US20060000412A1 - Systems and apparatus for atomic-layer deposition - Google Patents
Systems and apparatus for atomic-layer deposition Download PDFInfo
- Publication number
- US20060000412A1 US20060000412A1 US11/215,451 US21545105A US2006000412A1 US 20060000412 A1 US20060000412 A1 US 20060000412A1 US 21545105 A US21545105 A US 21545105A US 2006000412 A1 US2006000412 A1 US 2006000412A1
- Authority
- US
- United States
- Prior art keywords
- gas
- holes
- atomic
- layer deposition
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000231 atomic layer deposition Methods 0 abstract claims description title 52
- 239000000758 substrates Substances 0 abstract claims description 35
- 239000002243 precursor Substances 0 abstract claims description 19
- 239000000463 materials Substances 0 abstract claims description 15
- 239000007800 oxidant agent Substances 0 abstract claims description 14
- 230000001590 oxidative Effects 0 abstract claims description 13
- 229910052782 aluminium Inorganic materials 0 abstract claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound   [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0 abstract claims description 6
- 239000007789 gases Substances 0 claims description 115
- 238000009826 distribution Methods 0 claims description 77
- 239000011799 hole materials Substances 0 claims description 65
- PNEYBMLMFCGWSK-UHFFFAOYSA-N al2o3 Chemical compound   [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0 abstract description 12
- 239000000203 mixtures Substances 0 claims description 11
- 229910052710 silicon Inorganic materials 0 claims description 10
- 239000010703 silicon Substances 0 claims description 10
- 229940024548 Aluminum Oxide Drugs 0 abstract description 9
- JLTRXTDYQLMHGR-UHFFFAOYSA-N Trimethylaluminium Chemical compound   C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0 claims description 9
- 229910001868 water Inorganic materials 0 claims description 7
- 238000009740 moulding (composite fabrication) Methods 0 abstract description 5
- 239000011519 fill dirt Substances 0 abstract description 4
- 239000010935 stainless steel Substances 0 claims description 3
- 229910001220 stainless steel Inorganic materials 0 claims description 3
- 238000004891 communication Methods 0 claims 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound   O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0 claims 1
- 229910052814 silicon oxides Inorganic materials 0 claims 1
- 239000010410 layers Substances 0 description 17
- 238000000034 methods Methods 0 description 13
- 229910052786 argon Inorganic materials 0 description 11
- 239000004199 argon Substances 0 description 11
- 238000005229 chemical vapour deposition Methods 0 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Chemical compound   [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0 description 8
- 239000011797 cavity materials Substances 0 description 7
- 239000000969 carrier Substances 0 description 5
- 238000004089 heat treatment Methods 0 description 5
- 108010078762 Protein Precursors Proteins 0 description 4
- 102000014961 Protein Precursors Human genes 0 description 4
- 239000004452 animal feeding substances Substances 0 description 3
- 230000015572 biosynthetic process Effects 0 description 3
- 238000006243 chemical reaction Methods 0 description 3
- 230000035611 feeding Effects 0 description 3
- 239000010408 films Substances 0 description 3
- 238000005755 formation Methods 0 description 3
- 239000010409 thin films Substances 0 description 3
- 238000009827 uniform distribution Methods 0 description 3
- -1 aluminum oxides Chemical group 0 description 2
- 125000004429 atoms Chemical group 0 description 2
- 230000015556 catabolic process Effects 0 description 2
- TUIODWJCDYZLIJ-UHFFFAOYSA-N dimethylalumanylium;hydride Chemical compound   [H-].C[Al+]C TUIODWJCDYZLIJ-UHFFFAOYSA-N 0 description 2
- 238000005516 engineering processes Methods 0 description 2
- 230000001788 irregular Effects 0 description 2
- 238000005365 production Methods 0 description 2
- 239000000376 reactants Substances 0 description 2
- 239000004065 semiconductor Substances 0 description 2
- 230000001154 acute Effects 0 description 1
- 238000000137 annealing Methods 0 description 1
- 230000000712 assembly Effects 0 description 1
- 239000006227 byproducts Substances 0 description 1
- 230000001721 combination Effects 0 description 1
- 230000023298 conjugation with cellular fusion Effects 0 description 1
- 230000000875 corresponding Effects 0 description 1
- 238000000151 deposition Methods 0 description 1
- 238000005137 deposition process Methods 0 description 1
- 239000003989 dielectric material Substances 0 description 1
- 238000001312 dry etching Methods 0 description 1
- 230000000694 effects Effects 0 description 1
- 230000002708 enhancing Effects 0 description 1
- 238000005530 etching Methods 0 description 1
- 239000011521 glass Substances 0 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N hydrogen peroxide Chemical compound   OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0 description 1
- 230000000640 hydroxylating Effects 0 description 1
- 230000001965 increased Effects 0 description 1
- 238000003780 insertion Methods 0 description 1
- 238000010030 laminating Methods 0 description 1
- 238000004519 manufacturing process Methods 0 description 1
- 230000000873 masking Effects 0 description 1
- 230000013011 mating Effects 0 description 1
- 229910001876 nitrous oxide Inorganic materials 0 description 1
- 239000000615 nonconductor Substances 0 description 1
- 125000002524 organometallic group Chemical group 0 description 1
- 230000003647 oxidation Effects 0 description 1
- 238000007254 oxidation reaction Methods 0 description 1
- 229910052760 oxygen Inorganic materials 0 description 1
- 239000001301 oxygen Substances 0 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound   O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0 description 1
- 238000000059 patterning Methods 0 description 1
- 238000001020 plasma etching Methods 0 description 1
- 229920000642 polymers Polymers 0 description 1
- 239000000047 products Substances 0 description 1
- 239000010980 sapphire Substances 0 description 1
- 229910052594 sapphire Inorganic materials 0 description 1
- 238000000926 separation method Methods 0 description 1
- 239000000126 substances Substances 0 description 1
- 230000021037 unidirectional conjugation Effects 0 description 1
- 239000002699 waste material Substances 0 description 1
- 238000001039 wet etching Methods 0 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
Abstract
The present inventors devised unique atomic-layer deposition systems, methods, and apparatus suitable for aluminum-oxide deposition. One exemplary method entails providing an outer chamber enclosing a substrate, forming an inner chamber within the outer chamber, and introducing an oxidant into the inner chamber, and introducing an aluminum precursor into the inner chamber. The inner chamber has a smaller volume than the outer chamber, which ultimately requires less time to fill and purge and thus promises to reduce cycle times for deposition of materials, such as aluminum oxide.
Description
- The present application is a divisional of U.S. application Ser. No. 10/137,168, filed May 2, 2002, which is incorporated herein by reference in its entirety.
- This invention concerns methods of making integrated circuits, particularly layer formation techniques, such as chemical-vapor deposition and atomic-layer deposition.
- Integrated circuits, the key components in thousands of electronic and computer products, are interconnected networks of electrical components fabricated on a common foundation, or substrate. Fabricators generally build these circuits layer by layer, using techniques, such as deposition, doping, masking, and etching, to form and interconnect thousands and even millions of microscopic transistors, resistors, and other electrical components on a silicon substrate, known as a wafer.
- One common technique for forming layers in an integrated circuit is called chemical vapor deposition. Chemical vapor deposition generally entails placing a substrate in a reaction chamber, heating the substrate to prescribed temperatures, and introducing one or more gases, known as precursor gases, into the chamber to begin a deposition cycle. The precursor gases enter the chamber through a gas-distribution fixture, such as a gas ring or a showerhead, one or more centimeters above the substrate, and descend toward the heated substrate. The gases react with each other and/or the heated substrate, blanketing its surface with a layer of material. An exhaust system then pumps gaseous by-products or leftovers from the reaction out of the chamber through a separate outlet to complete the deposition cycle.
- Conventional chemical-vapor-deposition (CVD) systems suffer from at least two problems. First, conventional CVD systems generally form non-uniformly thick layers that include microscopic hills and valleys, and thus generally require use of post-deposition planarization or other compensation techniques. Second, it is difficult, if not impossible, for CVD to provide uniform coverage of trench sidewalls or complete filling of holes and trenches.
- To address these shortcomings, fabricators have developed atomic-layer deposition (ALD), a special form of CVD that allows highly uniform formation of ultra-thin layers having thicknesses of one molecule or several atoms of the deposited material. Though similar to CVD in terms of equipment and process flow, ALD relies on adsorption of some of the reactants into exposed surfaces, and thus provides coverage and fill of structural features that are difficult, if not impossible, using CVD.
- In recent years, researchers and engineers have made strides toward making ALD commercially viable for some applications. For example, one team of researchers reportedly optimized an ALD process for depositing an aluminum oxide (AlOx) film in thin-film headsādevices used to read and write magnetic data. See, Paranjpe et al., Atomic Layer Deposition of AlOx for Thin Film Head Gap Applications, Journal of Electrochemical Society, 148 (9), pp. G465-G471 (2001), which is incorporated herein by reference.
- However, the present inventors have recognized that the equipment and processes reported as optimal for thin-film head applications suffer from some limitations relative to use in fabricating integrated circuits. For example, the reported process deposits material at the slow rate of less than one Angstrom per cycle, suggesting that more than 50 cycles would be necessary to form a 50-Angstrom-thick layer. Moreover, the reported equipment uses a larger than desirable reaction chamber, which takes longer to fill up or pump out, and thus prolongs the duration of each deposition cycle.
- Accordingly, there is a need for better systems and methods of atomic-layer deposition of aluminum oxides as well as other material compositions.
- To address these and/or other problems, the present inventor devised new systems, methods, and apparatuses for atomic layer deposition. One exemplary atomic-layer deposition system, well suited for aluminum-oxide depositions in integrated-circuit fabrication, includes an outer chamber, a substrate holder, and a unique gas-distribution fixture. The fixture includes a gas-distribution surface having two sets of holes and a gas-confinement member that forms a wall around the holes. In operation, one set of holes dispenses an aluminum-carrying precursor and the other dispenses an oxidizing agent gas, after the gas-confinement member engages, or otherwise cooperates with the substrate holder to form an inner chamber within the outer chamber.
- The inner chamber has a smaller volume than the outer chamber and thus consumes less gas during the deposition process than would the outer chamber used alone. Also, the smaller chamber volume allows the exhaust system to pump the chamber more quickly, thus allowing shorter ALD cycles and potentially increasing rates of production.
- These and other embodiments, aspects, advantages, and features of the present invention are set forth in part in the description and claims which follow, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.
-
FIG. 1 is a side view of an exemplary deposition reactor according to the invention; -
FIG. 2 is a plan view of an exemplary gas-distribution fixture according to the invention; and -
FIG. 3 is a flowchart showing an exemplary method according to the invention. - The following detailed description, which references and incorporates the above-identified figures, describes and illustrates one or more specific embodiments of the invention. These embodiments, offered not to limit but only to exemplify and teach the invention, are shown and described in sufficient detail to enable those skilled in the art to make and use the invention. Thus, where appropriate to avoid obscuring the invention, the description may omit certain information known to those of skill in the art.
-
FIG. 1 shows an exemplary atomic-layer-deposition system 100 which incorporates teachings of the present invention. In particular, system 100 includes a chamber 110, a wafer holder 120, a gas-distribution fixture (or showerhead) 130, a gas-supply system 140, and exhaust pumps 150 and 160. - More particularly, chamber 110 includes respective top and bottom plates 112 and 114 and a sidewall 116. In the exemplary embodiment, chamber 110 is a cylindrical structure formed of stainless steel or glass. However, other embodiments use different structures and materials. Bottom plate 114 includes an opening 114A. Extending through opening 114A is a stem portion 122 of wafer holder 120.
- Wafer holder 120 also includes a support platform 124, one or more heating elements 126, one or more temperature sensors 128, and an RF source 129. Holder 120 (also called a chuck) raises and rotates manually or automatically via lift and rotation devices, and is coupled to a power supply and temperature control circuitry (all of which are not shown). Support platform 124 supports one or more substrates, wafers, or integrated-circuit assemblies 200. Substrate 200 has an exemplary width or diameter of about 30 centimeters and an exemplary thickness in the range of 850-1000 microns. (The term āsubstrate,ā as used herein, encompasses a semiconductor wafer as well as structures having one or more insulative, conductive, or semiconductive layers and materials. Thus, for example, the term embraces silicon-on-insulator, silicon-on-sapphire, and other advanced structures.)
- Heating elements 126 and temperature sensors 128 are used for heating substrates 200 to a desired temperature. Radio Frequency (RF) source 129, for example, a 1.25-kilowatt-13.56-megahertz RF generator, is used to generate and sustain a capacitively coupled plasma between the wafer holder and gas-distribution fixture 130. (Some embodiments use generators with smaller or larger capacities.)
- Fixture 130, positioned above wafer holder 120 and substrate 200, includes a gas-distribution member 132, a surface-projection (or gas-confinement) member 134, and gas inlets 136 and 137. In the exemplary embodiment, fixture 130 has three operating positions 138A, 138B, and 138C relative support platform 124. Fixture 130 takes operating position 138A, before and after depositions and operating position 138B during depositions. Position 138C is taken during a plasma anneal to ensure stability of the plasma.
- Gas-distribution member 132 includes main gas inputs 132A and 132B, gas-distribution channels 132D and 132F, and gas-distribution holes 132E and 132G. Main gas inputs 132A and 132B feed respective gas-distribution channels 132D and 132F, which in turn feed respective gas-distribution holes 132E and 132G. (Holes 132E and 132G are actually interleaved in the exemplary embodiment, though shown simply in the figure as spatially segregated groups.) Holes 132D and 132F define a gas-distribution surface 132C.
- In the exemplary embodiment, holes 132D and 132F are substantially circular with a common diameter in the range of 15-20 microns; gas-distribution channels 132D and 132F have a common width in the range of 20-45 microns; and surface 132C is substantially planar and parallel to platform 124 of wafer holder 120. However, other embodiments use other surface forms as well as shapes and sizes of holes and channels.
- Extending from gas-distribution surface 132C is surface-projection member (or collar) 134. Member 134 projects or extends from surface 132C toward support platform 124, defining a fixture cavity 134A. The exemplary embodiment forms surface-projection member 134 from stainless steel as a uniform annular or circular wall or collar that projects perpendicularly from surface 132C to define a right-cylindrical cavity.
- However, other embodiments form member 134 to project at other angles relative surface 132C. For example, some form the projection at an acute or obtuse angle, such as 45 or 135 degrees, and others form the projection to peripherally define an oval, ellipse, triangle, square, or any desirable regular or irregular polygon. Thus, the present invention encompasses a wide variety of projection shapes and configurations, indeed any projection shape that facilitates definition of an effective cavity or gas-confinement volume in cooperation with wafer holder 120 and/or substrate 200.
-
FIG. 2 , a plan view, shows further details of the exemplary embodiment of gas-distribution fixture 130. In particular, the plan view shows not only exemplary circular peripheries of gas-distribution member 132 and surface-projection member 134, but also an exemplary interleaved distribution pattern for holes 132E and 132G, and an exemplary orthogonal arrangement of gas-distribution channels 132D and 132F. (Holes 132E are shown darkly shaded to distinguish them from holes 132G, which are cross-hatched.) - Other embodiments use other hole distribution patterns and channel arrangements. For example, some embodiments include random or concentric hole patterns and various channel geometries, including concentric circles, rectangles, or other regular or irregular concentric polygons. Some embodiments may also dedicate various subsets of channels and corresponding holes to different gases. For example, one embodiment provides one set of holes and channels for approximately uniform distribution of a gas or vapor, such as TMA precursor and argon carrier gas mixture, and another set of holes and channels for approximately uniform distribution of a gas or vapor, such as a water-argon mixture.
- Gas-distribution member 132 can be made in a number of ways. One exemplary method entails laminating several material layers, with each layer including holes and/or channels to effect distribution of the gases to the separate holes. If the layers are made of silicon, the material layers can be patterned and etched, for example, using conventional photolithographic or micro-electro-mechanical systems (MEMS) technology, to form holes and channels. Dry-etching techniques produce small openings and channels, while wet etching produces larger openings and channels. For further details, see, for example, M. Engelhardt, āModern Application of Plasma Etching and Patterning in Silicon Process Technology,ā Contrib. Plasma Physics, vol. 39, no. 5, pp. 473-478 (1999). Also see co-pending and co-assigned U.S. patent application Ser. No. 09/797,324 (docket 303.717US1 and 00-0264), which was filed on Mar. 1, 2001 and which is incorporated herein by reference.
- The processed layers can then be bonded together with the holes and channels in appropriate alignment using known wafer-bonding techniques. See, for example, G. Krauter et al., āRoom Temperature Silicon Wafer Bonding with Ultra-Thin Polymer Films,ā Advanced Materials, vol. 9, no. 5, pp. 417-420 (1997); C. E. Hunt et al., āDirect Bonding of Micromachined Silicon Wafers for Laser Diode Heat Exchanger Applications,ā Journal of Micromechan. Microeng, vol. 1, pp. 152-156 (1991); Zucker, O. et al., āApplications of oxygen plasma processing to silicon direct bonding,ā Sensors and Actuators, A. Physical, vol. 36, no. 3, pp. 227-231 (1993), which are all incorporated herein by reference. See also, co-pending and co-assigned U.S. patent application Ser. No. 09/189,276 (dockets 303.534US1 and 97-1468) entitled āLow Temperature Silicon Wafer Bond Process with Bulk Material Bond Strength,ā which was filed Nov. 10, 1998 and which is also incorporated herein by reference. The resulting bonded structure is then passivated using thermal oxidation for example.
- For an alternative fixture structure and manufacturing method that can be combined with those of the exemplary embodiment, see U.S. Pat. No. 5,595,606, entitled āShower Head and Film Forming Apparatus Using Same, which is incorporated herein by reference. In particular, one embodiment based on this patent adds a projection or gas-confinement member to the reported showerhead structure.
-
FIG. 1 also shows that gas inlets 136 and 137, which feed respective holes 132E and 132G, are coupled to gas-supply system 140. Specifically, gas-supply system 140 includes gas lines 142 and 143, gas sources 144, 145, and 146, and manual or automated mass-flow controllers 147, 148, and 149. Gas line or conduit 142, which includes one or more flexible portions (not specifically shown), passes through an opening 116A in chamber sidewall 116 to connect with gas inlet 136. Gas sources 144 and 145 are coupled respectively via mass-flow controllers 147 and 148 to gas line 142. Gas line 143, which also includes one or more flexible portions (not specifically shown), passes through an opening 116B in chamber sidewall 116 is coupled via mass-flow controller 149 to source 146. - In the exemplary embodiment, which is tailored for aluminum oxide deposition, source 144 provides a vapor-drawn aluminum precursor, such as trimethylaluminum (TMA) with a vapor pressure of 11 Torr at room temperature; source 145 provides a carrier gas, such as argon; and source 146 provides an oxidant, such as a water-argon mixture. The water-argon mixture can be implemented by bubbling an argon carrier through a water reservoir. Other embodiments use other aluminum precursors, such as trisobutylaluminum (TIBA), dimethylaluminum hydride (DMAH), AlC3, and other halogenated precursors and organometallic precursors. Other types of oxidants include H2O2, O2, O3, N2O. Thus, the present invention is not limited to specific aluminum precursors or oxidants.
- System 100 also includes vacuum pumps 150 and 160. Vacuum pump 150 is coupled to gas-distribution fixture 130 via a mass-flow controller 152 and gas line 142. And, vacuum pump 160 is coupled to the interior of chamber 110 via a line 162 and an opening 114B in chamber bottom plate 114.
- In general operation, system 100 functions, via manual or automatic control, to move gas-distribution fixture 130 from operating position 138A to position 138B, to introduce reactant gases from sources 145, 146, and 147 through holes 132E and 132G in gas-distribution fixture 130 onto substrate 200, and to deposit desired matter, such as an aluminum oxide, onto a substrate.
- More particularly,
FIG. 3 shows a flowchart 300 which illustrates an exemplary method of operating system 100. Flowchart 300 includes process blocks 302-320. - The exemplary method begins at block 302 with insertion of substrate 200 onto wafer holder 120. Execution then proceeds to block 304.
- In block 304, the system forms or closes an inner chamber around substrate 200, or at least a portion of substrate 200 targeted for deposition. In the exemplary embodiment, this entails using a lever or other actuation mechanism (not shown) to move gas-distribution fixture 130 from position 138A to position 138B or to move wafer holder 120 from position 138B to 138A. In either case, this movement places gas-distribution surface 132C 10-20 millimeters from an upper most surface of substrate 200. In this exemplary position, a lower-most surface of surface-projection member 134 contacts the upper surface of support platform 124, with the inner chamber bounded by gas-distribution surface 132C, surface-projection member 134, and the upper surface of support platform 124.
- Other embodiments define the inner chamber in other ways. For example, some embodiments include a surface-projection member on support platform 124 of wafer holder 120 to define a cavity analogous in structure and/or function to cavity 134A. In these embodiments, the surface-projection member takes the form of a vertical or slanted or curved wall, that extends from support platform 124 and completely around substrate 200, and the gas-distribution fixture omits a surface-projection member. However, some embodiments include one or more surface-projection members on the gas-distribution fixture and the on the support platform, with the projection members on the fixture mating, engaging, or otherwise cooperating with those on the support platform to define a substantially or effectively closed chamber. In other words, the inner chamber need not be completely closed, but only sufficiently closed to facilitate a desired deposition.
- In block 306, after forming the inner chamber, the exemplary method continues by establishing desired ambient conditions for the desired deposition. This entails setting temperature and pressure conditions within chamber 110, including cavity 134A. To this end, the exemplary embodiment operates heating element 126 to heat substrate 200 to a desired temperature, such as 150-200° C., and operating vacuum pump 150 and/or pump 160 to establish a desired ambient pressure, such as 3.0 Torr. Gas-distribution fixture 130 is held at a temperature 30-50° C. warmer than its surroundings. (However, other embodiments can maintain the fixture at other relative operating temperatures.) After establishing the desired ambient conditions, execution continues at block 308.
- Block 308 entails hydroxylating the surface of substrate 200 by introducing an oxidant into the separate chamber. To this end, the exemplary embodiment shuts mass-flow controllers 147 and 148 and operates mass-flow controller 149 to transfer an oxidant, such as a water in an argon carrier, from source 146 through gas line 143 and holes 132G into cavity 134A for a period, such as two seconds.
- Notably, the inner chamber is smaller in volume than chamber 100 and thus requires less gas and less fill time to achieve desired chemical concentrations (assuming all other factors equal.) More precisely, the exemplary embodiment provides an inner chamber with an empty volume in the range of 70 to 350 cubic centimeters, based on a 1-to-5 millimeter inner-chamber height and a fixture with a 30-centimeter diameter. Additionally, the number and arrangement of holes in the fixture as well as the placement of the holes close to the substrate, for example within five millimeters of the substrate, promote normal gas incidence and uniform distribution of gases over the targeted portion of substrate 200.
- Block 310 entails purging or evacuating the inner chamber to reduce water concentration in the gas-distribution fixture and inner chamber to trace levels. To this end, the exemplary method initially drives a high flow of argon gas from source 145 through fixture 130 into the inner chamber and then draws the gas out of the inner chamber through the fixture via vacuum pump 150, defining a purge cycle of less than five seconds, for example three-four seconds. The present invention, however, is not believed to be limited to any particular purge-cycle duration.
- Next, as block 312 shows, the exemplary method introduces an aluminum precursor into the inner chamber through gas-distribution fixture 130. This entail operating mass-flow controllers 147 and 148 to respectively allow the flow of TMA and an argon carrier into fixture 130 via line 142 for a period of time such as 0.5-2.0 seconds. During this period, the argon carries the TMA to the hydroxylated surface of the substrate, causing formation of an approximately 0.8 Angstrom (ā«) monolayer of aluminum oxide (AlOx).
- Block 314 entails purging or evacuating the inner chamber to reduce precursor concentration in the gas-distribution fixture and inner chamber to trace levels. To this end, the exemplary method initially drives a flow of argon gas from source 145 through fixture 130 into the inner chamber and then draws the gas out of the inner chamber through the fixture via vacuum pump 150. Again, this purge cycle is expected to consume less than five seconds.
- At this point, as represented by a return path 315 back to block 304, blocks 304-314 can be repeated as many times as desired to achieve an aluminum-oxide layer within roughly one Angstrom of virtually any desired thickness from 5-10 Angstroms upwards. For semiconductor applications, such as forming gate dielectrics, thicknesses in the range of 50-80 Angstroms could be used.
- Block 316 entails annealing the substrate and deposited aluminum-oxide layer to enhance the dielectric breakdown voltage of the layer. In the exemplary embodiment, this entails moving fixture 130 to operating position 138C (which establishes a substrate-to-fixture separation in the range of 30-50 millimeters) and using RF source 129 to generate a 250 Watt capacitively coupled plasma at 0.12 Torr in an argon-oxygen atmosphere (10 atom percent O2) between the wafer holder. Some embodiments anneal after every monolayer to maximize dielectric breakdown strength, and some anneal after each 25-50 Angstroms of deposited material thickness. Though various anneal times are feasible, the exemplary embodiment anneals for 10-15 seconds in high-temperature environment. A return path 317 back to block 304 indicates that blocks 304-316 can be repeated as many times as desired.
- In block 318, the system opens the separate chamber. In the exemplary embodiment, this entails automatically or manually moving gas-distribution fixture 130 to position 138A. Other embodiments, however, move the wafer holder or both the fixture and the wafer holder. Still other embodiments may use multipart collar or gas-confinement members which are moved laterally relative the wafer holder or gas-distribution fixture to open and close an inner chamber.
- In block 320, substrate 200 is unloaded from chamber 110. Some embodiments remove the substrate manually, and others remove it using an automated wafer transport system.
- In furtherance of the art, the inventors have presented new systems, methods, and apparatuses for atomic-layer deposition. One exemplary system includes an outer chamber, a substrate holder, and a unique gas-distribution fixture. The fixture engages, or otherwise cooperates with the substrate holder to form an inner chamber within the outer chamber. Notably, the inner chamber not only consumes less gas during deposition to reduce deposition waste and cost, but also facilitates rapid filling and purging to reduce deposition cycle times (with all other factors being equal.)
- The embodiments described above are intended only to illustrate and teach one or more ways of practicing or implementing the present invention, not to restrict its breadth or scope. The actual scope of the invention, which embraces all ways of practicing or implementing the invention, is defined only by the following claims and their equivalents.
Claims (32)
1. An atomic-layer deposition system comprising:
a chamber; and
a gas-distribution fixture in the chamber, the fixture including a gas-distribution surface having a first plurality of holes and a second plurality of holes and a gas-confinement member extending from the gas-distribution surface around the first and second plurality of holes, wherein the first and second pluralities of holes are isolated from each other such that gases that flow into the first and second pluralities of holes do not mix inside the gas-distribution fixture.
2. The atomic-layer deposition system of claim 1 , wherein the gas-confinement member surrounds all the holes.
3. The atomic-layer deposition system of claim 1 , wherein the gas-confinement member consists essentially of a material different from that of the gas-distribution surface.
4. The atomic-layer deposition system of claim 1 , wherein the gas-distribution surface is substantially planar and includes silicon and silicon oxide.
5. The atomic-layer deposition system of claim 1 , wherein the atomic-layer deposition system includes an RF source coupled to wafer holder.
6. The atomic-layer deposition system of claim 1 , wherein the atomic-layer deposition system includes:
a wafer holder having a wafer-support surface confronting the gas-distribution surface;
a first source to couple a precursor to the first plurality of holes in the gas-distribution fixture; and
a second source to couple an oxidant to the second plurality of holes in the gas-distribution fixture.
7. The atomic-layer deposition system of claim 6 , wherein the gas-confinement member extends perpendicularly from the gas-distribution surface toward the wafer-support surface.
8. The atomic-layer deposition system of claim 6 , wherein the wafer-support surface is substantially parallel to the gas-distribution surface.
9. The atomic-layer deposition system of claim 6 , wherein the first source includes trimethylaluminum as the precursor and the second source includes water as the oxidant.
10. An atomic-layer deposition system comprising:
a chamber;
a gas-distribution fixture in the chamber, the fixture including:
a gas-distribution member including:
a plurality of first channels and a plurality of second channels; and
a gas-distribution surface having a plurality of first holes and a plurality of second holes, with each of the first holes in fluid communication with at least one of the first channels and each of the second holes in fluid communication with at least one the second channels, the plurality of first holes isolated from the plurality of second holes such that gases that flow into the plurality of first holes and the plurality of second holes do not mix inside the gas-distribution fixture; and
a gas-confinement member within the first chamber and extending around the plurality of first holes and the plurality of second holes;
a wafer holder having a wafer-support surface confronting the first and second holes;
a first source to couple a precursor to the plurality of first channels; and
a second source to couple an oxidant to the plurality of second holes.
11. The atomic-layer deposition system of claim 10 , wherein the gas-confinement member extends perpendicularly relative to the gas-distribution surface.
12. The atomic-layer deposition system of claim 10 , wherein the gas-confinement member surrounds all the holes.
13. The atomic-layer deposition system of claim 10 , wherein the gas-confinement member consists essentially of a material different from that of the gas-distribution surface.
14. The atomic-layer deposition system of claim 10 , wherein the gas-distribution surface is substantially planar and includes silicon.
15. The atomic-layer deposition system of claim 10 , wherein the first source includes trimethylaluminum as the precursor and the second source includes water as the oxidant.
16. An atomic-layer deposition system comprising:
a first chamber for confining gases;
a second chamber within the first chamber for at least partially containing a substrate during deposition; and
a gas-distribution fixture in the second chamber, the fixture including a gas-distribution surface having a first plurality of holes and a second plurality of holes and a gas-confinement member extending from the gas-distribution surface around the first and second plurality of holes, wherein the first and second pluralities of holes are isolated from each other such that gases that flow into the first and second pluralities of holes do not mix inside the gas-distribution fixture.
17. The atomic-layer deposition system of claim 16 , wherein the first chamber is a right cylindrical chamber.
18. The atomic-layer deposition system of claim 16 , wherein the second chamber includes a surface of a substrate-support structure.
19. The atomic-layer deposition system of claim 16 , wherein atomic-layer deposition system includes a supply essentially of trimethylaluminum coupled to the second chamber and a supply essentially of water coupled to the second chamber.
20. An atomic-layer deposition system comprising:
a first chamber having an interior sidewall; and
a second chamber within the first chamber, the second chamber including:
a gas-distribution fixture in the second chamber including a gas-distribution member having a first plurality of holes and a second plurality of holes that define a gas-distribution surface, wherein the first and second pluralities of holes are isolated from each other such that gases that flow into the first and second pluralities of holes do not mix inside the gas-distribution fixture;
a gas-confinement surface at least partly encircling the plurality of holes, the gas-confinement surface spaced from the interior sidewall of the first chamber and nonparallel to the gas-distribution surface; and
a wafer-support surface confronting the gas-distribution surface.
21. The atomic-layer deposition system of claim 20 , wherein the gas-confinement surface is substantially perpendicular to the gas-distribution surface.
22. The atomic-layer deposition system of claim 20 , wherein the wafer support surface is substantially parallel to the gas-distribution surface.
23. The atomic-layer deposition system of claim 20 , wherein the gas-confinement surface consists essentially of a material different from that of the gas-distribution surface.
24. The atomic-layer deposition system of claim 20 , wherein the gas-distribution surface is substantially planar and includes silicon.
25. The atomic-layer deposition system of claim 20 , wherein the atomic-layer deposition system includes:
a first source to couple an aluminum precursor to the second chamber; and
a second source to couple an oxidant to the second chamber.
26. An atomic-layer deposition system comprising:
a first chamber having an interior sidewall;
a second chamber within the first chamber, the second chamber including:
a gas-distribution fixture in the second chamber including a gas-distribution member having a first plurality of holes and a second plurality of holes that define a gas-distribution surface, wherein the first and second pluralities of holes are isolated from each other such that gases that flow into the first and second pluralities of holes do not mix inside the gas-distribution fixture;
a gas-confinement wall at least partly encircling the plurality of holes, the gas-confinement wall spaced from the interior sidewall of the first chamber and nonparallel to the gas-distribution surface; and
a wafer-support surface confronting the gas-distribution surface;
a first source to couple a precursor to the second chamber; and
a second source to couple an oxidant to the second chamber.
27. The atomic-layer deposition system of claim 26 , wherein the wafer-support surface contacts the gas-confinement wall.
28. The atomic-layer deposition system of claim 26 , wherein the gas-confinement wall is substantially perpendicular to the gas-distribution surface and the wafer-support surface.
29. The atomic-layer deposition system of claim 26 , wherein the wall has a uniform height measured from the gas-distribution surface.
30. The atomic-layer deposition system of claim 26 , wherein the wall consists essentially of a stainless steel.
31. The atomic-layer deposition system of claim 26 , wherein the atomic-layer deposition system includes a first plurality of channels in fluid communication with a first subset of the holes and second plurality of channels in fluid communication with a second subset of the holes.
32. The atomic-layer deposition system of claim 26 , wherein the first source includes trimethylaluminum as the precursor and the second source includes water as the oxidant.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/137,168 US7160577B2 (en) | 2002-05-02 | 2002-05-02 | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US11/215,451 US20060000412A1 (en) | 2002-05-02 | 2005-08-29 | Systems and apparatus for atomic-layer deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/215,451 US20060000412A1 (en) | 2002-05-02 | 2005-08-29 | Systems and apparatus for atomic-layer deposition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date | |
---|---|---|---|---|
US10/137,168 Division US7160577B2 (en) | 2002-05-02 | 2002-05-02 | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060000412A1 true US20060000412A1 (en) | 2006-01-05 |
Family
ID=29269052
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/137,168 Expired - Fee Related US7160577B2 (en) | 2002-05-02 | 2002-05-02 | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US11/215,451 Abandoned US20060000412A1 (en) | 2002-05-02 | 2005-08-29 | Systems and apparatus for atomic-layer deposition |
US11/620,324 Expired - Fee Related US7670646B2 (en) | 2002-05-02 | 2007-01-05 | Methods for atomic-layer deposition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/137,168 Expired - Fee Related US7160577B2 (en) | 2002-05-02 | 2002-05-02 | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/620,324 Expired - Fee Related US7670646B2 (en) | 2002-05-02 | 2007-01-05 | Methods for atomic-layer deposition |
Country Status (1)
Country | Link |
---|---|
US (3) | US7160577B2 (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030045082A1 (en) * | 2001-08-30 | 2003-03-06 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators |
US20030207593A1 (en) * | 2002-05-02 | 2003-11-06 | Micron Technology, Inc. | Atomic layer deposition and conversion |
US20030207032A1 (en) * | 2002-05-02 | 2003-11-06 | Micron Technology, Inc. | Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits |
US20030228747A1 (en) * | 2002-06-05 | 2003-12-11 | Micron Technology, Inc. | Pr2O3-based la-oxide gate dielectrics |
US20030227033A1 (en) * | 2002-06-05 | 2003-12-11 | Micron Technology, Inc. | Atomic layer-deposited HfA1O3 films for gate dielectrics |
US20040043569A1 (en) * | 2002-08-28 | 2004-03-04 | Ahn Kie Y. | Atomic layer deposited HfSiON dielectric films |
US20040164357A1 (en) * | 2002-05-02 | 2004-08-26 | Micron Technology, Inc. | Atomic layer-deposited LaAIO3 films for gate dielectrics |
US20040164365A1 (en) * | 2002-08-15 | 2004-08-26 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films |
US20040214399A1 (en) * | 2003-04-22 | 2004-10-28 | Micron Technology, Inc. | Atomic layer deposited ZrTiO4 films |
US20050023626A1 (en) * | 2003-06-24 | 2005-02-03 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectrics |
US20050029604A1 (en) * | 2002-12-04 | 2005-02-10 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US20050029547A1 (en) * | 2003-06-24 | 2005-02-10 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20050054165A1 (en) * | 2003-03-31 | 2005-03-10 | Micron Technology, Inc. | Atomic layer deposited ZrAlxOy dielectric layers |
US20060043504A1 (en) * | 2004-08-31 | 2006-03-02 | Micron Technology, Inc. | Atomic layer deposited titanium aluminum oxide films |
US20060043492A1 (en) * | 2004-08-26 | 2006-03-02 | Micron Technology, Inc. | Ruthenium gate for a lanthanide oxide dielectric layer |
US20060046522A1 (en) * | 2004-08-31 | 2006-03-02 | Micron Technology, Inc. | Atomic layer deposited lanthanum aluminum oxide dielectric layer |
US20060128168A1 (en) * | 2004-12-13 | 2006-06-15 | Micron Technology, Inc. | Atomic layer deposited lanthanum hafnium oxide dielectrics |
US20060177975A1 (en) * | 2005-02-10 | 2006-08-10 | Micron Technology, Inc. | Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics |
US20060228868A1 (en) * | 2005-03-29 | 2006-10-12 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US20060244082A1 (en) * | 2005-04-28 | 2006-11-02 | Micron Technology, Inc. | Atomic layer desposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US20060270147A1 (en) * | 2005-05-27 | 2006-11-30 | Micron Technology, Inc. | Hafnium titanium oxide films |
US20070048926A1 (en) * | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Lanthanum aluminum oxynitride dielectric films |
US20070049023A1 (en) * | 2005-08-29 | 2007-03-01 | Micron Technology, Inc. | Zirconium-doped gadolinium oxide films |
US20070095286A1 (en) * | 2004-12-16 | 2007-05-03 | Yong-Ku Baek | Apparatus and method for thin film deposition |
US20070181931A1 (en) * | 2005-01-05 | 2007-08-09 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US20070187831A1 (en) * | 2006-02-16 | 2007-08-16 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US20080217676A1 (en) * | 2005-04-28 | 2008-09-11 | Micron Technology, Inc. | Zirconium silicon oxide films |
US20100044771A1 (en) * | 2002-12-04 | 2010-02-25 | Ahn Kie Y | Zr-Sn-Ti-O FILMS |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US7869242B2 (en) | 1999-07-30 | 2011-01-11 | Micron Technology, Inc. | Transmission lines for CMOS integrated circuits |
US8084370B2 (en) | 2006-08-31 | 2011-12-27 | Micron Technology, Inc. | Hafnium tantalum oxynitride dielectric |
US8501563B2 (en) | 2005-07-20 | 2013-08-06 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6852167B2 (en) * | 2001-03-01 | 2005-02-08 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
US6778441B2 (en) * | 2001-08-30 | 2004-08-17 | Micron Technology, Inc. | Integrated circuit memory device and method |
US7087954B2 (en) * | 2001-08-30 | 2006-08-08 | Micron Technology, Inc. | In service programmable logic arrays with low tunnel barrier interpoly insulators |
US7135734B2 (en) * | 2001-08-30 | 2006-11-14 | Micron Technology, Inc. | Graded composition metal oxide tunnel barrier interpoly insulators |
US8026161B2 (en) | 2001-08-30 | 2011-09-27 | Micron Technology, Inc. | Highly reliable amorphous high-K gate oxide ZrO2 |
US7132711B2 (en) * | 2001-08-30 | 2006-11-07 | Micron Technology, Inc. | Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers |
US7042043B2 (en) * | 2001-08-30 | 2006-05-09 | Micron Technology, Inc. | Programmable array logic or memory devices with asymmetrical tunnel barriers |
US6953730B2 (en) | 2001-12-20 | 2005-10-11 | Micron Technology, Inc. | Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics |
US7221586B2 (en) | 2002-07-08 | 2007-05-22 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
DE10234735A1 (en) * | 2002-07-30 | 2004-02-12 | Infineon Technologies Ag | Structurization of process area inclined or perpendicular to substrate surface, used in trench in semiconductor, especially in capacitor production, involves depositing liner of uniform thickness from precursors only in upper part |
US6921702B2 (en) | 2002-07-30 | 2005-07-26 | Micron Technology Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US6884739B2 (en) * | 2002-08-15 | 2005-04-26 | Micron Technology Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US7084078B2 (en) * | 2002-08-29 | 2006-08-01 | Micron Technology, Inc. | Atomic layer deposited lanthanide doped TiOx dielectric films |
US7037863B2 (en) * | 2002-09-10 | 2006-05-02 | Samsung Electronics Co., Ltd. | Post thermal treatment methods of forming high dielectric layers over interfacial layers in integrated circuit devices |
JP4140767B2 (en) * | 2003-03-24 | 2008-08-27 | ćć¼ć ę Ŗå¼ä¼ē¤¾ | Method for forming insulating film in semiconductor device |
US20040198069A1 (en) * | 2003-04-04 | 2004-10-07 | Applied Materials, Inc. | Method for hafnium nitride deposition |
DE10320597A1 (en) * | 2003-04-30 | 2004-12-02 | Aixtron Ag | Method and apparatus for the deposition of semiconductor layers with two process gases, of which one is preconditioned |
US6970053B2 (en) * | 2003-05-22 | 2005-11-29 | Micron Technology, Inc. | Atomic layer deposition (ALD) high permeability layered magnetic films to reduce noise in high speed interconnection |
US20050019960A1 (en) * | 2003-07-25 | 2005-01-27 | Moon-Sook Lee | Method and apparatus for forming a ferroelectric layer |
KR101185298B1 (en) | 2003-08-20 | 2012-09-21 | ė¹ģ½ ģøģ¤ķøė£ØėØ¼ģø ģøģ½ķ¬ė ģ“ķ°ė | Alkyl push flow for vertical flow rotating disk reactors |
US20050172897A1 (en) * | 2004-02-09 | 2005-08-11 | Frank Jansen | Barrier layer process and arrangement |
US7700155B1 (en) * | 2004-04-08 | 2010-04-20 | Novellus Systems, Inc. | Method and apparatus for modulation of precursor exposure during a pulsed deposition process |
US20050242387A1 (en) * | 2004-04-29 | 2005-11-03 | Micron Technology, Inc. | Flash memory device having a graded composition, high dielectric constant gate insulator |
KR100589062B1 (en) * | 2004-06-10 | 2006-06-12 | ģ¼ģ±ģ ģ주ģķģ¬ | Method of forming a thin film using an atomic layer deposition process and method of forming a capacitor of a semiconductor device using the same |
US7601649B2 (en) * | 2004-08-02 | 2009-10-13 | Micron Technology, Inc. | Zirconium-doped tantalum oxide films |
KR101309334B1 (en) * | 2004-08-02 | 2013-09-16 | ė¹ģ½ ģøģ¤ķøė£ØėØ¼ģø ģøģ½ķ¬ė ģ“ķ°ė | Multi-cas distribution injector for chemical vapor deposition reactors |
AT543925T (en) * | 2004-11-24 | 2012-02-15 | Oerlikon Solar Ag | Vacuum treatment chamber for very large substrate |
US7399666B2 (en) * | 2005-02-15 | 2008-07-15 | Micron Technology, Inc. | Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics |
US7498247B2 (en) | 2005-02-23 | 2009-03-03 | Micron Technology, Inc. | Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics |
US8330202B2 (en) * | 2005-02-23 | 2012-12-11 | Micron Technology, Inc. | Germanium-silicon-carbide floating gates in memories |
GB0510051D0 (en) * | 2005-05-17 | 2005-06-22 | Forticrete Ltd | Interlocking roof tiles |
US7372098B2 (en) * | 2005-06-16 | 2008-05-13 | Micron Technology, Inc. | Low power flash memory devices |
US7195999B2 (en) | 2005-07-07 | 2007-03-27 | Micron Technology, Inc. | Metal-substituted transistor gates |
US7214994B2 (en) | 2005-08-31 | 2007-05-08 | Micron Technology, Inc. | Self aligned metal gates on high-k dielectrics |
US7393736B2 (en) | 2005-08-29 | 2008-07-01 | Micron Technology, Inc. | Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics |
US8110469B2 (en) | 2005-08-30 | 2012-02-07 | Micron Technology, Inc. | Graded dielectric layers |
US7544596B2 (en) | 2005-08-30 | 2009-06-09 | Micron Technology, Inc. | Atomic layer deposition of GdScO3 films as gate dielectrics |
US8071476B2 (en) | 2005-08-31 | 2011-12-06 | Micron Technology, Inc. | Cobalt titanium oxide dielectric films |
KR100687760B1 (en) * | 2005-10-19 | 2007-02-21 | ķźµģ ģķµģ ģ°źµ¬ģ | Insulator experiencing abruptly metal-insulator transition and method of manufacturing the same, device using the insulator |
US20070116872A1 (en) * | 2005-11-18 | 2007-05-24 | Tokyo Electron Limited | Apparatus for thermal and plasma enhanced vapor deposition and method of operating |
US7592251B2 (en) | 2005-12-08 | 2009-09-22 | Micron Technology, Inc. | Hafnium tantalum titanium oxide films |
US7972974B2 (en) | 2006-01-10 | 2011-07-05 | Micron Technology, Inc. | Gallium lanthanide oxide films |
JP2007211326A (en) * | 2006-02-13 | 2007-08-23 | Nec Electronics Corp | Film deposition apparatus and film deposition method |
US7582161B2 (en) * | 2006-04-07 | 2009-09-01 | Micron Technology, Inc. | Atomic layer deposited titanium-doped indium oxide films |
US8747555B2 (en) | 2006-05-09 | 2014-06-10 | Ulvac, Inc. | Thin film production apparatus and inner block for thin film production apparatus |
KR100791334B1 (en) * | 2006-07-26 | 2008-01-07 | ģ¼ģ±ģ ģ주ģķģ¬ | Method of forming a metal oxide by atomic layer deposition |
US7727908B2 (en) | 2006-08-03 | 2010-06-01 | Micron Technology, Inc. | Deposition of ZrA1ON films |
US7749879B2 (en) * | 2006-08-03 | 2010-07-06 | Micron Technology, Inc. | ALD of silicon films on germanium |
US7985995B2 (en) * | 2006-08-03 | 2011-07-26 | Micron Technology, Inc. | Zr-substituted BaTiO3 films |
US7582549B2 (en) | 2006-08-25 | 2009-09-01 | Micron Technology, Inc. | Atomic layer deposited barium strontium titanium oxide films |
US7432548B2 (en) * | 2006-08-31 | 2008-10-07 | Micron Technology, Inc. | Silicon lanthanide oxynitride films |
US7544604B2 (en) * | 2006-08-31 | 2009-06-09 | Micron Technology, Inc. | Tantalum lanthanide oxynitride films |
US7759747B2 (en) | 2006-08-31 | 2010-07-20 | Micron Technology, Inc. | Tantalum aluminum oxynitride high-Īŗ dielectric |
US7563730B2 (en) | 2006-08-31 | 2009-07-21 | Micron Technology, Inc. | Hafnium lanthanide oxynitride films |
US20080057659A1 (en) * | 2006-08-31 | 2008-03-06 | Micron Technology, Inc. | Hafnium aluminium oxynitride high-K dielectric and metal gates |
US7776765B2 (en) * | 2006-08-31 | 2010-08-17 | Micron Technology, Inc. | Tantalum silicon oxynitride high-k dielectrics and metal gates |
US20080087890A1 (en) * | 2006-10-16 | 2008-04-17 | Micron Technology, Inc. | Methods to form dielectric structures in semiconductor devices and resulting devices |
US8076200B2 (en) | 2006-10-30 | 2011-12-13 | Micron Technology, Inc. | Charge trapping dielectric structures with variable band-gaps |
US20080118731A1 (en) * | 2006-11-16 | 2008-05-22 | Micron Technology, Inc. | Method of forming a structure having a high dielectric constant, a structure having a high dielectric constant, a capacitor including the structure, a method of forming the capacitor |
US8367506B2 (en) * | 2007-06-04 | 2013-02-05 | Micron Technology, Inc. | High-k dielectrics with gold nano-particles |
JP2011501415A (en) * | 2007-10-11 | 2011-01-06 | ć¤ćŖ ćøćØ | Photodetector array and semiconductor image intensifier |
US7728392B2 (en) * | 2008-01-03 | 2010-06-01 | International Business Machines Corporation | SRAM device structure including same band gap transistors having gate stacks with high-K dielectrics and same work function |
JP4956469B2 (en) * | 2008-03-24 | 2012-06-20 | ę Ŗå¼ä¼ē¤¾ćć„ć¼ćć¬ć¢ććÆćććøć¼ | Semiconductor manufacturing equipment |
FR2930561B1 (en) * | 2008-04-28 | 2011-01-14 | Altatech Semiconductor | Device and method for chemical treatment in steam phase. |
US8159040B2 (en) | 2008-05-13 | 2012-04-17 | International Business Machines Corporation | Metal gate integration structure and method including metal fuse, anti-fuse and/or resistor |
WO2010083263A1 (en) | 2009-01-15 | 2010-07-22 | Jie Yao | Mesa heterojunction phototransistor and method for making same |
US7943457B2 (en) * | 2009-04-14 | 2011-05-17 | International Business Machines Corporation | Dual metal and dual dielectric integration for metal high-k FETs |
US8222104B2 (en) | 2009-07-27 | 2012-07-17 | International Business Machines Corporation | Three dimensional integrated deep trench decoupling capacitors |
JP4457180B1 (en) * | 2009-08-07 | 2010-04-28 | ę Ŗå¼ä¼ē¤¾ć¢ććć³ćć¹ć | Wafer tray and test equipment |
DE102009043840A1 (en) * | 2009-08-24 | 2011-03-03 | Aixtron Ag | CVD reactor with strip-like gas inlet zones and method for depositing a layer on a substrate in such a CVD reactor |
KR101094077B1 (en) | 2010-02-16 | 2011-12-15 | ķźµģėģ§źø°ģ ģ°źµ¬ģ | Method of making a catalyst by coating cobalt catalyst powder on a metallic foam surface, the cobalt metallic foam catalyst, heat-exchanger typed reactor with the catalyst, and method of liquid oil production in Fischer-Tropsch synthesis using the reactor |
US9920418B1 (en) | 2010-09-27 | 2018-03-20 | James Stabile | Physical vapor deposition apparatus having a tapered chamber |
US9303319B2 (en) | 2010-12-17 | 2016-04-05 | Veeco Instruments Inc. | Gas injection system for chemical vapor deposition using sequenced valves |
US8697098B2 (en) | 2011-02-25 | 2014-04-15 | South Dakota State University | Polymer conjugated protein micelles |
WO2012116272A2 (en) | 2011-02-25 | 2012-08-30 | South Dakota State University | Polymer conjugated protein micelles |
US8525339B2 (en) | 2011-07-27 | 2013-09-03 | International Business Machines Corporation | Hybrid copper interconnect structure and method of fabricating same |
US9175393B1 (en) * | 2011-08-31 | 2015-11-03 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
US10066297B2 (en) * | 2011-08-31 | 2018-09-04 | Alta Devices, Inc. | Tiled showerhead for a semiconductor chemical vapor deposition reactor |
JP5541274B2 (en) * | 2011-12-28 | 2014-07-09 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Substrate processing apparatus, substrate processing method, and storage medium |
US20130220222A1 (en) * | 2012-02-23 | 2013-08-29 | Hermes-Epitek Corporation | Gas Distribution Apparatus with Heat Exchanging Channels |
US9390909B2 (en) | 2013-11-07 | 2016-07-12 | Novellus Systems, Inc. | Soft landing nanolaminates for advanced patterning |
US9312203B2 (en) | 2013-01-02 | 2016-04-12 | Globalfoundries Inc. | Dual damascene structure with liner |
DE102013101534A1 (en) | 2013-02-15 | 2014-08-21 | Aixtron Se | Gas distributor for a cvd reactor |
US9353439B2 (en) | 2013-04-05 | 2016-05-31 | Lam Research Corporation | Cascade design showerhead for transient uniformity |
US9741918B2 (en) | 2013-10-07 | 2017-08-22 | Hypres, Inc. | Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit |
US9224594B2 (en) | 2013-11-18 | 2015-12-29 | Intermolecular, Inc. | Surface preparation with remote plasma |
KR20150114120A (en) * | 2014-03-31 | 2015-10-12 | ģ¼ģ±ėģ¤ķė ģ“ ģ£¼ģķģ¬ | Atomic layer deposition apparatus and method of atomic layer deposition using the same |
JP6320824B2 (en) * | 2014-03-31 | 2018-05-09 | ę Ŗå¼ä¼ē¤¾ę±č | Gas supply pipe and gas processing apparatus |
JP6225837B2 (en) * | 2014-06-04 | 2017-11-08 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Film forming apparatus, film forming method, storage medium |
JP6225842B2 (en) * | 2014-06-16 | 2017-11-08 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Film forming apparatus, film forming method, storage medium |
US9478411B2 (en) | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS |
US9478438B2 (en) * | 2014-08-20 | 2016-10-25 | Lam Research Corporation | Method and apparatus to deposit pure titanium thin film at low temperature using titanium tetraiodide precursor |
JP6354539B2 (en) * | 2014-11-25 | 2018-07-11 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Substrate processing apparatus, substrate processing method, and storage medium |
US10023959B2 (en) | 2015-05-26 | 2018-07-17 | Lam Research Corporation | Anti-transient showerhead |
US10403515B2 (en) * | 2015-09-24 | 2019-09-03 | Applied Materials, Inc. | Loadlock integrated bevel etcher system |
US10358721B2 (en) * | 2015-10-22 | 2019-07-23 | Asm Ip Holding B.V. | Semiconductor manufacturing system including deposition apparatus |
US9735051B2 (en) | 2015-12-14 | 2017-08-15 | International Business Machines Corporation | Semiconductor device interconnect structures formed by metal reflow process |
US9953843B2 (en) | 2016-02-05 | 2018-04-24 | Lam Research Corporation | Chamber for patterning non-volatile metals |
FI126863B (en) * | 2016-06-23 | 2017-06-30 | Beneq Oy | Apparatus for handling particulate matter |
US9716063B1 (en) | 2016-08-17 | 2017-07-25 | International Business Machines Corporation | Cobalt top layer advanced metallization for interconnects |
US9859215B1 (en) | 2016-08-17 | 2018-01-02 | International Business Machines Corporation | Formation of advanced interconnects |
US10115670B2 (en) | 2016-08-17 | 2018-10-30 | International Business Machines Corporation | Formation of advanced interconnects including set of metal conductor structures in patterned dielectric layer |
US9852990B1 (en) | 2016-08-17 | 2017-12-26 | International Business Machines Corporation | Cobalt first layer advanced metallization for interconnects |
US9941212B2 (en) | 2016-08-17 | 2018-04-10 | International Business Machines Corporation | Nitridized ruthenium layer for formation of cobalt interconnects |
JP2018049915A (en) * | 2016-09-21 | 2018-03-29 | ćć¤ćÆćć³ ććÆćććøć¼ļ¼ ć¤ć³ćÆļ¼ | Semiconductor device and method of manufacturing the same |
US10294564B2 (en) * | 2017-08-28 | 2019-05-21 | Uchicago Argonne, Llc | Method of creating boron comprising layer |
Citations (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894801A (en) * | 1986-08-01 | 1990-01-16 | Hitachi, Ltd. | Stacked MOS transistor flip-flop memory cell |
US4902533A (en) * | 1987-06-19 | 1990-02-20 | Motorola, Inc. | Method for selectively depositing tungsten on a substrate by using a spin-on metal oxide |
US4987089A (en) * | 1990-07-23 | 1991-01-22 | Micron Technology, Inc. | BiCMOS process and process for forming bipolar transistors on wafers also containing FETs |
US4993358A (en) * | 1989-07-28 | 1991-02-19 | Watkins-Johnson Company | Chemical vapor deposition reactor and method of operation |
US5080928A (en) * | 1990-10-05 | 1992-01-14 | Gte Laboratories Incorporated | Method for making moisture insensitive zinc sulfide based luminescent materials |
US5089084A (en) * | 1990-12-03 | 1992-02-18 | Micron Technology, Inc. | Hydrofluoric acid etcher and cascade rinser |
US5177028A (en) * | 1991-10-22 | 1993-01-05 | Micron Technology, Inc. | Trench isolation method having a double polysilicon gate formed on mesas |
US5392245A (en) * | 1993-08-13 | 1995-02-21 | Micron Technology, Inc. | Redundancy elements using thin film transistors (TFTs) |
US5391911A (en) * | 1993-03-29 | 1995-02-21 | International Business Machines Corporation | Reach-through isolation silicon-on-insulator device |
US5393704A (en) * | 1993-12-13 | 1995-02-28 | United Microelectronics Corporation | Self-aligned trenched contact (satc) process |
US5483094A (en) * | 1993-09-20 | 1996-01-09 | Motorola, Inc. | Electrically programmable read-only memory cell |
US5483487A (en) * | 1994-07-05 | 1996-01-09 | Taiwan Semiconductor Manufacturing Comp. Ltd. | Electrically programmable memory device with improved dual floating gates |
US5492853A (en) * | 1994-03-11 | 1996-02-20 | Micron Semiconductor, Inc. | Method of forming a contact using a trench and an insulation layer during the formation of a semiconductor device |
US5495441A (en) * | 1994-05-18 | 1996-02-27 | United Microelectronics Corporation | Split-gate flash memory cell |
US5593912A (en) * | 1994-10-06 | 1997-01-14 | International Business Machines Corporation | SOI trench DRAM cell for 256 MB DRAM and beyond |
US5595606A (en) * | 1995-04-20 | 1997-01-21 | Tokyo Electron Limited | Shower head and film forming apparatus using the same |
US5710057A (en) * | 1996-07-12 | 1998-01-20 | Kenney; Donald M. | SOI fabrication method |
US5874134A (en) * | 1996-01-29 | 1999-02-23 | Regents Of The University Of Minnesota | Production of nanostructured materials by hypersonic plasma particle deposition |
US6010969A (en) * | 1996-10-02 | 2000-01-04 | Micron Technology, Inc. | Method of depositing films on semiconductor devices by using carboxylate complexes |
US6013553A (en) * | 1997-07-24 | 2000-01-11 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6019848A (en) * | 1996-11-13 | 2000-02-01 | Applied Materials, Inc. | Lid assembly for high temperature processing chamber |
US6020024A (en) * | 1997-08-04 | 2000-02-01 | Motorola, Inc. | Method for forming high dielectric constant metal oxides |
US6025627A (en) * | 1998-05-29 | 2000-02-15 | Micron Technology, Inc. | Alternate method and structure for improved floating gate tunneling devices |
US6027960A (en) * | 1995-10-25 | 2000-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and laser annealing device |
US6027961A (en) * | 1998-06-30 | 2000-02-22 | Motorola, Inc. | CMOS semiconductor devices and method of formation |
US6171900B1 (en) * | 1999-04-15 | 2001-01-09 | Taiwan Semiconductor Manufacturing Company | CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6184146B1 (en) * | 1998-08-28 | 2001-02-06 | Micron Technology, Inc. | Plasma producing tools, dual-source plasma etchers, dual-source plasma etching methods, and method of forming planar coil dual-source plasma etchers |
US6187484B1 (en) * | 1999-08-31 | 2001-02-13 | Micron Technology, Inc. | Irradiation mask |
US6194262B1 (en) * | 1997-04-25 | 2001-02-27 | Micron Technology, Inc. | Method for coupling to semiconductor device in an integrated circuit having edge-defined, sub-lithographic conductors |
US20020001971A1 (en) * | 2000-06-27 | 2002-01-03 | Hag-Ju Cho | Methods of manufacturing integrated circuit devices that include a metal oxide layer disposed on another layer to protect the other layer from diffusion of impurities and integrated circuit devices manufactured using same |
US20020004276A1 (en) * | 2000-02-28 | 2002-01-10 | Micron Technology, Inc. | Structure and method for dual gate oxide thicknesses |
US6342445B1 (en) * | 2000-05-15 | 2002-01-29 | Micron Technology, Inc. | Method for fabricating an SrRuO3 film |
US20020013052A1 (en) * | 2000-03-08 | 2002-01-31 | Visokay Mark R. | Methods for preparing ruthenium metal films |
US20020019116A1 (en) * | 1996-05-31 | 2002-02-14 | Sandhu Gurtej S. | Chemical vapor deposition using organometallic precursors |
US6348386B1 (en) * | 2001-04-16 | 2002-02-19 | Motorola, Inc. | Method for making a hafnium-based insulating film |
US6347749B1 (en) * | 2000-02-09 | 2002-02-19 | Moore Epitaxial, Inc. | Semiconductor processing reactor controllable gas jet assembly |
US6350704B1 (en) * | 1997-10-14 | 2002-02-26 | Micron Technology Inc. | Porous silicon oxycarbide integrated circuit insulator |
US20020024080A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US20020025628A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US20030003730A1 (en) * | 2001-02-13 | 2003-01-02 | Micron Technology, Inc. | Sequential pulse deposition |
US20030003635A1 (en) * | 2001-05-23 | 2003-01-02 | Paranjpe Ajit P. | Atomic layer deposition for fabricating thin films |
US20030003722A1 (en) * | 1998-09-01 | 2003-01-02 | Micron Technology, Inc. | Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands |
US20030001190A1 (en) * | 2000-11-09 | 2003-01-02 | Micron Technology, Inc. | Methods for forming conductive structures and structures regarding same |
US20030001212A1 (en) * | 1997-02-19 | 2003-01-02 | Micron Technology, Inc. | Conductor layer nitridation |
US20030001241A1 (en) * | 2000-01-18 | 2003-01-02 | Agere Systems Guardian Corp. | Semiconductor device and method of fabrication |
US20030003702A1 (en) * | 2001-02-09 | 2003-01-02 | Micron Technology, Inc. | Formation of metal oxide gate dielectric |
US20030008243A1 (en) * | 2001-07-09 | 2003-01-09 | Micron Technology, Inc. | Copper electroless deposition technology for ULSI metalization |
US20030017717A1 (en) * | 2001-07-18 | 2003-01-23 | Ahn Kie Y. | Methods for forming dielectric materials and methods for forming semiconductor devices |
US20030020429A1 (en) * | 2001-07-24 | 2003-01-30 | Hitachi, Ltd. | Motor controller |
US20030023251A1 (en) * | 1995-02-24 | 2003-01-30 | Gifford Hanson S. | Devices and methods for performing a vascular anastomosis |
US20030020180A1 (en) * | 2001-07-24 | 2003-01-30 | Ahn Kie Y. | Copper technology for ULSI metallization |
US6514348B2 (en) * | 2000-07-13 | 2003-02-04 | Ebara Corporation | Substrate processing apparatus |
US6514820B2 (en) * | 1998-08-27 | 2003-02-04 | Micron Technology, Inc. | Method for forming single electron resistor memory |
US6514828B2 (en) * | 2001-04-20 | 2003-02-04 | Micron Technology, Inc. | Method of fabricating a highly reliable gate oxide |
US20030027360A1 (en) * | 2001-03-28 | 2003-02-06 | Hsu Sheng Teng | Single transistor ferroelectric transistor structure with high-K insulator and method of fabricating same |
US6518634B1 (en) * | 2000-09-01 | 2003-02-11 | Motorola, Inc. | Strontium nitride or strontium oxynitride gate dielectric |
US6518610B2 (en) * | 2001-02-20 | 2003-02-11 | Micron Technology, Inc. | Rhodium-rich oxygen barriers |
US20030032270A1 (en) * | 2001-08-10 | 2003-02-13 | John Snyder | Fabrication method for a device for regulating flow of electric current with high dielectric constant gate insulating layer and source/drain forming schottky contact or schottky-like region with substrate |
US6521911B2 (en) * | 2000-07-20 | 2003-02-18 | North Carolina State University | High dielectric constant metal silicates formed by controlled metal-surface reactions |
US6524867B2 (en) * | 2000-12-28 | 2003-02-25 | Micron Technology, Inc. | Method for forming platinum-rhodium stack as an oxygen barrier |
US6524901B1 (en) * | 2002-06-20 | 2003-02-25 | Micron Technology, Inc. | Method for forming a notched damascene planar poly/metal gate |
US20030040196A1 (en) * | 2001-08-27 | 2003-02-27 | Lim Jung Wook | Method of forming insulation layer in semiconductor devices for controlling the composition and the doping concentration |
US20040000244A1 (en) * | 2002-06-28 | 2004-01-01 | Kabushikikaisha Tokyo Kikai Seisakusho | Bearer cleaning apparatus |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US6673701B1 (en) * | 2002-08-27 | 2004-01-06 | Micron Technology, Inc. | Atomic layer deposition methods |
US20040004245A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US20040004247A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-nitride nanolaminates |
US20040004859A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US6677250B2 (en) * | 2001-08-17 | 2004-01-13 | Micron Technology, Inc. | CVD apparatuses and methods of forming a layer over a semiconductor substrate |
US20040007171A1 (en) * | 1999-10-14 | 2004-01-15 | Mikko Ritala | Method for growing thin oxide films |
US20040009679A1 (en) * | 2001-01-19 | 2004-01-15 | Yeo Jae-Hyun | Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same |
US6683011B2 (en) * | 2001-11-14 | 2004-01-27 | Regents Of The University Of Minnesota | Process for forming hafnium oxide films |
US6683005B2 (en) * | 2001-08-30 | 2004-01-27 | Micron Technology, Inc. | Method of forming capacitor constructions |
US20040016944A1 (en) * | 2001-05-11 | 2004-01-29 | Ahn Kie Y. | Integrated decoupling capacitors |
US20040023461A1 (en) * | 2002-07-30 | 2004-02-05 | Micron Technology, Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US20040028811A1 (en) * | 2002-08-06 | 2004-02-12 | Young-Jin Cho | Bismuth titanium silicon oxide, bismuth titanium silicon oxide thin film, and method for forming the thin film |
US20040033681A1 (en) * | 2002-08-15 | 2004-02-19 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US20040033661A1 (en) * | 2002-08-16 | 2004-02-19 | Yeo Jae-Hyun | Semiconductor device and method for manufacturing the same |
US20040033701A1 (en) * | 2002-08-15 | 2004-02-19 | Micron Technology, Inc. | Lanthanide doped tiox dielectric films |
US20040038525A1 (en) * | 2002-08-26 | 2004-02-26 | Shuang Meng | Enhanced atomic layer deposition |
US20050009335A1 (en) * | 2002-03-13 | 2005-01-13 | Dean Trung Tri | Apparatuses for treating pluralities of discrete semiconductor substrates; and methods for treating pluralities of discrete semiconductor substrates |
US20050009370A1 (en) * | 2002-08-21 | 2005-01-13 | Ahn Kie Y. | Composite dielectric forming methods and composite dielectrics |
US6844203B2 (en) * | 2001-08-30 | 2005-01-18 | Micron Technology, Inc. | Gate oxides, and methods of forming |
US6844260B2 (en) * | 2003-01-30 | 2005-01-18 | Micron Technology, Inc. | Insitu post atomic layer deposition destruction of active species |
US20050020017A1 (en) * | 2003-06-24 | 2005-01-27 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20060003517A1 (en) * | 2002-12-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US20060001151A1 (en) * | 2003-03-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
US6989573B2 (en) * | 2003-10-10 | 2006-01-24 | Micron Technology, Inc. | Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics |
US7160577B2 (en) * | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US20070020835A1 (en) * | 2005-02-10 | 2007-01-25 | Micron Technology, Inc. | Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics |
US20070018214A1 (en) * | 2005-07-25 | 2007-01-25 | Micron Technology, Inc. | Magnesium titanium oxide films |
Family Cites Families (715)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2501563A (en) | 1946-02-20 | 1950-03-21 | Libbey Owens Ford Glass Co | Method of forming strongly adherent metallic compound films by glow discharge |
US3381114A (en) | 1963-12-28 | 1968-04-30 | Nippon Electric Co | Device for manufacturing epitaxial crystals |
US3357961A (en) | 1965-05-24 | 1967-12-12 | Exxon Research Engineering Co | Copolymers of ethylene and hexadiene 1, 5 |
US3407479A (en) | 1965-06-28 | 1968-10-29 | Motorola Inc | Isolation of semiconductor devices |
US3471754A (en) | 1966-03-26 | 1969-10-07 | Sony Corp | Isolation structure for integrated circuits |
US3689357A (en) | 1970-12-10 | 1972-09-05 | Gen Motors Corp | Glass-polysilicon dielectric isolation |
SE393967B (en) | 1974-11-29 | 1977-05-31 | Sateko Oy | Process and to perform stroleggning between layers in a timber packages |
US4051354A (en) | 1975-07-03 | 1977-09-27 | Texas Instruments Incorporated | Fault-tolerant cell addressable array |
US4215156A (en) | 1977-08-26 | 1980-07-29 | International Business Machines Corporation | Method for fabricating tantalum semiconductor contacts |
US4305640A (en) | 1978-11-24 | 1981-12-15 | National Research Development Corporation | Laser beam annealing diffuser |
FI57975C (en) | 1979-02-28 | 1980-11-10 | Lohja Ab Oy | Foerfarande at uppbyggande and the arrangement of the thin foereningshinnor |
US4209357A (en) * | 1979-05-18 | 1980-06-24 | Tegal Corporation | Plasma reactor apparatus |
US4372032A (en) * | 1979-09-04 | 1983-02-08 | The United States Of America As Represented By The Secretary Of The Navy | Normally off InP field effect transistor making process |
US4333808A (en) | 1979-10-30 | 1982-06-08 | International Business Machines Corporation | Method for manufacture of ultra-thin film capacitor |
US4292093A (en) | 1979-12-28 | 1981-09-29 | The United States Of America As Represented By The United States Department Of Energy | Method using laser irradiation for the production of atomically clean crystalline silicon and germanium surfaces |
US4394673A (en) | 1980-09-29 | 1983-07-19 | International Business Machines Corporation | Rare earth silicide Schottky barriers |
GB2085166A (en) | 1980-10-07 | 1982-04-21 | Itt Ind Ltd | Semiconductor gas sensor |
DE3364607D1 (en) | 1982-03-15 | 1986-08-28 | Toshiba Kk | Optical type information recording medium |
US4766569A (en) | 1985-03-04 | 1988-08-23 | Lattice Semiconductor Corporation | Programmable logic array |
US4604162A (en) | 1983-06-13 | 1986-08-05 | Ncr Corporation | Formation and planarization of silicon-on-insulator structures |
US4757360A (en) | 1983-07-06 | 1988-07-12 | Rca Corporation | Floating gate memory device with facing asperities on floating and control gates |
US4608215A (en) | 1983-12-23 | 1986-08-26 | Allied Corporation | Preparation of ceramics |
US4749888A (en) | 1984-01-25 | 1988-06-07 | Agency Of Industrial Science & Technology | Josephson transmission line device |
US5208657A (en) | 1984-08-31 | 1993-05-04 | Texas Instruments Incorporated | DRAM Cell with trench capacitor and vertical channel in substrate |
JPH0722044B2 (en) * | 1984-09-12 | 1995-03-08 | ć½ćć¼ę Ŗå¼ä¼ē¤¾ | High-frequency high-permeability magnetic material |
GB2164519A (en) * | 1984-09-14 | 1986-03-19 | Philips Electronic Associated | Processing video signals |
DE3445251C2 (en) * | 1984-12-12 | 1987-07-23 | Dornier System Gmbh, 7990 Friedrichshafen, De | |
US4590042A (en) | 1984-12-24 | 1986-05-20 | Tegal Corporation | Plasma reactor having slotted manifold |
JPH0236276Y2 (en) | 1985-01-10 | 1990-10-03 | ||
US4761768A (en) | 1985-03-04 | 1988-08-02 | Lattice Semiconductor Corporation | Programmable logic device |
US4920071A (en) | 1985-03-15 | 1990-04-24 | Fairchild Camera And Instrument Corporation | High temperature interconnect system for an integrated circuit |
US5102817A (en) | 1985-03-21 | 1992-04-07 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US4673962A (en) | 1985-03-21 | 1987-06-16 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US5135879A (en) | 1985-03-26 | 1992-08-04 | Texas Instruments Incorporated | Method of fabricating a high density EPROM cell on a trench wall |
US4663831A (en) | 1985-10-08 | 1987-05-12 | Motorola, Inc. | Method of forming transistors with poly-sidewall contacts utilizing deposition of polycrystalline and insulating layers combined with selective etching and oxidation of said layers |
US4947221A (en) | 1985-11-29 | 1990-08-07 | General Electric Company | Memory cell for a dense EPROM |
US4864375A (en) | 1986-02-05 | 1989-09-05 | Texas Instruments Incorporated | Dram cell and method |
DE3606959A1 (en) | 1986-03-04 | 1987-09-10 | Leybold Heraeus Gmbh & Co Kg | An apparatus for plasma treatment of substrates in an excited by high-frequency plasma discharge |
DE3626468A1 (en) * | 1986-08-05 | 1988-02-11 | Hoechst Ag | Method and Kit for the detection of free drugs in biological fluids |
US5017504A (en) | 1986-12-01 | 1991-05-21 | Mitsubishi Denki Kabushiki Kaisha | Vertical type MOS transistor and method of formation thereof |
JPS63198323A (en) | 1987-02-13 | 1988-08-17 | Mitsubishi Electric Corp | Semiconductor device and manufacture thereof |
JPS63254762A (en) | 1987-04-13 | 1988-10-21 | Nissan Motor Co Ltd | Cmos semiconductor device |
US6120531A (en) | 1987-05-20 | 2000-09-19 | Micron, Technology | Physiotherapy fiber, shoes, fabric, and clothes utilizing electromagnetic energy |
JPH0333058Y2 (en) | 1987-06-26 | 1991-07-12 | ||
EP0300579B1 (en) | 1987-07-22 | 1995-06-14 | Philips Patentverwaltung GmbH | Optical interference filter |
JPH01125858A (en) | 1987-11-10 | 1989-05-18 | Fujitsu Ltd | Semiconductor device and manufacture thereof |
EP0316799B1 (en) | 1987-11-13 | 1994-07-27 | Nissan Motor Co., Ltd. | Semiconductor device |
JPH07120719B2 (en) | 1987-12-02 | 1995-12-20 | äøč±é»ę©ę Ŗå¼ä¼ē¤¾ | A semiconductor memory device |
DE68926793D1 (en) | 1988-03-15 | 1996-08-14 | Toshiba Kawasaki Kk | dynamic RAM |
US5272367A (en) | 1988-05-02 | 1993-12-21 | Micron Technology, Inc. | Fabrication of complementary n-channel and p-channel circuits (ICs) useful in the manufacture of dynamic random access memories (drams) |
JPH07105477B2 (en) | 1988-05-28 | 1995-11-13 | åÆå£«éę Ŗå¼ä¼ē¤¾ | Semiconductor device and manufacturing method thereof |
US4926224A (en) | 1988-06-03 | 1990-05-15 | Texas Instruments Incorporated | Crosspoint dynamic ram cell for folded bitline array |
US4896293A (en) * | 1988-06-09 | 1990-01-23 | Texas Instruments Incorporated | Dynamic ram cell with isolated trench capacitors |
JPH029115A (en) | 1988-06-28 | 1990-01-12 | Mitsubishi Electric Corp | Semiconductor manufacturing equipment |
US4958318A (en) | 1988-07-08 | 1990-09-18 | Eliyahou Harari | Sidewall capacitor DRAM cell |
JPH0235771A (en) | 1988-07-26 | 1990-02-06 | Nec Corp | Semiconductor storage device |
US4920065A (en) | 1988-10-31 | 1990-04-24 | International Business Machines Corporation | Method of making ultra dense dram cells |
US5327380B1 (en) | 1988-10-31 | 1999-09-07 | Texas Instruments Inc | Method and apparatus for inhibiting a predecoder when selecting a redundant row line |
US4962879A (en) | 1988-12-19 | 1990-10-16 | Duke University | Method for bubble-free bonding of silicon wafers |
US4948937A (en) | 1988-12-23 | 1990-08-14 | Itt Corporation | Apparatus and method for heat cleaning semiconductor material |
US4933743A (en) | 1989-03-11 | 1990-06-12 | Fairchild Semiconductor Corporation | High performance interconnect system for an integrated circuit |
US5021355A (en) | 1989-05-22 | 1991-06-04 | International Business Machines Corporation | Method of fabricating cross-point lightly-doped drain-source trench transistor |
US4954854A (en) | 1989-05-22 | 1990-09-04 | International Business Machines Corporation | Cross-point lightly-doped drain-source trench transistor and fabrication process therefor |
KR0170391B1 (en) | 1989-06-16 | 1999-03-30 | ė¤ģ¹“ģė§ ķė”ģ | Processing apparatus with a gas distributor having back and forth parallel movement relative to a workpiece support |
US5028977A (en) | 1989-06-16 | 1991-07-02 | Massachusetts Institute Of Technology | Merged bipolar and insulated gate transistors |
US5192704A (en) | 1989-06-30 | 1993-03-09 | Texas Instruments Incorporated | Method and apparatus for a filament channel pass gate ferroelectric capacitor memory cell |
US5198029A (en) | 1989-08-01 | 1993-03-30 | Gte Products Corporation | Apparatus for coating small solids |
US5316962A (en) | 1989-08-15 | 1994-05-31 | Matsushita Electric Industrial Co., Ltd. | Method of producing a semiconductor device having trench capacitors and vertical switching transistors |
US4975014A (en) | 1989-09-01 | 1990-12-04 | The Boeing Company | High temperature low thermal expansion fastener |
JP2617798B2 (en) | 1989-09-22 | 1997-06-04 | äøč±é»ę©ę Ŗå¼ä¼ē¤¾ | Stacked semiconductor device and manufacturing method thereof |
US5070385A (en) | 1989-10-20 | 1991-12-03 | Radiant Technologies | Ferroelectric non-volatile variable resistive element |
US5006909A (en) | 1989-10-30 | 1991-04-09 | Motorola, Inc. | Dram with a vertical capacitor and transistor |
US5241211A (en) | 1989-12-20 | 1993-08-31 | Nec Corporation | Semiconductor device |
DE69030365D1 (en) | 1989-12-22 | 1997-05-07 | Sumitomo Electric Industries | A process for preparing a superconducting microwave component |
US5010386A (en) | 1989-12-26 | 1991-04-23 | Texas Instruments Incorporated | Insulator separated vertical CMOS |
JPH0821689B2 (en) | 1990-02-26 | 1996-03-04 | ę Ŗå¼ä¼ē¤¾ę±č | The semiconductor memory device and manufacturing method thereof |
US5055319A (en) | 1990-04-02 | 1991-10-08 | The Regents Of The University Of California | Controlled high rate deposition of metal oxide films |
JPH04212450A (en) | 1990-04-11 | 1992-08-04 | Mitsubishi Electric Corp | Semiconductor storage device and its manufacture |
JPH0414868A (en) * | 1990-05-09 | 1992-01-20 | Hitachi Ltd | Semiconductor memory and manufacture thereof |
US5075536A (en) | 1990-05-17 | 1991-12-24 | Caterpillar Inc. | Heating element assembly for glow plug |
US5840897A (en) | 1990-07-06 | 1998-11-24 | Advanced Technology Materials, Inc. | Metal complex source reagents for chemical vapor deposition |
US6110529A (en) | 1990-07-06 | 2000-08-29 | Advanced Tech Materials | Method of forming metal films on a substrate by chemical vapor deposition |
US5177027A (en) * | 1990-08-17 | 1993-01-05 | Micron Technology, Inc. | Process for fabricating, on the edge of a silicon mesa, a MOSFET which has a spacer-shaped gate and a right-angled channel path |
US5019728A (en) | 1990-09-10 | 1991-05-28 | Ncr Corporation | High speed CMOS backpanel transceiver |
US5149596A (en) | 1990-10-05 | 1992-09-22 | The United States Of America As Represented By The United States Department Of Energy | Vapor deposition of thin films |
US5032545A (en) | 1990-10-30 | 1991-07-16 | Micron Technology, Inc. | Process for preventing a native oxide from forming on the surface of a semiconductor material and integrated circuit capacitors produced thereby |
US5037773A (en) | 1990-11-08 | 1991-08-06 | Micron Technology, Inc. | Stacked capacitor doping technique making use of rugged polysilicon |
US5475514A (en) | 1990-12-31 | 1995-12-12 | Kopin Corporation | Transferred single crystal arrayed devices including a light shield for projection displays |
US6143582A (en) | 1990-12-31 | 2000-11-07 | Kopin Corporation | High density electronic circuit modules |
DE69225345T2 (en) | 1991-01-10 | 1998-09-03 | Fujitsu Ltd | A signal processing device and a method for transmitting signals |
US5053351A (en) | 1991-03-19 | 1991-10-01 | Micron Technology, Inc. | Method of making stacked E-cell capacitor DRAM cell |
US5229647A (en) | 1991-03-27 | 1993-07-20 | Micron Technology, Inc. | High density data storage using stacked wafers |
DE59201616D1 (en) | 1991-03-27 | 1995-04-13 | Krupp Widia Gmbh | Composite body using the composite body and process for its production. |
US5122848A (en) | 1991-04-08 | 1992-06-16 | Micron Technology, Inc. | Insulated-gate vertical field-effect transistor with high current drive and minimum overlap capacitance |
US5097291A (en) | 1991-04-22 | 1992-03-17 | Nikon Corporation | Energy amount control device |
US5223081A (en) | 1991-07-03 | 1993-06-29 | Doan Trung T | Method for roughening a silicon or polysilicon surface for a semiconductor substrate |
US5110752A (en) | 1991-07-10 | 1992-05-05 | Industrial Technology Research Institute | Roughened polysilicon surface capacitor electrode plate for high denity dram |
JPH05198739A (en) | 1991-09-10 | 1993-08-06 | Mitsubishi Electric Corp | Laminated semiconductor device and its manufacture |
US5202278A (en) | 1991-09-10 | 1993-04-13 | Micron Technology, Inc. | Method of forming a capacitor in semiconductor wafer processing |
KR940006679B1 (en) | 1991-09-26 | 1994-07-25 | ģ ėŖ½ķ | Dram cell having a vertical transistor and fabricating method thereof |
EP0540993A1 (en) | 1991-11-06 | 1993-05-12 | Ramtron International Corporation | Structure and fabrication of high transconductance MOS field effect transistor using a buffer layer/ferroelectric/buffer layer stack as the gate dielectric |
US5223001A (en) | 1991-11-21 | 1993-06-29 | Tokyo Electron Kabushiki Kaisha | Vacuum processing apparatus |
US5989511A (en) | 1991-11-25 | 1999-11-23 | The University Of Chicago | Smooth diamond films as low friction, long wear surfaces |
US6592839B2 (en) | 1991-11-25 | 2003-07-15 | The University Of Chicago | Tailoring nanocrystalline diamond film properties |
US5772760A (en) | 1991-11-25 | 1998-06-30 | The University Of Chicago | Method for the preparation of nanocrystalline diamond thin films |
US5135889A (en) | 1991-12-09 | 1992-08-04 | Micron Technology, Inc. | Method for forming a shielding structure for decoupling signal traces in a semiconductor |
US5156987A (en) | 1991-12-18 | 1992-10-20 | Micron Technology, Inc. | High performance thin film transistor (TFT) by solid phase epitaxial regrowth |
US5274249A (en) | 1991-12-20 | 1993-12-28 | University Of Maryland | Superconducting field effect devices with thin channel layer |
US5304622A (en) | 1992-01-08 | 1994-04-19 | Nippon Oil Company, Ltd. | Process for producing polysilanes |
US5223808A (en) | 1992-02-25 | 1993-06-29 | Hughes Aircraft Company | Planar ferrite phase shifter |
US5302461A (en) | 1992-06-05 | 1994-04-12 | Hewlett-Packard Company | Dielectric films for use in magnetoresistive transducers |
US5365477A (en) | 1992-06-16 | 1994-11-15 | The United States Of America As Represented By The Secretary Of The Navy | Dynamic random access memory device |
US5528062A (en) | 1992-06-17 | 1996-06-18 | International Business Machines Corporation | High-density DRAM structure on soi |
US5254499A (en) | 1992-07-14 | 1993-10-19 | Micron Technology, Inc. | Method of depositing high density titanium nitride films on semiconductor wafers |
US5572052A (en) | 1992-07-24 | 1996-11-05 | Mitsubishi Denki Kabushiki Kaisha | Electronic device using zirconate titanate and barium titanate ferroelectrics in insulating layer |
JPH06125208A (en) | 1992-10-09 | 1994-05-06 | Mitsubishi Electric Corp | Microwave integrated circuit and its production |
US5320880A (en) | 1992-10-20 | 1994-06-14 | Micron Technology, Inc. | Method of providing a silicon film having a roughened outer surface |
US5324673A (en) | 1992-11-19 | 1994-06-28 | Motorola, Inc. | Method of formation of vertical transistor |
US5234535A (en) | 1992-12-10 | 1993-08-10 | International Business Machines Corporation | Method of producing a thin silicon-on-insulator layer |
US5379255A (en) * | 1992-12-14 | 1995-01-03 | Texas Instruments Incorporated | Three dimensional famos memory devices and methods of fabricating |
US5266514A (en) | 1992-12-21 | 1993-11-30 | Industrial Technology Research Institute | Method for producing a roughened surface capacitor |
US5363550A (en) | 1992-12-23 | 1994-11-15 | International Business Machines Corporation | Method of Fabricating a micro-coaxial wiring structure |
TW235363B (en) | 1993-01-25 | 1994-12-01 | Hitachi Seisakusyo Kk | |
JP2701709B2 (en) | 1993-02-16 | 1998-01-21 | ę Ŗå¼ä¼ē¤¾ćć³ć½ć¼ | Direct bonding methods and materials direct bonding apparatus of the two materials |
US5422499A (en) | 1993-02-22 | 1995-06-06 | Micron Semiconductor, Inc. | Sixteen megabit static random access memory (SRAM) cell |
US5438009A (en) | 1993-04-02 | 1995-08-01 | United Microelectronics Corporation | Method of fabrication of MOSFET device with buried bit line |
US5439524A (en) | 1993-04-05 | 1995-08-08 | Vlsi Technology, Inc. | Plasma processing apparatus |
US5510758A (en) | 1993-04-07 | 1996-04-23 | Matsushita Electric Industrial Co., Ltd. | Multilayer microstrip wiring board with a semiconductor device mounted thereon via bumps |
US5616934A (en) | 1993-05-12 | 1997-04-01 | Micron Technology, Inc. | Fully planarized thin film transistor (TFT) and process to fabricate same |
US5522932A (en) | 1993-05-14 | 1996-06-04 | Applied Materials, Inc. | Corrosion-resistant apparatus |
US5441591A (en) | 1993-06-07 | 1995-08-15 | The United States Of America As Represented By The Secretary Of The Navy | Silicon to sapphire bond |
JPH07130871A (en) | 1993-06-28 | 1995-05-19 | Toshiba Corp | Semiconductor memory device |
US5429966A (en) | 1993-07-22 | 1995-07-04 | National Science Council | Method of fabricating a textured tunnel oxide for EEPROM applications |
US5521536A (en) | 1993-08-06 | 1996-05-28 | Hitachi, Ltd. | Integrated circuit device having different signal transfer circuits for wirings with different lengths |
JP2605594B2 (en) | 1993-09-03 | 1997-04-30 | ę„ę¬é»ę°ę Ŗå¼ä¼ē¤¾ | A method of manufacturing a semiconductor device |
JP3328389B2 (en) | 1993-09-14 | 2002-09-24 | ć·ć£ć¼ćę Ŗå¼ä¼ē¤¾ | The method of manufacturing a ferroelectric thin film |
GB9319070D0 (en) | 1993-09-15 | 1993-11-03 | Ncr Int Inc | Stencil having improved wear-resistance and quality consistency and method of manufacturing the same |
US5416041A (en) | 1993-09-27 | 1995-05-16 | Siemens Aktiengesellschaft | Method for producing an insulating trench in an SOI substrate |
WO1995009438A1 (en) | 1993-09-30 | 1995-04-06 | Kopin Corporation | Three-dimensional processor using transferred thin film circuits |
EP0653501B1 (en) | 1993-11-11 | 1998-02-04 | Nissin Electric Company, Limited | Plasma-CVD method and apparatus |
US5532495A (en) | 1993-11-16 | 1996-07-02 | Sandia Corporation | Methods and apparatus for altering material using ion beams |
US5455445A (en) | 1994-01-21 | 1995-10-03 | Kulite Semiconductor Products, Inc. | Multi-level semiconductor structures having environmentally isolated elements |
US5362665A (en) | 1994-02-14 | 1994-11-08 | Industrial Technology Research Institute | Method of making vertical DRAM cross point memory cell |
US5449433A (en) | 1994-02-14 | 1995-09-12 | Micron Semiconductor, Inc. | Use of a high density plasma source having an electrostatic shield for anisotropic polysilicon etching over topography |
US6296943B1 (en) | 1994-03-05 | 2001-10-02 | Nissan Chemical Industries, Ltd. | Method for producing composite sol, coating composition, and optical element |
US5434878A (en) | 1994-03-18 | 1995-07-18 | Brown University Research Foundation | Optical gain medium having doped nanocrystals of semiconductors and also optical scatterers |
JPH07263751A (en) | 1994-03-24 | 1995-10-13 | Sharp Corp | Ii-vi compound semiconductor device and manufacture of it |
KR960016773B1 (en) | 1994-03-28 | 1996-12-20 | Samsung Electronics Co Ltd | Buried bit line and cylindrical gate cell and forming method thereof |
US5455489A (en) | 1994-04-11 | 1995-10-03 | Bhargava; Rameshwar N. | Displays comprising doped nanocrystal phosphors |
US5460988A (en) | 1994-04-25 | 1995-10-24 | United Microelectronics Corporation | Process for high density flash EPROM cell |
US5414287A (en) | 1994-04-25 | 1995-05-09 | United Microelectronics Corporation | Process for high density split-gate memory cell for flash or EPROM |
KR960015375B1 (en) | 1994-06-08 | 1996-11-11 | ź¹ģ£¼ģ© | Method and apparatus for manufacturing ferroelectric film |
WO1995034954A1 (en) | 1994-06-13 | 1995-12-21 | Hitachi, Ltd. | Signal receiving circuit and digital signal processing system |
US5432739A (en) | 1994-06-17 | 1995-07-11 | Philips Electronics North America Corporation | Non-volatile sidewall memory cell method of fabricating same |
FR2722566B1 (en) | 1994-07-13 | 1996-08-23 | Europ Gas Turbines Sa | dynamic displacement sensor, use of such a sensor and method for measuring a surface displacement |
US5450026A (en) | 1994-07-27 | 1995-09-12 | At&T Corp. | Current mode driver for differential bus |
US5828080A (en) | 1994-08-17 | 1998-10-27 | Tdk Corporation | Oxide thin film, electronic device substrate and electronic device |
US5670810A (en) | 1994-08-25 | 1997-09-23 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device with a vertical field effect transistor |
US5822256A (en) | 1994-09-06 | 1998-10-13 | Intel Corporation | Method and circuitry for usage of partially functional nonvolatile memory |
US5705415A (en) * | 1994-10-04 | 1998-01-06 | Motorola, Inc. | Process for forming an electrically programmable read-only memory cell |
US5508542A (en) | 1994-10-28 | 1996-04-16 | International Business Machines Corporation | Porous silicon trench and capacitor structures |
JP2658910B2 (en) | 1994-10-28 | 1997-09-30 | ę„ę¬é»ę°ę Ŗå¼ä¼ē¤¾ | Flash memory device and manufacturing method thereof |
US5444013A (en) | 1994-11-02 | 1995-08-22 | Micron Technology, Inc. | Method of forming a capacitor |
US5585020A (en) | 1994-11-03 | 1996-12-17 | Becker; Michael F. | Process for the production of nanoparticles |
WO1996014206A1 (en) | 1994-11-08 | 1996-05-17 | Spectra Science Corporation | Semiconductor nanocrystal display materials and display apparatus employing same |
US6252267B1 (en) | 1994-12-28 | 2001-06-26 | International Business Machines Corporation | Five square folded-bitline DRAM cell |
JP3549602B2 (en) | 1995-01-12 | 2004-08-04 | ę Ŗå¼ä¼ē¤¾ć«ććµć¹ććÆćććø | A semiconductor memory device |
US5625233A (en) | 1995-01-13 | 1997-04-29 | Ibm Corporation | Thin film multi-layer oxygen diffusion barrier consisting of refractory metal, refractory metal aluminide, and aluminum oxide |
US5497017A (en) | 1995-01-26 | 1996-03-05 | Micron Technology, Inc. | Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors |
US5523261A (en) * | 1995-02-28 | 1996-06-04 | Micron Technology, Inc. | Method of cleaning high density inductively coupled plasma chamber using capacitive coupling |
JP2692639B2 (en) | 1995-03-10 | 1997-12-17 | ę„ę¬é»ę°ę Ŗå¼ä¼ē¤¾ | Method of manufacturing a nonvolatile semiconductor memory device |
KR0141160B1 (en) | 1995-03-22 | 1998-06-01 | ź¹ź“ķø | Ferroelectric memory and manufacturing method thereof |
JP3719613B2 (en) | 1995-04-24 | 2005-11-24 | ć·ć£ć¼ćę Ŗå¼ä¼ē¤¾ | Semiconductor light-emitting element |
EP0823148B1 (en) | 1995-04-28 | 2000-01-19 | Siemens Aktiengesellschaft | Gtl output amplifier for coupling an input signal at the input to a transmission line at the output |
US5652061A (en) | 1995-05-22 | 1997-07-29 | Lucent Technologies Inc. | Devices comprising films of β-C3 N4 |
US5508219A (en) | 1995-06-05 | 1996-04-16 | International Business Machines Corporation | SOI DRAM with field-shield isolation and body contact |
US5760121A (en) | 1995-06-07 | 1998-06-02 | Amcol International Corporation | Intercalates and exfoliates formed with oligomers and polymers and composite materials containing same |
CA2154428C (en) | 1995-07-21 | 2005-03-22 | Robert Schulz | Ti, ru, fe and o alloys; use thereof for producing cathodes used for electrochemically synthesizing sodium chlorate |
JPH0945624A (en) | 1995-07-27 | 1997-02-14 | Tokyo Electron Ltd | Leaf-type heat treating system |
US5753934A (en) | 1995-08-04 | 1998-05-19 | Tok Corporation | Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film |
US5714766A (en) * | 1995-09-29 | 1998-02-03 | International Business Machines Corporation | Nano-structure memory device |
US5811984A (en) | 1995-10-05 | 1998-09-22 | The Regents Of The University Of California | Current mode I/O for digital circuits |
US5772153A (en) | 1995-10-17 | 1998-06-30 | Abaunza; John T. | Aircraft icing sensors |
US5792269A (en) | 1995-10-31 | 1998-08-11 | Applied Materials, Inc. | Gas distribution for CVD systems |
US5665644A (en) | 1995-11-03 | 1997-09-09 | Micron Technology, Inc. | Semiconductor processing method of forming electrically conductive interconnect lines and integrated circuitry |
US6447848B1 (en) | 1995-11-13 | 2002-09-10 | The United States Of America As Represented By The Secretary Of The Navy | Nanosize particle coatings made by thermally spraying solution precursor feedstocks |
KR0164072B1 (en) | 1995-11-13 | 1999-02-01 | ź¹ģ£¼ģ© | Method of forming shallow junction in a semiconductor device |
WO1997018341A1 (en) | 1995-11-13 | 1997-05-22 | The University Of Connecticut | Nanostructured feeds for thermal spray |
US5636170A (en) | 1995-11-13 | 1997-06-03 | Micron Technology, Inc. | Low voltage dynamic memory |
US5640342A (en) | 1995-11-20 | 1997-06-17 | Micron Technology, Inc. | Structure for cross coupled thin film transistors and static random access memory cell |
TW328641B (en) | 1995-12-04 | 1998-03-21 | Hitachi Ltd | Semiconductor integrated circuit device and process for producing the same |
US5756404A (en) | 1995-12-07 | 1998-05-26 | Micron Technologies, Inc. | Two-step nitride deposition |
US6224690B1 (en) | 1995-12-22 | 2001-05-01 | International Business Machines Corporation | Flip-Chip interconnections using lead-free solders |
TW326553B (en) | 1996-01-22 | 1998-02-11 | Handotai Energy Kenkyusho Kk | Semiconductor device and method of fabricating same |
CN1210627A (en) | 1996-02-13 | 1999-03-10 | ē¾å½å å¦ęéå ¬åø | External cavity semiconductor laser with monolithic prism assembly |
US5892249A (en) | 1996-02-23 | 1999-04-06 | National Semiconductor Corporation | Integrated circuit having reprogramming cell |
US5789030A (en) | 1996-03-18 | 1998-08-04 | Micron Technology, Inc. | Method for depositing doped amorphous or polycrystalline silicon on a substrate |
US5729047A (en) * | 1996-03-25 | 1998-03-17 | Micron Technology, Inc. | Method and structure for providing signal isolation and decoupling in an integrated circuit device |
US5745334A (en) | 1996-03-25 | 1998-04-28 | International Business Machines Corporation | Capacitor formed within printed circuit board |
US5614026A (en) | 1996-03-29 | 1997-03-25 | Lam Research Corporation | Showerhead for uniform distribution of process gas |
US5735960A (en) | 1996-04-02 | 1998-04-07 | Micron Technology, Inc. | Apparatus and method to increase gas residence time in a reactor |
US5765214A (en) | 1996-04-22 | 1998-06-09 | Cypress Semiconductor Corporation | Memory access method and apparatus and multi-plane memory device with prefetch |
US5877860A (en) | 1996-05-13 | 1999-03-02 | Boxer Cross, Inc. | System and method for measuring the microroughness of a surface of a substrate |
US5674574A (en) | 1996-05-20 | 1997-10-07 | Micron Technology, Inc. | Vapor delivery system for solid precursors and method regarding same |
US5939333A (en) | 1996-05-30 | 1999-08-17 | Micron Technology, Inc. | Silicon nitride deposition method |
TW312852B (en) * | 1996-06-08 | 1997-08-11 | United Microelectronics Corp | Manufacturing method of flash memory |
JPH104149A (en) | 1996-06-14 | 1998-01-06 | Oki Electric Ind Co Ltd | Semiconductor memory and its manufacture |
JP3193302B2 (en) | 1996-06-26 | 2001-07-30 | ćć£ć¼ćć£ć¼ć±ć¤ę Ŗå¼ä¼ē¤¾ | Membrane structure, an electronic device, a method of manufacturing a recording medium and a ferroelectric thin film |
US5783716A (en) | 1996-06-28 | 1998-07-21 | Advanced Technology Materials, Inc. | Platinum source compositions for chemical vapor deposition of platinum |
US5963833A (en) | 1996-07-03 | 1999-10-05 | Micron Technology, Inc. | Method for cleaning semiconductor wafers and |
US6020247A (en) | 1996-08-05 | 2000-02-01 | Texas Instruments Incorporated | Method for thin film deposition on single-crystal semiconductor substrates |
US5698022A (en) | 1996-08-14 | 1997-12-16 | Advanced Technology Materials, Inc. | Lanthanide/phosphorus precursor compositions for MOCVD of lanthanide/phosphorus oxide films |
US5916365A (en) | 1996-08-16 | 1999-06-29 | Sherman; Arthur | Sequential chemical vapor deposition |
US6342277B1 (en) | 1996-08-16 | 2002-01-29 | Licensee For Microelectronics: Asm America, Inc. | Sequential chemical vapor deposition |
US5691230A (en) * | 1996-09-04 | 1997-11-25 | Micron Technology, Inc. | Technique for producing small islands of silicon on insulator |
US6103419A (en) | 1996-09-06 | 2000-08-15 | Valence Technology, Inc. | Solid secondary lithium cell based on lithiated zirconium, titanium or hafnium oxide cathode material |
US5923056A (en) | 1996-10-10 | 1999-07-13 | Lucent Technologies Inc. | Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials |
KR100492258B1 (en) | 1996-10-11 | 2005-09-02 | ź°ė¶ģķ¤ź°ģ“ģ¤ ģė°ė¼ ģøģ“ģ¬ź¾øģ¼ | The reaction gas ejection head |
US5885864A (en) | 1996-10-24 | 1999-03-23 | Micron Technology, Inc. | Method for forming compact memory cell using vertical devices |
US6211039B1 (en) | 1996-11-12 | 2001-04-03 | Micron Technology, Inc. | Silicon-on-insulator islands and method for their formation |
US6114216A (en) | 1996-11-13 | 2000-09-05 | Applied Materials, Inc. | Methods for shallow trench isolation |
US5939146A (en) | 1996-12-11 | 1999-08-17 | The Regents Of The University Of California | Method for thermal spraying of nanocrystalline coatings and materials for the same |
EP0854210B1 (en) | 1996-12-19 | 2002-03-27 | Toshiba Ceramics Co., Ltd. | Vapor deposition apparatus for forming thin film |
US5929477A (en) | 1997-01-22 | 1999-07-27 | International Business Machines Corporation | Self-aligned diffused source vertical transistors with stack capacitors in a 4F-square memory cell array |
US6034389A (en) * | 1997-01-22 | 2000-03-07 | International Business Machines Corporation | Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array |
US5874760A (en) * | 1997-01-22 | 1999-02-23 | International Business Machines Corporation | 4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation |
US5990509A (en) | 1997-01-22 | 1999-11-23 | International Business Machines Corporation | 2F-square memory cell for gigabit memory applications |
US6174377B1 (en) * | 1997-03-03 | 2001-01-16 | Genus, Inc. | Processing chamber for atomic layer deposition processes |
JPH10308166A (en) * | 1997-03-04 | 1998-11-17 | Pioneer Electron Corp | Electron emission element and display device using the same |
US6013199A (en) | 1997-03-04 | 2000-01-11 | Symyx Technologies | Phosphor materials |
US6130503A (en) | 1997-03-04 | 2000-10-10 | Pioneer Electronic Corporation | Electron emission device and display using the same |
DE19709002A1 (en) | 1997-03-05 | 1998-09-24 | Siemens Ag | Bridged doped zone manufacturing method e.g. for DMOS transistor |
US6226599B1 (en) | 1997-03-05 | 2001-05-01 | Fujitsu Limted | Electromagnetic wave analyzer apparatus |
US6075691A (en) | 1997-03-06 | 2000-06-13 | Lucent Technologies Inc. | Thin film capacitors and process for making them |
JPH10312739A (en) * | 1997-03-10 | 1998-11-24 | Pioneer Electron Corp | Electron emitting element and display device with it |
US5990605A (en) | 1997-03-25 | 1999-11-23 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
US6699745B1 (en) | 1997-03-27 | 2004-03-02 | Texas Instruments Incorporated | Capacitor and memory structure and method |
US6232847B1 (en) | 1997-04-28 | 2001-05-15 | Rockwell Science Center, Llc | Trimmable singleband and tunable multiband integrated oscillator using micro-electromechanical system (MEMS) technology |
US6034015A (en) | 1997-05-14 | 2000-03-07 | Georgia Tech Research Corporation | Ceramic compositions for microwave wireless communication |
JP3724915B2 (en) | 1997-05-15 | 2005-12-07 | ćć¤ćŖćć¢ę Ŗå¼ä¼ē¤¾ | Electron emission device and display device using the |
JPH10321123A (en) | 1997-05-15 | 1998-12-04 | Pioneer Electron Corp | Electron emission device and display apparatus using it |
US6060743A (en) | 1997-05-21 | 2000-05-09 | Kabushiki Kaisha Toshiba | Semiconductor memory device having multilayer group IV nanocrystal quantum dot floating gate and method of manufacturing the same |
US5770022A (en) | 1997-06-05 | 1998-06-23 | Dow Corning Corporation | Method of making silica nanoparticles |
US6089184A (en) | 1997-06-11 | 2000-07-18 | Tokyo Electron Limited | CVD apparatus and CVD method |
US5909618A (en) | 1997-07-08 | 1999-06-01 | Micron Technology, Inc. | Method of making memory cell with vertical transistor and buried word and body lines |
US5936274A (en) | 1997-07-08 | 1999-08-10 | Micron Technology, Inc. | High density flash memory |
US6072209A (en) * | 1997-07-08 | 2000-06-06 | Micro Technology, Inc. | Four F2 folded bit line DRAM cell structure having buried bit and word lines |
US5973356A (en) | 1997-07-08 | 1999-10-26 | Micron Technology, Inc. | Ultra high density flash memory |
US6191470B1 (en) | 1997-07-08 | 2001-02-20 | Micron Technology, Inc. | Semiconductor-on-insulator memory cell with buried word and body lines |
US6150687A (en) | 1997-07-08 | 2000-11-21 | Micron Technology, Inc. | Memory cell having a vertical transistor with buried source/drain and dual gates |
US6794255B1 (en) | 1997-07-29 | 2004-09-21 | Micron Technology, Inc. | Carburized silicon gate insulators for integrated circuits |
US6746893B1 (en) | 1997-07-29 | 2004-06-08 | Micron Technology, Inc. | Transistor with variable electron affinity gate and methods of fabrication and use |
JPH1167064A (en) | 1997-08-08 | 1999-03-09 | Pioneer Electron Corp | Electron emitting element and display device using the same |
EP0896354A1 (en) | 1997-08-08 | 1999-02-10 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
JP3570864B2 (en) * | 1997-08-08 | 2004-09-29 | ćć¤ćŖćć¢ę Ŗå¼ä¼ē¤¾ | Electron emission device and display device using the |
JPH1167063A (en) | 1997-08-08 | 1999-03-09 | Pioneer Electron Corp | Electron emitting element and display device using the same |
US5973352A (en) | 1997-08-20 | 1999-10-26 | Micron Technology, Inc. | Ultra high density flash memory having vertically stacked devices |
US5910880A (en) | 1997-08-20 | 1999-06-08 | Micron Technology, Inc. | Semiconductor circuit components and capacitors |
DE19736366A1 (en) | 1997-08-21 | 1999-02-25 | Ernst Prof Dr Bayer | Isolating anionic substances e.g. protein, nucleic acids, from aqueous systems |
US6143616A (en) | 1997-08-22 | 2000-11-07 | Micron Technology, Inc. | Methods of forming coaxial integrated circuitry interconnect lines |
US6391769B1 (en) | 1998-08-19 | 2002-05-21 | Samsung Electronics Co., Ltd. | Method for forming metal interconnection in semiconductor device and interconnection structure fabricated thereby |
US5879459A (en) | 1997-08-29 | 1999-03-09 | Genus, Inc. | Vertically-stacked process reactor and cluster tool system for atomic layer deposition |
WO1999011202A1 (en) | 1997-09-05 | 1999-03-11 | Icet, Inc. | Biomimetic calcium phosphate implant coatings and methods for making the same |
US6440933B1 (en) | 1997-09-10 | 2002-08-27 | University Of Florida | Compounds and method for the prevention and treatment of diabetic retinopathy |
US5912797A (en) | 1997-09-24 | 1999-06-15 | Lucent Technologies Inc. | Dielectric materials of amorphous compositions and devices employing same |
US6063202A (en) | 1997-09-26 | 2000-05-16 | Novellus Systems, Inc. | Apparatus for backside and edge exclusion of polymer film during chemical vapor deposition |
US6161500A (en) | 1997-09-30 | 2000-12-19 | Tokyo Electron Limited | Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions |
US5907170A (en) | 1997-10-06 | 1999-05-25 | Micron Technology, Inc. | Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor |
US6066869A (en) | 1997-10-06 | 2000-05-23 | Micron Technology, Inc. | Circuit and method for a folded bit line memory cell with vertical transistor and trench capacitor |
US6333556B1 (en) * | 1997-10-09 | 2001-12-25 | Micron Technology, Inc. | Insulating materials |
US5952039A (en) | 1997-11-04 | 1999-09-14 | United Microelectronics Corp. | Method for manufacturing DRAM capacitor |
US6331282B1 (en) | 1997-11-10 | 2001-12-18 | Board Of Regents, The University Of Texas System | Manganese oxyiodides and their method of preparation and use in energy storage |
US6232643B1 (en) | 1997-11-13 | 2001-05-15 | Micron Technology, Inc. | Memory using insulator traps |
US5953587A (en) | 1997-11-24 | 1999-09-14 | The Trustees Of Princeton University | Method for deposition and patterning of organic thin film |
US20020011215A1 (en) | 1997-12-12 | 2002-01-31 | Goushu Tei | Plasma treatment apparatus and method of manufacturing optical parts using the same |
KR100268936B1 (en) * | 1997-12-16 | 2000-10-16 | ź¹ģķ | A method of forming for quantum dot of semiconductor device |
US6911371B2 (en) * | 1997-12-19 | 2005-06-28 | Micron Technology, Inc. | Capacitor forming methods with barrier layers to threshold voltage shift inducing material |
EP0926698A3 (en) | 1997-12-25 | 2001-10-17 | Pioneer Electronic Corporation | Electron emitting device based flat panel display apparatus |
US6198168B1 (en) | 1998-01-20 | 2001-03-06 | Micron Technologies, Inc. | Integrated circuits using high aspect ratio vias through a semiconductor wafer and method for forming same |
US6025225A (en) * | 1998-01-22 | 2000-02-15 | Micron Technology, Inc. | Circuits with a trench capacitor having micro-roughened semiconductor surfaces and methods for forming the same |
US5972847A (en) | 1998-01-28 | 1999-10-26 | Lockheed Martin Energy | Method for making high-critical-current-density YBa2 Cu3 O7 superconducting layers on metallic substrates |
US5963469A (en) | 1998-02-24 | 1999-10-05 | Micron Technology, Inc. | Vertical bipolar read access for low voltage memory cell |
US6592661B1 (en) | 1998-02-25 | 2003-07-15 | Micron Technology, Inc. | Method for processing wafers in a semiconductor fabrication system |
US6090636A (en) | 1998-02-26 | 2000-07-18 | Micron Technology, Inc. | Integrated circuits using optical waveguide interconnects formed through a semiconductor wafer and methods for forming same |
US6150188A (en) | 1998-02-26 | 2000-11-21 | Micron Technology Inc. | Integrated circuits using optical fiber interconnects formed through a semiconductor wafer and methods for forming same |
US6458645B2 (en) | 1998-02-26 | 2002-10-01 | Micron Technology, Inc. | Capacitor having tantalum oxynitride film and method for making same |
US5991225A (en) | 1998-02-27 | 1999-11-23 | Micron Technology, Inc. | Programmable memory address decode array with vertical transistors |
US6124729A (en) | 1998-02-27 | 2000-09-26 | Micron Technology, Inc. | Field programmable logic arrays with vertical transistors |
US6083793A (en) | 1998-02-27 | 2000-07-04 | Texas Instruments - Acer Incorporated | Method to manufacture nonvolatile memories with a trench-pillar cell structure for high capacitive coupling ratio |
US6191443B1 (en) * | 1998-02-28 | 2001-02-20 | Micron Technology, Inc. | Capacitors, methods of forming capacitors, and DRAM memory cells |
US6150724A (en) | 1998-03-02 | 2000-11-21 | Motorola, Inc. | Multi-chip semiconductor device and method for making the device by using multiple flip chip interfaces |
US6287673B1 (en) | 1998-03-03 | 2001-09-11 | Acktar Ltd. | Method for producing high surface area foil electrodes |
US6111285A (en) | 1998-03-17 | 2000-08-29 | Micron Technology, Inc. | Boride electrodes and barriers for cell dielectrics |
JP4439020B2 (en) | 1998-03-26 | 2010-03-24 | ę Ŗå¼ä¼ē¤¾ę±č | Semiconductor memory device and manufacturing method thereof |
US6043527A (en) | 1998-04-14 | 2000-03-28 | Micron Technology, Inc. | Circuits and methods for a memory cell with a trench plate trench capacitor and a vertical bipolar read device |
US6225158B1 (en) * | 1998-05-28 | 2001-05-01 | International Business Machines Corporation | Trench storage dynamic random access memory cell with vertical transfer device |
US5981350A (en) * | 1998-05-29 | 1999-11-09 | Micron Technology, Inc. | Method for forming high capacitance memory cells |
US6225168B1 (en) | 1998-06-04 | 2001-05-01 | Advanced Micro Devices, Inc. | Semiconductor device having metal gate electrode and titanium or tantalum nitride gate dielectric barrier layer and process of fabrication thereof |
US6093944A (en) | 1998-06-04 | 2000-07-25 | Lucent Technologies Inc. | Dielectric materials of amorphous compositions of TI-O2 doped with rare earth elements and devices employing same |
US6461970B1 (en) | 1998-06-10 | 2002-10-08 | Micron Technology, Inc. | Method of reducing defects in anti-reflective coatings and semiconductor structures fabricated thereby |
FR2779751B1 (en) | 1998-06-10 | 2003-11-14 | Saint Gobain Isover | Substrate has photocatalytic coating |
US6302964B1 (en) | 1998-06-16 | 2001-10-16 | Applied Materials, Inc. | One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system |
US6026019A (en) | 1998-06-19 | 2000-02-15 | International Business Machines Corporation | Two square NVRAM cell |
US6289842B1 (en) | 1998-06-22 | 2001-09-18 | Structured Materials Industries Inc. | Plasma enhanced chemical vapor deposition system |
US6291314B1 (en) | 1998-06-23 | 2001-09-18 | Silicon Genesis Corporation | Controlled cleavage process and device for patterned films using a release layer |
US6320091B1 (en) | 1998-06-23 | 2001-11-20 | The United States Of America As Represented By The United States Department Of Energy | Process for making a ceramic composition for immobilization of actinides |
US6137025A (en) | 1998-06-23 | 2000-10-24 | The United States Of America As Represented By The United States Department Of Energy | Ceramic composition for immobilization of actinides |
JP3698390B2 (en) | 1998-07-29 | 2005-09-21 | ćć¤ćŖćć¢ę Ŗå¼ä¼ē¤¾ | Electron emission display device and an electronic emission device |
US6208164B1 (en) | 1998-08-04 | 2001-03-27 | Micron Technology, Inc. | Programmable logic array with vertical transistors |
US6134175A (en) | 1998-08-04 | 2000-10-17 | Micron Technology, Inc. | Memory address decode array with vertical transistors |
US6093623A (en) | 1998-08-04 | 2000-07-25 | Micron Technology, Inc. | Methods for making silicon-on-insulator structures |
JP3765671B2 (en) | 1998-08-10 | 2006-04-12 | ćć¤ćŖćć¢ę Ŗå¼ä¼ē¤¾ | Electron emission device and electron emission display device using the same |
JP2000057935A (en) | 1998-08-10 | 2000-02-25 | Pioneer Electron Corp | Electron emission luminous element, and display device using it |
US6352777B1 (en) | 1998-08-19 | 2002-03-05 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
US6274479B1 (en) | 1998-08-21 | 2001-08-14 | Micron Technology, Inc | Flowable germanium doped silicate glass for use as a spacer oxide |
US6710538B1 (en) | 1998-08-26 | 2004-03-23 | Micron Technology, Inc. | Field emission display having reduced power requirements and method |
US6125062A (en) | 1998-08-26 | 2000-09-26 | Micron Technology, Inc. | Single electron MOSFET memory device and method |
US6063705A (en) | 1998-08-27 | 2000-05-16 | Micron Technology, Inc. | Precursor chemistries for chemical vapor deposition of ruthenium and ruthenium oxide |
US6184550B1 (en) * | 1998-08-28 | 2001-02-06 | Advanced Technology Materials, Inc. | Ternary nitride-carbide barrier layers |
US6281042B1 (en) | 1998-08-31 | 2001-08-28 | Micron Technology, Inc. | Structure and method for a high performance electronic packaging assembly |
EP1001459B1 (en) | 1998-09-09 | 2011-11-09 | Texas Instruments Incorporated | Integrated circuit comprising a capacitor and method |
EP0986084A3 (en) | 1998-09-11 | 2004-01-21 | Pioneer Corporation | Electron emission device and display apparatus using the same |
USH1924H (en) | 1998-09-15 | 2000-12-05 | The United States Of America As Represented By The Secretary Of The Air Force | Load-adaptive nanocrystalline carbon/amorphous diamond-like carbon composite and preparation method |
CN1319252A (en) | 1998-09-25 | 2001-10-24 | ęåęę Ŗå¼ä¼ē¤¾ | Semiconductor substrate and its production method, semiconductor device |
EP0990918B1 (en) | 1998-09-28 | 2009-01-21 | NEC Electronics Corporation | Device and method for nondestructive inspection on semiconductor device |
US6587408B1 (en) | 1998-10-01 | 2003-07-01 | Massachusetts Institute Of Technology | High-density mechanical memory and turing machine |
EP1117443B1 (en) * | 1998-10-08 | 2005-11-02 | Rijksuniversiteit Te Groningen | Peptide-based carrier devices for stellate cells |
US6133621A (en) | 1998-10-15 | 2000-10-17 | Stmicroelectronics S.R.L. | Integrated shielded electric connection |
US6208881B1 (en) | 1998-10-20 | 2001-03-27 | Micropure Medical, Inc. | Catheter with thin film electrodes and method for making same |
WO2000026973A1 (en) * | 1998-11-02 | 2000-05-11 | Presstek, Inc. | Transparent conductive oxides for plastic flat panel displays |
US6423613B1 (en) | 1998-11-10 | 2002-07-23 | Micron Technology, Inc. | Low temperature silicon wafer bond process with bulk material bond strength |
US6218293B1 (en) | 1998-11-13 | 2001-04-17 | Micron Technology, Inc. | Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride |
US6207522B1 (en) | 1998-11-23 | 2001-03-27 | Microcoating Technologies | Formation of thin film capacitors |
US6433993B1 (en) | 1998-11-23 | 2002-08-13 | Microcoating Technologies, Inc. | Formation of thin film capacitors |
US6210999B1 (en) | 1998-12-04 | 2001-04-03 | Advanced Micro Devices, Inc. | Method and test structure for low-temperature integration of high dielectric constant gate dielectrics into self-aligned semiconductor devices |
KR20000045305A (en) | 1998-12-30 | 2000-07-15 | ź¹ģķ | Fully depleted soi element and method for manufacturing the same |
US6230651B1 (en) | 1998-12-30 | 2001-05-15 | Lam Research Corporation | Gas injection system for plasma processing |
JP3219067B2 (en) | 1999-01-08 | 2001-10-15 | ę„ę¬é»ę°ę Ŗå¼ä¼ē¤¾ | Integrated circuit |
JP2000208508A (en) | 1999-01-13 | 2000-07-28 | Texas Instr Inc <Ti> | Vacuum deposition of high-dielectric material made of silicate |
US6274937B1 (en) | 1999-02-01 | 2001-08-14 | Micron Technology, Inc. | Silicon multi-chip module packaging with integrated passive components and method of making |
US6255852B1 (en) | 1999-02-09 | 2001-07-03 | Micron Technology, Inc. | Current mode signal interconnects and CMOS amplifier |
US6291341B1 (en) | 1999-02-12 | 2001-09-18 | Micron Technology, Inc. | Method for PECVD deposition of selected material films |
US6303500B1 (en) | 1999-02-24 | 2001-10-16 | Micron Technology, Inc. | Method and apparatus for electroless plating a contact pad |
US6300255B1 (en) | 1999-02-24 | 2001-10-09 | Applied Materials, Inc. | Method and apparatus for processing semiconductive wafers |
KR100328820B1 (en) | 1999-02-25 | 2002-03-14 | ė°ģ¢ ģ | Gas injection apparatus of chemical vapor deposition device |
US6200893B1 (en) | 1999-03-11 | 2001-03-13 | Genus, Inc | Radical-assisted sequential CVD |
US6348709B1 (en) * | 1999-03-15 | 2002-02-19 | Micron Technology, Inc. | Electrical contact for high dielectric constant capacitors and method for fabricating the same |
US6445023B1 (en) | 1999-03-16 | 2002-09-03 | Micron Technology, Inc. | Mixed metal nitride and boride barrier layers |
JP3595853B2 (en) | 1999-03-18 | 2004-12-02 | ę„ę¬ćØć¼ć»ćØć¹ć»ćØć ę Ŗå¼ä¼ē¤¾ | Plasma cvd film forming apparatus |
KR100319884B1 (en) | 1999-04-12 | 2002-01-10 | ģ¤ģ¢ ģ© | Capacitor of semiconductor device and method for fabricating the same |
US7022623B2 (en) | 1999-04-22 | 2006-04-04 | Micron Technology, Inc. | Method of fabricating a semiconductor device with a dielectric film using a wet oxidation with steam process |
US6144552A (en) | 1999-04-26 | 2000-11-07 | Emc Corporation | Handheld computer system |
US6713329B1 (en) | 1999-05-10 | 2004-03-30 | The Trustees Of Princeton University | Inverter made of complementary p and n channel transistors using a single directly-deposited microcrystalline silicon film |
US6297527B1 (en) | 1999-05-12 | 2001-10-02 | Micron Technology, Inc. | Multilayer electrode for ferroelectric and high dielectric constant capacitors |
US6313015B1 (en) | 1999-06-08 | 2001-11-06 | City University Of Hong Kong | Growth method for silicon nanowires and nanoparticle chains from silicon monoxide |
US6273951B1 (en) | 1999-06-16 | 2001-08-14 | Micron Technology, Inc. | Precursor mixtures for use in preparing layers on substrates |
US6812157B1 (en) | 1999-06-24 | 2004-11-02 | Prasad Narhar Gadgil | Apparatus for atomic layer chemical vapor deposition |
US6206972B1 (en) | 1999-07-08 | 2001-03-27 | Genus, Inc. | Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes |
US6297539B1 (en) | 1999-07-19 | 2001-10-02 | Sharp Laboratories Of America, Inc. | Doped zirconia, or zirconia-like, dielectric film transistor structure and deposition method for same |
US6060755A (en) | 1999-07-19 | 2000-05-09 | Sharp Laboratories Of America, Inc. | Aluminum-doped zirconium dielectric film transistor structure and deposition method for same |
US6373740B1 (en) | 1999-07-30 | 2002-04-16 | Micron Technology, Inc. | Transmission lines for CMOS integrated circuits |
US6495878B1 (en) | 1999-08-02 | 2002-12-17 | Symetrix Corporation | Interlayer oxide containing thin films for high dielectric constant application |
US6368518B1 (en) | 1999-08-25 | 2002-04-09 | Micron Technology, Inc. | Methods for removing rhodium- and iridium-containing films |
US6498362B1 (en) | 1999-08-26 | 2002-12-24 | Micron Technology, Inc. | Weak ferroelectric transistor |
US6337805B1 (en) * | 1999-08-30 | 2002-01-08 | Micron Technology, Inc. | Discrete devices including EAPROM transistor and NVRAM memory cell with edge defined ferroelectric capacitance, methods for operating same, and apparatuses including same |
US6141238A (en) | 1999-08-30 | 2000-10-31 | Micron Technology, Inc. | Dynamic random access memory (DRAM) cells with repressed ferroelectric memory methods of reading same, and apparatuses including same |
US6291364B1 (en) | 1999-08-31 | 2001-09-18 | Micron Technology, Inc. | Method and apparatus for stabilizing high pressure oxidation of a semiconductor device |
US6337237B1 (en) | 1999-09-01 | 2002-01-08 | Micron Technology, Inc. | Capacitor processing method and DRAM processing method |
US6398199B1 (en) | 1999-09-03 | 2002-06-04 | Barber Manufacturing Company, Inc. | Coil spring assembly |
US20020046993A1 (en) | 2000-10-24 | 2002-04-25 | Peterson Dennis Roger | Electrothermal gun for direct electrothermal-physical conversion of precursor into nanopowder |
US6472632B1 (en) | 1999-09-15 | 2002-10-29 | Nanoscale Engineering And Technology Corporation | Method and apparatus for direct electrothermal-physical conversion of ceramic into nanopowder |
US6040243A (en) * | 1999-09-20 | 2000-03-21 | Chartered Semiconductor Manufacturing Ltd. | Method to form copper damascene interconnects using a reverse barrier metal scheme to eliminate copper diffusion |
US6653209B1 (en) | 1999-09-30 | 2003-11-25 | Canon Kabushiki Kaisha | Method of producing silicon thin film, method of constructing SOI substrate and semiconductor device |
US6270835B1 (en) | 1999-10-07 | 2001-08-07 | Microcoating Technologies, Inc. | Formation of this film capacitors |
FI118158B (en) | 1999-10-15 | 2007-07-31 | Asm Int | Process for modifying the starting chemical in an ALD process |
US6203613B1 (en) * | 1999-10-19 | 2001-03-20 | International Business Machines Corporation | Atomic layer deposition with nitrate containing precursors |
KR100304714B1 (en) | 1999-10-20 | 2001-11-02 | ģ¤ģ¢ ģ© | Method for fabricating metal layer of semiconductor device using metal-halide gas |
US6541079B1 (en) | 1999-10-25 | 2003-04-01 | International Business Machines Corporation | Engineered high dielectric constant oxide and oxynitride heterostructure gate dielectrics by an atomic beam deposition technique |
US6545338B1 (en) | 1999-10-28 | 2003-04-08 | Koninklijke Philips Electronics N.V. | Methods for implementing co-axial interconnect lines in a CMOS process for high speed RF and microwave applications |
US6569757B1 (en) | 1999-10-28 | 2003-05-27 | Philips Electronics North America Corporation | Methods for forming co-axial interconnect lines in a CMOS process for high speed applications |
JP4397491B2 (en) | 1999-11-30 | 2010-01-13 | č²”å£ę³äŗŗå½éē§å¦ęÆčč²”å£ | Semiconductor device using silicon having 111 plane orientation on surface and method of forming the same |
US6780704B1 (en) | 1999-12-03 | 2004-08-24 | Asm International Nv | Conformal thin films over textured capacitor electrodes |
US6503330B1 (en) | 1999-12-22 | 2003-01-07 | Genus, Inc. | Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition |
KR100313091B1 (en) | 1999-12-29 | 2001-11-07 | ė°ģ¢ ģ | Method of forming gate dielectric layer with TaON |
US6372618B2 (en) | 2000-01-06 | 2002-04-16 | Micron Technology, Inc. | Methods of forming semiconductor structures |
JP4253416B2 (en) | 2000-01-14 | 2009-04-15 | ćć¤ćŖćć¢ę Ŗå¼ä¼ē¤¾ | Imaging device using electron-emitting device |
US6417537B1 (en) | 2000-01-18 | 2002-07-09 | Micron Technology, Inc. | Metal oxynitride capacitor barrier layer |
FI20000099A0 (en) | 2000-01-18 | 2000-01-18 | Asm Microchemistry Ltd | The method of growing metal thin films |
US6429120B1 (en) | 2000-01-18 | 2002-08-06 | Micron Technology, Inc. | Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals |
JP2001201521A (en) | 2000-01-18 | 2001-07-27 | Agilent Technologies Japan Ltd | Current detecting device and impedance measuring apparatus and power measuring device |
US6531354B2 (en) | 2000-01-19 | 2003-03-11 | North Carolina State University | Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors |
US6472702B1 (en) | 2000-02-01 | 2002-10-29 | Winbond Electronics Corporation | Deep trench DRAM with SOI and STI |
US6404027B1 (en) | 2000-02-07 | 2002-06-11 | Agere Systems Guardian Corp. | High dielectric constant gate oxides for silicon-based devices |
US6527866B1 (en) | 2000-02-09 | 2003-03-04 | Conductus, Inc. | Apparatus and method for deposition of thin films |
US6392257B1 (en) | 2000-02-10 | 2002-05-21 | Motorola Inc. | Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same |
US6407435B1 (en) | 2000-02-11 | 2002-06-18 | Sharp Laboratories Of America, Inc. | Multilayer dielectric stack and method |
US6319766B1 (en) | 2000-02-22 | 2001-11-20 | Applied Materials, Inc. | Method of tantalum nitride deposition by tantalum oxide densification |
US6727105B1 (en) | 2000-02-28 | 2004-04-27 | Hewlett-Packard Development Company, L.P. | Method of fabricating an MRAM device including spin dependent tunneling junction memory cells |
US6249460B1 (en) | 2000-02-28 | 2001-06-19 | Micron Technology, Inc. | Dynamic flash memory cells with ultrathin tunnel oxides |
DE10010821A1 (en) | 2000-02-29 | 2001-09-13 | Infineon Technologies Ag | Increasing capacity in a storage trench comprises depositing a first silicon oxide layer in the trench, depositing a silicon layer over the first layer to sufficiently |
US6677640B1 (en) * | 2000-03-01 | 2004-01-13 | Micron Technology, Inc. | Memory cell with tight coupling |
AU4538301A (en) | 2000-03-01 | 2001-09-12 | Penn State Res Found | Method for fabrication of lead based perovskite materials |
US6444039B1 (en) | 2000-03-07 | 2002-09-03 | Simplus Systems Corporation | Three-dimensional showerhead apparatus |
WO2001066832A2 (en) | 2000-03-07 | 2001-09-13 | Asm America, Inc. | Graded thin films |
CA2301252A1 (en) | 2000-03-17 | 2001-09-17 | Hydro-Quebec | Method for producing gaseous hydrogen by chemical reaction of metals or metal hydrides subjected to intense mechanical deformations |
US6537613B1 (en) | 2000-04-10 | 2003-03-25 | Air Products And Chemicals, Inc. | Process for metal metalloid oxides and nitrides with compositional gradients |
US6492241B1 (en) | 2000-04-10 | 2002-12-10 | Micron Technology, Inc. | Integrated capacitors fabricated with conductive metal oxides |
FI117979B (en) | 2000-04-14 | 2007-05-15 | Asm Int | Process for making oxide thin films |
US20020195056A1 (en) | 2000-05-12 | 2002-12-26 | Gurtej Sandhu | Versatile atomic layer deposition apparatus |
AU6037401A (en) | 2000-05-15 | 2001-11-26 | Asm Microchemistry Oy | Process for producing integrated circuits |
US6432779B1 (en) | 2000-05-18 | 2002-08-13 | Motorola, Inc. | Selective removal of a metal oxide dielectric |
US6222788B1 (en) | 2000-05-30 | 2001-04-24 | Micron Technology, Inc. | Vertical gate transistors in pass transistor logic decode circuits |
US6219299B1 (en) | 2000-05-31 | 2001-04-17 | Micron Technology, Inc. | Programmable memory decode circuits with transistors with vertical gates |
US7253076B1 (en) | 2000-06-08 | 2007-08-07 | Micron Technologies, Inc. | Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers |
US7128816B2 (en) | 2000-06-14 | 2006-10-31 | Wisconsin Alumni Research Foundation | Method and apparatus for producing colloidal nanoparticles in a dense medium plasma |
US6297095B1 (en) | 2000-06-16 | 2001-10-02 | Motorola, Inc. | Memory device that includes passivated nanoclusters and method for manufacture |
US6444592B1 (en) | 2000-06-20 | 2002-09-03 | International Business Machines Corporation | Interfacial oxidation process for high-k gate dielectric process integration |
JP3786566B2 (en) * | 2000-06-27 | 2006-06-14 | ę Ŗå¼ä¼ē¤¾ę±č | Semiconductor device and manufacturing method thereof |
US6551929B1 (en) | 2000-06-28 | 2003-04-22 | Applied Materials, Inc. | Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques |
WO2002003430A2 (en) | 2000-06-29 | 2002-01-10 | California Institute Of Technology | Aerosol process for fabricating discontinuous floating gate microelectronic devices |
US6290491B1 (en) * | 2000-06-29 | 2001-09-18 | Motorola, Inc. | Method for heating a semiconductor wafer in a process chamber by a shower head, and process chamber |
US6669996B2 (en) | 2000-07-06 | 2003-12-30 | University Of Louisville | Method of synthesizing metal doped diamond-like carbon films |
US6835278B2 (en) * | 2000-07-07 | 2004-12-28 | Mattson Technology Inc. | Systems and methods for remote plasma clean |
US6592942B1 (en) | 2000-07-07 | 2003-07-15 | Asm International N.V. | Method for vapour deposition of a film onto a substrate |
US6458416B1 (en) | 2000-07-19 | 2002-10-01 | Micron Technology, Inc. | Deposition methods |
US6638575B1 (en) | 2000-07-24 | 2003-10-28 | Praxair Technology, Inc. | Plasma sprayed oxygen transport membrane coatings |
US6458431B2 (en) | 2000-07-28 | 2002-10-01 | Ekc Technology, Inc. | Methods for the lithographic deposition of materials containing nanoparticles |
CN1256755C (en) | 2000-08-11 | 2006-05-17 | äøäŗ¬ęÆ åē§åę Ŗå¼ä¼ē¤¾ | Device and method for processing substrate |
US6841813B2 (en) * | 2001-08-13 | 2005-01-11 | Matrix Semiconductor, Inc. | TFT mask ROM and method for making same |
US6403494B1 (en) | 2000-08-14 | 2002-06-11 | Taiwan Semiconductor Manufacturing Company | Method of forming a floating gate self-aligned to STI on EEPROM |
EP1312120A1 (en) | 2000-08-14 | 2003-05-21 | Matrix Semiconductor, Inc. | Dense arrays and charge storage devices, and methods for making same |
US6580124B1 (en) | 2000-08-14 | 2003-06-17 | Matrix Semiconductor Inc. | Multigate semiconductor device with vertical channel current and method of fabrication |
US6709968B1 (en) | 2000-08-16 | 2004-03-23 | Micron Technology, Inc. | Microelectronic device with package with conductive elements and associated method of manufacture |
US6437389B1 (en) * | 2000-08-22 | 2002-08-20 | Micron Technology, Inc. | Vertical gate transistors in pass transistor programmable logic arrays |
JP2002141503A (en) | 2000-08-24 | 2002-05-17 | Tatsuro Maeda | Manufacturing method of self-alignment transistor |
US6365515B1 (en) | 2000-08-28 | 2002-04-02 | Micron Technology, Inc. | Chemical vapor deposition process |
US6380765B1 (en) | 2000-08-29 | 2002-04-30 | Micron Technology, Inc. | Double pass transistor logic with vertical gate transistors |
US6461909B1 (en) | 2000-08-30 | 2002-10-08 | Micron Technology, Inc. | Process for fabricating RuSixOy-containing adhesion layers |
US7094690B1 (en) | 2000-08-31 | 2006-08-22 | Micron Technology, Inc. | Deposition methods and apparatuses providing surface activation |
US6682969B1 (en) * | 2000-08-31 | 2004-01-27 | Micron Technology, Inc. | Top electrode in a strongly oxidizing environment |
US6541353B1 (en) | 2000-08-31 | 2003-04-01 | Micron Technology, Inc. | Atomic layer doping apparatus and method |
US7112503B1 (en) | 2000-08-31 | 2006-09-26 | Micron Technology, Inc. | Enhanced surface area capacitor fabrication methods |
US6642567B1 (en) | 2000-08-31 | 2003-11-04 | Micron Technology, Inc. | Devices containing zirconium-platinum-containing materials and methods for preparing such materials and devices |
US20020072164A1 (en) | 2000-09-13 | 2002-06-13 | Applied Materials, Inc. | Processing chamber with multi-layer brazed lid |
TW448318B (en) | 2000-09-18 | 2001-08-01 | Nat Science Council | Erbium, Yttrium co-doped Titanium oxide thin film material for planar optical waveguide amplifier |
JP4773608B2 (en) | 2000-09-28 | 2011-09-14 | ę Ŗå¼ä¼ē¤¾ćŖćć© | Glass ceramics and temperature compensation members |
US6465334B1 (en) | 2000-10-05 | 2002-10-15 | Advanced Micro Devices, Inc. | Enhanced electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors |
US6300203B1 (en) | 2000-10-05 | 2001-10-09 | Advanced Micro Devices, Inc. | Electrolytic deposition of dielectric precursor materials for use in in-laid gate MOS transistors |
US6660660B2 (en) | 2000-10-10 | 2003-12-09 | Asm International, Nv. | Methods for making a dielectric stack in an integrated circuit |
AU1173002A (en) | 2000-10-16 | 2002-04-29 | Tokyo Electron Ltd | Plasma reactor with reduced reaction chamber |
US6395650B1 (en) | 2000-10-23 | 2002-05-28 | International Business Machines Corporation | Methods for forming metal oxide layers with enhanced purity |
JP2002133719A (en) | 2000-10-27 | 2002-05-10 | Pioneer Electronic Corp | Optical recording medium |
US6787906B1 (en) | 2000-10-30 | 2004-09-07 | Samsung Electronics Co., Ltd. | Bit line pad and borderless contact on bit line stud with localized etch stop layer formed in an undermined region |
US6350649B1 (en) * | 2000-10-30 | 2002-02-26 | Samsung Electronics Co., Ltd. | Bit line landing pad and borderless contact on bit line stud with etch stop layer and manufacturing method thereof |
JP3681632B2 (en) | 2000-11-06 | 2005-08-10 | ę¾äøé»åØē£ę„ę Ŗå¼ä¼ē¤¾ | Semiconductor device and manufacturing method thereof |
US20020083464A1 (en) | 2000-11-07 | 2002-06-27 | Mai-Ian Tomsen | System and method for unprompted, context-sensitive querying during a televison broadcast |
US6368941B1 (en) | 2000-11-08 | 2002-04-09 | United Microelectronics Corp. | Fabrication of a shallow trench isolation by plasma oxidation |
US6767419B1 (en) | 2000-11-09 | 2004-07-27 | Bechtel Bwxt Idaho, Llc | Methods of forming hardened surfaces |
US6555858B1 (en) | 2000-11-15 | 2003-04-29 | Motorola, Inc. | Self-aligned magnetic clad write line and its method of formation |
WO2002045561A2 (en) | 2000-11-20 | 2002-06-13 | Applied Epi, Inc. | Surface sealing showerhead for vapor deposition reactor having integrated flow diverters |
US6355561B1 (en) | 2000-11-21 | 2002-03-12 | Micron Technology, Inc. | ALD method to improve surface coverage |
US6613695B2 (en) | 2000-11-24 | 2003-09-02 | Asm America, Inc. | Surface preparation prior to deposition |
US6414543B1 (en) | 2000-11-28 | 2002-07-02 | Precision Dynamics Corporation | Rectifying charge storage element |
KR100385947B1 (en) | 2000-12-06 | 2003-06-02 | ģ¼ģ±ģ ģ주ģķģ¬ | Method of forming thin film by atomic layer deposition |
JP2002186097A (en) | 2000-12-15 | 2002-06-28 | Pioneer Electronic Corp | Speaker |
US6623761B2 (en) | 2000-12-22 | 2003-09-23 | Hassan Emadeldin M. | Method of making nanoparticles of substantially water insoluble materials |
JP2002203499A (en) | 2000-12-28 | 2002-07-19 | Pioneer Electronic Corp | Electron emission element flat panel display device |
JP2002202732A (en) | 2000-12-28 | 2002-07-19 | Pioneer Electronic Corp | Flat panel display device |
KR20020056260A (en) | 2000-12-29 | 2002-07-10 | ė°ģ¢ ģ | Method for forming metal gate of semiconductor devoie |
US7112543B2 (en) | 2001-01-04 | 2006-09-26 | Micron Technology, Inc. | Methods of forming assemblies comprising silicon-doped aluminum oxide |
US20020089023A1 (en) | 2001-01-05 | 2002-07-11 | Motorola, Inc. | Low leakage current metal oxide-nitrides and method of fabricating same |
US20020089063A1 (en) | 2001-01-08 | 2002-07-11 | Ahn Kie Y. | Copper dual damascene interconnect technology |
US6346477B1 (en) * | 2001-01-09 | 2002-02-12 | Research Foundation Of Suny - New York | Method of interlayer mediated epitaxy of cobalt silicide from low temperature chemical vapor deposition of cobalt |
KR100385952B1 (en) | 2001-01-19 | 2003-06-02 | ģ¼ģ±ģ ģ주ģķģ¬ | A semiconductor capacitor having tantalum oxide as dielctric film and formation method thereof |
US6692898B2 (en) * | 2001-01-24 | 2004-02-17 | Infineon Technologies Ag | Self-aligned conductive line for cross-point magnetic memory integrated circuits |
US6713846B1 (en) | 2001-01-26 | 2004-03-30 | Aviza Technology, Inc. | Multilayer high Īŗ dielectric films |
WO2002064877A2 (en) | 2001-01-30 | 2002-08-22 | The Procter & Gamble Company | Coating compositions for modifying surfaces |
US6566147B2 (en) * | 2001-02-02 | 2003-05-20 | Micron Technology, Inc. | Method for controlling deposition of dielectric films |
US6528374B2 (en) | 2001-02-05 | 2003-03-04 | International Business Machines Corporation | Method for forming dielectric stack without interfacial layer |
US6737740B2 (en) | 2001-02-08 | 2004-05-18 | Micron Technology, Inc. | High performance silicon contact for flip chip |
US6448601B1 (en) | 2001-02-09 | 2002-09-10 | Micron Technology, Inc. | Memory address and decode circuits with ultra thin body transistors |
US6566682B2 (en) | 2001-02-09 | 2003-05-20 | Micron Technology, Inc. | Programmable memory address and decode circuits with ultra thin vertical body transistors |
US6496034B2 (en) | 2001-02-09 | 2002-12-17 | Micron Technology, Inc. | Programmable logic arrays with ultra thin body transistors |
US6531727B2 (en) | 2001-02-09 | 2003-03-11 | Micron Technology, Inc. | Open bit line DRAM with ultra thin body transistors |
US6424001B1 (en) | 2001-02-09 | 2002-07-23 | Micron Technology, Inc. | Flash memory with ultra thin vertical body transistors |
US6559491B2 (en) | 2001-02-09 | 2003-05-06 | Micron Technology, Inc. | Folded bit line DRAM with ultra thin body transistors |
US6377070B1 (en) | 2001-02-09 | 2002-04-23 | Micron Technology, Inc. | In-service programmable logic arrays with ultra thin vertical body transistors |
JP3732098B2 (en) | 2001-02-19 | 2006-01-05 | ę Ŗå¼ä¼ē¤¾ć«ććµć¹ććÆćććø | Semiconductor device |
KR100384558B1 (en) * | 2001-02-22 | 2003-05-22 | ģ¼ģ±ģ ģ주ģķģ¬ | Method for forming dielectric layer and capacitor using thereof |
US6858865B2 (en) | 2001-02-23 | 2005-02-22 | Micron Technology, Inc. | Doped aluminum oxide dielectrics |
US20020120297A1 (en) | 2001-02-26 | 2002-08-29 | Shadduck John H. | Vaso-occlusive implants for interventional neuroradiology |
US6706608B2 (en) | 2001-02-28 | 2004-03-16 | Micron Technology, Inc. | Memory cell capacitors having an over/under configuration |
US6852167B2 (en) | 2001-03-01 | 2005-02-08 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
JP4093532B2 (en) | 2001-03-13 | 2008-06-04 | ē¬ē«č”ęæę³äŗŗēåå¦ē ē©¶ę | Method for producing amorphous metal oxide thin film material |
US20050145959A1 (en) | 2001-03-15 | 2005-07-07 | Leonard Forbes | Technique to mitigate short channel effects with vertical gate transistor with different gate materials |
US6454912B1 (en) | 2001-03-15 | 2002-09-24 | Micron Technology, Inc. | Method and apparatus for the fabrication of ferroelectric films |
US6734510B2 (en) | 2001-03-15 | 2004-05-11 | Micron Technology, Ing. | Technique to mitigate short channel effects with vertical gate transistor with different gate materials |
US6696360B2 (en) | 2001-03-15 | 2004-02-24 | Micron Technology, Inc. | Barrier-metal-free copper damascene technology using atomic hydrogen enhanced reflow |
US6586792B2 (en) * | 2001-03-15 | 2003-07-01 | Micron Technology, Inc. | Structures, methods, and systems for ferroelectric memory transistors |
US6770923B2 (en) | 2001-03-20 | 2004-08-03 | Freescale Semiconductor, Inc. | High K dielectric film |
US6541280B2 (en) | 2001-03-20 | 2003-04-01 | Motorola, Inc. | High K dielectric film |
KR100853903B1 (en) | 2001-03-20 | 2008-08-25 | ė 리ģ ķø ģ¤ėø ė ģ ėė²ģķ° ģ¤ėø ģŗė¦¬ķ¬ėģ | Method for depositing a coating having a relatively high dielectric constant onto a substrate |
US6531324B2 (en) | 2001-03-28 | 2003-03-11 | Sharp Laboratories Of America, Inc. | MFOS memory transistor & method of fabricating same |
US6441417B1 (en) | 2001-03-28 | 2002-08-27 | Sharp Laboratories Of America, Inc. | Single c-axis PGO thin film on ZrO2 for non-volatile memory applications and methods of making the same |
JP3792589B2 (en) | 2001-03-29 | 2006-07-05 | åÆå£«éę Ŗå¼ä¼ē¤¾ | Manufacturing method of semiconductor device |
US6461949B1 (en) | 2001-03-29 | 2002-10-08 | Macronix International Co. Ltd. | Method for fabricating a nitride read-only-memory (NROM) |
EP1251530A3 (en) | 2001-04-16 | 2004-12-29 | Shipley Company, L.L.C. | Dielectric laminate for a capacitor |
US6448192B1 (en) | 2001-04-16 | 2002-09-10 | Motorola, Inc. | Method for forming a high dielectric constant material |
JP4025030B2 (en) | 2001-04-17 | 2007-12-19 | ę±äŗ¬ćØć¬ćÆććć³ę Ŗå¼ä¼ē¤¾ | Substrate processing apparatus and transfer arm |
TW546778B (en) * | 2001-04-20 | 2003-08-11 | Koninkl Philips Electronics Nv | Two-transistor flash cell |
US6465853B1 (en) | 2001-05-08 | 2002-10-15 | Motorola, Inc. | Method for making semiconductor device |
US6759081B2 (en) | 2001-05-11 | 2004-07-06 | Asm International, N.V. | Method of depositing thin films for magnetic heads |
US20020167089A1 (en) | 2001-05-14 | 2002-11-14 | Micron Technology, Inc. | Copper dual damascene interconnect technology |
US6846574B2 (en) * | 2001-05-16 | 2005-01-25 | Siemens Westinghouse Power Corporation | Honeycomb structure thermal barrier coating |
KR100426219B1 (en) * | 2001-05-18 | 2004-04-06 | ķźµģ | Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof |
US6852194B2 (en) | 2001-05-21 | 2005-02-08 | Tokyo Electron Limited | Processing apparatus, transferring apparatus and transferring method |
KR100363332B1 (en) * | 2001-05-23 | 2002-11-20 | Samsung Electronics Co Ltd | Method for forming semiconductor device having gate all-around type transistor |
US6420778B1 (en) | 2001-06-01 | 2002-07-16 | Aralight, Inc. | Differential electrical transmission line structures employing crosstalk compensation and related methods |
US6830676B2 (en) | 2001-06-11 | 2004-12-14 | Chrysalis Technologies Incorporated | Coking and carburization resistant iron aluminides for hydrocarbon cracking |
US7037862B2 (en) | 2001-06-13 | 2006-05-02 | Micron Technology, Inc. | Dielectric layer forming method and devices formed therewith |
US6787122B2 (en) | 2001-06-18 | 2004-09-07 | The University Of North Carolina At Chapel Hill | Method of making nanotube-based material with enhanced electron field emission properties |
US6709989B2 (en) | 2001-06-21 | 2004-03-23 | Motorola, Inc. | Method for fabricating a semiconductor structure including a metal oxide interface with silicon |
US6656835B2 (en) | 2001-06-21 | 2003-12-02 | Micron Technology, Inc. | Process for low temperature atomic layer deposition of Rh |
US6816225B2 (en) | 2001-06-26 | 2004-11-09 | International Business Machines Corporation | LCD cell construction by mechanical thinning of a color filter substrate |
US6420279B1 (en) | 2001-06-28 | 2002-07-16 | Sharp Laboratories Of America, Inc. | Methods of using atomic layer deposition to deposit a high dielectric constant material on a substrate |
US6746930B2 (en) | 2001-07-11 | 2004-06-08 | Micron Technology, Inc. | Oxygen barrier for cell container process |
US6602053B2 (en) * | 2001-08-02 | 2003-08-05 | Siemens Westinghouse Power Corporation | Cooling structure and method of manufacturing the same |
JP4666912B2 (en) | 2001-08-06 | 2011-04-06 | ćØć¼ć»ćØć¹ć»ćØć ćøććććÆć³ćŖć¢ę Ŗå¼ä¼ē¤¾ | Plasma reinforced atomic layer deposition apparatus and thin film forming method using the same |
KR100427030B1 (en) | 2001-08-27 | 2004-04-14 | 주ģķģ¬ ķģ“ėģ¤ė°ė첓 | Method for forming film with muli-elements and fabricating capacitor using the same |
US6461914B1 (en) | 2001-08-29 | 2002-10-08 | Motorola, Inc. | Process for making a MIM capacitor |
US7129128B2 (en) | 2001-08-29 | 2006-10-31 | Micron Technology, Inc. | Method of improved high K dielectric-polysilicon interface for CMOS devices |
US6778441B2 (en) | 2001-08-30 | 2004-08-17 | Micron Technology, Inc. | Integrated circuit memory device and method |
US7087954B2 (en) | 2001-08-30 | 2006-08-08 | Micron Technology, Inc. | In service programmable logic arrays with low tunnel barrier interpoly insulators |
US6963103B2 (en) | 2001-08-30 | 2005-11-08 | Micron Technology, Inc. | SRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators |
US7068544B2 (en) * | 2001-08-30 | 2006-06-27 | Micron Technology, Inc. | Flash memory with low tunnel barrier interpoly insulators |
US6730575B2 (en) | 2001-08-30 | 2004-05-04 | Micron Technology, Inc. | Methods of forming perovskite-type material and capacitor dielectric having perovskite-type crystalline structure |
US7476925B2 (en) * | 2001-08-30 | 2009-01-13 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators |
US6586797B2 (en) | 2001-08-30 | 2003-07-01 | Micron Technology, Inc. | Graded composition gate insulators to reduce tunneling barriers in flash memory devices |
US7160817B2 (en) * | 2001-08-30 | 2007-01-09 | Micron Technology, Inc. | Dielectric material forming methods |
US7012297B2 (en) | 2001-08-30 | 2006-03-14 | Micron Technology, Inc. | Scalable flash/NV structures and devices with extended endurance |
US7135734B2 (en) * | 2001-08-30 | 2006-11-14 | Micron Technology, Inc. | Graded composition metal oxide tunnel barrier interpoly insulators |
US6800899B2 (en) | 2001-08-30 | 2004-10-05 | Micron Technology, Inc. | Vertical transistors, electrical devices containing a vertical transistor, and computer systems containing a vertical transistor |
US7132711B2 (en) * | 2001-08-30 | 2006-11-07 | Micron Technology, Inc. | Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers |
US7042043B2 (en) | 2001-08-30 | 2006-05-09 | Micron Technology, Inc. | Programmable array logic or memory devices with asymmetrical tunnel barriers |
US8026161B2 (en) | 2001-08-30 | 2011-09-27 | Micron Technology, Inc. | Highly reliable amorphous high-K gate oxide ZrO2 |
US7075829B2 (en) | 2001-08-30 | 2006-07-11 | Micron Technology, Inc. | Programmable memory address and decode circuits with low tunnel barrier interpoly insulators |
US6754108B2 (en) | 2001-08-30 | 2004-06-22 | Micron Technology, Inc. | DRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators |
US6806145B2 (en) * | 2001-08-31 | 2004-10-19 | Asm International, N.V. | Low temperature method of forming a gate stack with a high k layer deposited over an interfacial oxide layer |
US6756318B2 (en) | 2001-09-10 | 2004-06-29 | Tegal Corporation | Nanolayer thick film processing system and method |
US20030059535A1 (en) * | 2001-09-25 | 2003-03-27 | Lee Luo | Cycling deposition of low temperature films in a cold wall single wafer process chamber |
US6656371B2 (en) | 2001-09-27 | 2003-12-02 | Micron Technology, Inc. | Methods of forming magnetoresisitive devices |
US6605549B2 (en) | 2001-09-29 | 2003-08-12 | Intel Corporation | Method for improving nucleation and adhesion of CVD and ALD films deposited onto low-dielectric-constant dielectrics |
US6451662B1 (en) | 2001-10-04 | 2002-09-17 | International Business Machines Corporation | Method of forming low-leakage on-chip capacitor |
US7524528B2 (en) | 2001-10-05 | 2009-04-28 | Cabot Corporation | Precursor compositions and methods for the deposition of passive electrical components on a substrate |
US6498063B1 (en) | 2001-10-12 | 2002-12-24 | Micron Technology, Inc. | Even nucleation between silicon and oxide surfaces for thin silicon nitride film growth |
US6461436B1 (en) | 2001-10-15 | 2002-10-08 | Micron Technology, Inc. | Apparatus and process of improving atomic layer deposition chamber performance |
US6559014B1 (en) | 2001-10-15 | 2003-05-06 | Advanced Micro Devices, Inc. | Preparation of composite high-K / standard-K dielectrics for semiconductor devices |
US6656792B2 (en) | 2001-10-19 | 2003-12-02 | Chartered Semiconductor Manufacturing Ltd | Nanocrystal flash memory device and manufacturing method therefor |
US6551893B1 (en) | 2001-11-27 | 2003-04-22 | Micron Technology, Inc. | Atomic layer deposition of capacitor dielectric |
US6773507B2 (en) * | 2001-12-06 | 2004-08-10 | Applied Materials, Inc. | Apparatus and method for fast-cycle atomic layer deposition |
DE10159907B4 (en) | 2001-12-06 | 2008-04-24 | Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. | coating process |
US6689192B1 (en) * | 2001-12-13 | 2004-02-10 | The Regents Of The University Of California | Method for producing metallic nanoparticles |
US6593610B2 (en) | 2001-12-13 | 2003-07-15 | Micron Technology, Inc. | Memory cell arrays |
US6900122B2 (en) | 2001-12-20 | 2005-05-31 | Micron Technology, Inc. | Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics |
US6953730B2 (en) | 2001-12-20 | 2005-10-11 | Micron Technology, Inc. | Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics |
US6696332B2 (en) * | 2001-12-26 | 2004-02-24 | Texas Instruments Incorporated | Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing |
FR2834387B1 (en) | 2001-12-31 | 2004-02-27 | Memscap | electronic component incorporating integrated circuit and a micro-capacitor |
US6838404B2 (en) * | 2002-01-09 | 2005-01-04 | Board Of Trustees Of University Of Illinois | Metal alkoxides and methods of making same |
US6821873B2 (en) | 2002-01-10 | 2004-11-23 | Texas Instruments Incorporated | Anneal sequence for high-Īŗ film property optimization |
US6504214B1 (en) * | 2002-01-11 | 2003-01-07 | Advanced Micro Devices, Inc. | MOSFET device having high-K dielectric layer |
US6767795B2 (en) | 2002-01-17 | 2004-07-27 | Micron Technology, Inc. | Highly reliable amorphous high-k gate dielectric ZrOXNY |
US6645882B1 (en) | 2002-01-17 | 2003-11-11 | Advanced Micro Devices, Inc. | Preparation of composite high-K/standard-K dielectrics for semiconductor devices |
US6620670B2 (en) | 2002-01-18 | 2003-09-16 | Applied Materials, Inc. | Process conditions and precursors for atomic layer deposition (ALD) of AL2O3 |
AU2003238853A1 (en) | 2002-01-25 | 2003-09-02 | Applied Materials, Inc. | Apparatus for cyclical deposition of thin films |
US20030141560A1 (en) | 2002-01-25 | 2003-07-31 | Shi-Chung Sun | Incorporating TCS-SiN barrier layer in dual gate CMOS devices |
US7101770B2 (en) | 2002-01-30 | 2006-09-05 | Micron Technology, Inc. | Capacitive techniques to reduce noise in high speed interconnections |
US6958572B2 (en) | 2002-02-06 | 2005-10-25 | Ut-Battelle Llc | Controlled non-normal alignment of catalytically grown nanostructures in a large-scale synthesis process |
US20030152700A1 (en) | 2002-02-11 | 2003-08-14 | Board Of Trustees Operating Michigan State University | Process for synthesizing uniform nanocrystalline films |
US6893984B2 (en) | 2002-02-20 | 2005-05-17 | Micron Technology Inc. | Evaporated LaA1O3 films for gate dielectrics |
US6900481B2 (en) | 2002-02-21 | 2005-05-31 | Intel Corporation | Non-silicon semiconductor and high-k gate dielectric metal oxide semiconductor field effect transistors |
US6586349B1 (en) | 2002-02-21 | 2003-07-01 | Advanced Micro Devices, Inc. | Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices |
US6452229B1 (en) | 2002-02-21 | 2002-09-17 | Advanced Micro Devices, Inc. | Ultra-thin fully depleted SOI device with T-shaped gate and method of fabrication |
US6787185B2 (en) | 2002-02-25 | 2004-09-07 | Micron Technology, Inc. | Deposition methods for improved delivery of metastable species |
US6451641B1 (en) | 2002-02-27 | 2002-09-17 | Advanced Micro Devices, Inc. | Non-reducing process for deposition of polysilicon gate electrode over high-K gate dielectric material |
US20030159653A1 (en) | 2002-02-28 | 2003-08-28 | Dando Ross S. | Manifold assembly for feeding reactive precursors to substrate processing chambers |
US6972267B2 (en) | 2002-03-04 | 2005-12-06 | Applied Materials, Inc. | Sequential deposition of tantalum nitride using a tantalum-containing precursor and a nitrogen-containing precursor |
US6730367B2 (en) | 2002-03-05 | 2004-05-04 | Micron Technology, Inc. | Atomic layer deposition method with point of use generated reactive gas species |
US6900106B2 (en) | 2002-03-06 | 2005-05-31 | Micron Technology, Inc. | Methods of forming capacitor constructions |
US6893506B2 (en) | 2002-03-11 | 2005-05-17 | Micron Technology, Inc. | Atomic layer deposition apparatus and method |
US6846738B2 (en) * | 2002-03-13 | 2005-01-25 | Micron Technology, Inc. | High permeability composite films to reduce noise in high speed interconnects |
US6812100B2 (en) * | 2002-03-13 | 2004-11-02 | Micron Technology, Inc. | Evaporation of Y-Si-O films for medium-k dielectrics |
US7235457B2 (en) * | 2002-03-13 | 2007-06-26 | Micron Technology, Inc. | High permeability layered films to reduce noise in high speed interconnects |
US6642573B1 (en) | 2002-03-13 | 2003-11-04 | Advanced Micro Devices, Inc. | Use of high-K dielectric material in modified ONO structure for semiconductor devices |
US6900116B2 (en) | 2002-03-13 | 2005-05-31 | Micron Technology Inc. | High permeability thin films and patterned thin films to reduce noise in high speed interconnections |
US6730163B2 (en) | 2002-03-14 | 2004-05-04 | Micron Technology, Inc. | Aluminum-containing material and atomic layer deposition methods |
US6717226B2 (en) | 2002-03-15 | 2004-04-06 | Motorola, Inc. | Transistor with layered high-K gate dielectric and method therefor |
US6756237B2 (en) | 2002-03-25 | 2004-06-29 | Brown University Research Foundation | Reduction of noise, and optimization of magnetic field sensitivity and electrical properties in magnetic tunnel junction devices |
US6800134B2 (en) | 2002-03-26 | 2004-10-05 | Micron Technology, Inc. | Chemical vapor deposition methods and atomic layer deposition methods |
US6750066B1 (en) | 2002-04-08 | 2004-06-15 | Advanced Micro Devices, Inc. | Precision high-K intergate dielectric layer |
US6743736B2 (en) | 2002-04-11 | 2004-06-01 | Micron Technology, Inc. | Reactive gaseous deposition precursor feed apparatus |
US20030235961A1 (en) | 2002-04-17 | 2003-12-25 | Applied Materials, Inc. | Cyclical sequential deposition of multicomponent films |
US6755886B2 (en) | 2002-04-18 | 2004-06-29 | The Regents Of The University Of California | Method for producing metallic microparticles |
US7374617B2 (en) | 2002-04-25 | 2008-05-20 | Micron Technology, Inc. | Atomic layer deposition methods and chemical vapor deposition methods |
US6861094B2 (en) | 2002-04-25 | 2005-03-01 | Micron Technology, Inc. | Methods for forming thin layers of materials on micro-device workpieces |
KR100472730B1 (en) | 2002-04-26 | 2005-03-08 | 주ģķģ¬ ķģ“ėģ¤ė°ė첓 | Method for fabricating metal electrode with Atomic Layer Deposition in semiconductor device |
US7589029B2 (en) | 2002-05-02 | 2009-09-15 | Micron Technology, Inc. | Atomic layer deposition and conversion |
US7045430B2 (en) | 2002-05-02 | 2006-05-16 | Micron Technology Inc. | Atomic layer-deposited LaAlO3 films for gate dielectrics |
US20030211488A1 (en) | 2002-05-07 | 2003-11-13 | Northwestern University | Nanoparticle probs with Raman spectrocopic fingerprints for analyte detection |
US7164165B2 (en) | 2002-05-16 | 2007-01-16 | Micron Technology, Inc. | MIS capacitor |
US7135421B2 (en) | 2002-06-05 | 2006-11-14 | Micron Technology, Inc. | Atomic layer-deposited hafnium aluminum oxide |
US7205218B2 (en) | 2002-06-05 | 2007-04-17 | Micron Technology, Inc. | Method including forming gate dielectrics having multiple lanthanide oxide layers |
US7067439B2 (en) | 2002-06-14 | 2006-06-27 | Applied Materials, Inc. | ALD metal oxide deposition process using direct oxidation |
US20030235076A1 (en) | 2002-06-21 | 2003-12-25 | Micron Technology, Inc. | Multistate NROM having a storage density much greater than 1 Bit per 1F2 |
US6853587B2 (en) * | 2002-06-21 | 2005-02-08 | Micron Technology, Inc. | Vertical NROM having a storage density of 1 bit per 1F2 |
US6970370B2 (en) | 2002-06-21 | 2005-11-29 | Micron Technology, Inc. | Ferroelectric write once read only memory for archival storage |
US6804136B2 (en) * | 2002-06-21 | 2004-10-12 | Micron Technology, Inc. | Write once read only memory employing charge trapping in insulators |
US7154140B2 (en) * | 2002-06-21 | 2006-12-26 | Micron Technology, Inc. | Write once read only memory with large work function floating gates |
US6888739B2 (en) | 2002-06-21 | 2005-05-03 | Micron Technology Inc. | Nanocrystal write once read only memory for archival storage |
US6828632B2 (en) * | 2002-07-18 | 2004-12-07 | Micron Technology, Inc. | Stable PD-SOI devices and methods |
US20040036129A1 (en) * | 2002-08-22 | 2004-02-26 | Micron Technology, Inc. | Atomic layer deposition of CMOS gates with variable work functions |
US6972599B2 (en) * | 2002-08-27 | 2005-12-06 | Micron Technology Inc. | Pseudo CMOS dynamic logic with delayed clocks |
US8617312B2 (en) * | 2002-08-28 | 2013-12-31 | Micron Technology, Inc. | Systems and methods for forming layers that contain niobium and/or tantalum |
US7030042B2 (en) | 2002-08-28 | 2006-04-18 | Micron Technology, Inc. | Systems and methods for forming tantalum oxide layers and tantalum precursor compounds |
US6794284B2 (en) | 2002-08-28 | 2004-09-21 | Micron Technology, Inc. | Systems and methods for forming refractory metal nitride layers using disilazanes |
US7041609B2 (en) | 2002-08-28 | 2006-05-09 | Micron Technology, Inc. | Systems and methods for forming metal oxides using alcohols |
US7253122B2 (en) | 2002-08-28 | 2007-08-07 | Micron Technology, Inc. | Systems and methods for forming metal oxides using metal diketonates and/or ketoimines |
US6784049B2 (en) * | 2002-08-28 | 2004-08-31 | Micron Technology, Inc. | Method for forming refractory metal oxide layers with tetramethyldisiloxane |
US6995081B2 (en) | 2002-08-28 | 2006-02-07 | Micron Technology, Inc. | Systems and methods for forming tantalum silicide layers |
US6730164B2 (en) | 2002-08-28 | 2004-05-04 | Micron Technology, Inc. | Systems and methods for forming strontium- and/or barium-containing layers |
US7112485B2 (en) | 2002-08-28 | 2006-09-26 | Micron Technology, Inc. | Systems and methods for forming zirconium and/or hafnium-containing layers |
US6967159B2 (en) | 2002-08-28 | 2005-11-22 | Micron Technology, Inc. | Systems and methods for forming refractory metal nitride layers using organic amines |
US6958300B2 (en) | 2002-08-28 | 2005-10-25 | Micron Technology, Inc. | Systems and methods for forming metal oxides using metal organo-amines and metal organo-oxides |
US6984592B2 (en) | 2002-08-28 | 2006-01-10 | Micron Technology, Inc. | Systems and methods for forming metal-doped alumina |
US7199023B2 (en) * | 2002-08-28 | 2007-04-03 | Micron Technology, Inc. | Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed |
US7087481B2 (en) | 2002-08-28 | 2006-08-08 | Micron Technology, Inc. | Systems and methods for forming metal oxides using metal compounds containing aminosilane ligands |
US7084078B2 (en) | 2002-08-29 | 2006-08-01 | Micron Technology, Inc. | Atomic layer deposited lanthanide doped TiOx dielectric films |
US7224024B2 (en) | 2002-08-29 | 2007-05-29 | Micron Technology, Inc. | Single transistor vertical memory gain cell |
KR100474072B1 (en) | 2002-09-17 | 2005-03-10 | 주ģķģ¬ ķģ“ėģ¤ė°ė첓 | Method for forming noble metal films |
US20040065255A1 (en) | 2002-10-02 | 2004-04-08 | Applied Materials, Inc. | Cyclical layer deposition system |
US6770536B2 (en) | 2002-10-03 | 2004-08-03 | Agere Systems Inc. | Process for semiconductor device fabrication in which a insulating layer is formed on a semiconductor substrate |
US6887758B2 (en) | 2002-10-09 | 2005-05-03 | Freescale Semiconductor, Inc. | Non-volatile memory device and method for forming |
US6686212B1 (en) * | 2002-10-31 | 2004-02-03 | Sharp Laboratories Of America, Inc. | Method to deposit a stacked high-Īŗ gate dielectric for CMOS applications |
JP2004158487A (en) | 2002-11-01 | 2004-06-03 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
US20040099889A1 (en) | 2002-11-27 | 2004-05-27 | Agere Systems, Inc. | Process for fabricating a semiconductor device having an insulating layer formed over a semiconductor substrate |
US7101813B2 (en) | 2002-12-04 | 2006-09-05 | Micron Technology Inc. | Atomic layer deposited Zr-Sn-Ti-O films |
US6762114B1 (en) | 2002-12-31 | 2004-07-13 | Texas Instruments Incorporated | Methods for transistor gate fabrication and for reducing high-k gate dielectric roughness |
US20040144980A1 (en) | 2003-01-27 | 2004-07-29 | Ahn Kie Y. | Atomic layer deposition of metal oxynitride layers as gate dielectrics and semiconductor device structures utilizing metal oxynitride layers |
US6863725B2 (en) | 2003-02-04 | 2005-03-08 | Micron Technology, Inc. | Method of forming a Ta2O5 comprising layer |
US20040168627A1 (en) | 2003-02-27 | 2004-09-02 | Sharp Laboratories Of America, Inc. | Atomic layer deposition of oxide film |
US6930059B2 (en) | 2003-02-27 | 2005-08-16 | Sharp Laboratories Of America, Inc. | Method for depositing a nanolaminate film by atomic layer deposition |
US6794315B1 (en) | 2003-03-06 | 2004-09-21 | Board Of Trustees Of The University Of Illinois | Ultrathin oxide films on semiconductors |
US7135369B2 (en) | 2003-03-31 | 2006-11-14 | Micron Technology, Inc. | Atomic layer deposited ZrAlxOy dielectric layers including Zr4AlO9 |
US7442415B2 (en) | 2003-04-11 | 2008-10-28 | Sharp Laboratories Of America, Inc. | Modulated temperature method of atomic layer deposition (ALD) of high dielectric constant films |
US7183186B2 (en) | 2003-04-22 | 2007-02-27 | Micro Technology, Inc. | Atomic layer deposited ZrTiO4 films |
US7115528B2 (en) | 2003-04-29 | 2006-10-03 | Micron Technology, Inc. | Systems and method for forming silicon oxide layers |
US6740605B1 (en) | 2003-05-05 | 2004-05-25 | Advanced Micro Devices, Inc. | Process for reducing hydrogen contamination in dielectric materials in memory devices |
US6812110B1 (en) | 2003-05-09 | 2004-11-02 | Micron Technology, Inc. | Methods of forming capacitor constructions, and methods of forming constructions comprising dielectric materials |
US6970053B2 (en) | 2003-05-22 | 2005-11-29 | Micron Technology, Inc. | Atomic layer deposition (ALD) high permeability layered magnetic films to reduce noise in high speed interconnection |
US7049192B2 (en) * | 2003-06-24 | 2006-05-23 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectrics |
KR100555543B1 (en) | 2003-06-24 | 2006-03-03 | ģ¼ģ±ģ ģ주ģķģ¬ | Method for forming high dielectric layer by atomic layer deposition and method for manufacturing capacitor having the layer |
US6785120B1 (en) * | 2003-07-03 | 2004-08-31 | Micron Technology, Inc. | Methods of forming hafnium-containing materials, methods of forming hafnium oxide, and capacitor constructions comprising hafnium oxide |
US7125815B2 (en) | 2003-07-07 | 2006-10-24 | Micron Technology, Inc. | Methods of forming a phosphorous doped silicon dioxide comprising layer |
US7157769B2 (en) | 2003-12-18 | 2007-01-02 | Micron Technology, Inc. | Flash memory having a high-permittivity tunnel dielectric |
US8323754B2 (en) | 2004-05-21 | 2012-12-04 | Applied Materials, Inc. | Stabilization of high-k dielectric materials |
US7323424B2 (en) | 2004-06-29 | 2008-01-29 | Micron Technology, Inc. | Semiconductor constructions comprising cerium oxide and titanium oxide |
US7138681B2 (en) | 2004-07-27 | 2006-11-21 | Micron Technology, Inc. | High density stepped, non-planar nitride read only memory |
US7601649B2 (en) * | 2004-08-02 | 2009-10-13 | Micron Technology, Inc. | Zirconium-doped tantalum oxide films |
US7151294B2 (en) | 2004-08-03 | 2006-12-19 | Micron Technology, Inc. | High density stepped, non-planar flash memory |
US7164168B2 (en) | 2004-08-03 | 2007-01-16 | Micron Technology, Inc. | Non-planar flash memory having shielding between floating gates |
US7081421B2 (en) | 2004-08-26 | 2006-07-25 | Micron Technology, Inc. | Lanthanide oxide dielectric layer |
US7588988B2 (en) | 2004-08-31 | 2009-09-15 | Micron Technology, Inc. | Method of forming apparatus having oxide films formed using atomic layer deposition |
US7494939B2 (en) | 2004-08-31 | 2009-02-24 | Micron Technology, Inc. | Methods for forming a lanthanum-metal oxide dielectric layer |
US7250367B2 (en) | 2004-09-01 | 2007-07-31 | Micron Technology, Inc. | Deposition methods using heteroleptic precursors |
US20060080682A1 (en) | 2004-10-12 | 2006-04-13 | Picsel Research Ltd. | Run time dynamic linking |
US20060125030A1 (en) | 2004-12-13 | 2006-06-15 | Micron Technology, Inc. | Hybrid ALD-CVD of PrxOy/ZrO2 films as gate dielectrics |
US7235501B2 (en) | 2004-12-13 | 2007-06-26 | Micron Technology, Inc. | Lanthanum hafnium oxide dielectrics |
US7560395B2 (en) | 2005-01-05 | 2009-07-14 | Micron Technology, Inc. | Atomic layer deposited hafnium tantalum oxide dielectrics |
US7508648B2 (en) | 2005-02-08 | 2009-03-24 | Micron Technology, Inc. | Atomic layer deposition of Dy doped HfO2 films as gate dielectrics |
US7399666B2 (en) | 2005-02-15 | 2008-07-15 | Micron Technology, Inc. | Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics |
US7498247B2 (en) | 2005-02-23 | 2009-03-03 | Micron Technology, Inc. | Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US7365027B2 (en) | 2005-03-29 | 2008-04-29 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US20060231889A1 (en) | 2005-04-13 | 2006-10-19 | Tupei Chen | Two-terminal solid-state memory device and two-terminal flexible memory device based on nanocrystals or nanoparticles |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US7390756B2 (en) | 2005-04-28 | 2008-06-24 | Micron Technology, Inc. | Atomic layer deposited zirconium silicon oxide films |
US7572695B2 (en) | 2005-05-27 | 2009-08-11 | Micron Technology, Inc. | Hafnium titanium oxide films |
US7510983B2 (en) | 2005-06-14 | 2009-03-31 | Micron Technology, Inc. | Iridium/zirconium oxide structure |
US7214994B2 (en) | 2005-08-31 | 2007-05-08 | Micron Technology, Inc. | Self aligned metal gates on high-k dielectrics |
US7195999B2 (en) * | 2005-07-07 | 2007-03-27 | Micron Technology, Inc. | Metal-substituted transistor gates |
US7575978B2 (en) | 2005-08-04 | 2009-08-18 | Micron Technology, Inc. | Method for making conductive nanoparticle charge storage element |
US20070049023A1 (en) | 2005-08-29 | 2007-03-01 | Micron Technology, Inc. | Zirconium-doped gadolinium oxide films |
US7393736B2 (en) | 2005-08-29 | 2008-07-01 | Micron Technology, Inc. | Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics |
US7544596B2 (en) | 2005-08-30 | 2009-06-09 | Micron Technology, Inc. | Atomic layer deposition of GdScO3 films as gate dielectrics |
US7410910B2 (en) | 2005-08-31 | 2008-08-12 | Micron Technology, Inc. | Lanthanum aluminum oxynitride dielectric films |
US8071476B2 (en) | 2005-08-31 | 2011-12-06 | Micron Technology, Inc. | Cobalt titanium oxide dielectric films |
US7592251B2 (en) | 2005-12-08 | 2009-09-22 | Micron Technology, Inc. | Hafnium tantalum titanium oxide films |
US7615438B2 (en) | 2005-12-08 | 2009-11-10 | Micron Technology, Inc. | Lanthanide yttrium aluminum oxide dielectric films |
US7972974B2 (en) | 2006-01-10 | 2011-07-05 | Micron Technology, Inc. | Gallium lanthanide oxide films |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US7582161B2 (en) | 2006-04-07 | 2009-09-01 | Micron Technology, Inc. | Atomic layer deposited titanium-doped indium oxide films |
US7985995B2 (en) | 2006-08-03 | 2011-07-26 | Micron Technology, Inc. | Zr-substituted BaTiO3 films |
US7727908B2 (en) | 2006-08-03 | 2010-06-01 | Micron Technology, Inc. | Deposition of ZrA1ON films |
US7749879B2 (en) | 2006-08-03 | 2010-07-06 | Micron Technology, Inc. | ALD of silicon films on germanium |
US7582549B2 (en) | 2006-08-25 | 2009-09-01 | Micron Technology, Inc. | Atomic layer deposited barium strontium titanium oxide films |
US7776765B2 (en) | 2006-08-31 | 2010-08-17 | Micron Technology, Inc. | Tantalum silicon oxynitride high-k dielectrics and metal gates |
US7563730B2 (en) | 2006-08-31 | 2009-07-21 | Micron Technology, Inc. | Hafnium lanthanide oxynitride films |
US7432548B2 (en) | 2006-08-31 | 2008-10-07 | Micron Technology, Inc. | Silicon lanthanide oxynitride films |
US7605030B2 (en) | 2006-08-31 | 2009-10-20 | Micron Technology, Inc. | Hafnium tantalum oxynitride high-k dielectric and metal gates |
US7759747B2 (en) | 2006-08-31 | 2010-07-20 | Micron Technology, Inc. | Tantalum aluminum oxynitride high-Īŗ dielectric |
US20080057659A1 (en) | 2006-08-31 | 2008-03-06 | Micron Technology, Inc. | Hafnium aluminium oxynitride high-K dielectric and metal gates |
US20080087890A1 (en) | 2006-10-16 | 2008-04-17 | Micron Technology, Inc. | Methods to form dielectric structures in semiconductor devices and resulting devices |
US7727910B2 (en) | 2007-02-13 | 2010-06-01 | Micron Technology, Inc. | Zirconium-doped zinc oxide structures and methods |
US7498230B2 (en) | 2007-02-13 | 2009-03-03 | Micron Technology, Inc. | Magnesium-doped zinc oxide structures and methods |
US7927996B2 (en) | 2007-02-13 | 2011-04-19 | Micron Technology, Inc. | Tungsten-doped indium oxide structures and methods |
US7517783B2 (en) | 2007-02-13 | 2009-04-14 | Micron Technology, Inc. | Molybdenum-doped indium oxide structures and methods |
-
2002
- 2002-05-02 US US10/137,168 patent/US7160577B2/en not_active Expired - Fee Related
-
2005
- 2005-08-29 US US11/215,451 patent/US20060000412A1/en not_active Abandoned
-
2007
- 2007-01-05 US US11/620,324 patent/US7670646B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4894801A (en) * | 1986-08-01 | 1990-01-16 | Hitachi, Ltd. | Stacked MOS transistor flip-flop memory cell |
US4902533A (en) * | 1987-06-19 | 1990-02-20 | Motorola, Inc. | Method for selectively depositing tungsten on a substrate by using a spin-on metal oxide |
US4993358A (en) * | 1989-07-28 | 1991-02-19 | Watkins-Johnson Company | Chemical vapor deposition reactor and method of operation |
US4987089A (en) * | 1990-07-23 | 1991-01-22 | Micron Technology, Inc. | BiCMOS process and process for forming bipolar transistors on wafers also containing FETs |
US5080928A (en) * | 1990-10-05 | 1992-01-14 | Gte Laboratories Incorporated | Method for making moisture insensitive zinc sulfide based luminescent materials |
US5089084A (en) * | 1990-12-03 | 1992-02-18 | Micron Technology, Inc. | Hydrofluoric acid etcher and cascade rinser |
US5177028A (en) * | 1991-10-22 | 1993-01-05 | Micron Technology, Inc. | Trench isolation method having a double polysilicon gate formed on mesas |
US5391911A (en) * | 1993-03-29 | 1995-02-21 | International Business Machines Corporation | Reach-through isolation silicon-on-insulator device |
US5392245A (en) * | 1993-08-13 | 1995-02-21 | Micron Technology, Inc. | Redundancy elements using thin film transistors (TFTs) |
US5483094A (en) * | 1993-09-20 | 1996-01-09 | Motorola, Inc. | Electrically programmable read-only memory cell |
US5393704A (en) * | 1993-12-13 | 1995-02-28 | United Microelectronics Corporation | Self-aligned trenched contact (satc) process |
US5492853A (en) * | 1994-03-11 | 1996-02-20 | Micron Semiconductor, Inc. | Method of forming a contact using a trench and an insulation layer during the formation of a semiconductor device |
US5495441A (en) * | 1994-05-18 | 1996-02-27 | United Microelectronics Corporation | Split-gate flash memory cell |
US5483487A (en) * | 1994-07-05 | 1996-01-09 | Taiwan Semiconductor Manufacturing Comp. Ltd. | Electrically programmable memory device with improved dual floating gates |
US5593912A (en) * | 1994-10-06 | 1997-01-14 | International Business Machines Corporation | SOI trench DRAM cell for 256 MB DRAM and beyond |
US20030023251A1 (en) * | 1995-02-24 | 2003-01-30 | Gifford Hanson S. | Devices and methods for performing a vascular anastomosis |
US5595606A (en) * | 1995-04-20 | 1997-01-21 | Tokyo Electron Limited | Shower head and film forming apparatus using the same |
US6027960A (en) * | 1995-10-25 | 2000-02-22 | Semiconductor Energy Laboratory Co., Ltd. | Laser annealing method and laser annealing device |
US5874134A (en) * | 1996-01-29 | 1999-02-23 | Regents Of The University Of Minnesota | Production of nanostructured materials by hypersonic plasma particle deposition |
US20020019116A1 (en) * | 1996-05-31 | 2002-02-14 | Sandhu Gurtej S. | Chemical vapor deposition using organometallic precursors |
US5710057A (en) * | 1996-07-12 | 1998-01-20 | Kenney; Donald M. | SOI fabrication method |
US6010969A (en) * | 1996-10-02 | 2000-01-04 | Micron Technology, Inc. | Method of depositing films on semiconductor devices by using carboxylate complexes |
US6019848A (en) * | 1996-11-13 | 2000-02-01 | Applied Materials, Inc. | Lid assembly for high temperature processing chamber |
US20030001212A1 (en) * | 1997-02-19 | 2003-01-02 | Micron Technology, Inc. | Conductor layer nitridation |
US6194262B1 (en) * | 1997-04-25 | 2001-02-27 | Micron Technology, Inc. | Method for coupling to semiconductor device in an integrated circuit having edge-defined, sub-lithographic conductors |
US6020243A (en) * | 1997-07-24 | 2000-02-01 | Texas Instruments Incorporated | Zirconium and/or hafnium silicon-oxynitride gate dielectric |
US6013553A (en) * | 1997-07-24 | 2000-01-11 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
US6020024A (en) * | 1997-08-04 | 2000-02-01 | Motorola, Inc. | Method for forming high dielectric constant metal oxides |
US6350704B1 (en) * | 1997-10-14 | 2002-02-26 | Micron Technology Inc. | Porous silicon oxycarbide integrated circuit insulator |
US6174809B1 (en) * | 1997-12-31 | 2001-01-16 | Samsung Electronics, Co., Ltd. | Method for forming metal layer using atomic layer deposition |
US6025627A (en) * | 1998-05-29 | 2000-02-15 | Micron Technology, Inc. | Alternate method and structure for improved floating gate tunneling devices |
US6027961A (en) * | 1998-06-30 | 2000-02-22 | Motorola, Inc. | CMOS semiconductor devices and method of formation |
US6017820A (en) * | 1998-07-17 | 2000-01-25 | Cutek Research, Inc. | Integrated vacuum and plating cluster system |
US6514820B2 (en) * | 1998-08-27 | 2003-02-04 | Micron Technology, Inc. | Method for forming single electron resistor memory |
US6184146B1 (en) * | 1998-08-28 | 2001-02-06 | Micron Technology, Inc. | Plasma producing tools, dual-source plasma etchers, dual-source plasma etching methods, and method of forming planar coil dual-source plasma etchers |
US20030003722A1 (en) * | 1998-09-01 | 2003-01-02 | Micron Technology, Inc. | Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands |
US6682602B2 (en) * | 1998-09-01 | 2004-01-27 | Micron Technology, Inc. | Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands |
US6171900B1 (en) * | 1999-04-15 | 2001-01-09 | Taiwan Semiconductor Manufacturing Company | CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET |
US6187484B1 (en) * | 1999-08-31 | 2001-02-13 | Micron Technology, Inc. | Irradiation mask |
US20040007171A1 (en) * | 1999-10-14 | 2004-01-15 | Mikko Ritala | Method for growing thin oxide films |
US20030001241A1 (en) * | 2000-01-18 | 2003-01-02 | Agere Systems Guardian Corp. | Semiconductor device and method of fabrication |
US6347749B1 (en) * | 2000-02-09 | 2002-02-19 | Moore Epitaxial, Inc. | Semiconductor processing reactor controllable gas jet assembly |
US20020004277A1 (en) * | 2000-02-28 | 2002-01-10 | Micron Technology, Inc. | Structure and method for dual gate oxide thicknesses |
US20020004276A1 (en) * | 2000-02-28 | 2002-01-10 | Micron Technology, Inc. | Structure and method for dual gate oxide thicknesses |
US20020013052A1 (en) * | 2000-03-08 | 2002-01-31 | Visokay Mark R. | Methods for preparing ruthenium metal films |
US6506666B2 (en) * | 2000-05-15 | 2003-01-14 | Micron Technology, Inc. | Method of fabricating an SrRuO3 film |
US6342445B1 (en) * | 2000-05-15 | 2002-01-29 | Micron Technology, Inc. | Method for fabricating an SrRuO3 film |
US20020001971A1 (en) * | 2000-06-27 | 2002-01-03 | Hag-Ju Cho | Methods of manufacturing integrated circuit devices that include a metal oxide layer disposed on another layer to protect the other layer from diffusion of impurities and integrated circuit devices manufactured using same |
US6514348B2 (en) * | 2000-07-13 | 2003-02-04 | Ebara Corporation | Substrate processing apparatus |
US6521911B2 (en) * | 2000-07-20 | 2003-02-18 | North Carolina State University | High dielectric constant metal silicates formed by controlled metal-surface reactions |
US20020024080A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US20020025628A1 (en) * | 2000-08-31 | 2002-02-28 | Derderian Garo J. | Capacitor fabrication methods and capacitor constructions |
US6518634B1 (en) * | 2000-09-01 | 2003-02-11 | Motorola, Inc. | Strontium nitride or strontium oxynitride gate dielectric |
US20030001190A1 (en) * | 2000-11-09 | 2003-01-02 | Micron Technology, Inc. | Methods for forming conductive structures and structures regarding same |
US6524867B2 (en) * | 2000-12-28 | 2003-02-25 | Micron Technology, Inc. | Method for forming platinum-rhodium stack as an oxygen barrier |
US20040009679A1 (en) * | 2001-01-19 | 2004-01-15 | Yeo Jae-Hyun | Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same |
US20030003702A1 (en) * | 2001-02-09 | 2003-01-02 | Micron Technology, Inc. | Formation of metal oxide gate dielectric |
US20030003730A1 (en) * | 2001-02-13 | 2003-01-02 | Micron Technology, Inc. | Sequential pulse deposition |
US6518610B2 (en) * | 2001-02-20 | 2003-02-11 | Micron Technology, Inc. | Rhodium-rich oxygen barriers |
US20030027360A1 (en) * | 2001-03-28 | 2003-02-06 | Hsu Sheng Teng | Single transistor ferroelectric transistor structure with high-K insulator and method of fabricating same |
US6348386B1 (en) * | 2001-04-16 | 2002-02-19 | Motorola, Inc. | Method for making a hafnium-based insulating film |
US6514828B2 (en) * | 2001-04-20 | 2003-02-04 | Micron Technology, Inc. | Method of fabricating a highly reliable gate oxide |
US20040016944A1 (en) * | 2001-05-11 | 2004-01-29 | Ahn Kie Y. | Integrated decoupling capacitors |
US20030003635A1 (en) * | 2001-05-23 | 2003-01-02 | Paranjpe Ajit P. | Atomic layer deposition for fabricating thin films |
US20030008243A1 (en) * | 2001-07-09 | 2003-01-09 | Micron Technology, Inc. | Copper electroless deposition technology for ULSI metalization |
US20030017717A1 (en) * | 2001-07-18 | 2003-01-23 | Ahn Kie Y. | Methods for forming dielectric materials and methods for forming semiconductor devices |
US20030020180A1 (en) * | 2001-07-24 | 2003-01-30 | Ahn Kie Y. | Copper technology for ULSI metallization |
US20030020169A1 (en) * | 2001-07-24 | 2003-01-30 | Ahn Kie Y. | Copper technology for ULSI metallization |
US20030020429A1 (en) * | 2001-07-24 | 2003-01-30 | Hitachi, Ltd. | Motor controller |
US20030032270A1 (en) * | 2001-08-10 | 2003-02-13 | John Snyder | Fabrication method for a device for regulating flow of electric current with high dielectric constant gate insulating layer and source/drain forming schottky contact or schottky-like region with substrate |
US6677250B2 (en) * | 2001-08-17 | 2004-01-13 | Micron Technology, Inc. | CVD apparatuses and methods of forming a layer over a semiconductor substrate |
US20030040196A1 (en) * | 2001-08-27 | 2003-02-27 | Lim Jung Wook | Method of forming insulation layer in semiconductor devices for controlling the composition and the doping concentration |
US6683005B2 (en) * | 2001-08-30 | 2004-01-27 | Micron Technology, Inc. | Method of forming capacitor constructions |
US6844203B2 (en) * | 2001-08-30 | 2005-01-18 | Micron Technology, Inc. | Gate oxides, and methods of forming |
US6683011B2 (en) * | 2001-11-14 | 2004-01-27 | Regents Of The University Of Minnesota | Process for forming hafnium oxide films |
US6674138B1 (en) * | 2001-12-31 | 2004-01-06 | Advanced Micro Devices, Inc. | Use of high-k dielectric materials in modified ONO structure for semiconductor devices |
US20050009335A1 (en) * | 2002-03-13 | 2005-01-13 | Dean Trung Tri | Apparatuses for treating pluralities of discrete semiconductor substrates; and methods for treating pluralities of discrete semiconductor substrates |
US7160577B2 (en) * | 2002-05-02 | 2007-01-09 | Micron Technology, Inc. | Methods for atomic-layer deposition of aluminum oxides in integrated circuits |
US6524901B1 (en) * | 2002-06-20 | 2003-02-25 | Micron Technology, Inc. | Method for forming a notched damascene planar poly/metal gate |
US20040000244A1 (en) * | 2002-06-28 | 2004-01-01 | Kabushikikaisha Tokyo Kikai Seisakusho | Bearer cleaning apparatus |
US20040004247A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-nitride nanolaminates |
US20040004859A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide nanolaminates |
US20040004245A1 (en) * | 2002-07-08 | 2004-01-08 | Micron Technology, Inc. | Memory utilizing oxide-conductor nanolaminates |
US20040023461A1 (en) * | 2002-07-30 | 2004-02-05 | Micron Technology, Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US7169673B2 (en) * | 2002-07-30 | 2007-01-30 | Micron Technology, Inc. | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
US20040028811A1 (en) * | 2002-08-06 | 2004-02-12 | Young-Jin Cho | Bismuth titanium silicon oxide, bismuth titanium silicon oxide thin film, and method for forming the thin film |
US20040033681A1 (en) * | 2002-08-15 | 2004-02-19 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films by plasma oxidation |
US20040033701A1 (en) * | 2002-08-15 | 2004-02-19 | Micron Technology, Inc. | Lanthanide doped tiox dielectric films |
US20040033661A1 (en) * | 2002-08-16 | 2004-02-19 | Yeo Jae-Hyun | Semiconductor device and method for manufacturing the same |
US20050009370A1 (en) * | 2002-08-21 | 2005-01-13 | Ahn Kie Y. | Composite dielectric forming methods and composite dielectrics |
US20040038525A1 (en) * | 2002-08-26 | 2004-02-26 | Shuang Meng | Enhanced atomic layer deposition |
US6673701B1 (en) * | 2002-08-27 | 2004-01-06 | Micron Technology, Inc. | Atomic layer deposition methods |
US20060003517A1 (en) * | 2002-12-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US6844260B2 (en) * | 2003-01-30 | 2005-01-18 | Micron Technology, Inc. | Insitu post atomic layer deposition destruction of active species |
US20060001151A1 (en) * | 2003-03-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited dielectric layers |
US20050020017A1 (en) * | 2003-06-24 | 2005-01-27 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US6989573B2 (en) * | 2003-10-10 | 2006-01-24 | Micron Technology, Inc. | Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics |
US20070020835A1 (en) * | 2005-02-10 | 2007-01-25 | Micron Technology, Inc. | Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics |
US20070018214A1 (en) * | 2005-07-25 | 2007-01-25 | Micron Technology, Inc. | Magnesium titanium oxide films |
Cited By (77)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7869242B2 (en) | 1999-07-30 | 2011-01-11 | Micron Technology, Inc. | Transmission lines for CMOS integrated circuits |
US20030045082A1 (en) * | 2001-08-30 | 2003-03-06 | Micron Technology, Inc. | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators |
US20050023584A1 (en) * | 2002-05-02 | 2005-02-03 | Micron Technology, Inc. | Atomic layer deposition and conversion |
US20030207032A1 (en) * | 2002-05-02 | 2003-11-06 | Micron Technology, Inc. | Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits |
US20040164357A1 (en) * | 2002-05-02 | 2004-08-26 | Micron Technology, Inc. | Atomic layer-deposited LaAIO3 films for gate dielectrics |
US20030207593A1 (en) * | 2002-05-02 | 2003-11-06 | Micron Technology, Inc. | Atomic layer deposition and conversion |
US7670646B2 (en) | 2002-05-02 | 2010-03-02 | Micron Technology, Inc. | Methods for atomic-layer deposition |
US20030227033A1 (en) * | 2002-06-05 | 2003-12-11 | Micron Technology, Inc. | Atomic layer-deposited HfA1O3 films for gate dielectrics |
US8093638B2 (en) | 2002-06-05 | 2012-01-10 | Micron Technology, Inc. | Systems with a gate dielectric having multiple lanthanide oxide layers |
US20030228747A1 (en) * | 2002-06-05 | 2003-12-11 | Micron Technology, Inc. | Pr2O3-based la-oxide gate dielectrics |
US20050023624A1 (en) * | 2002-06-05 | 2005-02-03 | Micron Technology, Inc. | Atomic layer-deposited HfAlO3 films for gate dielectrics |
US20050023594A1 (en) * | 2002-06-05 | 2005-02-03 | Micron Technology, Inc. | Pr2O3-based la-oxide gate dielectrics |
US20040164365A1 (en) * | 2002-08-15 | 2004-08-26 | Micron Technology, Inc. | Lanthanide doped TiOx dielectric films |
US20050023625A1 (en) * | 2002-08-28 | 2005-02-03 | Micron Technology, Inc. | Atomic layer deposited HfSiON dielectric films |
US20040043569A1 (en) * | 2002-08-28 | 2004-03-04 | Ahn Kie Y. | Atomic layer deposited HfSiON dielectric films |
US7923381B2 (en) | 2002-12-04 | 2011-04-12 | Micron Technology, Inc. | Methods of forming electronic devices containing Zr-Sn-Ti-O films |
US20050029604A1 (en) * | 2002-12-04 | 2005-02-10 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US20100044771A1 (en) * | 2002-12-04 | 2010-02-25 | Ahn Kie Y | Zr-Sn-Ti-O FILMS |
US20060003517A1 (en) * | 2002-12-04 | 2006-01-05 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
US8445952B2 (en) | 2002-12-04 | 2013-05-21 | Micron Technology, Inc. | Zr-Sn-Ti-O films |
US20060255470A1 (en) * | 2003-03-31 | 2006-11-16 | Micron Technology, Inc. | ZrAlxOy DIELECTRIC LAYERS |
US20070059881A1 (en) * | 2003-03-31 | 2007-03-15 | Micron Technology, Inc. | Atomic layer deposited zirconium aluminum oxide |
US20050054165A1 (en) * | 2003-03-31 | 2005-03-10 | Micron Technology, Inc. | Atomic layer deposited ZrAlxOy dielectric layers |
US7863667B2 (en) | 2003-04-22 | 2011-01-04 | Micron Technology, Inc. | Zirconium titanium oxide films |
US20040214399A1 (en) * | 2003-04-22 | 2004-10-28 | Micron Technology, Inc. | Atomic layer deposited ZrTiO4 films |
US20050280067A1 (en) * | 2003-04-22 | 2005-12-22 | Micron Technology, Inc. | Atomic layer deposited zirconium titanium oxide films |
US20060261397A1 (en) * | 2003-06-24 | 2006-11-23 | Micron Technology, Inc. | Lanthanide oxide/hafnium oxide dielectric layers |
US20050029547A1 (en) * | 2003-06-24 | 2005-02-10 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectric layers |
US20050023626A1 (en) * | 2003-06-24 | 2005-02-03 | Micron Technology, Inc. | Lanthanide oxide / hafnium oxide dielectrics |
US8907486B2 (en) | 2004-08-26 | 2014-12-09 | Micron Technology, Inc. | Ruthenium for a dielectric containing a lanthanide |
US7719065B2 (en) | 2004-08-26 | 2010-05-18 | Micron Technology, Inc. | Ruthenium layer for a dielectric layer containing a lanthanide oxide |
US8558325B2 (en) | 2004-08-26 | 2013-10-15 | Micron Technology, Inc. | Ruthenium for a dielectric containing a lanthanide |
US20060043492A1 (en) * | 2004-08-26 | 2006-03-02 | Micron Technology, Inc. | Ruthenium gate for a lanthanide oxide dielectric layer |
US20060043504A1 (en) * | 2004-08-31 | 2006-03-02 | Micron Technology, Inc. | Atomic layer deposited titanium aluminum oxide films |
US20070090441A1 (en) * | 2004-08-31 | 2007-04-26 | Micron Technology, Inc. | Titanium aluminum oxide films |
US8541276B2 (en) | 2004-08-31 | 2013-09-24 | Micron Technology, Inc. | Methods of forming an insulating metal oxide |
US7867919B2 (en) | 2004-08-31 | 2011-01-11 | Micron Technology, Inc. | Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer |
US8154066B2 (en) | 2004-08-31 | 2012-04-10 | Micron Technology, Inc. | Titanium aluminum oxide films |
US8237216B2 (en) | 2004-08-31 | 2012-08-07 | Micron Technology, Inc. | Apparatus having a lanthanum-metal oxide semiconductor device |
US20060046522A1 (en) * | 2004-08-31 | 2006-03-02 | Micron Technology, Inc. | Atomic layer deposited lanthanum aluminum oxide dielectric layer |
US20110037117A1 (en) * | 2004-08-31 | 2011-02-17 | Ahn Kie Y | Lanthanum-metal oxide dielectric apparatus, methods, and systems |
US7915174B2 (en) | 2004-12-13 | 2011-03-29 | Micron Technology, Inc. | Dielectric stack containing lanthanum and hafnium |
US20090032910A1 (en) * | 2004-12-13 | 2009-02-05 | Micron Technology, Inc. | Dielectric stack containing lanthanum and hafnium |
US20060128168A1 (en) * | 2004-12-13 | 2006-06-15 | Micron Technology, Inc. | Atomic layer deposited lanthanum hafnium oxide dielectrics |
US20070095286A1 (en) * | 2004-12-16 | 2007-05-03 | Yong-Ku Baek | Apparatus and method for thin film deposition |
US8092598B2 (en) * | 2004-12-16 | 2012-01-10 | Fusionaid Co., Ltd. | Apparatus and method for thin film deposition |
US20100029054A1 (en) * | 2005-01-05 | 2010-02-04 | Ahn Kie Y | Hafnium tantalum oxide dielectrics |
US20070181931A1 (en) * | 2005-01-05 | 2007-08-09 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US8524618B2 (en) | 2005-01-05 | 2013-09-03 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US8278225B2 (en) | 2005-01-05 | 2012-10-02 | Micron Technology, Inc. | Hafnium tantalum oxide dielectrics |
US7754618B2 (en) | 2005-02-10 | 2010-07-13 | Micron Technology, Inc. | Method of forming an apparatus having a dielectric containing cerium oxide and aluminum oxide |
US20060177975A1 (en) * | 2005-02-10 | 2006-08-10 | Micron Technology, Inc. | Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics |
US20080248618A1 (en) * | 2005-02-10 | 2008-10-09 | Micron Technology, Inc. | ATOMIC LAYER DEPOSITION OF CeO2/Al2O3 FILMS AS GATE DIELECTRICS |
US20060228868A1 (en) * | 2005-03-29 | 2006-10-12 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US8399365B2 (en) | 2005-03-29 | 2013-03-19 | Micron Technology, Inc. | Methods of forming titanium silicon oxide |
US7365027B2 (en) | 2005-03-29 | 2008-04-29 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
US7687409B2 (en) | 2005-03-29 | 2010-03-30 | Micron Technology, Inc. | Atomic layer deposited titanium silicon oxide films |
US8076249B2 (en) | 2005-03-29 | 2011-12-13 | Micron Technology, Inc. | Structures containing titanium silicon oxide |
US20080217676A1 (en) * | 2005-04-28 | 2008-09-11 | Micron Technology, Inc. | Zirconium silicon oxide films |
US20060244082A1 (en) * | 2005-04-28 | 2006-11-02 | Micron Technology, Inc. | Atomic layer desposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US8084808B2 (en) | 2005-04-28 | 2011-12-27 | Micron Technology, Inc. | Zirconium silicon oxide films |
US7662729B2 (en) | 2005-04-28 | 2010-02-16 | Micron Technology, Inc. | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
US20080220618A1 (en) * | 2005-04-28 | 2008-09-11 | Micron Technology, Inc. | Zirconium silicon oxide films |
US20060270147A1 (en) * | 2005-05-27 | 2006-11-30 | Micron Technology, Inc. | Hafnium titanium oxide films |
US7700989B2 (en) | 2005-05-27 | 2010-04-20 | Micron Technology, Inc. | Hafnium titanium oxide films |
US20070090439A1 (en) * | 2005-05-27 | 2007-04-26 | Micron Technology, Inc. | Hafnium titanium oxide films |
US8501563B2 (en) | 2005-07-20 | 2013-08-06 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US8921914B2 (en) | 2005-07-20 | 2014-12-30 | Micron Technology, Inc. | Devices with nanocrystals and methods of formation |
US20070049023A1 (en) * | 2005-08-29 | 2007-03-01 | Micron Technology, Inc. | Zirconium-doped gadolinium oxide films |
US20070048926A1 (en) * | 2005-08-31 | 2007-03-01 | Micron Technology, Inc. | Lanthanum aluminum oxynitride dielectric films |
US20070090440A1 (en) * | 2005-08-31 | 2007-04-26 | Micron Technology, Inc. | Lanthanum aluminum oxynitride dielectric films |
US20070187831A1 (en) * | 2006-02-16 | 2007-08-16 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US8785312B2 (en) | 2006-02-16 | 2014-07-22 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride |
US7709402B2 (en) | 2006-02-16 | 2010-05-04 | Micron Technology, Inc. | Conductive layers for hafnium silicon oxynitride films |
US8084370B2 (en) | 2006-08-31 | 2011-12-27 | Micron Technology, Inc. | Hafnium tantalum oxynitride dielectric |
US8759170B2 (en) | 2006-08-31 | 2014-06-24 | Micron Technology, Inc. | Hafnium tantalum oxynitride dielectric |
US8466016B2 (en) | 2006-08-31 | 2013-06-18 | Micron Technolgy, Inc. | Hafnium tantalum oxynitride dielectric |
Also Published As
Publication number | Publication date |
---|---|
US20030207032A1 (en) | 2003-11-06 |
US20070101929A1 (en) | 2007-05-10 |
US7160577B2 (en) | 2007-01-09 |
US7670646B2 (en) | 2010-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ritala et al. | Perfectly conformal TiN and Al2O3 films deposited by atomic layer deposition | |
US7695563B2 (en) | Pulsed deposition process for tungsten nucleation | |
TWI389251B (en) | Methods of thin film process | |
TWI619144B (en) | Image reversal with ahm gap fill for multiple patterning | |
US10351954B2 (en) | Deposition system and method using a delivery head separated from a substrate by gas pressure | |
US6380080B2 (en) | Methods for preparing ruthenium metal films | |
JP5931741B2 (en) | Smooth SiConi etching of silicon-containing films | |
US7745346B2 (en) | Method for improving process control and film conformality of PECVD film | |
US7220461B2 (en) | Method and apparatus for forming silicon oxide film | |
TWI662149B (en) | Methods and apparatuses for showerhead backside parasitic plasma suppression in a secondary purge enabled ald system | |
TWI391517B (en) | Vacuum film forming device | |
US8211808B2 (en) | Silicon-selective dry etch for carbon-containing films | |
KR101837648B1 (en) | InĀsitu ozone cure for radicalĀcomponent cvd | |
US7964441B2 (en) | Catalyst-assisted atomic layer deposition of silicon-containing films with integrated in-situ reactive treatment | |
US20020121241A1 (en) | Processing chamber and method of distributing process fluids therein to facilitate sequential deposition of films | |
US20100093187A1 (en) | Method for Depositing Conformal Amorphous Carbon Film by Plasma-Enhanced Chemical Vapor Deposition (PECVD) | |
US8455369B2 (en) | Trench embedding method | |
JP2016208027A (en) | Cobalt etch back | |
KR100682153B1 (en) | Chemical vapor deposition of barriers from novel precursors | |
TWI434346B (en) | Invertable pattern loading with dry etch | |
US20110151142A1 (en) | Pecvd multi-step processing with continuous plasma | |
US20110136327A1 (en) | High mobility monolithic p-i-n diodes | |
US7906168B2 (en) | Film formation method and apparatus for forming silicon oxide film | |
TWI567225B (en) | Plasma activated conformal film deposition | |
US5834068A (en) | Wafer surface temperature control for deposition of thin films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |