US20060165647A1 - Immunosuppressive substance adsorbent, extracorporeal cicrulation column and method of treating cancer - Google Patents
Immunosuppressive substance adsorbent, extracorporeal cicrulation column and method of treating cancer Download PDFInfo
- Publication number
- US20060165647A1 US20060165647A1 US10/516,015 US51601505A US2006165647A1 US 20060165647 A1 US20060165647 A1 US 20060165647A1 US 51601505 A US51601505 A US 51601505A US 2006165647 A1 US2006165647 A1 US 2006165647A1
- Authority
- US
- United States
- Prior art keywords
- adsorbent
- immunosuppressive
- immunosuppressive substance
- extracorporeal perfusion
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28016—Particle form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/2803—Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28033—Membrane, sheet, cloth, pad, lamellar or mat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28042—Shaped bodies; Monolithic structures
- B01J20/28045—Honeycomb or cellular structures; Solid foams or sponges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3092—Packing of a container, e.g. packing a cartridge or column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/321—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3206—Organic carriers, supports or substrates
- B01J20/3208—Polymeric carriers, supports or substrates
- B01J20/3212—Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3214—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
- B01J20/3217—Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3244—Non-macromolecular compounds
- B01J20/3246—Non-macromolecular compounds having a well defined chemical structure
- B01J20/3248—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
- B01J20/3251—Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising at least two different types of heteroatoms selected from nitrogen, oxygen or sulphur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3242—Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
- B01J20/3268—Macromolecular compounds
- B01J20/3272—Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3291—Characterised by the shape of the carrier, the coating or the obtained coated product
- B01J20/3293—Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3679—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/58—Use in a single column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/60—Use in several different columns
Definitions
- the present invention relates an adsorbent for immunosuppressive substance, an extracorporeal perfusion column and a method for treating cancer.
- Cancer is still one of major causes of death even in today's advanced medicine. Cancer cells cannot be fully removed even by treatment with anticancer agents and/or radiotherapy. Even after tumor was removed by surgery, cancer cells remain in patients with advanced cancer having metastatic foci.
- Immunosuppressive substances are possible candidates which prevent the cancer cells from being perfectly removed. Living bodies inherently should have immune functions such as cancer specific killer cells that eliminate cancerous cells. It is conceived that some of immunosuppressive substances are present in the blood of healthy subjects and play a role for controlling immune actions, but some abnormally grow along with the advance of cancer, prevent the induction and expression of the functions of the cancer specific killer cells to thereby suppress the immune functions against the cancer cells and, as a result, assist the growth of the cancer cells.
- immunosuppressive substances are immunosuppressive proteins such as transforming growth factor beta (subtypes 1 to 5 are known, and they are hereinafter briefly and generically referred to as “TGF ⁇ ”), immunosuppressive acidic protein, carcinoembryonic antigens, interleukin 6 and tumor necrosis factors (TNFs); prostaglandin E2; and cells such as B cells and macrophages (Hiromi Fujiwara, Tumor Immunology, p. 89-112, Chugai Igaku-sha Ltd., 1998).
- TGF ⁇ transforming growth factor beta
- TGFs tumor necrosis factors
- Non-patent Document 1 Attempts have therefore been made to remove or eliminate immunosuppressive substances such as immunosuppressive acidic protein and carcinoembryonic antigens by plasma exchange (see, for example, Non-patent Document 1). Attempts have also been made to remove immunosuppressive substances by using an apparatus comprising a double membrane plasma separator and an adsorbent made from an amino-group-bearing glass beads for adsorbing immunosuppressive factors having low molecular weights. This technique is intended to reduce a displacement liquid (see, for example, Non-patent Document 2). In addition, combined therapy of plasma exchange and an anticancer agent cyclophosphamide has been attempted (see, for example, Non-patent Document 3). These treatments, however, do not work sufficiently effectively. This is probably mainly because the adsorbents have insufficient adsorptivity. In addition, the plasma exchange has a low removing efficiency and brings a risk of infection of a disease from a plasma donor.
- TGF ⁇ adsorbents one having a hydrophobic ligand has been disclosed (see Patent Document 1).
- This technique is intended for an “active TGF ⁇ ” having a molecular weight of about 25,000 as described in the document, and the document fails to describe a “latent TGF ⁇ ” having a molecular weight of about 10 ⁇ 10 4 to 30 ⁇ 10 4 .
- a compound having an increasing molecular weight among compounds of the same type becomes more difficult to be absorbed by an adsorbent.
- the immunosuppressive acidic protein is a protein having a molecular weight of about 5 ⁇ 10 4 and is clinically used as a marker for the malignancy of cancer.
- An attempt has been made to remove the immunosuppressive acidic protein using an active carbon column (see Non-patent Document 4), but has not yet been used in practice, probably because of its insufficient adsorptivity.
- the active carbon column is not suitable for applications in which it comes in direct contact of the blood, such as extracorporeal perfusion, since the active carbon often yields powders.
- Non-patent Document 5 and Patent Documents 5 to 9 Attempts have been made to treat cancer by subjecting the blood to extracorporeal perfusion using a fiber having a lipopolysaccharide of a gram-negative bacterium immobilized thereto to thereby activate the blood (see Non-patent Document 5 and Patent Documents 5 to 9).
- the lipopolysaccharide serves as an endotoxin.
- This fiber is not an adsorbent but a cell activator.
- these documents do not refer to the adsorption of immunosuppressive substances.
- Patent Documents 10 and 11 each disclose a fiber having an immobilized hydrophilic amine. These techniques, however, are intended for the adsorption of endotoxins, do not refer to the adsorption of immunosuppressive substances and are not intended for the treatment of cancer.
- an object of the present invention is to provide an adsorbent for immunosuppressive substance in order to contribute to treatment of cancer, which adsorbent can highly efficiently and selectively adsorb an excessive immunosuppressive substance, which may be involved in the growth of cancer cells, directly from a body fluid and can carry out extracorporeal perfusion safely.
- the present invention provides an adsorbent for immunosuppressive substance, including a water-insoluble carrier and a hydrophilic amino group immobilized to the water-insoluble carrier.
- the present invention further provides an extracorporeal perfusion column containing the adsorbent of the present invention.
- the present invention provides a method for treating cancer, including the step of carrying out extracorporeal perfusion with the use of the extracorporeal perfusion column of the present invention.
- the adsorbent for immunosuppressive substance of the present invention comprises a water-insoluble carrier and a hydrophilic amino group immobilized to the water-insoluble carrier.
- the mechanism that the hydrophilic amino group adsorbs an immunosuppressive substance has not yet been clarified, but the present inventors have verified that the adsorbent adsorbs a variety of immunosuppressive substances, as shown in the examples that will be described later.
- hydrophilic means that an amine that is soluble in water by itself is chemically combined with a polymer.
- the amino group corresponds to an amino group derived from an amine having 18 or less carbon atoms per one nitrogen atom.
- quaternary ammonium groups are preferred, of which quaternary ammonium groups derived from tertiary amines each having 3 to 18 carbon atoms, more preferably 4 to 14 carbon atoms, per one nitrogen atom are specifically preferred for their high adsorptivity.
- tertiary amines each having an alkyl group are trimethylamine, triethylamine, N,N-dimethylethylamine, N,N-dimethylpropylamine, N,N-dimethylbutylamine, N,N-dimethylhexylamine, N,N-dimethyloctylamine, N,N-dimethyllaurylamine and N-methyl-N-ethyl-hexylamine.
- amines each having the alkyl group containing a hydroxyl group and/or an ether group are preferably used as hydrophilic amines for constituting the hydrophilic amino group. Examples thereof are N,N-dimethyl-6-hydroxyhexylamine and N,N-dimethyl-4-methoxybutylamine.
- the amount of the hydrophilic amino group to be immobilized to the water-insoluble carrier is preferably 0.01 to 2.0 mol, and more preferably 0.1 to 1.0 mol per constitutional repeating unit of the water-insoluble carrier.
- the adsorptive function can be efficiently manifested by setting the amount at 0.01 mol or more, more preferably 0.1 mol or more.
- the water-insoluble carrier can maintain its physical strength as a carrier by setting the amount at 2.0 mol or less, more preferably 1.0 mol or less.
- the amount of the immobilized hydrophilic amino group can be determined according to a method for measuring an ion-exchange capacity of an ion-exchange resin. More specifically, the amount can be determined, for example, in the following manner.
- a sample water-insoluble carrier having a immobilized hydrophilic amino group is charged into a column, 50 mL of a 1 mol/L aqueous solution of sodium hydroxide is allowed to pass through the column, and then water is allowed to pass for washing until the eluent does not develop red with phenolphthalein. Then, 10 mL of 1 mol/L hydrochloric acid is allowed to pass through the resulting column, and 300 mL of water is allowed to pass therethrough. The amount of the eluted acid is determined by neutralization titration with a 0.5 mol/L aqueous solution of sodium hydroxide.
- the amount of the hydrophilic amino group is defined as a value obtained by subtracting the amount of the alkali required for neutralization from 10 mmol. This value is divided by the constitutional repeating unit contained in one gram of the water-insoluble carrier and then can be checked against the above-specified range.
- water-insoluble carrier one which is insoluble in water and can bear a hydrophilic amine as an immobilized hydrophilic amino group.
- Water-insoluble carriers derived from aromatic polymers are preferred, for easier introduction of functional groups. More specific examples of the aromatic polymers are poly(aromatic vinyl compound)s typified by polystyrenes. Alternatively, those derived from polysulfone polymers are preferred for their satisfactory moldability.
- Typical examples thereof are poly(p-phenylene ether sulfone) s and - ⁇ (p-C 6 H 4 )—C(CH 3 ) 2 -(p-C 6 H 4 )—O—(p-C 6 H 4 )—SO 2 -(p-C 6 H 4 )—O— ⁇ n — (hereinafter briefly referred to as “Udel polysulfone”).
- Udel polysulfone Those derived from polymers such as poly(ether imide)s, polyimides, polyamides, polyethers and polyphenylenesulfides will also do.
- a water-insoluble carrier which is soluble in an organic solvent is advantageously employed as the water-insoluble carrier, for its higher moldability.
- Examples of a reactive functional group for enabling the polymer to immobilize the hydrophilic amine are active halogen groups such as halomethyl groups, haloacetyl groups, haloacetamidomethyl groups and halogenated alkyl groups, epoxide group, carboxyl group, isocyanate group, thioisocyanate group and acid anhydride groups.
- active halogen groups are preferred, of which haloacetyl groups are typically preferred; because they can be easily prepared, have appropriately high reactivity to carry out a reaction for immobilizing the hydrophilic amine under mild conditions and can yield a chemically stable covalent binding formed as a result of the immobilization reaction.
- polystyrenes chloroacetamidomethylated polystyrenes, chloroacetamidomethylated Udel polysulfones and chloroacetamidomethylated poly(ether imide)s.
- a heterogeneous reaction process and a homogeneous reaction process may be employed.
- the water-insoluble carrier which has been molded is brought into contact with a solution of the hydrophilic amine.
- a solution of the water-insoluble carrier and a solution of the hydrophilic amine are mixed and reacted, and then the mixture is molded.
- a solvent that does not dissolve the water-insoluble carrier but dissolves the hydrophilic amine is preferably used as a solvent for dissolving the hydrophilic amine.
- the solvent are water, methanol, ethanol and isopropanol.
- a solvent that can dissolve both the water-insoluble carrier and the hydrophilic amine is preferably used. Examples thereof are tetrahydrofuran, dimethyl sulfoxide, N,N-dimethylformamide (DMF), N,N-dimethylacetamide and N-methylpyrrolidone.
- the heterogeneous reaction process can be carried out, for example, by dipping a molded article of, for example, a hollow fiber of a chloroacetamidomethylated polysulfone in an isopropanol solution of, for example, dimethylhexylamine or polyalkyleneimine and reacting them at temperatures of 0° C. to 100° C.
- the homogeneous reaction process can be carried out, for example, by adding the hydrophilic amine to a solution of chloroacetamidomethylated polysulfone in an organic solvent and reacting them at temperatures of 0° C. to 100° C.
- the amount of the hydrophilic amine to be added to the solution is preferably 1 fold by mole or more with respect to the reactive functional group serving for immobilization.
- the hydrophilic amine is preferably added in large excess.
- the adsorbent for immunosuppressive substance of the present invention may be a molded article prepared by molding the water-insoluble carrier having the immobilized hydrophilic amino group into a shape as an adsorbent or may be an article comprising a substrate or base material and the water-insoluble carrier having the immobilized hydrophilic amino group covering the substrate.
- the adsorbent comprises a substrate or base material and the water-insoluble carrier having the immobilized hydrophilic amino group covering the substrate is advantageous in that the resulting adsorbent can easily have a large surface area at low cost.
- a material for the substrate is preferably one having good adhesion with the water-insoluble carrier having the immobilized hydrophilic amino group. Examples thereof are polyamides, polyurethanes, polyimides, polysulfones, poly(vinyl chloride)s, polyesters, poly(phenylene sulfide)s, polyolefins, polyacrylonitriles and cellulosic resins.
- polyamides such as nylons and poly(ether imide)s are typically preferably used, for their high adhesion properties.
- the procedure for covering there are a dry coating process and a wet coating process.
- the water-insoluble carrier having the immobilized hydrophilic amino group or the added hydrophilic amine is dissolved in a low boiling solvent such as methylene chloride or tetrahydrofuran, the substrate such as a knitted fabric or woven fabric of nylon is dipped in the solution, and the solvent is evaporated.
- the water-insoluble carrier having the immobilized hydrophilic amino group or the added hydrophilic amine is dissolved in a solvent such as N,N-dimethylformamide, the substrate is dipped in the solution, and the dipped substrate is further placed in a poor solvent such as water.
- the specific surface area of the adsorbent for immunosuppressive substance of the present invention is preferably 0.1 m 2 or more, and more preferably 1 m 2 or more per one gram of the adsorbent, for improving the adsorptivity and adsorption capacity.
- the specific surface area cannot be increased without limitation and is, in practice, preferably 100 m 2 or less.
- the surface area can be determined by a nitrogen gas adsorption process (BET process).
- the adsorbent for immunosuppressive substance of the present invention preferably has a shape selected from a film shape, a fibrous shape, a spongiform shape, a granular shape and a combination of these shapes.
- the adsorbent can have a large specific surface area and exhibit sufficient permeability with respect to, for example, the body fluid.
- Such fibers can be formed into, for example, a filament, a flocculent substance, a knitted fabric, a woven fabric or a felt. Among such fibers, hollow fibers are also preferred.
- the resulting adsorbent also has the function of filtration, and the extracorporeal circulation column can serve to remove the immunosuppressive substance while serving also as a dialyzing unit or a plasma separator.
- the immunosuppressive substance to be adsorbed by the adsorbent for immunosuppressive substance of the present invention preferably comprises an immunosuppressive protein.
- the immunosuppressive protein comprises at least one selected from a transforming growth factor beta, immunosuppressive acidic protein and a carcinoembryonic antigen.
- the TGF ⁇ is preferably a latent TGF ⁇ .
- TGF ⁇ by itself is a protein having a molecular weight of about 25000, but is combined with another protein to constitute a protein having a molecular weight of about 10 ⁇ 10 4 (low-molecular-weight latent TGF ⁇ ) or a protein having a molecular weight of about 30 ⁇ 10 4 (high-molecular-weight latent TGF ⁇ ) in the blood, and these must be removed or eliminated from the blood of a patient with cancer efficiently.
- the immunosuppressive substance to be adsorbed preferably comprises prostaglandin-E2.
- the adsorbent is capable of adsorbing plural different immunosuppressive substances, from the view point of effective treatment of cancer.
- the adsorbent for immunosuppressive substance of the present invention is preferably used in an extracorporeal perfusion column, as mentioned below. It can also be used for the purpose of removing one or more immunosuppressive proteins from the blood supply, serum or plasma.
- the extracorporeal perfusion column of the present invention comprises the adsorbent for immunosuppressive substance of the present invention.
- the resulting extracorporeal perfusion column is suitable for cancer treatment by extracorporeal perfusion or by combined therapy with extracorporeal perfusion.
- the extracorporeal perfusion column of-the present invention can have, for example, a cylindrical, rectangular, discoidal or doughnut-like shape.
- the adsorbent is preferably charged so that the volume of voids is about 200 mL or less for reducing the burdens on the patient.
- the amount of the adsorbent for immunosuppressive substance of the present invention contained in the extracorporeal perfusion column of the present invention is preferably set so that the adsorptivity of the column is 250 ng or more per 1 kg of the body weight of a tumor-bearing mammal to be treated.
- the adsorptivity herein is in terms of TGF ⁇ including a latent type and an active type as a primary standard. In this connection, most of TGF ⁇ is present as the latent type in the blood.
- the absorptivity herein is obtained by multiplying an equilibrium adsorption for a latent TGF ⁇ per one gram of the adsorbent by grams of the charged adsorbent in the column.
- the equilibrium adsorption for a latent TGF ⁇ can be determined in the following manner. Specifically, 50 mg of the adsorbent is placed in 1 mL of the serum of a tumor-bearing rat, the mixture is shaken at 37° C. for four hours, the TGF ⁇ level in the supernatant is determined, and the difference in the TGF ⁇ levels between before and after absorption is divided by the weight of the adsorbent (0.05 g) to give the equilibrium adsorption for a latent TGF ⁇ .
- the TGF ⁇ level in the supernatant can be determined by pretreating the sample serum with an acid to allow the latent TGF ⁇ to be converted into a free active TGF ⁇ , and determining the level by an enzyme immunoassay using an anti-TGF ⁇ antibody and a commercially available assay kit.
- the “tumor-bearing mammal” means a terrestrial mammal bearing tumor derived from cancer.
- Examples of the terrestrial mammal are humans, monkeys, cows, horses, dogs, cats, pigs and sheep.
- the method for treating cancer of the present invention comprises the step of carrying out extracorporeal circulation with the use of the extracorporeal perfusion column of the present invention.
- This method can adsorb and eliminate an immunosuppressive substance from the blood in extracorporeal perfusion, suppress the growth of cancer cells and effectively treat the cancer.
- the “treatment (or treating)” herein means and includes not only complete recovery but also suppression of the advance of cancer, prevention of metastasis and improvement in quality of life of the patient in broad meanings.
- the extracorporeal circulation can be carried out, for example, in the following manner.
- a puncture catheter for collection of blood, a drip chamber connected to an infusion pump for continuously administering an anticoagulant such as heparin or futhan, a blood pump, a drip chamber, the extracorporeal perfusion column of the present invention, a drip chamber, and a puncture catheter for reinfusion are combined in this order using tubes each having an appropriate diameter to form an extracorporeal perfusion system, and the blood is allowed to pass through the system.
- the blood collection and reinfusion may be carried out by pricking to the artery or vein of the femur or arm.
- a commercially available extracorporeal perfusion apparatus and a blood cycle for a hemodialyzer or an adsorptive blood purifier can be used.
- the extracorporeal perfusion is preferably carried out for 10 minutes to 300 minutes, and generally for 30 minutes to 120 minutes.
- the method for treating cancer of the present invention is preferably used for treating a tumor-bearing mammal, in which the absorptivity of the extracorporeal perfusion column is 250 ng or more per 1 kg of the body weight of the tumor-bearing mammal.
- the extracorporeal perfusion is preferably carried out in combination with the administration of an antineoplastic agent.
- the cancer can be treated while reducing adverse drug reactions of the antineoplastic agent.
- antineoplastic agent examples include antimetabolic antineoplastic agents such as gemcitabine, fluorouracil, tegafur, cytarabine and methotrexate; alkylating agents typified by cyclophosphamide; alkaloid antineoplastic agents such as vincristine, vinblastine, vindesine, etoposide, irinotecan, docetaxel and paclitaxel; antibiotic antineoplastic agents such as doxorubicin, epirubicin, pirarubicin, daunorubicin, mitomycin C, actinomycin D, peplomycin, neocarzinostatin and bleomycin; enzyme inhibitory antineoplastic agents such as gefitinib; as well as cisplatin and carboplatin.
- antimetabolic antineoplastic agents such as gemcitabine, fluorouracil, tegafur, cytarabine and methotrexate
- alkylating agents typified by
- the antimetabolic antineoplastic agents are preferred, since they have relatively low risks of adverse drug reactions and toxicity.
- gemcitabine is slowly metabolized in tumor cells, keeps its antitumor effects over a long time, exhibits antitumor effects against many solid tumors and is typically preferred.
- the antineoplastic agent can be administered, for example, by a process of injecting into a tissue near to the tumor, a process of intravenous injection, a process of intramuscular injection or a process of administering orally.
- the administration process is preferably appropriately selected according to the properties of the drug.
- the dose is preferably set at one-hundredths or more and one half or less the appropriate dose designated on the antineoplastic agent, because the effects of the drug are enhanced by the combination use of the column for removing an immunosuppressive substance.
- the antineoplastic agent is administered, for example, preferably 24 to 200 hours, and more preferably 24 to 100 hours before the extracorporeal perfusion.
- the extracorporeal perfusion is also preferably carried out in combination with the excision of a primary focus of the cancer.
- Cancer cells liberated upon surgical excision may come into the blood vessels and/or lymphatics to cause metastasis.
- the method of the present invention can also suppress the growth of such metastasized cancer cells and can thereby effectively treat the cancer, which results in the suppression of the metastasis of cancer.
- YS cells (2 ⁇ 10 8 ) (available from Institute of Development, Aging and Cancer, Tohoku University) were hypodermically inoculated to the back of male HOS:Donryu rats of an age of 8 weeks to yield Tumor-bearing Rats 1.
- the sera of five Tumor-bearing Rats 1 were collected to yield 30 mL of a tumor-bearing rat serum.
- a total of 50 mg of a sample adsorbent was placed into 1 mL of the prepared serum, followed by shaking at 37° C. for 4 hours.
- the TGF ⁇ level in the supernatant was determined according to the following method (3) for “TGF ⁇ Level”.
- the TGF ⁇ equilibrium adsorptivity was obtained by dividing the difference in levels between before and after the adsorption by the weight of the adsorbent (0.05 g).
- the TGF ⁇ level was determined by using a human TGF- ⁇ 1 immunoassay kit available from Genzyme TECHNE according to the description in the manual.
- the level of immunosuppressive acidic protein was determined by using a Rat IAP Plate available from Sanko Junyaku Co., Ltd.
- the albumin level was determined by using an albumin assay kit “Albumin B-Test Wako”.
- the PGE2 level was determined by using a PGE2 Assay Kit available from NEOGEN Corporation.
- the adsorption rate was determined by calculation by dividing the serum PGE2 level after adsorption by the serum PGE2 level before adsorption.
- the dimensions of the tumor region of a rat were measured using micrometer calipers.
- the longest diameter of the tumor was defined as the major axis, and a diameter of the tumor passing through the midpoint of the major axis in a direction perpendicular to the major axis was defined as the minor axis.
- An island-in-sea conjugated fiber with 36 islands was prepared by using the following components under yarn-making conditions of a spinning speed of 800 m/min. and a draw ratio of 3 folds.
- the islands herein each have a sheath-core conjugated structure.
- Core component of island polypropylene
- Sheath component of island 90% of polystyrene, and 10% of polypropylene
- the sea component was dissolved in a hot aqueous solution of sodium hydroxide, to thereby yield Original Yarn 1 having a diameter of 4 ⁇ m as a sheath-core polypropylene-reinforced polystyrene fiber.
- a total of 3 g of paraformaldehyde was dissolved in a mixture of 600 mL of nitrobenzene and 390 mL of sulfuric acid at 20° C.
- the solution was cooled to 0° C., and 75.9 g of N-methylol- ⁇ -chloroacetamide was added to and dissolved in the solution at 5° C. or below.
- a total of 10 g of Original Yarn 1 was dipped therein and was left stand at room temperature for two hours. The fiber was taken out and was placed in large excess of cooled methanol for washing.
- N,N-dimethylhexylamine (50 g) and potassium iodide (8 g) were dissolved in 360 mL of DMF, and 5 g of Intermediate 1 was dipped in the resulting solution, followed by heating in a bath at 85° C. for three hours.
- the fiber was then immersed in a 1 mol/L aqueous sodium chloride solution, was then washed with water, was dried in vacuo and thereby yielded 7.3 g of dimethylhexylammonium-modified fiber (Example 1).
- N,N-dimethyloctylamine (50 g) and potassium iodide, (8 g) were dissolved in 360 mL of DMF, and 5 g of Intermediate 1 was dipped in the resulting solution, followed by heating in a bath at 85° C. for three hours.
- the fiber was washed with isopropanol, was immersed in a 1 mol/L aqueous sodium chloride solution, was washed with water, was dried in vacuo and thereby yielded 8.3 g of dimethyloctylammonium-modified fiber (Example 2).
- N,N-dimethyllaurylamine (50 g) and potassium iodide (8 g) were dissolved in 360 mL of DMF, and 5 g of Intermediate 1 was dipped in the resulting solution, followed by heating in a bath at 85° C. for three hours.
- the fiber was washed with isopropanol, was immersed in a 1 mol/L aqueous sodium chloride solution, was washed with water, was dried in vacuo and thereby yielded 9.3 g of dimethyllaurylammonium-modified fiber (Example 3).
- Intermediate 2 and Intermediate 3 were treated by the same procedure and thereby yielded Example 4 having a specific surface area of 1.4 m 2 /g and Referential Example 1 having a specific surface area of 0.04 m 2 /g, respectively.
- a total of 20 g of a flocculent substance of a poly(ethylene terephthalate) fiber having a diameter of monofilament of 3.5 ⁇ m was dipped in a solution of 5 g of Polymer B in 250 mL of methylene chloride.
- the flocculent substance was taken out 20 hours later, from which the fluid was removed, was air-dried and thereby yielded 21 g of a coated flocculent substance (Example 5).
- a flocculent substance of the poly(ethylene terephthalate) fiber which had not been coated was used as Comparative Example 5.
- a total of 20 g of a flocculent substance of a poly(ethylene terephthalate) fiber having a diameter of monofilament of 3.5 ⁇ m was dipped in a solution of 5 g of cellulose acetate in 250 mL of methylene chloride.
- the flocculent substance was taken out 20 hours later, from which the fluid was removed, was air-dried and thereby yielded 21 g of a coated flocculent substance (Comparative Example 4).
- Fibers were prepared by the procedures of Example 1 and Comparative Example 1, respectively.
- the fiber corresponding to Intermediate 1 had a yield of 15.2 g.
- the fiber corresponding to Example 1 had a yield of 7.4 g and a specific surface area of 2.4 m 2 /g.
- a coated flocculent substance was prepared by the procedure of Example 5.
- Polymer A and Polymer B had yields of 305 g and 28 g, respectively.
- the coated flocculent substance corresponding to Example 5 had a yield of 21 g and a specific surface area of 1.2 m 2 /g.
- the blood was collected from above-mentioned Tumor-bearing Rats 1 and thereby yielded 6 mL of a serum having PGE2 level of 1700 ng/mL.
- a total of 50 mg of a sample fiber was placed in 1 mL of the serum, followed by shaking at 37° C. for two hours.
- the fiber corresponding to Example 1 had a PGE2 adsorption rate of 80%.
- the coated flocculent substance corresponding to Example 5 had a PGE2 adsorption rate of 62%.
- the fiber corresponding to Comparative Example 1 had a PGE2 adsorption rate of 33%.
- Extracorporeal perfusion columns were prepared by charging 0.46 g (Example 6), 0.40 g (Example 7), 0.38 g (Example 8), 0.21 g (Example 9) and 0.16 g (Referential Example 2) of a nonwoven fabric respectively into five cylindrical polypropylene columns having an inner diameter of 1 cm and an inner capacity of 2 ml.
- the nonwoven fabric was prepared from a fiber which had been prepared by the procedure of Example 1 and had a TGF ⁇ equilibrium adsorptivity of 500 ng/g.
- An extracorporeal perfusion column (Comparative Example 6) was prepared by charging 0.43 g of a nonwoven fabric into the cylindrical column.
- the nonwoven fabric was made from a fiber prepared by the procedure of Comparative Example 3 and had a TGF ⁇ equilibrium adsorptivity of 0 ng/g.
- Extracorporeal perfusion columns (Comparative Examples 7 and 8) were prepared by charging 0.43 g each of a nonwoven fabric of a poly(ethylene terephthalate) fiber having a diameter of monofilament of 3.5 ⁇ m respectively into two pieces of the cylindrical columns.
- these extracorporeal perfusion columns were preliminarily washed with 10 mL of physiological saline containing 1000 units of a heparin sodium injection available from Takeda Pharmaceutical Co., Ltd. and was further washed with 500 mL of physiological saline.
- the rats were subjected to extracorporeal perfusion at a blood flow rate of 2 mL/min. for 30 minutes.
- the blood was collected from the femoral artery, was allowed to pass through the adsorbent column and was returned to the femoral vein.
- a heparin sodium injection available from Takeda Pharmaceutical Co., Ltd. was continuously injected at a rate of 100 U/h during the extracorporeal perfusion.
- TGF ⁇ levels in sera were determined and the survival time after inoculation of the cancer cells was observed. The results are shown in Table 2.
- TABLE 2 TGF ⁇ Survival time Column Amount of Adsorbent adsorptivity Blood TGF ⁇ level of rat after Amount of TGF ⁇ per 1 kg of rat per 1 kg of rat Before After inoculation of adsorbent adsorptivity Body weight body weight body weight treatment treatment cancer cells (g) (ng) of rat (kg) (g) (ng) (ng/mL) (ng/mL) (week) Ex. 6 0.46 230 0.32 1.4 719 30.0 4.8 9.0 Ex.
- An extracorporeal perfusion column for treating cancer was prepared by charging 0.40 g of a nonwoven fabric made from a fiber corresponding to Example 1 into a cylindrical polypropylene column having an inner diameter of 1 cm and an inner capacity of 2 mL.
- gemcitabine hydrochloride used herein was prepared by dissolving an injection preparation thereof (available from Eli Lilly Japan K.K.) in physiological saline to yield a 20 mg/mL solution.
- the extracorpqreal perfusion column for treating cancer was preliminarily washed with physiological saline containing 1000 units of a heparin sodium and was further washed with 500 mL of physiological saline.
- the rats were subjected to extracorporeal perfusion.
- an extracorporeal perfusion system the blood was collected from the femoral artery, was allowed to pass through the extracorporeal perfusion column for treating cancer and was returned to the femoral vein.
- the extracorporeal perfusion was carried out at a blood flow rate of 2 mL/min. for one hour.
- a heparin sodium injection available from Takeda Pharmaceutical Co., Ltd. was continuously injected at a rate of 200 U/h during the extracorporeal perfusion.
- Examples 10 to 15 shown in Table 3 DHP (direct hemoperfusion) treatment was carried out Day 2 of the administration of gemcitabine hydrochloride.
- the tumor completely disappeared.
- the tumor growth speeds in Examples 12 to 15 were significantly reduced as compared with Comparative Examples 11 to 16 (Table 4) which had not been treated.
- gemcitabine hydrochloride was administered but the extracorporeal perfusion treatment was not carried out. They show suppression effects in the first week (Day 14) but exhibit no difference from the non-treated group, upon comparison between Table 4 and Table 5.
- the growth of tumor was significantly suppressed and one third of the subjects (rats) were completely cured in the examples.
- Examples 16 to 18, and Comparative Examples 21 to 26 The test procedures of Examples 10 to 15 and Comparative Examples 11 to 22 were repeated, except for using three other rats (Examples 16 to 18, and Comparative Examples 21 to 26).
- the metastasis of the tumor to a region other than beneath the back skin to which the tumor was inoculated was visually observed (Table 6).
- the rats were dissected 35 days after the extracorporeal perfusion, and the tumor was observed. As a result, the metastasis was hardly observed in cases in which the extracorporeal perfusion treatment was carried out two days into the administration of gemcitabine hydrochloride.
- Example 16 none anticancer agent and extracorporeal perfusion
- Example 17 none anticancer agent and extracorporeal perfusion
- Example 18 dermic micrometastasis (2 mm anticancer agent diameter) near to the right and extracorporeal axillary of antebrachium perfusion Com.
- Ex. 21 dermic metastasis near to not treated the breast bone Com.
- Ex. 22 dermic metastasis near to not treated the right axillary of antebrachium, and pulmonary metastasis Com.
- Ex. 23 dermic metastases near to not treated the right axillary of antebrachium and near to the breast bone Com.
- Ex. 24 dermic metastasis near to administration of the breast bone anticancer agent alone Com.
- the present invention can-provide the adsorbent for immunosuppressive substance, which can selectively and highly efficiently adsorb an excessive immunosuppressive substance directly from the body fluid.
- an immunosuppressive substance is supposed to be involved in the growth of cancer cells.
- the adsorbent for immunosuppressive substance can be safely used in extracorporeal perfusion and can be utilized in treatment of cancer.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- External Artificial Organs (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/067,627 US8932590B2 (en) | 2002-05-30 | 2011-06-15 | Method of adsorbing transforming growth factor β |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002156867A JP4200689B2 (ja) | 2002-05-30 | 2002-05-30 | 癌治療用体外循環カラム |
JP2002-156867 | 2002-05-30 | ||
JP2002240246A JP2004073618A (ja) | 2002-08-21 | 2002-08-21 | 吸着材および該吸着材を充填した体外循環用カラム |
JP2002-240246 | 2002-08-21 | ||
PCT/JP2003/004277 WO2003101511A1 (fr) | 2002-05-30 | 2003-04-03 | Adsorbant d'une substance immunosuppressive, colonne de circulation extracorporelle, et procede de traitement du cancer |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/067,627 Continuation US8932590B2 (en) | 2002-05-30 | 2011-06-15 | Method of adsorbing transforming growth factor β |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060165647A1 true US20060165647A1 (en) | 2006-07-27 |
Family
ID=29714291
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/516,015 Abandoned US20060165647A1 (en) | 2002-05-30 | 2003-04-03 | Immunosuppressive substance adsorbent, extracorporeal cicrulation column and method of treating cancer |
US13/067,627 Expired - Fee Related US8932590B2 (en) | 2002-05-30 | 2011-06-15 | Method of adsorbing transforming growth factor β |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/067,627 Expired - Fee Related US8932590B2 (en) | 2002-05-30 | 2011-06-15 | Method of adsorbing transforming growth factor β |
Country Status (6)
Country | Link |
---|---|
US (2) | US20060165647A1 (fr) |
EP (1) | EP1532993A4 (fr) |
KR (1) | KR100978169B1 (fr) |
CN (1) | CN100563734C (fr) |
CA (1) | CA2487600C (fr) |
WO (1) | WO2003101511A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2058018A1 (fr) * | 2006-08-31 | 2009-05-13 | Toray Industries, Inc. | Support d'adsorption contenant une fibre composite |
US20160317734A1 (en) * | 2013-12-27 | 2016-11-03 | Eliaz Therapeutics, Inc. | Plasmapheresis device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017189899A1 (fr) * | 2016-04-27 | 2017-11-02 | Immunicom, Inc. | Méthode de traitement du cancer à l'aide d'une aphérèse thérapeutique pour éliminer le tgf-bêta par l'intermédiaire de ses complexes |
CN106166311B (zh) * | 2016-08-30 | 2018-07-13 | 张小曦 | 一种血浆净化系统及其应用 |
JP7193084B2 (ja) * | 2017-09-08 | 2022-12-20 | 東レ株式会社 | 免疫抑制性タンパク質吸着材料及び吸着カラム |
JP6919789B2 (ja) * | 2018-07-31 | 2021-08-18 | 東レ株式会社 | 有機物吸着用担体 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020164644A1 (en) * | 2000-04-05 | 2002-11-07 | Ikuro Maruyama | Adsorbents for high mobility group proteins and column for purifying body fluid |
US20030170234A1 (en) * | 1997-12-12 | 2003-09-11 | Genentech, Inc. | Treatment with anti-ErbB2 antibodies |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59211458A (ja) * | 1983-05-16 | 1984-11-30 | 東レ株式会社 | 血液処理剤 |
JPS60195455A (ja) | 1984-03-19 | 1985-10-03 | Toray Ind Inc | 血液処理剤 |
JPS60197703A (ja) * | 1984-03-19 | 1985-10-07 | Toray Ind Inc | 内毒素吸着性の優れた重合体およびその成型品 |
JPH0783767B2 (ja) * | 1987-09-18 | 1995-09-13 | 旭メディカル株式会社 | 血液浄化装置 |
SE9004129D0 (sv) * | 1990-12-21 | 1990-12-21 | Pharmacia Lkb Biotech | Anion exchanger |
JP3176753B2 (ja) * | 1992-03-17 | 2001-06-18 | 旭メディカル株式会社 | 血液処理用の吸着材 |
EP0561379B1 (fr) * | 1992-03-17 | 1998-07-08 | ASAHI MEDICAL Co., Ltd. | Matière filtrante ayant une charge négative de surface limitée pour le traitement d'une matière sanguine |
US5583162A (en) * | 1994-06-06 | 1996-12-10 | Biopore Corporation | Polymeric microbeads and method of preparation |
JP2001218840A (ja) * | 2000-02-14 | 2001-08-14 | Kanegafuchi Chem Ind Co Ltd | トランスフォーミング増殖因子βの吸着材、吸着除去方法および吸着器 |
-
2003
- 2003-04-03 WO PCT/JP2003/004277 patent/WO2003101511A1/fr active Application Filing
- 2003-04-03 US US10/516,015 patent/US20060165647A1/en not_active Abandoned
- 2003-04-03 CN CNB038124602A patent/CN100563734C/zh not_active Expired - Fee Related
- 2003-04-03 KR KR1020047018845A patent/KR100978169B1/ko active IP Right Grant
- 2003-04-03 EP EP03756106A patent/EP1532993A4/fr not_active Ceased
- 2003-04-03 CA CA2487600A patent/CA2487600C/fr not_active Expired - Lifetime
-
2011
- 2011-06-15 US US13/067,627 patent/US8932590B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030170234A1 (en) * | 1997-12-12 | 2003-09-11 | Genentech, Inc. | Treatment with anti-ErbB2 antibodies |
US20020164644A1 (en) * | 2000-04-05 | 2002-11-07 | Ikuro Maruyama | Adsorbents for high mobility group proteins and column for purifying body fluid |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2058018A1 (fr) * | 2006-08-31 | 2009-05-13 | Toray Industries, Inc. | Support d'adsorption contenant une fibre composite |
EP2058018A4 (fr) * | 2006-08-31 | 2014-01-22 | Toray Industries | Support d'adsorption contenant une fibre composite |
US20160317734A1 (en) * | 2013-12-27 | 2016-11-03 | Eliaz Therapeutics, Inc. | Plasmapheresis device |
US10953148B2 (en) * | 2013-12-27 | 2021-03-23 | Eliaz Therapeutics, Inc. | Plasmapheresis device |
Also Published As
Publication number | Publication date |
---|---|
EP1532993A1 (fr) | 2005-05-25 |
KR100978169B1 (ko) | 2010-08-25 |
US20110240560A1 (en) | 2011-10-06 |
CN100563734C (zh) | 2009-12-02 |
CA2487600A1 (fr) | 2003-12-11 |
KR20050007555A (ko) | 2005-01-19 |
CN1655835A (zh) | 2005-08-17 |
EP1532993A4 (fr) | 2010-09-29 |
CA2487600C (fr) | 2011-07-05 |
WO2003101511A1 (fr) | 2003-12-11 |
US8932590B2 (en) | 2015-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8932590B2 (en) | Method of adsorbing transforming growth factor β | |
CA2664770C (fr) | Colonne adsorbeuse de cellules | |
US5773384A (en) | Sorbents for removing toxicants from blood or plasma, and method of producing the same | |
KR100972702B1 (ko) | 흡착재 및 체외 순환용 칼럼 | |
EA002896B1 (ru) | Метод удаления бета-2 микроглобулина из крови | |
JPH0684312B2 (ja) | 生体特異性ポリマー | |
JP5824873B2 (ja) | ハイモビリティーグループタンパク吸着担体 | |
US20140054227A1 (en) | Sugar-immobilized polymer substrate for removing virus and method for removing virus | |
US9127250B2 (en) | Immunosuppressive cell-capturing material and immunosuppressive cell-capturing column | |
JP4983070B2 (ja) | 吸着材および体外循環用カラム | |
JP2006288571A (ja) | 癌治療用吸着材および体外循環カラム | |
WO2014034787A1 (fr) | Dialyseur capable d'éliminer les virus | |
JP4009772B2 (ja) | トランスフォーミング・グロウス・ファクター・ベータの吸着材および体外循環用カラム | |
JP4200689B2 (ja) | 癌治療用体外循環カラム | |
JP4453395B2 (ja) | 癌治療に適した体外循環カラム使用方法 | |
JP4182682B2 (ja) | 癌胎児性抗原吸着材および体外循環用カラム | |
JP4032465B2 (ja) | 血栓形成性物質の吸着剤および体外循環カラム | |
JP4779190B2 (ja) | 炎症性疾患治療用カラム | |
JP7459449B2 (ja) | 可溶性腫瘍壊死因子受容体の吸着材料 | |
JP4505950B2 (ja) | 吸着材および体外循環用カラム | |
JP2004248950A (ja) | 免疫抑制物質の吸着材および体外循環用カラム | |
JP2004073618A (ja) | 吸着材および該吸着材を充填した体外循環用カラム | |
JPH0523395A (ja) | 血液浄化吸着材 | |
CN116618024A (zh) | 一种血液净化吸附剂及其制备方法 | |
WO2019158791A1 (fr) | Dispositif pour l'élimination sélective de molécules de tissus ou de fluides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TORAY INDUSTRIES, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TERAMOTO, KAZUO;YOSHIOKA, TOSHIO;SHIMAGAKI, MASAAKI;AND OTHERS;REEL/FRAME:016831/0910;SIGNING DATES FROM 20050524 TO 20050601 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |