US20060223928A1 - Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder - Google Patents

Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder Download PDF

Info

Publication number
US20060223928A1
US20060223928A1 US10/565,779 US56577904A US2006223928A1 US 20060223928 A1 US20060223928 A1 US 20060223928A1 US 56577904 A US56577904 A US 56577904A US 2006223928 A1 US2006223928 A1 US 2006223928A1
Authority
US
United States
Prior art keywords
powder
flame retardant
polymer
pulverulent composition
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/565,779
Other languages
English (en)
Inventor
Sylvia Monsheimer
Maik Grebe
Franz-Erich Baumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34105477&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060223928(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Degussa GmbH filed Critical Degussa GmbH
Publication of US20060223928A1 publication Critical patent/US20060223928A1/en
Assigned to DEGUSSA AG reassignment DEGUSSA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAUMANN, FRANZ-ERICH, GREBE, MAIK, MONSHEIMER, SYLVIA
Priority to US12/332,607 priority Critical patent/US7795339B2/en
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH CHANGE ADDRESS Assignors: EVONIK DEGUSSA GMBH
Assigned to DEGUSSA GMBH reassignment DEGUSSA GMBH CHANGE OF ENTITY Assignors: DEGUSSA AG
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DEGUSSA GMBH
Priority to US12/853,632 priority patent/US8119715B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate

Definitions

  • the invention relates to a polymer powder which comprises at least one polymer and at least one flame retardant comprising ammonium polyphosphate, to a process for preparing this powder, and also to moldings produced by layer-by-layer application and fusion of this powder.
  • Selective laser sintering is a process particularly well suited to rapid prototyping.
  • polymer powders in a chamber are selectively irradiated briefly with a laser beam, resulting in melting of the particles of powder on which the laser beam falls.
  • the molten particles coalesce and rapidly solidify again to give a solid mass.
  • Three-dimensional bodies, including those of complex shape, can be produced simply and rapidly by this process, by repeatedly applying fresh layers and irradiating these.
  • Nylon-12 powder (PA 12) has proven particularly successful in industry for laser sintering to produce moldings, in particular to produce engineering components.
  • the parts manufactured from PA 12 powder meet the high requirements demanded with regard to mechanical loading, and therefore have properties particularly close to those of the mass-production parts subsequently produced by extrusion or injection molding.
  • a PA 12 powder with good suitability here has a median particle size (d 50 ) of from 50 to 150 ⁇ m, and is obtained as in DE 197 08 946 or else DE 44 21 454, for example. It is preferable here to use a nylon-12 powder whose melting point is from 185 to 189° C., whose enthalpy of fusion is 112 ⁇ 17 J/g, and whose solidification point is from 138 to 143° C., as described in EP 0 911 142.
  • SIB process As described in WO 01/38061 or EP 1 015 214.
  • the two processes operate using infrared heating over an area to melt the powder, and selectivity of the melting is achieved in the first process by applying an inhibitor, and in the second process by way of a mask.
  • Another process which has found wide acceptance in the market is 3D printing, as in EP 0 431 924; where the moldings are produced by curing of a binder applied selectively to the powder layer.
  • Another process is described in DE 103 11 438. In this, the energy required for the fusion process is introduced by way of a microwave generator, and selectivity is achieved by applying a susceptor.
  • pulverulent substrates in particular polymers or copolymers, preferably selected from polyester, polyvinyl chloride, polyacetal, polypropylene, polyethylene, polystyrene, polycarbonate, poly(N-methylmethacrylimides) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, copolyester, copolyamides, terpolymers, acrylonitrile-butadiene-styrene copolymers (ABS), or a mixture of these.
  • polymers or copolymers preferably selected from polyester, polyvinyl chloride, polyacetal, polypropylene, polyethylene, polystyrene, polycarbonate, poly(N-methylmethacrylimides) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, copolyester, copolyamides, terpolymers, acrylonitrile-butadiene-styrene copolymers (AB
  • the present invention therefore provides a pulverulent composition, in particular a construction powder or rapid-prototyping and rapid-manufacturing powder (RP/RM powder) for rapid-prototyping or rapid-manufacturing applications, for processing in a process for the layer-by-layer build-up of three-dimensional objects, by selectively bonding portions of the powder to one another, wherein the powder comprises at least one polymer and at least one flame retardant comprising ammonium polyphosphate, the maximum particle size of the powder being ⁇ 150 ⁇ m.
  • RP/RM powder rapid-prototyping and rapid-manufacturing powder
  • the present invention also provides a process for preparing inventive powder (pulverulent composition) which comprises preparing a pulverulent mixture in which a polymer and a flame retardant comprising ammonium polyphosphate are present.
  • the present invention also provides the use of inventive powder for producing moldings by layer-by-layer processes which selectively bond the powder, and provides moldings produced by a process for the layer-by-layer build-up of three-dimensional objects, by selectively bonding portions of a powder to one another, where these comprise at least one flame retardant comprising ammonium polyphosphate and comprise at least one polymer.
  • An advantage of the inventive powder is that moldings which have lower combustibility and flammability can be produced therefrom by an RP or RM process as described above for the layer-by-layer build-up of three-dimensional objects, portions of the powder used being selectively bonded to one another. At the same time, the mechanical properties of the moldings are substantially retained. This opens up applications sectors which were inaccessible hitherto because of poor combustibility grading. Particularly surprisingly, it is possible to achieve the UL 94 (Underwriters Laboratories Inc., test method 94V) classification V-0 for the finished molding if minimum contents of flame retardant comprising ammonium polyphosphate are maintained within the powders.
  • UL 94 Underwriters Laboratories Inc., test method 94V
  • moldings produced from the inventive powder have equally good, or even better, mechanical properties, in particular increased modulus of elasticity, tensile strength, and density.
  • the moldings also have good appearance, for example good dimensional stability and surface quality.
  • a feature of the inventive construction powder, or of the inventive pulverulent composition for processing in a process for the layer-by-layer build-up of three-dimensional objects in which portions of the powder are selectively bonded to one another is that the powder comprises at least one polymer and at least one flame retardant comprising ammonium polyphosphate, and has maximum particle size of ⁇ 150 ⁇ m, preferably from 20 to 100 ⁇ m.
  • the powder is preferably bonded by introducing energy, particularly preferably by exposure to heat, whereupon the particles are bonded to one another by fusion or sintering.
  • the powder may also be used in processes in which the particles are bonded to one another by chemical reaction or by a binder or by physical measures, preferably drying or adhesion. Details concerning the individual processes may be found in the abovementioned publications.
  • the polymer, and also the flame retardant may be present in the inventive powder in the form of a mixture of the respective powders, or in the form of a powder in which most of the grains, or every grain, comprises not only polymer but also flame retardant.
  • the distribution of the flame retardant may be homogeneous within the particles, or the concentration of the flame retardant may be greater in the center of the particle or at the surface of the particle.
  • the polymer present in the powder is preferably a homo- or copolymer selected from polyester, polyvinyl chloride, polyacetal, polypropylene, polyethylene, polystyrene, polycarbonate, poly(N-methylmethacrylimides) (PMMI), polymethyl methacrylate (PMMA), ionomer, polyamide, copolyester, copolyamides, terpolymers, acrylonitrile-butadiene-styrene copolymers (ABS), or is a mixture of these.
  • the inventive powder particularly preferably comprises a polymer which has a melting point of from 50 to 350° C., preferably from 70 to 200° C.
  • the polymers present in the inventive powder may in particular be prepared by milling, precipitation and/or anionic polymerization, or by a combination of these, or by subsequent fractionation.
  • the inventive powder preferably comprises at least one polyamide.
  • the polyamide present in the inventive powder is preferably a polyamide which has at least 8 carbon atoms per carboxamide group.
  • the inventive powder preferably comprises at least one polyamide which contains 9 or more carbon atoms per carboxamide group.
  • the powder very particularly preferably comprises at least one polyamide selected from nylon 6,12 (PA 612), nylon-11 (PA 11) and nylon-12 (PA 12), or copolyamides based on the abovementioned polyamides.
  • the inventive powder preferably comprises an unregulated polyamide.
  • a nylon-12 sinter powder particularly suitable for the laser sintering process is one whose melting point is from 185 to 189° C., preferably from 186 to 188° C., whose enthalpy of fusion is 112 ⁇ 17 J/g, preferably from 100 to 125 J/g, and whose solidification point is from 133 to 148° C., preferably from 139 to 143° C.
  • the preparation process for the polyamide powders underlying the inventive sinter powders is well known and, in the case of PA 12, can be found, for example, in the specifications DE 29 06 647, DE 35 10 687, DE 35 10 691, and DE 44 21 454, the content of which is incorporated by way of reference into the disclosure of the present invention.
  • the polyamide pellets needed can be purchased from various producers, and by way of example nylon-12 pellets are supplied by Degussa AG under the trade name VESTAMID.
  • a material which likewise has particularly good suitability is nylon-12 whose melting point is from 185 to 189° C., preferably from 186 to 188° C., whose enthalpy of fusion is 120 ⁇ 17 J/g, preferably from 110 to 130 J/g, and whose solidification point is from 130 to 140° C., preferably from 135 to 138° C., and whose crystallization point after aging is also preferably from 135 to 140° C.
  • a powder which comprises a copolymer, in particular one which is a copolyamide, has particularly good suitability for the processes for producing three-dimensional objects without use of a laser.
  • the inventive powder preferably comprises from 5 to 50% by weight of a flame retardant comprising ammonium polyphosphate, with preference comprises from 10 to 40% by weight of a flame retardant comprising ammonium polyphosphate, and particularly preferably comprises from 20 to 35% by weight of a flame retardant comprising ammonium polyphosphate, and very particularly preferably comprises from 23 to 34% by weight of a flame retardant comprising ammonium polyphosphate.
  • the ranges given here refer to the entire content of a flame retardant comprising ammonium polyphosphate present in the powder, where powder means the entire amount of components.
  • the inventive powder may comprise polymer particles mixed with a flame retardant comprising ammonium polyphosphate, or else may comprise polymer particles or polymer powder which comprise incorporated flame retardant comprising ammonium polyphosphate. If the proportion of a flame retardant comprising ammonium polyphosphate is below 5% by weight, based on the entire amount of components, the desired effect of low flammability and incombustibility is markedly reduced. If the proportion of a flame retardant comprising ammonium polyphosphate is above 50% by weight, based on the entire amount of components, mechanical properties, such as strain at break, of the moldings produced from these powders are markedly impaired.
  • the maximum size of the polymer particles is 150 ⁇ m, and their median particle size is preferably from 20 to 100 ⁇ m, particularly preferably from 45 to 80 ⁇ m.
  • the particle size of the flame retardant comprising ammonium polyphosphate is preferably below the median grain size d 50 of the polymer particles or polymer powder by at least 20%, preferably by more than 50% and very particularly preferably by more than 70%.
  • the median particle size of the flame retardant component is from 1 to 50 ⁇ m, preferably from 5 to 15 ⁇ m. The small particle size gives good dispersion of the pulverulent flame retardant within the polymer powder.
  • the flame retardants present in the inventive powder comprises ammonium polyphosphate as principal component.
  • the phosphorus content in the ammonium polyphosphate here is preferably from 10 to 35% by weight, preferably from 15 to 32% by weight, and very particularly preferably from 20 to 32% by weight.
  • the flame retardant is preferably halogen-free. However, it may comprise synergists, such as carbon-forming materials, e.g. polyalcohols or pentaerythritol, and/or, by way of example, an intumescent (foaming) component, for example melamine. Sulfur may also be present in the composition.
  • the flame retardant is a powder, it may also comprise a coating, in order to provide compatibility, or in order to increase the moisture-resistance of the ammonium polyphosphate.
  • These coated flame retardants are obtainable from Budenheim Iberica under the name Budit, for example.
  • flame retardants comprising ammonium polyphosphate are Budit 3076 DCD or Budit 3076 DCD-2000 from the Company Budenheim Iberica, or products from the Exolit AP line, such as Exolit AP 750 or Exolit AP 422 from the Company Clariant.
  • inventive powder may comprise at least one auxiliary, at least one filler, and/or at least one pigment.
  • these auxiliaries may be flow aids, e.g. fumed silicon dioxide, or else precipitated silicic acid. Fumed silicon dioxide (fumed silicic acid) is supplied by Degussa AG under the product name Aerosil® with various specifications, for example.
  • the flow aids may be hydrophobic flow aids.
  • Inventive powder preferably comprises less than 3% by weight, with preference from 0.001 to 2% by weight, and very particularly preferably from 0.05 to 1% by weight, of these auxiliaries, based on the entirety of components, i.e. on the entirety of polymers and flame retardant.
  • the fillers may be glass particles, metal particles, in particular aluminum particles, or ceramic particles, e.g. solid or hollow glass beads, steel shot, aluminum spheres, or granulated metal, or else color pigments, e.g. transition metal oxides.
  • the median grain size of the filler particles here is preferably smaller than, or approximately equal to, that of the particles of the polymers.
  • the extent to which the median grain size d 50 of the fillers exceeds the median grain size d 50 of the polymers should preferably be not more than 20%, with preference not more than 15%, and very particularly preferably not more than 5%.
  • a particular limit on the particle size arises via the permissible overall height or layer thickness in the particular apparatus used for the layer-by-layer process.
  • Inventive powder preferably comprises less than 70% by weight, with preference from 0.001 to 60% by weight, particularly preferably from 0.05 to 50% by weight, and very particularly preferably from 0.5 to 25% by weight, of these fillers, based on the entirety of components, such that the proportion by volume of the polymers is always greater than 50%.
  • inventive powders may be prepared in a simple manner, preferably by the inventive process for preparing inventive powder, by mixing at least one polymer with at least one flame retardant comprising ammonium polyphosphate.
  • the dry blend mixing process may be used for dry mixing.
  • a polymer powder obtained, by way of example, by reprecipitation and/or milling, which may also subsequently be fractionated is mixed with the flame retardant comprising ammonium polyphosphate. It can be advantageous here to provide a flow aid initially to the pulverulent flame retardant alone, or else to the finished mixture, for example one from the Aerosil R line from Degussa, e.g. Aerosil R972 or R812.
  • the flame retardant comprising ammonium polyphosphate may be compounded into a melt of at least one polymer, and the resultant mixture may be processed by milling to give powder.
  • the processing of ammonium polyphosphate-based flame retardants in the compounding is described by way of example in Plastics Additives & Compounding, April 2002, Elsevier Advanced Technology, pp. 28 to 33.
  • fine-particle mixing may take place by a mixing process which applies finely pulverized flame retardant to the dry powder in high-speed mechanical mixers.
  • the powder may be a polymer powder which is itself suitable for the layer-by-layer rapid prototyping process, fine particles of the flame retardant simply being admixed with this powder.
  • the median grain size of the particles here is preferably smaller than, or at most approximately equal to, that of the particles of the polymers.
  • the extent to which the median grain size d 50 of the flame retardant particles is less than the median grain size d 50 of the polymer powders should preferably be more than 20%, with preference more than 50%, and very particularly preferably more than 70%. A particular upward limit on the grain size arises via the permissible overall height or layer thickness in the rapid prototyping system.
  • the flame retardant is mixed with a, preferably molten, polymer via incorporation by compounding, and the resultant polymer comprising flame retardant is processed by (low temperature) milling and, where appropriate, fractionation to give inventive powder.
  • the compounding generally gives pellets which are then processed to give powder.
  • An example of a method for this conversion process is milling.
  • the process variant in which the flame retardant is incorporated by compounding has the advantage over the pure mixing process of giving more homogeneous distribution of the flame retardant within the powder.
  • a suitable flow aid such as fumed aluminum oxide, fumed silicon dioxide, or fumed titanium dioxide, may be added externally to the precipitated or low-temperature-milled powder, in order to improve flow performance.
  • a flow-control agent such as a metal soaps, preferably the alkali metal or alkaline earth metal salts of the underlying alkanemonocarboxylic acids or dimer acids, may be added to the precipitated or low-temperature-milled powder in order to improve melt flow during the production of the moldings.
  • Flame retardants that may be used are commercially available products, for example those which may be purchased from Budenheim Iberica or Clariant under the trade name Exolit AP® or Budit®, or those described above.
  • the amounts used of the metal soaps are from 0.01 to 30% by weight, preferably from 0.5 to 15% by weight, based on the entirety of polyamides present in the powder.
  • Metal soaps preferably used are the sodium or calcium salts of the underlying alkanemonocarboxylic acids or dimer acids. Examples of commercially available products are Licomont NaV or Licomont CaV from Clariant.
  • the metal soap particles may be incorporated into the polyamide particles, or else fine metal soap particles may have been mixed with polyamide particles.
  • this may treated with inorganic pigments, in particular color pigments, e.g. transition metal oxides, stabilizers, e.g. phenols, in particular sterically hindered phenols, flow control agents and flow aids, e.g. fumed silicic acids, and also filler particles.
  • inorganic pigments in particular color pigments, e.g. transition metal oxides, stabilizers, e.g. phenols, in particular sterically hindered phenols, flow control agents and flow aids, e.g. fumed silicic acids, and also filler particles.
  • the present invention also provides the use of inventive powder for producing moldings in a layer-by-layer process which selectively bonds the powder (rapid prototyping or rapid manufacturing), these being processes which use inventive powders, the polymers, and a flame retardant comprising ammonium polyphosphate, preferably each in particulate form.
  • the present invention in particular provides the use of the powder for producing moldings via selective laser sintering of a precipitation powder comprising flame retardant and based on a nylon-12 which has a melting point of from 185 to 189° C., and enthalpy of fusion of 112 ⁇ 17 J/g, and a solidification point of from 136 to 145° C., and the use of which is described in U.S. Pat. No. 6,245,281.
  • Laser sintering processes are sufficiently well known, and are based on the selective sintering of polymer particles, where layers of polymer particles are briefly exposed to laser light and the polymer particles exposed to the laser light are thus bonded to one another. Successive sintering of layers of polymer particles produces three-dimensional objects. Details concerning the selective laser sintering process are found, by way of example, in the specifications U.S. Pat. No. 6,136,948 and WO 96/06881.
  • the inventive powder may also be used in other rapid prototyping or rapid manufacturing processing of the prior art, in particular in those described above.
  • the inventive powder may in particular be used for producing moldings from powders via the SLS (selective laser sintering) process, as described in U.S.
  • inventive powders Careful handling of the inventive powders is advisable because the flame retardants are air-sensitive. In particular, prolonged contact of the inventive powder with air or with atmospheric moisture is to be avoided.
  • the sensitivity of the inventive powder can be reduced by using hydrophobic flow aids, thus permitting avoidance of any reduction in modulus of elasticity which is sometimes caused by the decomposition products of ammonium polyphosphate.
  • inventive moldings produced via a process for the layer-by-layer build-up of three-dimensional objects, in which portions of a powder, in particular of the inventive powder, are selectively bonded to one another, e.g. selective laser sintering, comprise at least one flame retardant comprising ammonium polyphosphate and comprise at least one polymer, or are composed of at least one flame retardant comprising ammonium polyphosphate and of at least one polymer.
  • inventive moldings preferably comprise at least one polyamide which contains at least 8 carbon atoms per carboxamide group.
  • Inventive moldings very particularly preferably comprise at least one nylon-6,12, nylon-11 and/or one nylon-12, or copolyamides based on these polyamides, and comprise at least one flame retardant comprising ammonium polyphosphate.
  • the flame retardant present in the inventive molding is based on ammonium polyphosphate.
  • the inventive molding preferably comprises, based on the entirety of components present in the molding, from 5 to 50% by weight of flame retardant comprising ammonium polyphosphate, preferably from 10 to 40% by weight, particularly preferably from 20 to 35% by weight, and very particularly preferably from 23 to 24% by weight.
  • the proportion of flame retardant comprising ammonium polyphosphate is preferably at most 50% by weight, based on the entirety of components present in the molding.
  • the molding comprises from 30 to 35% by weight of flame retardant comprising ammonium polyphosphate.
  • the moldings may also comprise fillers and/or auxiliaries, and/or pigments, e.g. heat stabilizers and/or antioxidants, e.g. sterically hindered phenol derivatives.
  • fillers may be glass particles, ceramic particles, or else metal particles, e.g. iron shot, or corresponding hollow spheres.
  • the inventive moldings preferably comprise glass particles, very particularly preferably glass beads.
  • Inventive moldings preferably comprise less than 3% by weight, with preference from 0.001 to 2% by weight, and very particularly preferably from 0.05 to 1% by weight, of these auxiliaries, based on the entirety of components present.
  • Inventive moldings likewise preferably comprise less than 75% by weight, with preference from 0.001 to 70% by weight, particularly preferably from 0.05 to 50% by weight, and very particularly preferably from 0.5 to 25% by weight, of theses fillers, based on the entirety of components present.
  • the internal temperature is brought to 117° C., using the same cooling rate, and then held constant for 60 minutes.
  • the internal temperature is then brought to 111° C., using a cooling rate of 40 K/h. At this temperature the precipitation begins and is detectable via evolution of heat. After 25 minutes the internal temperature falls, indicating the end of the precipitation.
  • the suspension is transferred to a paddle dryer.
  • the ethanol is distilled off from the material at 70° C. and 400 mbar, with stirring, and the residue is then further dried at 20 mbar and 85° C. for 3 hours.
  • BET 6.9 m 2 /g
  • Bulk density 429 g/l
  • 1023 g (35 parts) of Budit 3076 DCD-2000 are mixed within a period of 3 minutes with 1900 g (65 parts) of nylon-12 powder, prepared as in DE 29 06 647, example 1, and having a median grain diameter d 50 of 56 ⁇ m (laser scattering) and a bulk density of 459 g/l to DIN 53 466, in a dry blend process utilizing a FML10/KM23 Henschel mixer at 700 rpm and at 50° C. 1.5 g of Aerosil R 812 (0.05 part) were then mixed into the material within a period of 3 minutes at room temperature and 500 rpm.
  • Budit 3076 DCD are mixed within a period of 3 minutes with 1900 g (70 parts) of nylon-12 powder, prepared as in DE 29 06 647, example 1, and having a median grain diameter d 50 of 56 ⁇ m (laser scattering) and a bulk density of 459 g/l to DIN 53 466, in a dry blend process utilizing a FML10/KM23 Henschel mixer at 700 rpm and at 50° C. 54 g (2 parts) of Licomont NaV and 2 g of Aerosil 200 (0.1 part) were then mixed into the material within a period of 3 minutes at room temperature and 500 rpm.
  • Exolit AP 422 475 g (20 parts) of Exolit AP 422 are mixed within a period of 3 minutes with 1900 g (80 parts) of nylon-12 powder, prepared as in DE 29 06 647, example 1, and having a median grain diameter d 50 of 56 ⁇ m (laser scattering) and a bulk density of 459 g/l to DIN 53 466, in a dry blend process utilizing a FML10/KM23 Henschel mixer at 700 rpm and at 50° C. 2.4 g of Aerosil R 200 (0.1 part) were then mixed into the material within a period of 3 minutes at room temperature and 500 rpm.
  • the powders from examples 1 to 4 were used in a laser sintering machine to build up bars for the UL 94V fire-protection test, and also to build up multipurpose bars to ISO 3167.
  • the latter components were used to determine mechanical properties by means of a tensile test to EN ISO 527 (table 1).
  • the UL bars were used for the vertical UL 94V (Underwriters Laboratories Inc.) combustion test. The bars have specified dimensions of 3.2*10*80 mm. Each was produced on an EOSINT P360 laser sintering machine from EOS GmbH.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
US10/565,779 2003-07-25 2004-06-03 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder Abandoned US20060223928A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/332,607 US7795339B2 (en) 2003-07-25 2008-12-11 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US12/853,632 US8119715B2 (en) 2003-07-25 2010-08-10 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10333936.1 2003-07-25
DE10333936 2003-07-25
DE102004001324A DE102004001324A1 (de) 2003-07-25 2004-01-08 Pulverförmige Komposition von Polymer und ammoniumpolyphosphathaltigem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Pulver
DE102004001324.1 2004-01-08
PCT/EP2004/051009 WO2005010087A1 (de) 2003-07-25 2004-06-03 Pulverförmige komposition von polymer und ammoniumpolyphosphathaltigem flammschutzmittel, verfahren zu dessen herstellung und formkörper, hergestellt aus diesem pulver

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051009 A-371-Of-International WO2005010087A1 (de) 2003-07-25 2004-06-03 Pulverförmige komposition von polymer und ammoniumpolyphosphathaltigem flammschutzmittel, verfahren zu dessen herstellung und formkörper, hergestellt aus diesem pulver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/332,607 Continuation US7795339B2 (en) 2003-07-25 2008-12-11 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder

Publications (1)

Publication Number Publication Date
US20060223928A1 true US20060223928A1 (en) 2006-10-05

Family

ID=34105477

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/565,779 Abandoned US20060223928A1 (en) 2003-07-25 2004-06-03 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US12/332,607 Expired - Lifetime US7795339B2 (en) 2003-07-25 2008-12-11 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US12/853,632 Expired - Lifetime US8119715B2 (en) 2003-07-25 2010-08-10 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/332,607 Expired - Lifetime US7795339B2 (en) 2003-07-25 2008-12-11 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US12/853,632 Expired - Lifetime US8119715B2 (en) 2003-07-25 2010-08-10 Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder

Country Status (14)

Country Link
US (3) US20060223928A1 (ja)
EP (1) EP1648958B1 (ja)
JP (1) JP4589321B2 (ja)
KR (1) KR20060066712A (ja)
CN (1) CN1856534B (ja)
AT (1) ATE368705T1 (ja)
AU (1) AU2004259091A1 (ja)
CA (1) CA2533419A1 (ja)
DE (2) DE102004001324A1 (ja)
ES (1) ES2290753T3 (ja)
NO (1) NO20060872L (ja)
PL (1) PL1648958T3 (ja)
TW (1) TW200505978A (ja)
WO (1) WO2005010087A1 (ja)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140668A1 (en) * 2002-09-27 2004-07-22 Degussa Ag Pipe connection
US20050038201A1 (en) * 2003-08-16 2005-02-17 Degussa Ag Process for increasing the molecular weight of polyamides
US20060041041A1 (en) * 2004-07-20 2006-02-23 Patrick Douais Fireproofing polyamide powders and their use in a sintering process
US20060131828A1 (en) * 2003-07-31 2006-06-22 Eiji Tanaka Vehicle steering apparatus
US20060281873A1 (en) * 2005-06-08 2006-12-14 Degussa Ag Transparent molding composition
US20070055044A1 (en) * 2003-10-09 2007-03-08 Degussa Ag Cross-linkable base layer for interlinings applied in a double-dot method
US20070126159A1 (en) * 2005-11-17 2007-06-07 Degussa Ag Use of polyester powder in a shaping process, and moldings produced from this polyester powder
US20070166560A1 (en) * 2004-06-16 2007-07-19 Degussa Ag Multilayer foil
US20070183918A1 (en) * 2004-03-16 2007-08-09 Degussa Ag Method and device for producing three-dimensional objects using laser technology and for applying an absorber using an ink jet method
US20070232753A1 (en) * 2006-04-01 2007-10-04 Degussa Gmbh Polymer powder, process for production of and use of this powder, and resultant shaped articles
US20070238056A1 (en) * 2004-04-27 2007-10-11 Degussa Ag Method and Device for Production of Three-Dimensional Objects by Means of Electromagnetic Radiation of Electromagnetic Radiation and Application of an Absorber by Means of an Ink-Jet Method
US20070260014A1 (en) * 2003-10-09 2007-11-08 Degussa Ag Cross-linkable base layer for interlinings applied in a double-dot method
US20080093786A1 (en) * 2006-10-24 2008-04-24 Wieslaw Julian Oledzki Smooth non-linear springs, particularly smooth progressive rate steel springs, progressive rate vehicle suspensions and method
US20080116616A1 (en) * 2004-04-27 2008-05-22 Degussa Ag Polymer Powder Comprising Polyamide Use Thereof In A Moulding Method And Moulded Body Make From Said Polymer Powder
US20080119632A1 (en) * 2004-12-29 2008-05-22 Degussa Gmbh Transparent Moulding Compound
US20080166496A1 (en) * 2004-05-14 2008-07-10 Sylvia Monsheimer Polymer Powder Containing Polyamide Use of Said Powder in a Moulding Method and Moulded Body Produced From the Same
US20080166529A1 (en) * 2005-02-19 2008-07-10 Degussa Gmbh Transparent Moulding Compound
US20080249237A1 (en) * 2005-11-04 2008-10-09 Evonik Degussa Gmbh Process for Producing Ultrafine Powders Based on Polyamides, Ultrafine Polyamide Powders and Their Use
US20080258346A1 (en) * 2007-04-20 2008-10-23 Evonik Degussa Gmbh Composite powder, use in a shaping process, and mouldings produced from this powder
US20080261010A1 (en) * 2005-02-19 2008-10-23 Degussa Gmbh Polyamide Blend Film
US20080292824A1 (en) * 2005-10-14 2008-11-27 Evonik Degussa Gmbh Plastic Composite Moulded Bodies Obtainable by Welding in an Electromagnetic Alternating Field
US20090044906A1 (en) * 2007-08-16 2009-02-19 Evonik Degussa Gmbh Method for decorating surfaces
US20090088508A1 (en) * 2003-07-25 2009-04-02 Degussa Ag Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US20110045269A1 (en) * 2008-06-24 2011-02-24 Evonik Degussa Gmbh Component with top layer of a pa613 moulding compound
US7906063B2 (en) 2004-02-27 2011-03-15 Evonik Degussa Gmbh Process for producing moldings
US7988906B2 (en) 2005-07-16 2011-08-02 Evonik Degussa Gmbh Three-dimensional layer-by-layer production process with powders based on cyclic oligomers
US20110206569A1 (en) * 2008-10-31 2011-08-25 Basf Se Ion exchanger moulded body and method for producing same
US8470433B2 (en) 2005-02-19 2013-06-25 Evonik Degussa Gmbh Transparent decoratable multilayer film
US8580899B2 (en) 2005-02-15 2013-11-12 Evonik Degussa Gmbh Process for producing moldings with an increase in the melt stiffness
US8591797B2 (en) 2008-03-19 2013-11-26 Evonik Degussa Gmbh Copolyamide powder and its preparation, use of copolyamide powder in a shaping process and mouldings produced from this copolyamide powder
US8647551B2 (en) 2005-02-15 2014-02-11 Evonik Degussa Gmbh Process for producing moldings with an increase in the melt stiffness
WO2017033146A1 (en) * 2015-08-26 2017-03-02 Sabic Global Technologies B.V. Method of producing crystalline polycarbonate powders
WO2017040897A1 (en) * 2015-09-04 2017-03-09 Sabic Global Technologies B.V. Powder compositions, method of preparing articles and coatings from the powder compositions, and articles prepared therefrom
US20170165913A1 (en) * 2015-12-14 2017-06-15 Evonik Degussa Gmbh Polymer powder for powder bed fusion methods
US20170165912A1 (en) * 2015-12-14 2017-06-15 Evonik Degussa Gmbh Polymer powder for powder bed fusion methods
CN108892930A (zh) * 2018-06-08 2018-11-27 吕龙芳 一种可生物降解的改性塑料母粒及其制备方法
WO2019060657A1 (en) * 2017-09-22 2019-03-28 Sabic Global Technologies B.V. PROCESS FOR PRODUCING SEMI-CRYSTALLINE POLYCARBONATE POWDER WITH ADDED FLAME RETARDER FOR POWDER FUSION AND COMPOSITE APPLICATIONS
US10406745B2 (en) 2010-04-09 2019-09-10 Evonik Degussa Gmbh Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder
US10500763B2 (en) 2015-06-23 2019-12-10 Sabic Global Technologies B.V. Manufacturability of amorphous polymers in powder bed fusion processes
WO2020043886A1 (de) * 2018-08-30 2020-03-05 Airbus Operations Gmbh Verfahren zur additiven fertigung von werkstücken aus einem flammhemmend ausgerüsteten polyamidmaterial, dadurch erhältliche werkstücke und verwendung des polyamidmaterials
EP3028842B1 (de) 2014-12-02 2020-06-03 AM POLYMERS GmbH Pulverförmige zusammensetzungen aus thermoplastischen kunststoffen und verwendung der zusammensetzungen
US10716649B2 (en) 2015-03-16 2020-07-21 Ricoh Company, Ltd. Powder material for forming three-dimensional object, material set for forming three-dimensional object, method for producing three-dimensional object, three-dimensional object producing apparatus, and three-dimensional object
US10786950B2 (en) * 2016-01-29 2020-09-29 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing composite build material composition
CN112409784A (zh) * 2020-11-27 2021-02-26 湖南华曙高科技有限责任公司 一种选择性激光烧结用防滴落尼龙材料及其制备方法
US11117837B2 (en) 2016-09-30 2021-09-14 Evonik Operations GbmH Polyamide powder for selective sintering methods
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
US11560451B2 (en) * 2017-12-15 2023-01-24 Sabic Global Technologies B.V. Polymer composition for selective sintering

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1400340B1 (de) * 2002-09-21 2008-01-16 Evonik Degussa GmbH Verfahren zur Herstellung eines dreidimensionalen Objektes
DE10330591A1 (de) * 2002-11-28 2004-06-09 Degussa Ag Laser-Sinter-Pulver mit Metallseifen, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinter-Pulver
EP1459871B1 (de) * 2003-03-15 2011-04-06 Evonik Degussa GmbH Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung sowie dadurch hergestellter Formkörper
FR2873380B1 (fr) * 2004-07-20 2006-11-03 Arkema Sa Poudres de polyamides ignifuges et leur utilisation dans un procede d'agglomeration par fusion
DE102004047876A1 (de) 2004-10-01 2006-04-06 Degussa Ag Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte
DE102004062761A1 (de) * 2004-12-21 2006-06-22 Degussa Ag Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
DE102005002930A1 (de) 2005-01-21 2006-07-27 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
US20080153947A1 (en) * 2006-12-21 2008-06-26 Richard Benton Booth Methods and systems for fabricating fire retardant materials
DE102010056126B4 (de) 2010-02-09 2016-09-01 Vladimir Volchkov Boxermotor
DE102010056125B4 (de) 2010-03-01 2015-07-23 Vladimir Volchkov Gegenkolbenmotor
DE102011078720A1 (de) * 2011-07-06 2013-01-10 Evonik Degussa Gmbh Pulver enthaltend mit Polymer beschichtete Kernpartikel enthaltend Metalle, Metalloxide, Metall- oder Halbmetallnitride
US20180273720A1 (en) * 2015-10-09 2018-09-27 Hewlett-Packard Development Company, L.P. Particulate mixtures
CN106589860B (zh) * 2015-10-13 2018-10-16 中国石油化工股份有限公司 用于选择性激光烧结的聚乳酸树脂粉末及其制备方法和应用
JP6666770B2 (ja) * 2016-03-30 2020-03-18 リンテック株式会社 化粧シート、及び化粧シートの製造方法
CN106832900A (zh) * 2017-01-06 2017-06-13 北京增材制造技术研究院有限公司 低成本选择性激光烧结用改性尼龙复合粉末及其使用方法
CN106987116A (zh) * 2017-04-28 2017-07-28 湖南华曙高科技有限责任公司 用于选择性激光烧结的无卤阻燃尼龙材料及其制备方法
CN111133036B (zh) 2017-09-22 2021-07-06 沙特基础工业全球技术有限公司 用于制造阻燃性聚碳酸酯颗粒的方法及由此制备的阻燃性聚碳酸酯颗粒
CN112384359A (zh) 2018-06-29 2021-02-19 3M创新有限公司 加层制造方法和制品
FR3093945B1 (fr) 2019-03-18 2023-10-27 Arkema France Polyamides et copolyamides ignifuges pour impression 3d
CN111995862B (zh) * 2020-07-06 2022-02-18 金发科技股份有限公司 一种3d打印粉末及其制备方法
CN111961335B (zh) * 2020-07-06 2022-02-18 金发科技股份有限公司 一种3d打印粉末及其制备方法
CN111909509B (zh) * 2020-07-06 2022-02-18 金发科技股份有限公司 一种3d打印粉末及其制备方法
DE102022129476A1 (de) * 2022-11-08 2024-05-08 Eos Gmbh Electro Optical Systems Grobes Flammschutzmittel

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373887A (en) * 1980-02-11 1983-02-15 Teledyne Industries, Inc. Apparatus for producing porous shaped products
US4570055A (en) * 1984-05-07 1986-02-11 Raychem Corporation Electrically heat-recoverable assembly
US4772642A (en) * 1985-03-04 1988-09-20 Hoechst Aktiengesellschaft Self-extinguishing polymeric compositions
US5286576A (en) * 1989-08-21 1994-02-15 The B. F. Goodrich Company Compression molded flame retardant and high impact strength ultra high molecular weight polyethylene composition
US5484830A (en) * 1993-02-09 1996-01-16 Hoechst Aktiengesellschaft Halogen-free, flame-resistant polymeric compositions
US6136948A (en) * 1992-11-23 2000-10-24 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US6207736B1 (en) * 1997-08-08 2001-03-27 Clariant Gmbh Synergistic flameproofing combination for polymers
US6245281B1 (en) * 1997-10-27 2001-06-12 Huels Aktiengesellschaft Use of a nylon-12 for selective laser sintering
US20040140668A1 (en) * 2002-09-27 2004-07-22 Degussa Ag Pipe connection
US20050038201A1 (en) * 2003-08-16 2005-02-17 Degussa Ag Process for increasing the molecular weight of polyamides
US20060041041A1 (en) * 2004-07-20 2006-02-23 Patrick Douais Fireproofing polyamide powders and their use in a sintering process
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US20060182916A1 (en) * 2005-02-15 2006-08-17 Degussa Ag Process for producing moldings with an increase in the melt stiffness
US20060183869A1 (en) * 2005-02-15 2006-08-17 Degussa Ag Process for producing moldings with an increase in the melt stiffness
US20060244169A1 (en) * 2002-09-21 2006-11-02 Degussa Ag Polymer powders for SIB processes

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3817888A (en) * 1972-04-03 1974-06-18 Phillips Petroleum Co Abs polymer compositions
US3847888A (en) * 1972-12-01 1974-11-12 Allied Chem Ultra-high molecular weight polyethylene molding powder and molding process
US4568412A (en) * 1984-11-01 1986-02-04 E. I. Dupont De Nemours And Company Surface conductive polyimide
DE4137430A1 (de) * 1991-11-14 1993-05-19 Huels Chemische Werke Ag Mehrschichtiges kunststoffrohr
KR0158978B1 (ko) * 1993-12-28 1999-01-15 고토 순기치 난연성 열가소성 중합체 조성물, 이의 성분으로서의 수불용성 폴리인산암모늄 분말 및 이의 제조방법
US5759678A (en) * 1995-10-05 1998-06-02 Mitsubishi Chemical Corporation High-strength porous film and process for producing the same
US6110411A (en) * 1997-03-18 2000-08-29 Clausen; Christian Henning Laser sinterable thermoplastic powder
JP2000119515A (ja) * 1998-10-14 2000-04-25 Mitsubishi Engineering Plastics Corp ポリアミド樹脂組成物
JPH11228813A (ja) * 1998-02-09 1999-08-24 Mitsubishi Eng Plast Corp レーザマーキング用ポリアミド樹脂組成物
DE60119452T2 (de) * 2000-02-16 2007-05-24 Asahi Kasei Kabushiki Kaisha Polyamidharzzusammensetzung
US8061006B2 (en) * 2001-07-26 2011-11-22 Powderject Research Limited Particle cassette, method and kit therefor
DE10201903A1 (de) * 2002-01-19 2003-07-31 Degussa Formmasse auf Basis von Polyetheramiden
DE10228439A1 (de) 2002-06-26 2004-01-22 Degussa Ag Kunststoff-Lichtwellenleiter
EP1413594A2 (de) 2002-10-17 2004-04-28 Degussa AG Laser-Sinter-Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Laser-Sinter-Pulvers
DE10248406A1 (de) * 2002-10-17 2004-04-29 Degussa Ag Laser-Sinter-Pulver mit Titandioxidpartikeln, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
DE10251790A1 (de) 2002-11-07 2004-05-19 Degussa Ag Polyamidpulver mit dauerhafter, gleichbleibend guter Rieselfähigkeit
DE10330591A1 (de) 2002-11-28 2004-06-09 Degussa Ag Laser-Sinter-Pulver mit Metallseifen, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinter-Pulver
ATE320465T1 (de) * 2002-11-28 2006-04-15 Degussa Laser-sinter-pulver mit metallseifen, verfahren zu dessen herstellung und formkörper, hergestellt aus diesem laser-sinter-pulver
JP2004250621A (ja) * 2003-02-21 2004-09-09 Toray Ind Inc レーザー溶着用樹脂材料およびそれを用いた複合成形体
EP1459871B1 (de) * 2003-03-15 2011-04-06 Evonik Degussa GmbH Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung sowie dadurch hergestellter Formkörper
DE10311437A1 (de) * 2003-03-15 2004-09-23 Degussa Ag Laser-Sinter-Pulver mit PMMI, PMMA und/oder PMMI-PMMA-Copolymeren, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
DE10333005A1 (de) * 2003-07-18 2005-02-03 Degussa Ag Formmasse auf Basis von Polyetheramiden
DE102004001324A1 (de) * 2003-07-25 2005-02-10 Degussa Ag Pulverförmige Komposition von Polymer und ammoniumpolyphosphathaltigem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Pulver
DE10334497A1 (de) * 2003-07-29 2005-02-24 Degussa Ag Polymerpulver mit phosphonatbasierendem Flammschutzmittel, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Polymerpulver
DE10334496A1 (de) * 2003-07-29 2005-02-24 Degussa Ag Laser-Sinter-Pulver mit einem Metallsalz und einem Fettsäurederivat, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Laser-Sinterpulver
DE10347628A1 (de) * 2003-10-09 2005-05-19 Degussa Ag Vernetzbare Basisschicht für Fixiereinlagen nach dem Doppelpunktverfahren
DE10347665A1 (de) * 2003-10-09 2005-05-19 Degussa Ag Vernetzbare Basisschicht für Fixiereinlagen nach dem Doppelpunktverfahren
DE102004010162A1 (de) * 2004-02-27 2005-09-15 Degussa Ag Polymerpulver mit Copolymer, Verwendung in einem formgebenden Verfahren mit nicht fokussiertem Energieeintrag und Formkörper, hergestellt aus diesem Polymerpulver
DE102004012682A1 (de) * 2004-03-16 2005-10-06 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Lasertechnik und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004020452A1 (de) * 2004-04-27 2005-12-01 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels elektromagnetischer Strahlung und Auftragen eines Absorbers per Inkjet-Verfahren
DE102004020453A1 (de) * 2004-04-27 2005-11-24 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102004024440B4 (de) * 2004-05-14 2020-06-25 Evonik Operations Gmbh Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102004047876A1 (de) * 2004-10-01 2006-04-06 Degussa Ag Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte
DE102004062761A1 (de) * 2004-12-21 2006-06-22 Degussa Ag Verwendung von Polyarylenetherketonpulver in einem dreidimensionalen pulverbasierenden werkzeuglosen Herstellverfahren, sowie daraus hergestellte Formteile
DE102004063220A1 (de) * 2004-12-29 2006-07-13 Degussa Ag Transparente Formmassen
DE102005002930A1 (de) * 2005-01-21 2006-07-27 Degussa Ag Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102005008044A1 (de) * 2005-02-19 2006-08-31 Degussa Ag Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
US7666934B2 (en) * 2005-03-16 2010-02-23 Riken Vitamin Co., Ltd. Aliphatic polyester resin composition and sheets, films or other products molded by the resin
DE102005054723A1 (de) * 2005-11-17 2007-05-24 Degussa Gmbh Verwendung von Polyesterpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polyesterpulver
DE102006005500A1 (de) * 2006-02-07 2007-08-09 Degussa Gmbh Verwendung von Polymerpulver, hergestellt aus einer Dispersion, in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102007021199B4 (de) * 2006-07-17 2016-02-11 Evonik Degussa Gmbh Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung und damit hergestellte Formkörper
DE102007019133A1 (de) * 2007-04-20 2008-10-23 Evonik Degussa Gmbh Komposit-Pulver, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Pulver

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4373887A (en) * 1980-02-11 1983-02-15 Teledyne Industries, Inc. Apparatus for producing porous shaped products
US4570055A (en) * 1984-05-07 1986-02-11 Raychem Corporation Electrically heat-recoverable assembly
US4772642A (en) * 1985-03-04 1988-09-20 Hoechst Aktiengesellschaft Self-extinguishing polymeric compositions
US5286576A (en) * 1989-08-21 1994-02-15 The B. F. Goodrich Company Compression molded flame retardant and high impact strength ultra high molecular weight polyethylene composition
US6136948A (en) * 1992-11-23 2000-10-24 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5484830A (en) * 1993-02-09 1996-01-16 Hoechst Aktiengesellschaft Halogen-free, flame-resistant polymeric compositions
US6207736B1 (en) * 1997-08-08 2001-03-27 Clariant Gmbh Synergistic flameproofing combination for polymers
US6245281B1 (en) * 1997-10-27 2001-06-12 Huels Aktiengesellschaft Use of a nylon-12 for selective laser sintering
US20060244169A1 (en) * 2002-09-21 2006-11-02 Degussa Ag Polymer powders for SIB processes
US7087109B2 (en) * 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US20040140668A1 (en) * 2002-09-27 2004-07-22 Degussa Ag Pipe connection
US20050038201A1 (en) * 2003-08-16 2005-02-17 Degussa Ag Process for increasing the molecular weight of polyamides
US20060041041A1 (en) * 2004-07-20 2006-02-23 Patrick Douais Fireproofing polyamide powders and their use in a sintering process
US20060182916A1 (en) * 2005-02-15 2006-08-17 Degussa Ag Process for producing moldings with an increase in the melt stiffness
US20060183869A1 (en) * 2005-02-15 2006-08-17 Degussa Ag Process for producing moldings with an increase in the melt stiffness

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040140668A1 (en) * 2002-09-27 2004-07-22 Degussa Ag Pipe connection
US20100324190A1 (en) * 2003-07-25 2010-12-23 Degussa Ag Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US7795339B2 (en) 2003-07-25 2010-09-14 Degussa Ag Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US20090088508A1 (en) * 2003-07-25 2009-04-02 Degussa Ag Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US8119715B2 (en) 2003-07-25 2012-02-21 Evonik Degussa Gmbh Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US20060131828A1 (en) * 2003-07-31 2006-06-22 Eiji Tanaka Vehicle steering apparatus
US20050038201A1 (en) * 2003-08-16 2005-02-17 Degussa Ag Process for increasing the molecular weight of polyamides
US20070260014A1 (en) * 2003-10-09 2007-11-08 Degussa Ag Cross-linkable base layer for interlinings applied in a double-dot method
US20070055044A1 (en) * 2003-10-09 2007-03-08 Degussa Ag Cross-linkable base layer for interlinings applied in a double-dot method
US20110130515A1 (en) * 2004-02-27 2011-06-02 Degussa Ag Polymer powder comprising a copolymer, use in a shaping method which uses a non-focused application of energy and moulded body that is produced from said polymer powder
US7906063B2 (en) 2004-02-27 2011-03-15 Evonik Degussa Gmbh Process for producing moldings
US9114567B2 (en) 2004-03-16 2015-08-25 Evonik Degussa Gmbh Method and device for producing three-dimensional objects using laser technology and for applying an absorber using an ink jet method
US20070183918A1 (en) * 2004-03-16 2007-08-09 Degussa Ag Method and device for producing three-dimensional objects using laser technology and for applying an absorber using an ink jet method
US10118222B2 (en) 2004-03-16 2018-11-06 Evonik Degussa Gmbh Method and device for producing three-dimensional objects using laser technology and for applying an absorber using an inkjet method
US20080116616A1 (en) * 2004-04-27 2008-05-22 Degussa Ag Polymer Powder Comprising Polyamide Use Thereof In A Moulding Method And Moulded Body Make From Said Polymer Powder
US20070238056A1 (en) * 2004-04-27 2007-10-11 Degussa Ag Method and Device for Production of Three-Dimensional Objects by Means of Electromagnetic Radiation of Electromagnetic Radiation and Application of an Absorber by Means of an Ink-Jet Method
US8066933B2 (en) 2004-04-27 2011-11-29 Evonik Degussa Gmbh Polymer powder comprising polyamide use thereof in a moulding method and moulded body made from said polymer powder
US8449809B2 (en) 2004-04-27 2013-05-28 Evonik Degussa Gmbh Polymer powder comprising polyamide use thereof in a moulding method and moulded body made from said polymer powder
US9643359B2 (en) 2004-04-27 2017-05-09 Evonik Degussa Gmbh Method and device for production of three-dimensional objects by means of electromagnetic radiation and application of an absorber by means of an ink-jet method
US20080166496A1 (en) * 2004-05-14 2008-07-10 Sylvia Monsheimer Polymer Powder Containing Polyamide Use of Said Powder in a Moulding Method and Moulded Body Produced From the Same
US10005885B2 (en) 2004-05-14 2018-06-26 Evonik Degussa Gmbh Polymer powder with polyamide, use in a shaping process, and moldings produced from this polymer powder
US8865053B2 (en) 2004-05-14 2014-10-21 Evonik Degussa Gmbh Process for the production of moldings
US20070166560A1 (en) * 2004-06-16 2007-07-19 Degussa Ag Multilayer foil
US20100221551A1 (en) * 2004-06-16 2010-09-02 Evonik Degussa Gmbh Multilayer foil
US8669307B2 (en) 2004-07-20 2014-03-11 Arkema France Fireproofing polyamide powders and their use in a sintering process
US20060041041A1 (en) * 2004-07-20 2006-02-23 Patrick Douais Fireproofing polyamide powders and their use in a sintering process
US8357455B2 (en) 2004-12-29 2013-01-22 Evonik Degussa Gmbh Transparent moulding compound
US20080119632A1 (en) * 2004-12-29 2008-05-22 Degussa Gmbh Transparent Moulding Compound
US8647551B2 (en) 2005-02-15 2014-02-11 Evonik Degussa Gmbh Process for producing moldings with an increase in the melt stiffness
US8580899B2 (en) 2005-02-15 2013-11-12 Evonik Degussa Gmbh Process for producing moldings with an increase in the melt stiffness
US8470433B2 (en) 2005-02-19 2013-06-25 Evonik Degussa Gmbh Transparent decoratable multilayer film
US20080166529A1 (en) * 2005-02-19 2008-07-10 Degussa Gmbh Transparent Moulding Compound
US8614005B2 (en) 2005-02-19 2013-12-24 Evonik Degussa Gmbh Polyamide blend film
US20080261010A1 (en) * 2005-02-19 2008-10-23 Degussa Gmbh Polyamide Blend Film
US8003201B2 (en) 2005-06-08 2011-08-23 Evonik Degussa Gmbh Transparent molding composition
US8535811B2 (en) 2005-06-08 2013-09-17 Evonik Degussa Gmbh Transparent molding composition
US20060281873A1 (en) * 2005-06-08 2006-12-14 Degussa Ag Transparent molding composition
US7988906B2 (en) 2005-07-16 2011-08-02 Evonik Degussa Gmbh Three-dimensional layer-by-layer production process with powders based on cyclic oligomers
US20110237756A1 (en) * 2005-07-16 2011-09-29 Evonik Degussa Gmbh Use of cyclic oligomers in a shaping process, and moldings produced by this process
US8524342B2 (en) 2005-10-14 2013-09-03 Evonik Degussa Gmbh Plastic composite moulded bodies obtainable by welding in an electromagnetic alternating field
US20080292824A1 (en) * 2005-10-14 2008-11-27 Evonik Degussa Gmbh Plastic Composite Moulded Bodies Obtainable by Welding in an Electromagnetic Alternating Field
US8232333B2 (en) 2005-11-04 2012-07-31 Evonik Degussa Gmbh Process for producing ultrafine powders based on polyamides, ultrafine polyamide powders and their use
US20080249237A1 (en) * 2005-11-04 2008-10-09 Evonik Degussa Gmbh Process for Producing Ultrafine Powders Based on Polyamides, Ultrafine Polyamide Powders and Their Use
US20070126159A1 (en) * 2005-11-17 2007-06-07 Degussa Ag Use of polyester powder in a shaping process, and moldings produced from this polyester powder
US8834777B2 (en) 2005-11-17 2014-09-16 Evonik Degussa Gmbh Use of polyester powder in a shaping process, and moldings produced from this polyester powder
US20070232753A1 (en) * 2006-04-01 2007-10-04 Degussa Gmbh Polymer powder, process for production of and use of this powder, and resultant shaped articles
US20080093786A1 (en) * 2006-10-24 2008-04-24 Wieslaw Julian Oledzki Smooth non-linear springs, particularly smooth progressive rate steel springs, progressive rate vehicle suspensions and method
US20080258346A1 (en) * 2007-04-20 2008-10-23 Evonik Degussa Gmbh Composite powder, use in a shaping process, and mouldings produced from this powder
US20110118410A1 (en) * 2007-04-20 2011-05-19 Evonik Degussa Gmbh Composite powder, use in a shaping process, and mouldings produced from this powder
US7887740B2 (en) 2007-04-20 2011-02-15 Evonik Degussa Gmbh Composite powder, use in a shaping process, and mouldings produced from this powder
US20090044906A1 (en) * 2007-08-16 2009-02-19 Evonik Degussa Gmbh Method for decorating surfaces
US8591797B2 (en) 2008-03-19 2013-11-26 Evonik Degussa Gmbh Copolyamide powder and its preparation, use of copolyamide powder in a shaping process and mouldings produced from this copolyamide powder
US20110045269A1 (en) * 2008-06-24 2011-02-24 Evonik Degussa Gmbh Component with top layer of a pa613 moulding compound
US20110206569A1 (en) * 2008-10-31 2011-08-25 Basf Se Ion exchanger moulded body and method for producing same
US10406745B2 (en) 2010-04-09 2019-09-10 Evonik Degussa Gmbh Polyamide-based polymer powder, use thereof in a molding method, and molded articles made from said polymer powder
EP3028842B1 (de) 2014-12-02 2020-06-03 AM POLYMERS GmbH Pulverförmige zusammensetzungen aus thermoplastischen kunststoffen und verwendung der zusammensetzungen
US10716649B2 (en) 2015-03-16 2020-07-21 Ricoh Company, Ltd. Powder material for forming three-dimensional object, material set for forming three-dimensional object, method for producing three-dimensional object, three-dimensional object producing apparatus, and three-dimensional object
US10500763B2 (en) 2015-06-23 2019-12-10 Sabic Global Technologies B.V. Manufacturability of amorphous polymers in powder bed fusion processes
WO2017033146A1 (en) * 2015-08-26 2017-03-02 Sabic Global Technologies B.V. Method of producing crystalline polycarbonate powders
US10597498B2 (en) 2015-08-26 2020-03-24 Sabic Global Technologies B.V. Method of producing crystalline polycarbonate powders
US10808081B2 (en) * 2015-09-04 2020-10-20 Sabic Global Technologies B.V. Powder compositions comprising thermoplastic particles and flow promoter particles, method of preparing articles and coatings from the powder compositions, and articles prepared therefrom
US20180244862A1 (en) * 2015-09-04 2018-08-30 Sabic Global Technologies B.V. Powder compositions, method of preparing articles and coatings from the powder compositions, and articles prepared therefrom
WO2017040897A1 (en) * 2015-09-04 2017-03-09 Sabic Global Technologies B.V. Powder compositions, method of preparing articles and coatings from the powder compositions, and articles prepared therefrom
US10968314B2 (en) * 2015-12-14 2021-04-06 Evonik Operations Gmbh Polymer powder for powder bed fusion methods
US10596728B2 (en) * 2015-12-14 2020-03-24 Evonik Operations Gmbh Polymer powder for powder bed fusion methods
US20170165913A1 (en) * 2015-12-14 2017-06-15 Evonik Degussa Gmbh Polymer powder for powder bed fusion methods
US20170165912A1 (en) * 2015-12-14 2017-06-15 Evonik Degussa Gmbh Polymer powder for powder bed fusion methods
US11254030B2 (en) 2015-12-14 2022-02-22 Evonik Operations Gmbh Polymer powder having low surface energy for powder bed fusion methods
US10786950B2 (en) * 2016-01-29 2020-09-29 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing composite build material composition
US11117837B2 (en) 2016-09-30 2021-09-14 Evonik Operations GbmH Polyamide powder for selective sintering methods
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
WO2019060657A1 (en) * 2017-09-22 2019-03-28 Sabic Global Technologies B.V. PROCESS FOR PRODUCING SEMI-CRYSTALLINE POLYCARBONATE POWDER WITH ADDED FLAME RETARDER FOR POWDER FUSION AND COMPOSITE APPLICATIONS
US11560451B2 (en) * 2017-12-15 2023-01-24 Sabic Global Technologies B.V. Polymer composition for selective sintering
CN108892930A (zh) * 2018-06-08 2018-11-27 吕龙芳 一种可生物降解的改性塑料母粒及其制备方法
WO2020043886A1 (de) * 2018-08-30 2020-03-05 Airbus Operations Gmbh Verfahren zur additiven fertigung von werkstücken aus einem flammhemmend ausgerüsteten polyamidmaterial, dadurch erhältliche werkstücke und verwendung des polyamidmaterials
CN112409784A (zh) * 2020-11-27 2021-02-26 湖南华曙高科技有限责任公司 一种选择性激光烧结用防滴落尼龙材料及其制备方法

Also Published As

Publication number Publication date
US20100324190A1 (en) 2010-12-23
JP4589321B2 (ja) 2010-12-01
EP1648958A1 (de) 2006-04-26
ES2290753T3 (es) 2008-02-16
PL1648958T3 (pl) 2007-12-31
CN1856534A (zh) 2006-11-01
KR20060066712A (ko) 2006-06-16
US8119715B2 (en) 2012-02-21
AU2004259091A1 (en) 2005-02-03
CN1856534B (zh) 2012-11-14
NO20060872L (no) 2006-02-22
EP1648958B1 (de) 2007-08-01
ATE368705T1 (de) 2007-08-15
WO2005010087A1 (de) 2005-02-03
US7795339B2 (en) 2010-09-14
DE102004001324A1 (de) 2005-02-10
DE502004004522D1 (de) 2007-09-13
TW200505978A (en) 2005-02-16
JP2006528717A (ja) 2006-12-21
US20090088508A1 (en) 2009-04-02
CA2533419A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US7795339B2 (en) Powdery composition of a polymer and a flameproofing agent containing ammonium polyphosphate, method for the production thereof, and moulded body produced from said powder
US7317044B2 (en) Polymer powder with phosphonate-based flame retardant, process for its production, and moldings produced from this polymer powder
AU2003231709B2 (en) Laser Sinter Powder with Metal Soaps, Process for its Production, and Moldings Produced from this Laser Sinter Powder
US20080300353A1 (en) Laser sinter powder with metal soaps, process for its production, and moldings produced from this laser sinter powder
US7148286B2 (en) Laser-sintering powder containing titanium dioxide particles, process for its preparation, and moldings produced therefrom
US20050027050A1 (en) Laser sinter powder with a metal salt and a fatty acid derivative, process for its production, and moldings produced from this laser sinter powder
US8173258B2 (en) Powder with improved recycling properties, process for its production, and use of the powder in a process for producing three-dimensional objects
US20180009982A1 (en) Compounded copolyamide powders
US20040180980A1 (en) Laser-sintering powder with PMMI, PMMA, and/or PMMI-PMMA copolymers, process for its preparation, and moldings produced from this laser-sintering powder
WO2018010764A1 (en) Compounded copolyamide powders
DE102004009234A1 (de) Polymerpulver mit Rußpartikeln, Verfahren zu dessen Herstellung und Formkörper, hergestellt aus diesem Polymerpulver
JP6811557B2 (ja) ポリアミド樹脂組成物および成形体
JP3774931B2 (ja) 樹脂被覆エチレンジアミンリン酸塩、その製造方法及びそれを配合してなる難燃性樹脂組成物
JP2005139465A (ja) 樹脂被覆エチレンジアミンリン酸塩、及びそれを配合してなる難燃性樹脂組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEGUSSA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MONSHEIMER, SYLVIA;GREBE, MAIK;BAUMANN, FRANZ-ERICH;REEL/FRAME:020088/0938

Effective date: 20060106

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912