US20060039808A1 - Refrigerant compressor - Google Patents

Refrigerant compressor Download PDF

Info

Publication number
US20060039808A1
US20060039808A1 US10/522,514 US52251405A US2006039808A1 US 20060039808 A1 US20060039808 A1 US 20060039808A1 US 52251405 A US52251405 A US 52251405A US 2006039808 A1 US2006039808 A1 US 2006039808A1
Authority
US
United States
Prior art keywords
suction
valve
cylinder
valves
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/522,514
Other languages
English (en)
Inventor
Masanori Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. reassignment MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KOBAYASHI, MASANORI
Publication of US20060039808A1 publication Critical patent/US20060039808A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0088Pulsation and noise damping means using mechanical tuned resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1066Valve plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible

Definitions

  • the present invention relates to an improvement in efficiency of a hermetic compressor used in freezer-refrigerators, and the like.
  • a hermetic compressor used in freezer-refrigerators, and the like has been strongly demanded.
  • the suction efficiency is increased by, for example, providing a valve device of a compression part with two holes, and the compression efficiency is improved.
  • Such a compressor is disclosed in, for example, Japanese Patent Unexamined Publication No. H3-175174.
  • an example of a conventional hermetic compressor is described with reference to drawings.
  • FIG. 6 is a sectional view showing a conventional refrigerant compressor
  • FIG. 7 is an exploded perspective view showing a valve of a conventional refrigerant compressor.
  • a hermetic container 51 To a hermetic container 51 , an outlet port 52 A that is one end of a suction tube 52 is connected. Another end of the suction tube 52 is connected to a piping at the low-pressure side of a refrigerating cycle (not shown).
  • a motor 53 includes a stator 54 and a rotor 55 , so as to drive a compression part 56 . Furthermore, refrigerating machine oil 57 is preserved in a bottom portion of the hermetic container 51 .
  • a coil spring 58 elastically supports the motor 53 and the compression part 56 .
  • the compression part 56 includes a cylinder head 61 , a cylinder block 62 , a valve plate 64 , a suction reed valve 67 , a piston 68 , a connecting rod 70 and a suction muffler 30 .
  • the cylinder head 61 forms a suction space 61 A and a discharge space 61 B.
  • the cylinder block 62 contains a cylinder 63 .
  • the valve plate 64 has two suction holes 65 and two discharge holes 66 .
  • the suction reed valve (hereinafter, referred to as “valve”) 67 has a deformation part 67 A.
  • the connecting rod 70 is linked to an eccentric part 69 A of a crank shaft 69 .
  • the suction muffler 30 communicates to a suction space 61 A via a communicating tube 30 A and to the suction hole 65 of the valve plate 64 , and sucks a refrigerant gas from an inlet port 30 B.
  • the motor 53 drives the compression part 56 , so that the piston 68 reciprocates in the cylinder 63 .
  • a low temperature and low pressure refrigerant gas returning from an external refrigerating cycle (not shown) is firstly sucked into the hermetic container 51 from the suction tube 52 .
  • the refrigerant gas is further sucked from the inlet port 30 B of the suction muffler 30 and passes through the suction hole 65 via the communicating tube 30 A.
  • the suction stroke by flexing the deformation part 67 A of the valve 67 , the refrigerant gas opens the valve 67 and is led to the cylinder 63 .
  • the valve 67 is closed.
  • the refrigerant gas is compressed to high temperature and high pressure, passes from the discharge hole 66 through a discharge tube (not shown) and is led to the external refrigerating cycle (not shown) so as to be used for a refrigerating operation.
  • the valve 67 is so designed as to have a natural frequency for carrying out an opening and closing operation with good timing in accordance with a low-speed operation frequency. Therefore, the compressor is capable of operation with a reduced suction loss and a high volumetric efficiency.
  • valve 67 As a solution to reduce the backflow of a refrigerant gas due to delayed closing of the valve 67 , designing the valve 67 to have a high natural frequency in accordance with the high-speed operation is considered. In this case, since the spring constant of the deformation part 67 A is increased, an amount of flexure is reduced, so that the suction loss is increased and accordingly the refrigerating capacity and the refrigerating efficiency are lowered.
  • the refrigerant compressor of the present invention includes a piston, a cylinder and a valve plate.
  • the valve plate is provided at an opening end of the cylinder and includes a plurality of suction holes.
  • the refrigerant compressor of the present invention further includes a plurality of suction reed valves, which is provided between the opening end of the cylinder and the valve plate, for opening and closing the plurality of suction holes, respectively.
  • At least one of the suction reed valves has a natural frequency different from that of the other reed valves. With this configuration, even when an operation frequency is changed, delayed closing of the suction reed valve and reduction in an amount of flexure are prevented.
  • FIG. 1 is a sectional view showing a refrigerant compressor in an embodiment of the preset invention.
  • FIG. 2 is a front view showing a suction reed valve of the refrigerant compressor shown in FIG. 1 .
  • FIG. 3 is a sectional view showing a cylinder head part of the refrigerant compressor shown in FIG. 1 .
  • FIG. 4 is a graph showing a pressure in a cylinder and an amount of flexure of a reed valve in one stroke in a low-speed operation of a refrigerant compressor in an embodiment of the present invention.
  • FIG. 5 is a graph showing a pressure in a cylinder and an amount of flexure of a reed valve in one stroke in a high-speed operation of a refrigerant compressor in an embodiment of the present invention.
  • FIG. 6 is a sectional view showing a conventional refrigerant compressor.
  • FIG. 7 is an exploded perspective view showing a valve of the refrigerant compressor of FIG. 6 .
  • FIG. 1 is a sectional view showing a refrigerant compressor in an embodiment of the preset invention.
  • FIG. 2 is a front view showing a suction reed valve.
  • FIG. 3 is a sectional view showing a cylinder head part.
  • an outlet port 2 A that is one end of a suction tube 2 is connected. Another end of the suction tube 2 is connected to a piping at the low-pressure side of a refrigerating cycle (not shown).
  • a motor 3 includes a stator 4 and a rotor 5 , and drives a compression part 6 . Furthermore, refrigerating machine oil 7 is preserved in a bottom portion of the hermetic container 1 .
  • a coil spring 8 elastically supports the motor 3 and the compression part 6 .
  • the compression part 6 includes a cylinder head 101 , a cylinder block 12 , a valve plate 110 , suction reed valves (hereinafter, referred to as “valve”) 120 A and 120 B, a piston 18 , a connecting rod 20 and a suction muffler 130 .
  • the cylinder head 101 forms a suction space 101 A and a discharge space 101 B.
  • the cylinder block 12 contains a cylinder 13 .
  • the connecting rod 20 is linked to an eccentric part 19 A of a crank shaft 19 .
  • the suction muffler 130 communicates to a suction space 101 A via a communicating tube 130 A and to suction holes 112 A and 112 B of the valve plate 110 , and sucks a refrigerant gas from an inlet port 130 B.
  • the valve plate 110 has the suction holes 112 A and 112 B and discharge holes (not shown).
  • the suction holes 112 A and 112 B are respectively inclined from opening portions 114 A and 114 B of the valve plate 110 at the side of the cylinder 13 to opening portions 114 C and 114 D of the valve plate 110 at the side of cylinder head 101 in the direction in which a distance between the suction holes is reduced.
  • the valves 120 A and 120 B have deformation parts 122 A and 122 B having different lengths each other, respectively. Since the deformation part 122 A is longer than the deformation part 122 B, the spring constant of the valve 120 A is smaller, and the valve 120 A has a lower natural frequency than that of the valve 120 B.
  • valves 120 A and 120 B are asymmetric with respect to centerlines 124 A and 124 B of the deformation parts 122 A and 122 B. Positions of center points of the suction holes 112 A and 112 B correspond to points 126 A and 126 B of the valves 120 A and 120 B, respectively.
  • Seal parts 128 A and 128 B seal the suction holes 112 A and 112 B provided on the valve plate 110 .
  • FIG. 4 is a graph showing a pressure in a cylinder and an amount of flexure of a reed valve in one stroke in a low-speed operation of a refrigerant compressor in an embodiment of the present invention.
  • FIG. 5 is a graph showing a pressure in a cylinder and an amount of flexure of a reed valve in one stroke in a high-speed operation of a refrigerant compressor in an embodiment of the present invention.
  • the motor 3 drives the compression part 6 , so that the piston 18 reciprocates in the cylinder 13 .
  • a low temperature and low pressure refrigerant gas returning from an external refrigerating cycle (not shown) is firstly sucked into the hermetic container 1 from the suction tube 2 .
  • the refrigerant gas is further sucked from the inlet port 130 B of the suction muffler 130 and passes through the suction holes 112 A and 112 B via the communicating tube 130 A.
  • the suction stroke by flexing the deformation parts 122 A and 122 B of the valves 120 A and 120 B, the refrigerant gas opens the valve 120 A and 120 B and is led to the cylinder 13 .
  • valves 120 A and 120 B are closed, and the refrigerant gas is compressed to high temperature and high pressure, passes from the discharge hole through a discharge tube (not shown) and is led to the external refrigerating cycle to be used for a refrigerating operation.
  • the point 140 A means a point at which the gas pressure load generated by differential pressure becomes larger than a resultant force of flexure load of the valves 120 A- 120 B and an adhesion force with the viscosity of refrigerating machine oil at the seal parts of the valves 120 A- 120 B.
  • valves 120 A and 120 B are closed at a point 140 B at which the pressure in the cylinder 13 exceeds the pressure in the suction space 101 A of the cylinder head 101 , and suction of the refrigerant gas from the suction muffler 130 is completed.
  • the valve 120 A repeats opening and closing operations 150 A twice at a natural frequency in primary deformation mode while flexing the deformation part 122 A. Since the valve 120 A is selected to have a natural frequency corresponding to a low-speed operation frequency, the valve 120 A completes closing substantially with the same timing as the point 140 B. Furthermore, since the spring constant of the valve 120 A is small, even under conditions that the flow rate of sucked gas is slow during a low-speed operation, a suction loss due to the shortage of an amount of flexure is not increased.
  • the valve 120 B has a natural frequency and a spring constant higher than those of the valve 120 A, and repeats opening and closing operations 150 B four times between the point 140 A and the point 140 B.
  • the valve 120 B opens widely with a certain amount of flexure according to the circulation amount of refrigerant at the first to third opening and closing operations 150 B.
  • the fourth opening and closing operation since in the compression stroke, the differential pressure between the pressure in the cylinder 13 and the pressure in the suction space 101 A of the cylinder head 101 is extremely small. At this time, the refrigerant gas flows in the suction hole 112 A of the valve 120 A that flexes more largely.
  • valve 120 B hardly flexes and it completes opening and closing operation near the point 141 B.
  • the valve 120 B repeats opening and closing operations 151 B three times and flexes with a certain amount of flexure according to the circulation amount of refrigerant, and then completes closing with good timing.
  • the point 141 A means a point at which the pressure in the cylinder 13 becomes lower than the pressure in the suction space 101 A of the cylinder head 101 .
  • the point 141 B means a point at which the pressure in the cylinder 13 exceeds the pressure in the suction space 101 A of the cylinder head 101 .
  • the valve 120 A opens widely in a certain amount of flexure according to the circulation amount of refrigerant at the first opening and closing operation 151 A.
  • the second opening and closing operation since in a compression stroke, the differential pressure between the pressure in the cylinder 13 and the pressure in the suction space 101 A of the cylinder head 101 is extremely small. Therefore, the refrigerant gas passes through the suction hole 112 B of the valve 120 B that flexes more largely. Consequently, the valve 120 A hardly flexes and it completes the opening and closing operation near the point 141 B.
  • valves 120 A and 120 B are asymmetric with respect to the centerlines 124 A and 124 B of the deformation parts 122 A and 122 B. Therefore, working points 126 A and 126 B of the gas pressure load that act on the valves 120 A and 120 B deviate from centerlines 124 A and 124 B of the flexing deformation of the valves 120 A and 120 B. Thus, the valves 120 A and 120 B start to open with torsion deformation. That is to say, torsional moment due to gas pressure load acts on the valves 120 A and 120 B.
  • both of the shapes of the valves 120 A and 120 B are asymmetric with respect to the centerlines 124 A and 124 B of the deformation parts 122 A and 122 B. However, they may be configured so that only one of the shapes is asymmetric.
  • a refrigerant gas inside the hermetic container 1 passes through the suction space 101 A in a high-temperature cylinder head 101 via the suction muffler 130 and is sucked into the cylinder 13 from the suction holes 112 A and 112 B provided on the valve plate 110 .
  • the refrigerant gas inside the cylinder 13 is in a high temperature state of about 100° C. by a compression action and is discharged to a discharge space 101 B of the cylinder head 101 .
  • the cylinder head 101 is heated to high temperature state of about 80° C.
  • the suction space 101 A in the cylinder head 101 can be configured to have a reduced volume and heat receiving area, so that the thermal transmission to the flowing refrigerant gas is reduced.
  • both of the suction holes 112 A and 112 B are inclined, but only one of them may be inclined.
  • the number of the valves 120 A and 120 B is two. However, when the number is three or more, the same effect can be obtained.
  • the natural frequency is changed by varying the lengths of the valves 120 A and 120 B.
  • the same effect can be obtained even when the natural frequency is changed by varying the widths or shapes of the valves 120 A and 120 B.
  • a refrigerant compressor of the present invention includes a piston, a cylinder and a valve plate.
  • the valve plate is provided at an opening end of the cylinder and has a plurality of suction holes.
  • the refrigerant compressor of the present invention further includes a plurality of suction reed valves provided between the opening end of the cylinder and the valve plate, and opens and closes the plurality of suction holes, respectively. At least one of the suction reed valves has a natural frequency different from that of the other reed valves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
US10/522,514 2003-05-12 2004-05-10 Refrigerant compressor Abandoned US20060039808A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2003-133120 2003-05-12
JP2003133120 2003-05-12
JP2004120162A JP2004360686A (ja) 2003-05-12 2004-04-15 冷媒圧縮機
JP2004-120162 2004-04-15
PCT/JP2004/006578 WO2004099617A1 (ja) 2003-05-12 2004-05-10 冷媒圧縮機

Publications (1)

Publication Number Publication Date
US20060039808A1 true US20060039808A1 (en) 2006-02-23

Family

ID=33436441

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/522,514 Abandoned US20060039808A1 (en) 2003-05-12 2004-05-10 Refrigerant compressor

Country Status (5)

Country Link
US (1) US20060039808A1 (ko)
EP (1) EP1541868A4 (ko)
JP (1) JP2004360686A (ko)
KR (1) KR20050033613A (ko)
WO (1) WO2004099617A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758318B2 (en) 2005-03-30 2010-07-20 Panasonic Corporation Hermetic compressor
US20120121443A1 (en) * 2010-11-16 2012-05-17 Wen San Chou Air compressor having enlarged compartment for receiving pressurized air
US20140134026A1 (en) * 2011-04-28 2014-05-15 Whirlpool S.A. Valve arrangement for hermetic compressors
US20230031688A1 (en) * 2019-12-19 2023-02-02 Anhui Meizhi Compressor Co., Ltd. Hermetically encapsulated refrigerant compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895037A1 (fr) * 2005-12-20 2007-06-22 Tecumseh Europ S A Sa Dispositif a clapets pour compresseur de fluide et compresseur de fluide
JP2010127100A (ja) * 2008-11-25 2010-06-10 Daikin Ind Ltd 吐出弁及び回転式圧縮機
BRPI1105143B1 (pt) * 2011-12-15 2021-07-27 Embraco Indústria De Compressores E Soluções Em Refrigeração Ltda Conjunto de válvulas de sucção para compressor alternativo
EP2909480B1 (en) 2012-09-13 2020-06-24 Emerson Climate Technologies, Inc. Compressor assembly with directed suction
US11236748B2 (en) 2019-03-29 2022-02-01 Emerson Climate Technologies, Inc. Compressor having directed suction
US11767838B2 (en) 2019-06-14 2023-09-26 Copeland Lp Compressor having suction fitting
US11248605B1 (en) 2020-07-28 2022-02-15 Emerson Climate Technologies, Inc. Compressor having shell fitting
US11619228B2 (en) 2021-01-27 2023-04-04 Emerson Climate Technologies, Inc. Compressor having directed suction
WO2024101596A1 (ko) * 2022-11-09 2024-05-16 삼성전자 주식회사 압축기용 머플러

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275541A (en) * 1992-01-15 1994-01-04 Knf Neuberger Gmbh Fluid-operated valve for pumps and the like
US6012908A (en) * 1996-01-23 2000-01-11 Matsushita Refrigeration Company Electrically operated seal compressor having a refrigerant flow branch tube with a chamber disposed in the vicinity of a suction port
US6227825B1 (en) * 1999-01-11 2001-05-08 Barnes Group Inc. Two part reed valve and method of manufacturing
US20020176786A1 (en) * 2001-05-01 2002-11-28 Calsonic Kansei Corporation Piston type compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228951A (ja) * 1996-02-26 1997-09-02 Matsushita Refrig Co Ltd 圧縮機のバルブ装置
JPH09273478A (ja) * 1996-04-08 1997-10-21 Toyota Autom Loom Works Ltd ピストン式圧縮機
JPH09280168A (ja) * 1996-04-10 1997-10-28 Toyota Autom Loom Works Ltd ピストン式圧縮機
DE69738038T2 (de) * 1996-06-14 2008-04-30 Matsushita Refrigeration Co., Higashiosaka Hermetischer Verdichter
JP2000329066A (ja) * 1999-05-19 2000-11-28 Toyota Autom Loom Works Ltd ピストン式圧縮機における吸入弁構造
JP2002106466A (ja) * 2000-09-28 2002-04-10 Toyota Industries Corp ピストン式圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275541A (en) * 1992-01-15 1994-01-04 Knf Neuberger Gmbh Fluid-operated valve for pumps and the like
US6206655B1 (en) * 1995-09-29 2001-03-27 Matsushita Refrigeration Company Electrically-operated sealed compressor
US6012908A (en) * 1996-01-23 2000-01-11 Matsushita Refrigeration Company Electrically operated seal compressor having a refrigerant flow branch tube with a chamber disposed in the vicinity of a suction port
US6227825B1 (en) * 1999-01-11 2001-05-08 Barnes Group Inc. Two part reed valve and method of manufacturing
US20020176786A1 (en) * 2001-05-01 2002-11-28 Calsonic Kansei Corporation Piston type compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758318B2 (en) 2005-03-30 2010-07-20 Panasonic Corporation Hermetic compressor
US20120121443A1 (en) * 2010-11-16 2012-05-17 Wen San Chou Air compressor having enlarged compartment for receiving pressurized air
US8747083B2 (en) * 2010-11-16 2014-06-10 Wen San Chou Air compressor having enlarged compartment for receiving pressurized air
US20140134026A1 (en) * 2011-04-28 2014-05-15 Whirlpool S.A. Valve arrangement for hermetic compressors
US20230031688A1 (en) * 2019-12-19 2023-02-02 Anhui Meizhi Compressor Co., Ltd. Hermetically encapsulated refrigerant compressor

Also Published As

Publication number Publication date
EP1541868A4 (en) 2005-12-14
WO2004099617A1 (ja) 2004-11-18
EP1541868A1 (en) 2005-06-15
KR20050033613A (ko) 2005-04-12
JP2004360686A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
US20060039808A1 (en) Refrigerant compressor
CA2069208C (en) Refrigeration compressor having a contoured piston
US20060045762A1 (en) Suction muffler for compressor
CN1549899A (zh) 密封型压缩机
KR100461232B1 (ko) 유체 압축장치
EP1957796B1 (en) A compressor
KR20130092879A (ko) 압축기용 체크밸브 어셈블리
KR101248437B1 (ko) 용적식 압축기
EP2013481B1 (en) A compressor
US7198475B2 (en) Valve assembly in hermetic compressor
US6835050B2 (en) Reciprocating compressor
KR101543660B1 (ko) 압축기 및 맥동저감 밸브조립체
US20050129548A1 (en) Suction valve and reciprocating compressor having the same
KR20030059614A (ko) 왕복동식 압축기의 가변형 흡입 머플러
KR100833378B1 (ko) 왕복동식 압축기의 전단층 확산 토출포트
CN219139302U (zh) 一种压缩机排气结构、压缩机
KR20120102904A (ko) 가스압축기
JP6321400B2 (ja) 密閉型圧縮機
KR100308646B1 (ko) 밀폐형 압축기의 흡입머플러
KR100341420B1 (ko) 저소음형 실린더
KR200317644Y1 (ko) 압축기의 흡입 머플러
JP2002242830A (ja) 吐出脈動低減構造を持つ往復動式圧縮機
JP2005214068A (ja) 密閉型往復動圧縮機
KR100577824B1 (ko) 밀폐형 압축기
KR19990023378U (ko) 왕복동 압축기의 흡입밸브

Legal Events

Date Code Title Description
AS Assignment

Owner name: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KOBAYASHI, MASANORI;REEL/FRAME:017179/0263

Effective date: 20050107

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION