VChR1) and implantable device thereof
US8815582B2 (en) 2008-04-23 2014-08-26 The Board Of Trustees Of The Leland Stanford Junior University Mammalian cell expressing Volvox carteri light-activated ion channel protein (VChR1)
US9394347B2 (en) 2008-04-23 2016-07-19 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating parkinson's disease by optically stimulating target cells
US20110105998A1 (en) * 2008-04-23 2011-05-05 The Board Of Trustees Of The Leland Stanford Junio Systems, methods and compositions for optical stimulation of target cells
US8603790B2 (en) 2008-04-23 2013-12-10 The Board Of Trustees Of The Leland Stanford Junior University Systems, methods and compositions for optical stimulation of target cells
US11937868B2 (en) 2008-05-09 2024-03-26 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8821489B2 (en) 2008-05-09 2014-09-02 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8226638B2 (en) 2008-05-09 2012-07-24 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8961508B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9668809B2 (en) 2008-05-09 2017-06-06 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8961507B2 (en) 2008-05-09 2015-02-24 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8088127B2 (en) 2008-05-09 2012-01-03 Innovative Pulmonary Solutions, Inc. Systems, assemblies, and methods for treating a bronchial tree
US10149714B2 (en) 2008-05-09 2018-12-11 Nuvaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US8808280B2 (en) 2008-05-09 2014-08-19 Holaira, Inc. Systems, assemblies, and methods for treating a bronchial tree
US9453215B2 (en) 2008-05-29 2016-09-27 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US20110112179A1 (en) * 2008-05-29 2011-05-12 Airan Raag D Cell line, system and method for optical control of secondary messengers
US8729040B2 (en) 2008-05-29 2014-05-20 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US8962589B2 (en) 2008-05-29 2015-02-24 The Board Of Trustees Of The Leland Stanford Junior University Cell line, system and method for optical control of secondary messengers
US11478291B2 (en) 2008-05-31 2022-10-25 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11129664B2 (en) 2008-05-31 2021-09-28 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11141210B2 (en) 2008-05-31 2021-10-12 Tsunami Medtech, Llc Systems and methods for delivering energy into a target tissue of a body
US11284932B2 (en) 2008-05-31 2022-03-29 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US11179187B2 (en) 2008-05-31 2021-11-23 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US20090313303A1 (en) * 2008-06-13 2009-12-17 Spence Richard C Method for playing digital media files with a digital media player using a plurality of playlists
US9084885B2 (en) 2008-06-17 2015-07-21 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US20110172653A1 (en) * 2008-06-17 2011-07-14 Schneider M Bret Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US10711242B2 (en) 2008-06-17 2020-07-14 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and methods for controlling cellular development
US8956363B2 (en) 2008-06-17 2015-02-17 The Board Of Trustees Of The Leland Stanford Junior University Methods, systems and devices for optical stimulation of target cells using an optical transmission element
US20110159562A1 (en) * 2008-06-17 2011-06-30 Karl Deisseroth Apparatus and methods for controlling cellular development
US20110166632A1 (en) * 2008-07-08 2011-07-07 Delp Scott L Materials and approaches for optical stimulation of the peripheral nervous system
US9308392B2 (en) 2008-07-08 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9101759B2 (en) 2008-07-08 2015-08-11 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US10583309B2 (en) 2008-07-08 2020-03-10 The Board Of Trustees Of The Leland Stanford Junior University Materials and approaches for optical stimulation of the peripheral nervous system
US9616231B2 (en) 2008-08-08 2017-04-11 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US8768469B2 (en) 2008-08-08 2014-07-01 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US9095711B2 (en) 2008-08-08 2015-08-04 Enteromedics Inc. Systems for regulation of blood pressure and heart rate
US20100204741A1 (en) * 2008-08-08 2010-08-12 Tweden Katherine S Systems for regulation of blood pressure and heart rate
US9433784B2 (en) 2008-08-11 2016-09-06 Cibiem, Inc. Systems and methods for treating dyspnea, including via electrical afferent signal blocking
US9795784B2 (en) 2008-08-11 2017-10-24 Cibiem, Inc. Systems and methods for treating dyspnea, including via electrical afferent signal blocking
US10548653B2 (en) 2008-09-09 2020-02-04 Tsunami Medtech, Llc Methods for delivering energy into a target tissue of a body
US20100076299A1 (en) * 2008-09-22 2010-03-25 Minnow Medical, Inc. Inducing Desirable Temperature Effects On Body Tissue Using Alternate Energy Sources
US11744639B2 (en) 2008-11-11 2023-09-05 Shifamed Holdings Llc Ablation catheters
US9717557B2 (en) 2008-11-11 2017-08-01 Apama Medical, Inc. Cardiac ablation catheters and methods of use thereof
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
US8805466B2 (en) 2008-11-11 2014-08-12 Shifamed Holdings, Llc Low profile electrode assembly
US8295902B2 (en) 2008-11-11 2012-10-23 Shifamed Holdings, Llc Low profile electrode assembly
US10251700B2 (en) 2008-11-11 2019-04-09 Shifamed Holdings, Llc Ablation catheters
US9610006B2 (en) 2008-11-11 2017-04-04 Shifamed Holdings, Llc Minimally invasive visualization systems
US8716447B2 (en) 2008-11-14 2014-05-06 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10071132B2 (en) 2008-11-14 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9458208B2 (en) 2008-11-14 2016-10-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US10064912B2 (en) 2008-11-14 2018-09-04 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9309296B2 (en) 2008-11-14 2016-04-12 The Board Of Trustees Of The Leland Stanford Junior University Optically-based stimulation of target cells and modifications thereto
US9327100B2 (en) 2008-11-14 2016-05-03 Vessix Vascular, Inc. Selective drug delivery in a lumen
US9498624B2 (en) 2008-12-09 2016-11-22 Nephera Ltd. Stimulation of the urinary system
US8923970B2 (en) 2008-12-09 2014-12-30 Nephera Ltd. Stimulation of the urinary system
US8725249B2 (en) 2008-12-09 2014-05-13 Nephera Ltd. Stimulation of the urinary system
US20170319273A1 (en) * 2008-12-31 2017-11-09 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20110060324A1 (en) * 2008-12-31 2011-03-10 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8652129B2 (en) 2008-12-31 2014-02-18 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US8777942B2 (en) 2008-12-31 2014-07-15 Medtronic Ardian Luxembourg S.A.R.L. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US10537385B2 (en) * 2008-12-31 2020-01-21 Medtronic Ardian Luxembourg S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US20100168731A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US20100168739A1 (en) * 2008-12-31 2010-07-01 Ardian, Inc. Apparatus, systems, and methods for achieving intravascular, thermally-induced renal neuromodulation
US10561460B2 (en) 2008-12-31 2020-02-18 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation systems and methods for treatment of sexual dysfunction
US8974445B2 (en) 2009-01-09 2015-03-10 Recor Medical, Inc. Methods and apparatus for treatment of cardiac valve insufficiency
US11284931B2 (en) 2009-02-03 2022-03-29 Tsunami Medtech, Llc Medical systems and methods for ablating and absorbing tissue
US20100331776A1 (en) * 2009-06-24 2010-12-30 Amr Salahieh Steerable Medical Delivery Devices and Methods of Use
US8323241B2 (en) 2009-06-24 2012-12-04 Shifamed Holdings, Llc Steerable medical delivery devices and methods of use
US9586025B2 (en) 2009-06-24 2017-03-07 Shifamed Holdings, Llc Steerable delivery sheaths
US10188832B2 (en) 2009-06-24 2019-01-29 Shifamed Holdings, Llc Steerable delivery sheaths
US8708953B2 (en) 2009-06-24 2014-04-29 Shifamed Holdings, Llc Steerable medical delivery devices and methods of use
US8920369B2 (en) 2009-06-24 2014-12-30 Shifamed Holdings, Llc Steerable delivery sheaths
US8374674B2 (en) * 2009-10-12 2013-02-12 Kona Medical, Inc. Nerve treatment system
US11154356B2 (en) 2009-10-12 2021-10-26 Otsuka Medical Devices Co., Ltd. Intravascular energy delivery
US9119952B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Methods and devices to modulate the autonomic nervous system via the carotid body or carotid sinus
US9119951B2 (en) 2009-10-12 2015-09-01 Kona Medical, Inc. Energetic modulation of nerves
US10772681B2 (en) 2009-10-12 2020-09-15 Utsuka Medical Devices Co., Ltd. Energy delivery to intraparenchymal regions of the kidney
AU2010307029B2 (en) * 2009-10-12 2014-07-31 Otsuka Medical Devices Co., Ltd. Energetic modulation of nerves
KR101545775B1 (en) * 2009-10-12 2015-08-19 코나 메디컬, 인크. Energetic Modulation of Nerves
US20110092880A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US8992447B2 (en) 2009-10-12 2015-03-31 Kona Medical, Inc. Energetic modulation of nerves
WO2011046880A2 (en) 2009-10-12 2011-04-21 Kona Medical, Inc. Energetic modulation of nerves
US20110092781A1 (en) * 2009-10-12 2011-04-21 Michael Gertner Energetic modulation of nerves
US8469904B2 (en) 2009-10-12 2013-06-25 Kona Medical, Inc. Energetic modulation of nerves
US9174065B2 (en) * 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
KR101567285B1 (en) * 2009-10-12 2015-11-09 코나 메디컬, 인크. Energetic Modulation of Nerves
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US9352171B2 (en) 2009-10-12 2016-05-31 Kona Medical, Inc. Nerve treatment system
US9199097B2 (en) 2009-10-12 2015-12-01 Kona Medical, Inc. Energetic modulation of nerves
EP3005944A1 (en) * 2009-10-12 2016-04-13 Kona Medical, Inc. Energetic modulation of nerves
US20110137149A1 (en) * 2009-10-12 2011-06-09 Michael Gertner Nerve treatment system
US8715209B2 (en) 2009-10-12 2014-05-06 Kona Medical, Inc. Methods and devices to modulate the autonomic nervous system with ultrasound
CN104771138A (en) * 2009-10-12 2015-07-15 科纳医药股份有限公司 External autonomic modulation
US9125642B2 (en) * 2009-10-12 2015-09-08 Kona Medical, Inc. External autonomic modulation
US20140236048A1 (en) * 2009-10-12 2014-08-21 Kona Medical, Inc. External autonomic modulation
US9358401B2 (en) 2009-10-12 2016-06-07 Kona Medical, Inc. Intravascular catheter to deliver unfocused energy to nerves surrounding a blood vessel
US20110172528A1 (en) * 2009-10-12 2011-07-14 Michael Gertner Systems and methods for treatment using ultrasonic energy
EP2344039A1 (en) * 2009-10-12 2011-07-20 Kona Medical, Inc. Energetic modulation of nerves
US8986231B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
EP2344039A4 (en) * 2009-10-12 2012-01-04 Kona Medical Inc Energetic modulation of nerves
US20130331739A1 (en) * 2009-10-12 2013-12-12 Kona Medical, Inc. Energetic modulation of nerves
EP2488250A4 (en) * 2009-10-12 2012-11-21 Kona Medical Inc Energetic modulation of nerves
US8986211B2 (en) 2009-10-12 2015-03-24 Kona Medical, Inc. Energetic modulation of nerves
US8556834B2 (en) 2009-10-12 2013-10-15 Kona Medical, Inc. Flow directed heating of nervous structures
US9579518B2 (en) 2009-10-12 2017-02-28 Kona Medical, Inc. Nerve treatment system
EP2488250A2 (en) * 2009-10-12 2012-08-22 Kona Medical, Inc. Energetic modulation of nerves
US8517962B2 (en) 2009-10-12 2013-08-27 Kona Medical, Inc. Energetic modulation of nerves
US8512262B2 (en) * 2009-10-12 2013-08-20 Kona Medical, Inc. Energetic modulation of nerves
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
US9005143B2 (en) 2009-10-12 2015-04-14 Kona Medical, Inc. External autonomic modulation
US9675412B2 (en) 2009-10-27 2017-06-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9017324B2 (en) 2009-10-27 2015-04-28 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9005195B2 (en) 2009-10-27 2015-04-14 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8932289B2 (en) 2009-10-27 2015-01-13 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9931162B2 (en) 2009-10-27 2018-04-03 Nuvaira, Inc. Delivery devices with coolable energy emitting assemblies
US8740895B2 (en) 2009-10-27 2014-06-03 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US8777943B2 (en) 2009-10-27 2014-07-15 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9649153B2 (en) 2009-10-27 2017-05-16 Holaira, Inc. Delivery devices with coolable energy emitting assemblies
US9981108B2 (en) * 2009-10-30 2018-05-29 Recor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US9943666B2 (en) * 2009-10-30 2018-04-17 Recor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
EP2995350A1 (en) * 2009-10-30 2016-03-16 ReCor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US20150290427A1 (en) * 2009-10-30 2015-10-15 Recor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US20140031727A1 (en) * 2009-10-30 2014-01-30 Sound Interventions, Inc. Method and Apparatus for Treatment of Hypertension Through Percutaneous Ultrasound Renal Denervation
US20220126062A1 (en) * 2009-10-30 2022-04-28 Recor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US10039901B2 (en) * 2009-10-30 2018-08-07 Recor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
CN102596320A (en) * 2009-10-30 2012-07-18 声特医疗器械有限公司 Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US11185662B2 (en) * 2009-10-30 2021-11-30 Recor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
EP3132828A1 (en) * 2009-10-30 2017-02-22 ReCor Medical, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
WO2011053757A1 (en) * 2009-10-30 2011-05-05 Sound Interventions, Inc. Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US20120232436A1 (en) * 2009-10-30 2012-09-13 Sound Interventions, Inc. Method and Apparatus for Treatment of Hypertension Through Percutaneous Ultrasound Renal Denervation
US8900223B2 (en) 2009-11-06 2014-12-02 Tsunami Medtech, Llc Tissue ablation systems and methods of use
US20110112400A1 (en) * 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US8911439B2 (en) 2009-11-11 2014-12-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US10610283B2 (en) 2009-11-11 2020-04-07 Nuvaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US9149328B2 (en) 2009-11-11 2015-10-06 Holaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US9649154B2 (en) 2009-11-11 2017-05-16 Holaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US11712283B2 (en) 2009-11-11 2023-08-01 Nuvaira, Inc. Non-invasive and minimally invasive denervation methods and systems for performing the same
US11389233B2 (en) 2009-11-11 2022-07-19 Nuvaira, Inc. Systems, apparatuses, and methods for treating tissue and controlling stenosis
US20110118729A1 (en) * 2009-11-13 2011-05-19 Alcon Research, Ltd High-intensity pulsed electric field vitrectomy apparatus with load detection
US8979839B2 (en) 2009-11-13 2015-03-17 St. Jude Medical, Inc. Assembly of staggered ablation elements
US20110118600A1 (en) * 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US20110118734A1 (en) * 2009-11-16 2011-05-19 Alcon Research, Ltd. Capsularhexis device using pulsed electric fields
US20110135626A1 (en) * 2009-12-08 2011-06-09 Alcon Research, Ltd. Localized Chemical Lysis of Ocular Tissue
US20110144562A1 (en) * 2009-12-14 2011-06-16 Alcon Research, Ltd. Localized Pharmacological Treatment of Ocular Tissue Using High-Intensity Pulsed Electrical Fields
US20110144641A1 (en) * 2009-12-15 2011-06-16 Alcon Research, Ltd. High-Intensity Pulsed Electric Field Vitrectomy Apparatus
US9161801B2 (en) 2009-12-30 2015-10-20 Tsunami Medtech, Llc Medical system and method of use
US20110200171A1 (en) * 2010-01-19 2011-08-18 Ardian, Inc. Methods and apparatus for renal neuromodulation via stereotactic radiotherapy
US9079940B2 (en) 2010-03-17 2015-07-14 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9604073B2 (en) 2010-03-17 2017-03-28 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9249234B2 (en) 2010-03-17 2016-02-02 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US9359449B2 (en) 2010-03-17 2016-06-07 The Board Of Trustees Of The Leland Stanford Junior University Light-sensitive ion-passing molecules
US8840601B2 (en) 2010-03-24 2014-09-23 Shifamed Holdings, Llc Intravascular tissue disruption
WO2011119857A2 (en) 2010-03-24 2011-09-29 Shifamed, Llc Intravascular tissue disruption
US9277955B2 (en) 2010-04-09 2016-03-08 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
EP3175808A1 (en) * 2010-04-26 2017-06-07 Medtronic Ardian Luxembourg S.à.r.l. Catheter apparatuses and systems for renal neuromodulation
US8870863B2 (en) 2010-04-26 2014-10-28 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US20140303618A1 (en) * 2010-04-26 2014-10-09 Medtronic Ardian Luxembourg S.A.R.L. Multi-directional deflectable catheter apparatuses, systems, and methods for renal neuromodulation
US8728075B2 (en) 2010-04-26 2014-05-20 Medtronic Ardian Luxembourg S.A.R.L. Multi-directional deflectable catheter apparatuses, systems, and methods for renal neuromodulation
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
US8880185B2 (en) 2010-06-11 2014-11-04 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
WO2012016135A1 (en) * 2010-07-30 2012-02-02 Boston Scientific Scimed, Inc. Balloon with surface electrodes and integral cooling for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US8546979B2 (en) 2010-08-11 2013-10-01 Alcon Research, Ltd. Self-matching pulse generator with adjustable pulse width and pulse frequency
US11457969B2 (en) 2010-08-13 2022-10-04 Tsunami Medtech, Llc Medical system and method of use
US10499973B2 (en) 2010-08-13 2019-12-10 Tsunami Medtech, Llc Medical system and method of use
US10342612B2 (en) 2010-10-21 2019-07-09 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US9855097B2 (en) 2010-10-21 2018-01-02 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US10179020B2 (en) 2010-10-25 2019-01-15 Medtronic Ardian Luxembourg S.A.R.L. Devices, systems and methods for evaluation and feedback of neuromodulation treatment
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9522288B2 (en) 2010-11-05 2016-12-20 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US9992981B2 (en) 2010-11-05 2018-06-12 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of reward-related behaviors
US9850290B2 (en) 2010-11-05 2017-12-26 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10568307B2 (en) 2010-11-05 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Stabilized step function opsin proteins and methods of using the same
US9968652B2 (en) 2010-11-05 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Optically-controlled CNS dysfunction
US9175095B2 (en) 2010-11-05 2015-11-03 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10086012B2 (en) 2010-11-05 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Control and characterization of memory function
US9340589B2 (en) 2010-11-05 2016-05-17 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US10196431B2 (en) 2010-11-05 2019-02-05 The Board Of Trustees Of The Leland Stanford Junior University Light-activated chimeric opsins and methods of using the same
US9421258B2 (en) 2010-11-05 2016-08-23 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US8932562B2 (en) 2010-11-05 2015-01-13 The Board Of Trustees Of The Leland Stanford Junior University Optically controlled CNS dysfunction
US10252076B2 (en) 2010-11-05 2019-04-09 The Board Of Trustees Of The Leland Stanford Junior University Upconversion of light for use in optogenetic methods
US11160597B2 (en) 2010-11-09 2021-11-02 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US10238446B2 (en) 2010-11-09 2019-03-26 Aegea Medical Inc. Positioning method and apparatus for delivering vapor to the uterus
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9848946B2 (en) 2010-11-15 2017-12-26 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US20120123261A1 (en) * 2010-11-16 2012-05-17 Jenson Mark L Renal Nerve Ablation Using Mild Freezing and Vibration
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US8696722B2 (en) 2010-11-22 2014-04-15 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US8834546B2 (en) 2010-11-22 2014-09-16 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10914803B2 (en) 2010-11-22 2021-02-09 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9615789B2 (en) 2010-11-22 2017-04-11 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10018695B2 (en) 2010-11-22 2018-07-10 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US10371776B2 (en) 2010-11-22 2019-08-06 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9271674B2 (en) 2010-11-22 2016-03-01 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic magnetic resonance imaging
US9649156B2 (en) 2010-12-15 2017-05-16 Boston Scientific Scimed, Inc. Bipolar off-wall electrode device for renal nerve ablation
US9220561B2 (en) 2011-01-19 2015-12-29 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
WO2012139980A1 (en) * 2011-04-15 2012-10-18 Elvido Medical Technology Srl Central venous catheter
ITPD20110125A1 (en) * 2011-04-15 2012-10-16 Elvido Medical Technology Srl CENTRAL VENOUS CATHETER
US11751941B2 (en) 2011-05-18 2023-09-12 St. Jude Medical, Inc. Apparatus and method of assessing transvascular denervation
US10179026B2 (en) 2011-05-18 2019-01-15 St. Jude Medical, Inc. Apparatus and method of assessing transvascular denervation
US8909316B2 (en) 2011-05-18 2014-12-09 St. Jude Medical, Cardiology Division, Inc. Apparatus and method of assessing transvascular denervation
US11241280B2 (en) 2011-05-18 2022-02-08 St. Jude Medical, Inc. Apparatus and method of assessing transvascular denervation
US9579030B2 (en) 2011-07-20 2017-02-28 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
US9186209B2 (en) 2011-07-22 2015-11-17 Boston Scientific Scimed, Inc. Nerve modulation system having helical guide
US11337748B2 (en) 2011-08-26 2022-05-24 Symap Medical (Suzhou), Ltd Device for mapping and ablating renal nerves distributed on the renal artery
US9743845B2 (en) 2011-08-26 2017-08-29 Symap Medical (Suzhou), Ltd Mapping sympathetic nerve distribution for renal ablation and catheters for same
US10722303B2 (en) 2011-08-26 2020-07-28 Symap Medical (Suzhou), Limited System and method for mapping the functional nerves innervating the wall of arteries, 3-D mapping and catheters for same
US10111708B2 (en) 2011-08-26 2018-10-30 Symap Medical (Suzhou), Ltd System and method for locating and identifying the functional nerves innervating the wall of arteries and catheters for same
US9427579B2 (en) 2011-09-29 2016-08-30 Pacesetter, Inc. System and method for performing renal denervation verification
US10376310B2 (en) 2011-09-29 2019-08-13 Pacesetter, Inc. System and method for performing renal denervation verification
US9801684B2 (en) 2011-09-29 2017-10-31 Pacesetter, Inc. System and method for performing renal denervation verification
US10881442B2 (en) 2011-10-07 2021-01-05 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US9186210B2 (en) 2011-10-10 2015-11-17 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US10085799B2 (en) 2011-10-11 2018-10-02 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US20130090563A1 (en) * 2011-10-11 2013-04-11 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system
US9420955B2 (en) * 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9629675B2 (en) * 2011-10-19 2017-04-25 Confluent Medical Technologies, Inc. Tissue treatment device and related methods
US20130103026A1 (en) * 2011-10-19 2013-04-25 Stephen J. Kleshinski Tissue treatment device and related methods
US8951251B2 (en) 2011-11-08 2015-02-10 Boston Scientific Scimed, Inc. Ostial renal nerve ablation
US20150366609A1 (en) * 2011-11-15 2015-12-24 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9999464B2 (en) * 2011-11-15 2018-06-19 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9861435B2 (en) * 2011-11-15 2018-01-09 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US10314651B2 (en) * 2011-11-15 2019-06-11 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US20180263691A1 (en) * 2011-11-15 2018-09-20 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9827042B2 (en) 2011-12-02 2017-11-28 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
US11179195B2 (en) 2011-12-02 2021-11-23 Medtronic Ardian Luxembourg S.A.R.L. Renal neuromodulation methods and devices for treatment of polycystic kidney disease
US9505817B2 (en) 2011-12-16 2016-11-29 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9969783B2 (en) 2011-12-16 2018-05-15 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10538560B2 (en) 2011-12-16 2020-01-21 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US10087223B2 (en) 2011-12-16 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9840541B2 (en) 2011-12-16 2017-12-12 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9365628B2 (en) 2011-12-16 2016-06-14 The Board Of Trustees Of The Leland Stanford Junior University Opsin polypeptides and methods of use thereof
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
US9072902B2 (en) 2011-12-23 2015-07-07 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9402684B2 (en) * 2011-12-23 2016-08-02 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9174050B2 (en) 2011-12-23 2015-11-03 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9592386B2 (en) 2011-12-23 2017-03-14 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9028472B2 (en) 2011-12-23 2015-05-12 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9186211B2 (en) 2011-12-23 2015-11-17 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US20130165990A1 (en) * 2011-12-23 2013-06-27 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9037259B2 (en) 2011-12-23 2015-05-19 Vessix Vascular, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
US11103723B2 (en) 2012-02-21 2021-08-31 The Board Of Trustees Of The Leland Stanford Junior University Methods for treating neurogenic disorders of the pelvic floor
US11338140B2 (en) 2012-03-08 2022-05-24 Medtronic Ardian Luxembourg S.A.R.L. Monitoring of neuromodulation using biomarkers
US10874455B2 (en) 2012-03-08 2020-12-29 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US10368791B2 (en) 2012-03-08 2019-08-06 Medtronic Adrian Luxembourg S.a.r.l. Devices and associated methods for monitoring of neuromodulation using biomarkers
EP3348220A1 (en) * 2012-03-08 2018-07-18 Medtronic Ardian Luxembourg S.à.r.l. Biomarker sampling in the context of neuromodulation devices and associated systems
US10729365B2 (en) 2012-03-08 2020-08-04 Medtronic Ardian Luxembourg S.A.R.L. Biomarker sampling in the context of neuromodulation devices, systems, and methods
US9750568B2 (en) 2012-03-08 2017-09-05 Medtronic Ardian Luxembourg S.A.R.L. Ovarian neuromodulation and associated systems and methods
US8934988B2 (en) 2012-03-16 2015-01-13 St. Jude Medical Ab Ablation stent with meander structure
US8961550B2 (en) 2012-04-17 2015-02-24 Indian Wells Medical, Inc. Steerable endoluminal punch
US9707007B2 (en) 2012-04-17 2017-07-18 Indian Wells Medical, Inc. Steerable endoluminal punch
US9113929B2 (en) 2012-04-19 2015-08-25 St. Jude Medical, Cardiology Division, Inc. Non-electric field renal denervation electrode
US10219855B2 (en) 2012-04-24 2019-03-05 Cibiem, Inc. Endovascular catheters and methods for carotid body ablation
US9757180B2 (en) 2012-04-24 2017-09-12 Cibiem, Inc. Endovascular catheters and methods for carotid body ablation
US9393070B2 (en) 2012-04-24 2016-07-19 Cibiem, Inc. Endovascular catheters and methods for carotid body ablation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
US9808303B2 (en) 2012-06-01 2017-11-07 Cibiem, Inc. Methods and devices for cryogenic carotid body ablation
US9398930B2 (en) 2012-06-01 2016-07-26 Cibiem, Inc. Percutaneous methods and devices for carotid body ablation
US9402677B2 (en) 2012-06-01 2016-08-02 Cibiem, Inc. Methods and devices for cryogenic carotid body ablation
US20150164401A1 (en) * 2012-06-14 2015-06-18 Autonomix Medical, Inc. Devices, systems, and methods for diagnosis and treatment of overactive bladder
US11564616B2 (en) 2012-06-14 2023-01-31 Autonomix Medical, Inc. Devices, systems, and methods for diagnosis and treatment of overactive bladder
US10206616B2 (en) * 2012-06-14 2019-02-19 Autonomix Medical, Inc. Devices, systems, and methods for diagnosis and treatment of overactive bladder
US20160338724A1 (en) * 2012-06-30 2016-11-24 Yegor D. Sinelnikov Carotid septum ablation with ultrasound imaging and ablation catheters
US20140005706A1 (en) * 2012-06-30 2014-01-02 Mark Gelfand Carotid Body Ablation Via Directed Energy
US9283033B2 (en) * 2012-06-30 2016-03-15 Cibiem, Inc. Carotid body ablation via directed energy
US10321946B2 (en) 2012-08-24 2019-06-18 Boston Scientific Scimed, Inc. Renal nerve modulation devices with weeping RF ablation balloons
US9173696B2 (en) 2012-09-17 2015-11-03 Boston Scientific Scimed, Inc. Self-positioning electrode system and method for renal nerve modulation
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US10835305B2 (en) 2012-10-10 2020-11-17 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US10080864B2 (en) 2012-10-19 2018-09-25 Medtronic Ardian Luxembourg S.A.R.L. Packaging for catheter treatment devices and associated devices, systems, and methods
US10004557B2 (en) 2012-11-05 2018-06-26 Pythagoras Medical Ltd. Controlled tissue ablation
US20140128865A1 (en) * 2012-11-05 2014-05-08 Yossi Gross Controlled renal artery ablation
US9770593B2 (en) * 2012-11-05 2017-09-26 Pythagoras Medical Ltd. Patient selection using a transluminally-applied electric current
US9398933B2 (en) 2012-12-27 2016-07-26 Holaira, Inc. Methods for improving drug efficacy including a combination of drug administration and nerve modulation
US9179997B2 (en) 2013-03-06 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Thermochromic polyvinyl alcohol based hydrogel artery
US9956033B2 (en) 2013-03-11 2018-05-01 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US10328238B2 (en) 2013-03-12 2019-06-25 St. Jude Medical, Cardiology Division, Inc. Catheter system
WO2014163990A1 (en) * 2013-03-12 2014-10-09 Boston Scientific Scimed, Inc. Medical systems and methods for modulating nerves
US10716914B2 (en) 2013-03-12 2020-07-21 St. Jude Medical, Cardiology Division, Inc. Catheter system
US9775966B2 (en) 2013-03-12 2017-10-03 St. Jude Medical, Cardiology Division, Inc. Catheter system
AU2014249776B2 (en) * 2013-03-12 2017-04-20 Boston Scientific Scimed, Inc. Medical systems and methods for modulating nerves
US9861436B2 (en) 2013-03-13 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
US20140277305A1 (en) * 2013-03-13 2014-09-18 Advanced Cooling Therapy, Llc Devices, Systems, and Methods for Managing Patient Temperature and Correcting Cardiac Arrhythmia
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10736773B2 (en) * 2013-03-13 2020-08-11 Advanced Cooling Therapy, Inc. Devices, systems, and methods for managing patient temperature and correcting cardiac arrhythmia
US9510902B2 (en) 2013-03-13 2016-12-06 St. Jude Medical, Cardiology Division, Inc. Ablation catheters and systems including rotational monitoring means
US10398332B2 (en) 2013-03-14 2019-09-03 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
US10350440B2 (en) 2013-03-14 2019-07-16 Recor Medical, Inc. Ultrasound-based neuromodulation system
US8876813B2 (en) 2013-03-14 2014-11-04 St. Jude Medical, Inc. Methods, systems, and apparatus for neural signal detection
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US12102845B2 (en) 2013-03-14 2024-10-01 Recor Medical, Inc. Ultrasound-based neuromodulation system
US10456605B2 (en) 2013-03-14 2019-10-29 Recor Medical, Inc. Ultrasound-based neuromodulation system
US10230041B2 (en) 2013-03-14 2019-03-12 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
US11058474B2 (en) 2013-03-15 2021-07-13 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9827039B2 (en) 2013-03-15 2017-11-28 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
US10080601B2 (en) 2013-03-15 2018-09-25 St Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US11413086B2 (en) 2013-03-15 2022-08-16 Tsunami Medtech, Llc Medical system and method of use
US12114909B2 (en) 2013-03-15 2024-10-15 Tsunami Medtech, Llc Medical system and method of use
US9314300B2 (en) 2013-03-15 2016-04-19 St. Jude Medical Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9974477B2 (en) 2013-03-15 2018-05-22 St. Jude Medical, Cardiology Division, Inc. Quantification of renal denervation via alterations in renal blood flow pre/post ablation
US9427283B2 (en) 2013-03-15 2016-08-30 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9943353B2 (en) 2013-03-15 2018-04-17 Tsunami Medtech, Llc Medical system and method of use
US9561070B2 (en) 2013-03-15 2017-02-07 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9987070B2 (en) 2013-03-15 2018-06-05 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9186212B2 (en) 2013-03-15 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods utilizing two or more sites along denervation catheter
US10974064B2 (en) 2013-03-15 2021-04-13 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of behavioral state
US12053221B2 (en) 2013-03-15 2024-08-06 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US11672584B2 (en) 2013-03-15 2023-06-13 Tsunami Medtech, Llc Medical system and method of use
US9713490B2 (en) 2013-03-15 2017-07-25 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9713494B2 (en) 2013-03-15 2017-07-25 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US9179973B2 (en) 2013-03-15 2015-11-10 St. Jude Medical, Cardiology Division, Inc. Feedback systems and methods for renal denervation utilizing balloon catheter
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9775663B2 (en) 2013-03-15 2017-10-03 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US9636380B2 (en) 2013-03-15 2017-05-02 The Board Of Trustees Of The Leland Stanford Junior University Optogenetic control of inputs to the ventral tegmental area
US10918434B2 (en) 2013-03-15 2021-02-16 St. Jude Medical, Cardiology Division, Inc. Ablation system, methods, and controllers
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
US11684415B2 (en) 2013-04-08 2023-06-27 Boston Scientific Scimed, Inc. Tissue ablation and monitoring thereof
US9333031B2 (en) 2013-04-08 2016-05-10 Apama Medical, Inc. Visualization inside an expandable medical device
US11439298B2 (en) 2013-04-08 2022-09-13 Boston Scientific Scimed, Inc. Surface mapping and visualizing ablation system
US10350002B2 (en) 2013-04-25 2019-07-16 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
US10220092B2 (en) 2013-04-29 2019-03-05 The Board Of Trustees Of The Leland Stanford Junior University Devices, systems and methods for optogenetic modulation of action potentials in target cells
US9943365B2 (en) 2013-06-21 2018-04-17 Boston Scientific Scimed, Inc. Renal denervation balloon catheter with ride along electrode support
US10022182B2 (en) 2013-06-21 2018-07-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
US9707036B2 (en) 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
US9872728B2 (en) 2013-06-28 2018-01-23 St. Jude Medical, Cardiology Division, Inc. Apparatuses and methods for affixing electrodes to an intravascular balloon
US9833283B2 (en) 2013-07-01 2017-12-05 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US11272981B2 (en) 2013-07-03 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
US12016622B2 (en) 2013-07-03 2024-06-25 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system
US10413357B2 (en) 2013-07-11 2019-09-17 Boston Scientific Scimed, Inc. Medical device with stretchable electrode assemblies
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
US9925001B2 (en) 2013-07-19 2018-03-27 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
US10342609B2 (en) 2013-07-22 2019-07-09 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
US10307609B2 (en) 2013-08-14 2019-06-04 The Board Of Trustees Of The Leland Stanford Junior University Compositions and methods for controlling pain
US10722300B2 (en) 2013-08-22 2020-07-28 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
US10952790B2 (en) 2013-09-13 2021-03-23 Boston Scientific Scimed, Inc. Ablation balloon with vapor deposited cover layer
US9687166B2 (en) 2013-10-14 2017-06-27 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
USD747491S1 (en) 2013-10-23 2016-01-12 St. Jude Medical, Cardiology Division, Inc. Ablation generator
USD793559S1 (en) 2013-10-23 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Ablation generator
USD774043S1 (en) 2013-10-23 2016-12-13 St. Jude Medical, Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
USD914883S1 (en) 2013-10-23 2021-03-30 St. Jude Medical, Cardiology Division, Inc. Ablation generator
US10856936B2 (en) 2013-10-23 2020-12-08 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including thermoplastic-based struts
USD987083S1 (en) 2013-10-23 2023-05-23 St. Jude Medical, Cardiology Division, Inc. Ablation generator
USD829238S1 (en) 2013-10-23 2018-09-25 St. Jude Medical Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
USD815131S1 (en) 2013-10-23 2018-04-10 St. Jude Medical, Cardiology Division, Inc. Display screen with graphical user interface for ablation generator
US10034705B2 (en) 2013-10-24 2018-07-31 St. Jude Medical, Cardiology Division, Inc. High strength electrode assembly for catheter system including novel electrode
US9913961B2 (en) 2013-10-24 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US9999748B2 (en) 2013-10-24 2018-06-19 St. Jude Medical, Cardiology Division, Inc. Flexible catheter shaft and method of manufacture
US10271898B2 (en) 2013-10-25 2019-04-30 Boston Scientific Scimed, Inc. Embedded thermocouple in denervation flex circuit
US10420604B2 (en) 2013-10-28 2019-09-24 St. Jude Medical, Cardiology Division, Inc. Electrode assembly for catheter system including interlinked struts
US9861433B2 (en) 2013-11-05 2018-01-09 St. Jude Medical, Cardiology Division, Inc. Helical-shaped ablation catheter and methods of use
US11202671B2 (en) 2014-01-06 2021-12-21 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
US9907609B2 (en) 2014-02-04 2018-03-06 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
US9955946B2 (en) 2014-03-12 2018-05-01 Cibiem, Inc. Carotid body ablation with a transvenous ultrasound imaging and ablation catheter
US9980766B1 (en) 2014-03-28 2018-05-29 Medtronic Ardian Luxembourg S.A.R.L. Methods and systems for renal neuromodulation
US10194980B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10194979B1 (en) 2014-03-28 2019-02-05 Medtronic Ardian Luxembourg S.A.R.L. Methods for catheter-based renal neuromodulation
US10398501B2 (en) 2014-04-24 2019-09-03 St. Jude Medical, Cardiology Division, Inc. Ablation systems including pulse rate detector and feedback mechanism and methods of use
US10478249B2 (en) 2014-05-07 2019-11-19 Pythagoras Medical Ltd. Controlled tissue ablation techniques
US10299856B2 (en) 2014-05-22 2019-05-28 Aegea Medical Inc. Systems and methods for performing endometrial ablation
WO2015179634A3 (en) * 2014-05-22 2016-05-19 CARDIONOMIC, Inc. Catheter and catheter system for electrical neuromodulation
US10179019B2 (en) 2014-05-22 2019-01-15 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US11219479B2 (en) 2014-05-22 2022-01-11 Aegea Medical Inc. Integrity testing method and apparatus for delivering vapor to the uterus
US10576273B2 (en) 2014-05-22 2020-03-03 CARDIONOMIC, Inc. Catheter and catheter system for electrical neuromodulation
JP2019213925A (en) * 2014-05-22 2019-12-19 カーディオノミック,インク. Catheter for electrical nerve adjustment and catheter system
CN106456975A (en) * 2014-05-22 2017-02-22 卡迪诺米克公司 Catheter and catheter system for electrical neuromodulation
US10575898B2 (en) 2014-05-22 2020-03-03 Aegea Medical Inc. Systems and methods for performing endometrial ablation
CN106456975B (en) * 2014-05-22 2020-09-04 卡迪诺米克公司 Catheter and catheter system for electrical neuromodulation
US11154712B2 (en) 2014-08-28 2021-10-26 Medtronic Ardian Luxembourg S.A.R.L. Methods for assessing efficacy of renal neuromodulation and associated systems and devices
US20170173338A1 (en) * 2014-09-08 2017-06-22 CARDIONOMIC, Inc. Catheter and electrode systems for electrical neuromodulation
US10722716B2 (en) 2014-09-08 2020-07-28 Cardionomia Inc. Methods for electrical neuromodulation of the heart
US10894160B2 (en) * 2014-09-08 2021-01-19 CARDIONOMIC, Inc. Catheter and electrode systems for electrical neuromodulation
US10925579B2 (en) 2014-11-05 2021-02-23 Otsuka Medical Devices Co., Ltd. Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery
US10493278B2 (en) 2015-01-05 2019-12-03 CARDIONOMIC, Inc. Cardiac modulation facilitation methods and systems
US10420537B2 (en) 2015-03-27 2019-09-24 Shifamed Holdings, Llc Steerable medical devices, systems, and methods of use
US11052226B2 (en) 2015-04-24 2021-07-06 Kalila Medical, Inc. Steerable medical devices, systems, and methods of use
US10383685B2 (en) 2015-05-07 2019-08-20 Pythagoras Medical Ltd. Techniques for use with nerve tissue
US10568516B2 (en) 2015-06-22 2020-02-25 The Board Of Trustees Of The Leland Stanford Junior University Methods and devices for imaging and/or optogenetic control of light-responsive neurons
US10933221B2 (en) 2015-11-09 2021-03-02 Kalila Medical, Inc. Steering assemblies for medical devices, and methods of use
US10736693B2 (en) 2015-11-16 2020-08-11 Apama Medical, Inc. Energy delivery devices
US20230100876A1 (en) * 2015-11-23 2023-03-30 Regents Of The University Of Minnesota Devices and methods for enhanced denervation procedures
WO2017093926A1 (en) * 2015-12-01 2017-06-08 Symap Medical (Suzhou), Ltd System and method for mapping functional nerves innervating wall of arteries,3-d mapping and catheters for same
US20180344518A1 (en) * 2015-12-03 2018-12-06 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Device and Method for Nerve Block by Local Cooling to Room Temperature
US11051975B2 (en) * 2015-12-03 2021-07-06 University of Pittsburgh—of the Commonwealth System of Higher Education Device and method for nerve block by local cooling to room temperature
US20170182165A1 (en) * 2015-12-23 2017-06-29 Rhode Island Hospital Thermal accelerant compositions and methods of use
US10722289B2 (en) * 2015-12-23 2020-07-28 Rhode Island Hospital Thermal accelerant compositions and methods of use
US12016624B2 (en) 2015-12-23 2024-06-25 Rhode Island Hospital Thermal accelerant compositions and methods of use
US11331037B2 (en) 2016-02-19 2022-05-17 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US12011283B2 (en) 2016-02-19 2024-06-18 Aegea Medical Inc. Methods and apparatus for determining the integrity of a bodily cavity
US10952665B2 (en) 2016-03-09 2021-03-23 CARDIONOMIC, Inc. Methods of positioning neurostimulation devices
US11229398B2 (en) 2016-03-09 2022-01-25 CARDIONOMIC, Inc. Electrode assemblies for neurostimulation treatment
US10448884B2 (en) 2016-03-09 2019-10-22 CARDIONOMIC, Inc. Methods of reducing duty cycle during neurostimulation treatment
US10172549B2 (en) 2016-03-09 2019-01-08 CARDIONOMIC, Inc. Methods of facilitating positioning of electrodes
US11806159B2 (en) 2016-03-09 2023-11-07 CARDIONOMIC, Inc. Differential on and off durations for neurostimulation devices and methods
US10188343B2 (en) 2016-03-09 2019-01-29 CARDIONOMIC, Inc. Methods of monitoring effects of neurostimulation
US11678932B2 (en) 2016-05-18 2023-06-20 Symap Medical (Suzhou) Limited Electrode catheter with incremental advancement
US11439460B2 (en) 2016-06-23 2022-09-13 St. Jude Medical, Cardiology Division, Inc. Catheter system and electrode assembly for intraprocedural evaluation of renal denervation
US11294165B2 (en) 2017-03-30 2022-04-05 The Board Of Trustees Of The Leland Stanford Junior University Modular, electro-optical device for increasing the imaging field of view using time-sequential capture
US10117580B1 (en) * 2017-05-06 2018-11-06 Synerfuse, Inc. Systems, devices and methods that affect neural tissue through the delivery of a pulsed radio frequency signal generated by an implantable medical device
US20180317771A1 (en) * 2017-05-06 2018-11-08 Synerfuse, Inc. Systems, devices and methods that affect neural tissue through the delivery of a pulsed radio frequency signal generated by an implantable medical device
WO2019043494A1 (en) * 2017-08-29 2019-03-07 Biosense Webster (Israel) Ltd. Balloon advancement mechanism
US12042655B2 (en) 2017-09-13 2024-07-23 CARDIONOMIC, Inc. Systems for detecting catheter movement
US11559687B2 (en) 2017-09-13 2023-01-24 CARDIONOMIC, Inc. Methods for detecting catheter movement
US11648395B2 (en) 2018-08-13 2023-05-16 CARDIONOMIC, Inc. Electrode assemblies for neuromodulation
US11077298B2 (en) 2018-08-13 2021-08-03 CARDIONOMIC, Inc. Partially woven expandable members
US11832965B2 (en) 2018-10-06 2023-12-05 Symap Medical (Suzhou), Limited System and method for mapping the functional nerves innervating the wall of arteries, 3-D mapping and catheters for same
EP3866715A4 (en) * 2018-10-17 2022-11-16 University of Florida Research Foundation Controlling esophageal temperature during cardiac ablation
CN113226206A (en) * 2018-10-17 2021-08-06 佛罗里达大学研究基金会 Controlling esophageal temperature during cardiac ablation
US11607176B2 (en) 2019-05-06 2023-03-21 CARDIONOMIC, Inc. Systems and methods for denoising physiological signals during electrical neuromodulation
WO2024138313A1 (en) * 2022-12-26 2024-07-04 赵治宇 Heating apparatus for intermittent thermal action on nervous tissues of living animals or human bodies
CN117796895A (en) * 2024-02-29 2024-04-02 浙江伽奈维医疗科技有限公司 Steep pulse ablation catheter and equipment

Also Published As

Publication number Publication date
US20190000545A1 (en) 2019-01-03
US20140114305A1 (en) 2014-04-24
US10441356B2 (en) 2019-10-15
US20110208096A1 (en) 2011-08-25
US20150282877A1 (en) 2015-10-08
US8626300B2 (en) 2014-01-07
US20170202617A1 (en) 2017-07-20
US10034708B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
US10441356B2 (en) Methods for renal neuromodulation via neuromodulatory agents
US10293190B2 (en) Thermally-induced renal neuromodulation and associated systems and methods
US11801085B2 (en) Devices for thermally-induced renal neuromodulation
US8774913B2 (en) Methods and apparatus for intravasculary-induced neuromodulation
US10130792B2 (en) Methods for therapeutic renal neuromodulation using neuromodulatory agents or drugs
US8131371B2 (en) Methods and apparatus for monopolar renal neuromodulation

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARDIAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DEMARAIS, DENISE;WU, ANDREW;GIFFORD, III, HANSON;AND OTHERS;REEL/FRAME:018915/0413;SIGNING DATES FROM 20070104 TO 20070111

AS Assignment

Owner name: ARDIAN, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GELFAND, MARK;LEVIN, HOWARD R.;REEL/FRAME:025088/0223

Effective date: 20100928

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION