US20050023594A1 - Pr2O3-based la-oxide gate dielectrics - Google Patents

Pr2O3-based la-oxide gate dielectrics Download PDF

Info

Publication number
US20050023594A1
US20050023594A1 US10931365 US93136504A US2005023594A1 US 20050023594 A1 US20050023594 A1 US 20050023594A1 US 10931365 US10931365 US 10931365 US 93136504 A US93136504 A US 93136504A US 2005023594 A1 US2005023594 A1 US 2005023594A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
layer
lanthanide oxide
pr
number
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10931365
Inventor
Kie Ahn
Leonard Forbes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02304Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment formation of intermediate layers, e.g. buffer layers, layers to improve adhesion, lattice match or diffusion barriers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28273Making conductor-insulator-conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

A dielectric film having a layer of Pr2O3 and a layer of another lanthanide oxide, and a method of fabricating such a dielectric film produce a reliable gate dielectric with a equivalent oxide thickness thinner than attainable using SiO2. A gate dielectric is formed as a nanolaminate of Pr2O3 and a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3 by electron beam evaporation. These gate dielectrics having a lanthanide oxide nanolaminate are thermodynamically stable such that the nanolaminate forming the gate dielectric will have minimal reactions with a silicon substrate or other structures during processing.

Description

    RELATED APPLICATIONS
  • This application is a divisional under 37 C.F.R. 1.53(b) of U.S. Ser. No. 10/163,686 filed on Jun. 5, 2002, which application is incorporated herein by reference.
  • This application is related to the following, co-pending, commonly assigned applications, incorporated herein by reference: U.S. application Ser. No. 10/027,315 filed Dec. 20, 2001, entitled: “Low-Temperature Grown High-Quality Ultra-Thin Praseodymium Gate Dielectrics.”
  • FIELD OF THE INVENTION
  • The invention relates to semiconductor devices and device fabrication. Specifically, the invention relates to gate dielectric layers of transistor devices and their method of fabrication.
  • BACKGROUND OF THE INVENTION
  • The semiconductor device industry has a market driven need to improve speed performance, improve its low static (off-state) power requirements, and adapt to a wide range of power supply and output voltage requirements for it silicon based microelectronic products. In particular, in the fabrication of transistors, there is continuous pressure to reduce the size of devices such as transistors. The ultimate goal is to fabricate increasingly smaller and more reliable integrated circuits (ICs) for use in products such as processor chips, mobile telephones, or memory devices such as DRAMs. The smaller devices are frequently powered by batteries, where there is also pressure to reduce the size of the batteries, and to extend the time between battery charges. This forces the industry to not only design smaller transistors, but to design them to operate reliably with lower power supplies.
  • Currently, the semiconductor industry relies on the ability to reduce or scale the dimensions of its basic devices, primarily, the silicon based metal-oxide-semiconductor field effect transistor (MOSFET). A common configuration of such a transistor is shown in FIG. 1. While the following discussion uses FIG. 1 to illustrate a transistor from the prior art, one skilled in the art will recognize that the present invention could be incorporated into the transistor shown in FIG. 1 to form a novel transistor according to the invention. The transistor 100 is fabricated in a substrate 110 that is typically silicon, but could be fabricated from other semiconductor materials as well. The transistor 100 has a first source/drain region 120 and a second source/drain region 130. A body region 132 is located between the first source/drain region and the second source/drain region, where the body region 132 defines a channel of the transistor with a channel length 134. A gate dielectric, or gate oxide 140 is located on the body region 132 with a gate 150 located over the gate dielectric. Although the gate dielectric can be formed from materials other than oxides, the gate dielectric is typically an oxide, and is commonly referred to as a gate oxide. The gate may be fabricated from polycrystalline silicon (polysilicon), or other conducting materials such as metal may be used.
  • In fabricating transistors to be smaller in size and reliably operating on lower power supplies, one important design criteria is the gate dielectric 140. The mainstay for forming the gate dielectric has been silicon dioxide, SiO2. A thermally grown amorphous SiO2 layer provides an electrically and thermodynamically stable material, where the interface of the SiO2 layer with underlying Si provides a high quality interface as well as superior electrical isolation properties. In typical processing, use of SiO2 on Si has provided defect charge densities on the order of 1010/cm2, midgap interface state densities of approximately 1010/cm2 eV, and breakdown voltages in the range of 15 MV/cm. With such qualities, there would be no apparent need to use a material other than SiO2, but increased scaling and other requirements for gate dielectrics create the need to find other dielectric materials to be used for a gate dielectric.
  • What is needed is an alternate dielectric material for forming a gate dielectric that has a high dielectric constant relative to SiO2, and is thermodynamically stable with respect to silicon such that forming the dielectric on a silicon layer will not result in SiO2 formation, or diffusion of material, such as dopants, into the gate dielectric from the underlying silicon layer.
  • SUMMARY OF THE INVENTION
  • A solution to the problems as discussed above is addressed in embodiments according to the teachings of the present invention. In one embodiment, a method of forming a gate dielectric includes forming a layer of Pr2O3 on a substrate and forming a layer of another lanthanide oxide onto the layer of Pr2O3. This second layer is formed of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3. Further, the layer of Pr2O3 and the layer of the lanthanide oxide can be formed as a nanolaminate. Advantageously, a gate dielectric formed as a combination of layers of Pr2O3 and another lanthanide oxide has a larger dielectric constant than silicon dioxide, a relatively small leakage current, and good stability with respect to a silicon based substrate. Embodiments according to the teachings of the present invention include forming transistors, memory devices, and electronic systems.
  • Other embodiments include structures for transistors, memory devices, and electronic systems with dielectric gates of layers of Pr2O3 and another lanthanide oxide. Such dielectric gates provide a significantly thinner equivalent oxide thickness compared with a silicon oxide gate having the same physical thickness. Alternatively, such dielectric gates provide a significantly thicker physical thickness than a silicon oxide gate having the same equivalent oxide thickness.
  • These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts a common configuration of a transistor.
  • FIG. 2 depicts an embodiment of a deposition process for forming a gate dielectric using electron beam evaporation according to the teachings of the present invention.
  • FIG. 3 depicts an embodiment of another configuration of a transistor capable of being fabricated according to the teachings of the present invention.
  • FIG. 4 illustrates a perspective view of an embodiment of a personal computer incorporating devices made according to the teachings of the present invention.
  • FIG. 5 illustrates a schematic view of an embodiment of a processing unit incorporating devices made according to the teachings of the present invention.
  • FIG. 6 illustrates a schematic view of an embodiment of a DRAM memory device according to the teachings of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention.
  • The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to include semiconductors, and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors.
  • The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizontal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
  • A gate dielectric 140 of FIG. 1, when operating in a transistor, has both a physical gate dielectric thickness and an equivalent oxide thickness (teq). The equivalent oxide thickness quantifies the electrical properties, such as capacitance, of a gate dielectric 140 in terms of a representative physical thickness. teq is defined as the thickness of a theoretical SiO2 layer that would be required to have the same capacitance density as a given dielectric, ignoring leakage current and reliability considerations.
  • A SiO2 layer of thickness, t, deposited on a Si surface as a gate dielectric will also have a teq larger than its thickness, t. This teq results from the capacitance in the surface channel on which the SiO2 is deposited due to the formation of a depletion/inversion region. This depletion/inversion region can result in teq being from 3 to 6 Angstroms (Å) larger than the SiO2 thickness, t. Thus, with the semiconductor industry driving to someday scale the gate dielectric equivalent oxide thickness, teq, to under 10 Å, the physical thickness requirement for a SiO2 layer used for a gate dielectric would be need to be approximately 4 to 7 Å.
  • Additional requirements on a SiO2 layer would depend on the gate electrode used in conjunction with the SiO2 gate dielectric. Using a conventional polysilicon gate would result in an additional increase in teq for the SiO2 layer. This additional thickness could be eliminated by using a metal gate electrode, though metal gates are not currently used in complementary metal-oxide-semiconductor field effect transistor (CMOS) technology. Thus, future devices would be designed towards a physical SiO2 gate dielectric layer of about 5 Å or less. Such a small thickness requirement for a SiO2 oxide layer creates additional problems.
  • Silicon dioxide is used as a gate dielectric, in part, due to its electrical isolation properties in a SiO2—Si based structure. This electrical isolation is due to the relatively large band gap of SiO2 (8.9 eV) making it a good insulator from electrical conduction. Signification reductions in its band gap would eliminate it as a material for a gate dielectric. As the thickness of a SiO2 layer decreases, the number of atomic layers, or monolayers of the material in the thickness decreases. At a certain thickness, the number of monolayers will be sufficiently small that the SiO2 layer will not have a complete arrangement of atoms as in a larger or bulk layer. As a result of incomplete formation relative to a bulk structure, a thin SiO2 layer of only one or two monolayers will not form a full band gap. The lack of a full band gap in a SiO2 gate dielectric would cause an effective short between an underlying Si channel and an overlying polysilicon gate. This undesirable property sets a limit on the physical thickness to which a SiO2 layer can be scaled. The minimum thickness due to this monolayer effect is thought to be about 7-8 Å. Therefore, for future devices to have a teq less than about 10 Å, other dielectrics than SiO2 need to be considered for use as a gate dielectric.
  • For a typical dielectric layer used as a gate dielectric, the capacitance is determined as one for a parallel plate capacitance: C=κε0A/t, where κ is the dielectric constant, ε0 is the permittivity of free space, A is the area of the capacitor, and t is the thickness of the dielectric. The thickness, t, of a material is related to teq for a given capacitance with the dielectric constant of SiO2, κox=3.9, associated with teq, as
    t=(κ/κox)teq=(κ/3.9)teq.
    Thus, materials with a dielectric constant greater than that of SiO2, 3.9, will have a physical thickness that can be considerably larger than a desired teq, while providing the desired equivalent oxide thickness. For example, an alternate dielectric material with a dielectric constant of 10 could have a thickness of about 25.6 Å to provide a teq of 10 Å, not including any depletion/inversion layer effects. Thus, the reduced equivalent oxide thickness of transistors can be realized by using dielectric materials with higher dielectric constants than SiO2.
  • The thinner equivalent oxide thickness, teq required for lower transistor operating voltages and smaller transistor dimensions may be realized by a significant number of materials, but additional fabricating requirements makes determining a suitable replacement for SiO2 difficult. The current view for the microelectronics industry is still for Si based devices. This requires that the gate dielectric employed be grown on a silicon substrate or silicon layer, which places significant restraints on the substitute dielectric material. During the formation of the dielectric on the silicon layer, there exists the possibility that a small layer of SiO2 could be formed in addition to the desired dielectric. The result would effectively be a dielectric layer consisting of two sublayers in parallel with each other and the silicon layer on which the dielectric is formed. In such a case, the resulting capacitance would be that of two dielectrics in series. As a result, the teq of the dielectric layer would be the sum of the SiO2 thickness and a multiplicative factor of the thickness, t, of the dielectric being formed, written as
    t eq =t SiO2+(κox/κ)t.
    Thus, if a SiO2 layer is formed in the process, the teq is again limited by a SiO2 layer. In the event that a barrier layer is formed between the silicon layer and the desired dielectric in which the barrier layer prevents the formation of a SiO2 layer, the teq would be limited by the layer with the lowest dielectric constant. However, whether a single dielectric layer with a high dielectric constant or a barrier layer with a higher dielectric constant than SiO2 is employed, the layer interfacing with the silicon layer must provide a high quality interface to maintain a high channel carrier mobility.
  • One of the advantages using SiO2 as a gate dielectric has been that the formation of the SiO2 layer results is an amorphous gate dielectric. Having an amorphous structure for a gate dielectric is advantageous because grain boundaries in polycrystalline gate dielectrics provide high leakage paths. Additionally, grain size and orientation changes throughout a polycrystalline gate dielectric can cause variations in the film's dielectric constant. The abovementioned material properties, including structure, are for the materials in a bulk form. Many materials having the advantage of a high dielectric constant relative to SiO2 also have the disadvantage of a crystalline form, at least in a bulk configuration. The best candidates for replacing SiO2 as a gate dielectric are those with high dielectric constant, which can be fabricated as a thin layer with an amorphous form.
  • One candidate for forming gate dielectrics is Pr2O3. In co-pending, commonly assigned U.S. patent applications: entitled “Low-Temperature Grown High-Quality Ultra-Thin Praseodymium Gate Dielectrics,” attorney docket no. 1303.033US1, Ser. No. 10/027,315, Pr2O3 is disclosed as a replacement for SiO2 in forming gate dielectrics and other dielectric films in electronic devices such as MOS transistors. Additionally, in a recent article by H. J. Osten et al., Technical Digest of IEDM, pp. 653-656 (2000), crystalline praseodymium oxide on silicon was reported to have outstanding dielectric properties.
  • However, in a recent article by H. Zhang et al., Journal of the Electrochemical Societ, 148 (4) pp. F63-F66 (2001), it was noted that dielectric layers using high-κ materials tend to have a narrower bandgap. The article reported investigating the use of nanolaminates of ZrO2/HfO2, ZrO2/Ta2O5, and Ta2O5/HfO2, instead of a single layer of either Ta2O5, ZrO2, or HfO2. Each nanolaminate, that is, a composite of thin alternating layers of insulators, was grown using Atomic Layer Deposition. The dielectric layers formed of these nanolaminates were reported to have a dielectric constant in the range of 9 to 16, providing a teq reduction factor of about 3 relative to SiO2.
  • Embodiments according to the teachings of the present invention provide a novel set of dielectric structures for replacing SiO2 as a gate dielectric and as other dielectrics requiring an ultra-thin equivalent oxide thicknesses, teq. Dielectric layers containing layers of Pr2O3 and another lanthanide oxide for use as the replacement dielectric are formed in various embodiments. In one embodiment, a dielectric layer is grown by forming a layer of Pr2O3 on a substrate and forming a layer of another lanthanide oxide onto the layer of Pr2O3. In another embodiment, forming a layer of Pr2O3 on a substrate and forming a layer of another lanthanide oxide onto the layer of Pr2O3 is controlled to form a thin layer of each material with the combination of the two alternating layers of insulators forming a nanolaminate. The other lanthanide oxide used to form the nanolaminate is selected from a group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3. Alternately, the nanolaminate formed as the dielectric layer can be formed from multiple alternating thin layers of lanthanide oxides with the initial layer deposited being a layer of Pr2O3. Advantageously, using Pr2O3 for the initial layer provides a thin amorphous layer or region at the surface of a silicon based substrate.
  • By forming the dielectric layer as a nanolaminate, the dielectric layer can be grown as a composite whose insulating properties can be adjusted. The engineering of the nanolaminate allows the formation of a dielectric layer with a dielectric constant ranging between the values of the dielectric constants of the lanthanide oxides which form the dielectric layer. However, in many cases the dielectric layer will have an effective dielectric constant less than the dielectric constant of the lanthanide oxides used to form the dielectric layer. This reduction in the effective dielectric constant is due to interfacial layers formed between the silicon substrate surface and the first lanthanide oxide layer of the nanolaminate.
  • In one embodiment, a nanolaminate is grown by forming a layer of Pr2O3 on a substrate by electron beam evaporation. Subsequently, a layer of another lanthanide oxide is formed onto the layer of Pr2O3 also by electron beam evaporation. The resulting nanolaminate has a total thickness which is about the same as the thickness of the initial layer of Pr2O3 formed on the substrate. Thus, each layer in the nanolaminate is reduced to one-half the original thickness deposited. Such films are uniformly produced with a teq less than 20 Å, typically with about a teq of about 14 Å.
  • FIG. 2 depicts an embodiment of a deposition process for forming a gate dielectric using electron beam evaporation according to the teachings of the present invention. This process can be used to deposit a material forming a film containing a layer of Pr2O3 and a layer of another lanthanide oxide on a surface such as a body region of a transistor. In FIG. 2, a substrate 210 is placed inside a deposition chamber 260. The substrate in this embodiment is masked by a first masking structure 270 and a second masking structure 271. In this embodiment, the unmasked region 233 includes a body region of a transistor, however one skilled in the art will recognize that other semiconductor device structures may utilize this process. Also located within the deposition chamber 260 is an electron gun 263 and a target 261. The electron gun 263 provides an electron beam 264 directed at target 261 containing a source material for forming Pr2O3 and other lanthanide oxides on the unmasked region 233 of the substrate 210. The electron gun 263 includes a rate monitor for controlling the rate of evaporation of the material in the target 261 at which the electron beam 264 is directed. For convenience, control displays and necessary electrical connections as are known to those skilled in the art are not shown in FIG. 2. Alternatively, a chamber can be used with multiple electron guns, where each electron gun is directed to different targets containing sources to form selected lanthanide oxides to be used at different times in the process.
  • During the evaporation process, the electron gun 263 generates an electron beam 264 that hits target 261. In one embodiment, target 261 contains a ceramic Pr6O11 source, which is evaporated due to the impact of the electron beam 264. The evaporated material 268 is then distributed throughout the chamber 260. A dielectric layer of Pr2O3 is grown forming a film 240 on the surface of the exposed body region 233 that it contacts. The growth rate can vary with a typical rate of 0.1 Å/s. The resultant Pr2O3 layer includes a thin amorphous interfacial layer of about 0.5 nm thickness separating a crystalline layer of Pr2O3 from the substrate on which it is grown. This thin amorphous layer is beneficial in reducing the number of interface charges and eliminating any grain boundary paths for conductance from the substrate. Other source materials can be used for forming the Pr2O3 layer, as are known to those skilled in the art.
  • Subsequent to the formation of the Pr2O3 layer, another lanthanide oxide is deposited on the film 240 converting the film 240 from a Pr2O3 layer to a nanolaminate of Pr2O3 and the other lanthanide oxide. The other lanthanide oxide is selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3. Depending on the lanthanide oxide selected to form the nanolaminate, a corresponding source material is used in the target 261 for electron beam evaporation. The source material for the particular lanthanide oxide is chosen from commercial materials for forming the lanthanide oxide by electron bean evaporation, as is known by those skilled in the art.
  • After forming the nanolaminate, the structure is annealed briefly at 600° C. As a result of this brief anneal, there is no significant hysteresis in capacitance-voltage (C-V) measurements. Further, the nanolaminates can be annealed up to 1000° C. for 15 seconds with no degradation in electrical properties. In one embodiment, such films have a teq of 14 Å with a leakage current of approximately 5×10−9 Å/cm2 at a gate voltages of ±1 V, with a dielectric constant ranging from the dielectric constant of a Pr2O3 film on silicon, 31, to the dielectric constant of the other selected lanthanide oxide. Advantageously, this leakage current is at least 104 times lower that the best published value of HfO2 or ZrO2 films with the same teq and a 3 nm thick SiO2 layer.
  • In one embodiment alternating layers of Pr2O3 and another selected lanthanide oxide are formed by controlled electron beam evaporation providing layers of material of predetermined thickness. This control allows the engineering of a dielectric with a predetermined thickness, and composition. Through evaluation of different lanthanide oxides at various thicknesses and number of layers, a dielectric layer with a predetermined teq in a narrow range of values can be grown. Alternately, after forming a Pr2O3 layer and a layer of another lanthanide oxide, additional layers of additional lanthanide oxides can be formed. Each layer of an additional lanthanide oxide selected from a group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3. Consequently, a dielectric layer can be engineered with electrical characteristics suited for a given application. These electrical characteristics include teq and leakage current. A teq of less than 20 Å can be obtained with typically sizes about of about 14 Å to 8.5 Å.
  • In another embodiment, nanolaminates of lanthanide oxides are formed by electron beam evaporation. The lanthanide oxides used in these nanolaminates are chosen from the group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3. The structure of the nanolaminates can be varied with any one of the group used as the initial layer formed on a substrate. Typically, the substrate is silicon based, since these lanthanide oxides are thermodynamically stable with respect to formation on a silicon surface. In an alternate embodiment, lanthanide oxide nanolaminates are formed by atomic layer deposition.
  • The Pr2O3 film formed on a silicon has a dielectric constant of about 31 when formed with little or no interfacial layer between the Pr2O3 film and the substrate. The dielectric constants for the other lanthanide oxides are also in the range of 25-30. As a result, a dielectric layer grown by forming a nanolaminate of lanthanide oxides has a dielectric constant in the range of about 25 to about 31. However, with an interfacial layer formed between the surface of the substrate and the first lanthanide oxide, the teq of the dielectric layer is the teq of the interfacial layer in parallel with the lanthanide oxide nanolaminate. Thus, the dielectric layer formed having an interfacial layer between the substrate on which it is grown and a lanthanide oxide nanolaminate can have an effective dielectric constant considerably less than a dielectric constant associated with a nanolaminate of lanthanide oxides. This is dependent upon the dielectric constant of the interfacial material being considerably less than the dielectric constant of the lanthanide oxides used to form the nanolaminate.
  • As previously noted above, a Pr2O3 layer can be formed on a silicon based substrate having a dielectric constant of about 31 with an interfacial layer of about 0.5 nm (5 Å). In another embodiment, for an interfacial layer of about 10.7 Å, an effective dielectric constant for a thin layer of Pr2O3 on silicon is about 15. Similar effective dielectric constants are associated with thin layers of Nd2O3, Sm2O3, Gd2O3, and Dy2O3 oxides on silicon. For example, a thin layer of Nd2O3 has an effective dielectric constant of about 12.9 with an interfacial layer of about 8.2 Å, a thin layer of Sm2O3 has an effective dielectric constant of about 11.4 with an interfacial layer of about 5.5 Å, a thin layer of Gd2O3 has an effective dielectric constant of about 13.9 with an interfacial layer of about 10 Å, and a thin layer of Dy2O3 has an effective dielectric constant of about 14.3 with an interfacial layer of about 12 Å. Lanthanide oxides grown on silicon with these reduced effective dielectric constants and corresponding interfacial layers can be attained with a teq equal to about 13 Å for Pr2O3, about 12.4 Å for Nd2O3, about 12.2 Å for Sm2O3, about 13 Å for Gd2O3, and about 13.3 Å for Dy2O3. Consequently, nanolaminates of these lanthanide oxides can be formed with an effective dielectric constants in the range of 11 to 15 and a teq in the range of about 12 Å to about 14 Å.
  • The formation of the interfacial layer is one factor in determining how thin a layer can be grown. An interfacial layer can be SiO2 for many processes forming a non-SiO2 dielectric on a silicon substrate. However, advantageously, in an embodiment forming a lanthanide oxide nanolaminate with an initial layer of Pr2O3, a thin amorphous interfacial layer is formed that is not a SiO2 layer. Typically, this interfacial layer is either an amorphous layer primarily of Pr2O3 formed between the silicon substrate and a crystalline form of Pr2O3, or a layer of Pr—Si—O silicate. The dielectric constant for Pr—Si—O silicate is significantly greater than SiO2, but not as high as Pr2O3.
  • Another factor setting a lower limit for the scaling of a dielectric layer is the number of monolayers of the dielectric structure necessary to develop a full band gap such that good insulation is maintained between an underlying silicon layer and an overlying conductive layer on the dielectric layer or film. This requirement is necessary to avoid possible short circuit effects between the underlying silicon layer and the overlying conductive layer used. In one embodiment, for a 0.5 nm interfacial layer and several monolayers of lanthanide grown, an expected lower limit for the physical thickness of a dielectric layer grown by forming a lanthanide oxide nanolaminate is anticipated to be in about the 2-4 nm range. Consequently, typical dielectric layers or films can be grown by forming lanthanide oxide nanolaminates having physical thickness in the range of 4 to 10 nm. The number of layers used, the thickness of each layer, and the lanthanide oxide used for each layer can be engineered to provide the desired electrical characteristics. Pr2O3 used as the initial layer is expected to provide excellent overall results with respect to reliability, current leakage, and ultra-thin teq.
  • Alternate embodiments include forming lanthanide oxide nanolaminates by electron beam evaporation with target material to form Pr2O3 other than Pr6O11, forming lanthanide oxide nanolaminates by atomic layer deposition, and electron beam evaporation forming lanthanide oxide nanolaminates with initial layers of a lanthanide oxide other than Pr2O3. The physical thicknesses can range from about 2 nm to about 10 nm with typical thickness ranging from about 4 nm to about 10 nm. Such layers have an effective dielectric constant ranging from 11 to 31, where a layer with a typical interfacial layer has an effective dielectric constant in the range 11 to 16 and a layer with a significantly thin interfacial layer can attain an effective dielectric constant in the range 25 to 31. Consequently, a range for the equivalent oxide thickness of a dielectric layer formed as a lanthanide oxide nanolaminate can be engineered over a significant range. The expected teq ranges for various effective dielectric constants are shown in the following
    Physical Physical Physical Physical
    Thickness Thickness Thickness Thickness
    t = 0.5 nm t = 1.0 nm t = 2.0 nm t = 10 nm
    (5 Å) (10 Å) (20 Å) (100 Å)
    κ teq (Å) teq (Å) teq (Å) teq (Å)
    11 1.77 3.55 7.09 35.45
    12 1.63 3.25 6.50 32.50
    13 1.50 3.00 6.00 30.00
    14 1.39 2.79 5.57 27.86
    15 1.30 2.60 5.20 26.00
    16 1.22 2.44 4.88 24.38
    20 0.98 1.95 3.90 19.50
    25 0.78 1.56 3.12 15.60
    31 0.63 1.26 2.52 12.58

    As noted previously, various embodiments provide a typical teq of about 14 Å. With careful preparation and engineering of the lanthanide oxide nanolaminate limiting the size of interfacial regions, a teq down to 2.5 Å or lower is anticipated.
  • The novel process described above provides significant advantages by providing a straight forward method of forming dielectric layers having ultra-thin equivalent oxide thicknesses by electron beam evaporation. Praseodymium oxide-based nanolaminates provide excellent reliability characteristics, based on measurements of current density as a function of gate voltage and stress induced leakage currents for the lanthanide oxides which form the nanolaminates. The dielectric breakdown occurs a least above 43 MEV/cm. The lanthanide oxides forming the nanolaminates retain excellent J-V characteristics even after stress-induced electrical breakdown. Though the praseodymium oxide forming the first layer of the nanolaminate is epitaxially oriented with respect to a substrate on which it is formed, the praseodymium layer is separated from the substrate surface by a thin amorphous layer. Additionally, the novel process and novel dielectric layer structure can be implemented to form transistors, memory devices, and electronic systems including information handling devices.
  • A transistor 100 as depicted in FIG. 1 can be formed by forming a source/drain region 120 and another source/drain region 130 in a silicon based substrate 110 where the two source/drain regions 120, 130 are separated by a body region 132. The body region 132 separated by the source/drain 120 and the source/drain 130 defines a channel having a channel length 134. Pr2O3 is formed on the body region 132 by evaporation using a electron gun at a controlled rate. Subsequently, another lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3 is formed on the Pr2O3 layer by controlling a rate of electron beam evaporation. This controlled process forms a film 140 containing a nanolaminate of Pr2O3 and another lanthanide oxide on the body region 132. A gate 150 is formed over the gate dielectric 140. Typically, forming the gate 150 includes forming a polysilicon layer, though a metal gate can be formed in an alternative process. Forming the substrate, source/region regions, and the gate is performed using standard processes known to those skilled in the art. Additionally, the sequencing of the various elements of the process for forming a transistor is conducted with standard fabrication processes, also as known to those skilled in the art.
  • The method of forming lanthanide oxide nanolaminates for a gate dielectric is applied to other transistor structures having dielectric layers in various embodiments according to the teachings of the present invention. For example, the structure of FIG. 3 depicts a transistor 300 having a silicon based substrate 310 with two source/drain regions 320, 330 separated by a body region 332. The body region 332 between the two source/drain regions 320, 330 defines a channel region having a channel length 334. Located above the body region 332 is a stack 355 including a gate dielectric 340, a floating gate 352, a floating gate dielectric 342, and a control gate 350. The gate dielectric 340 can be formed as described above with the remaining elements of the transistor 300 formed using processes known to those skilled in the art. Alternately, both the gate dielectric 340 and the floating gate dielectric 342 can be formed by various embodiments in accordance with the present invention as described above.
  • Transistors created by the methods described above may be implemented into memory devices and electronic systems including information handling devices. Information handling devices having a dielectric layer containing a lanthanide oxide nanolaminate can be constructed using various embodiments of the methods described above. Such information devices include wireless systems, telecommunication systems, and computers. An embodiment of a computer having a dielectric layer containing a lanthanide oxide nanolaminate is shown in FIGS. 4-6 and described below. While specific types of memory devices and computing devices are shown below, it will be recognized by one skilled in the art that several types of memory devices and information handling devices utilize the invention.
  • A personal computer, as shown in FIGS. 4 and 5, include a monitor 400, keyboard input 402 and a processing unit 404. The processor unit 404 typically includes microprocessor 506, memory bus circuit 508 having a plurality of memory slots 512(a-n), and other peripheral circuitry 510. Peripheral circuitry 510 permits various peripheral devices 524 to interface processor-memory bus 520 over input/output (I/O) bus 522. The personal computer shown in FIGS. 4 and 5 also includes at least one transistor having a gate dielectric containing a lanthanide oxide nanolaminate in an embodiment according to the teachings of the present invention.
  • Microprocessor 506 produces control and address signals to control the exchange of data between memory bus circuit 508 and microprocessor 506 and between memory bus circuit 508 and peripheral circuitry 510. This exchange of data is accomplished over high speed memory bus 520 and over high speed I/O bus 522.
  • Coupled to memory bus 520 are a plurality of memory slots 512(a-n) which receive memory devices well known to those skilled in the art. For example, single in-line memory modules (SIMMs) and dual in-line memory modules (DIMMs) may be used in the implementation of the present invention.
  • These memory devices can be produced in a variety of designs which provide different methods of reading from and writing to the dynamic memory cells of memory slots 512. One such method is the page mode operation. Page mode operations in a DRAM are defined by the method of accessing a row of a memory cell arrays and randomly accessing different columns of the array. Data stored at the row and column intersection can be read and output while that column is accessed. Page mode DRAMs require access steps which limit the communication speed of memory circuit 508.
  • An alternate type of device is the extended data output (EDO) memory which allows data stored at a memory array address to be available as output after the addressed column has been closed. This memory can increase some communication speeds by allowing shorter access signals without reducing the time in which memory output data is available on memory bus 520. Other alternative types of devices include SDRAM, DDR SDRAM, SLDRAM and Direct RDRAM as well as others such as SRAM or Flash memories.
  • FIG. 6 is a block diagram of an illustrative DRAM device 600 compatible with memory slots 512(a-n). The description of DRAM 600 has been simplified for purposes of illustrating a DRAM memory device and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices may be used in the implementation of the present invention. The example of a DRAM memory device shown in FIG. 6 includes at least one transistor having a gate dielectric containing a lanthanide oxide nanolaminate in an embodiment according to the teachings of the present invention.
  • Control, address and data information provided over memory bus 520 is further represented by individual inputs to DRAM 600, as shown in FIG. 6. These individual representations are illustrated by data lines 602, address lines 604 and various discrete lines directed to control logic 606.
  • As is well known in the art, DRAM 600 includes memory array 610 which in turn comprises rows and columns of addressable memory cells. Each memory cell in a row is coupled to a common word line. The word line is coupled to gates of individual transistors, where at least one transistor has a gate coupled to a gate dielectric containing a layer Pr2O3 and a layer another lanthanide oxide in accordance with the method and structure previously described above. Additionally, each memory cell in a column is coupled to a common bit line. Each cell in memory array 610 includes a storage capacitor and an access transistor as is conventional in the art.
  • DRAM 600 interfaces with, for example, microprocessor 606 through address lines 604 and data lines 602. Alternatively, DRAM 600 may interface with a DRAM controller, a micro-controller, a chip set or other electronic system. Microprocessor 506 also provides a number of control signals to DRAM 600, including but not limited to, row and column address strobe signals RAS and CAS, write enable signal WE, an output enable signal OE and other conventional control signals.
  • Row address buffer 612 and row decoder 614 receive and decode row addresses from row address signals provided on address lines 604 by microprocessor 506. Each unique row address corresponds to a row of cells in memory array 610. Row decoder 614 includes a word line driver, an address decoder tree, and circuitry which translates a given row address received from row address buffers 612 and selectively activates the appropriate word line of memory array 610 via the word line drivers.
  • Column address buffer 616 and column decoder 618 receive and decode column address signals provided on address lines 604. Column decoder 618 also determines when a column is defective and the address of a replacement column. Column decoder 618 is coupled to sense amplifiers 620. Sense amplifiers 620 are coupled to complementary pairs of bit lines of memory array 610.
  • Sense amplifiers 620 are coupled to data-in buffer 622 and data-out buffer 624. Data-in buffers 622 and data-out buffers 624 are coupled to data lines 602. During a write operation, data lines 602 provide data to data-in buffer 622. Sense amplifier 620 receives data from data-in buffer 622 and stores the data in memory array 610 as a charge on a capacitor of a cell at an address specified on address lines 604.
  • During a read operation, DRAM 600 transfers data to microprocessor 506 from memory array 610. Complementary bit lines for the accessed cell are equilibrated during a precharge operation to a reference voltage provided by an equilibration circuit and a reference voltage supply. The charge stored in the accessed cell is then shared with the associated bit lines. A sense amplifier of sense amplifiers 620 detects and amplifies a difference in voltage between the complementary bit lines. The sense amplifier passes the amplified voltage to data-out buffer 624.
  • Control logic 606 is used to control the many available functions of DRAM 600. In addition, various control circuits and signals not detailed herein initiate and synchronize DRAM 600 operation as known to those skilled in the art. As stated above, the description of DRAM 600 has been simplified for purposes of illustrating the present invention and is not intended to be a complete description of all the features of a DRAM. Those skilled in the art will recognize that a wide variety of memory devices, including but not limited to, SDRAMs, SLDRAMs, RDRAMs and other DRAMs and SRAMs, VRAMs and EEPROMs, may be used in the implementation of embodiments of the present invention. The DRAM implementation described herein is illustrative only and not intended to be exclusive or limiting.
  • Conclusion
  • A gate dielectric containing a layer of Pr2O3 and a layer of another lanthanide oxide, and a method of fabricating such a gate dielectric are provided that produces a reliable gate dielectric having an equivalent oxide thickness thinner than attainable using SiO2. Gate dielectric structures that are formed using the methods described herein include nanolaminates of Pr2O3 and another lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3. These gate dielectric structures are thermodynamically stable such that the gate dielectrics formed will have minimal reactions with a silicon substrate or other structures during processing.
  • Transistors, higher level ICs, devices, and electronic systems are provided utilizing the novel gate dielectric and process of formation. Gate dielectric layers of lanthanide oxide nanolaminates are formed having a high dielectric constant (κ), where the gate dielectrics are capable of a teq of 14 Å or thinner, providing suitable substitutes for SiO2 gate dielectrics. At the same time, the physical thickness of the Pr2O3 layer is much larger than the SiO2 thickness associated with the teq limit of SiO2. Forming the larger thickness provides advantages in processing the gate dielectric. In addition forming a dielectric layer or film containing a lanthanide oxide nanolaminate allows the engineering or selection of a dielectric constant ranging from that of Pr2O3 to a dielectric constant of another lanthanide oxide that is comprised in the nanolaminate.
  • Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention includes any other applications in which the above structures and fabrication methods are used. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims (62)

  1. 1. An electronic device comprising:
    a substrate; and
    a dielectric layer, the dielectric layer including:
    a layer of Pr2O3; and
    a layer of another lanthanide oxide disposed on the layer of Pr2O3.
  2. 2. The electronic device of claim 1, wherein the layer of Pr2O3 and the layer of another lanthanide oxide include a nanolaminate of Pr2O3 and the other lanthanide oxide.
  3. 3. The electronic device of claim 1, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  4. 4. The electronic device of claim 3, wherein the dielectric layer has an effective dielectric constant ranging from about 11 to about 15.
  5. 5. The electronic device of claim 1, wherein the dielectric layer has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the other lanthanide oxide.
  6. 6. The electronic device of claim 1, wherein the dielectric layer further includes one or more additional layers of a lanthanide oxide, each of the additional layers of lanthanide oxide selected from a group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  7. 7. The electronic device of claim 6, wherein the dielectric layer has an equivalent oxide thickness less than or equal to about 14 Å.
  8. 8. The electronic device of claim 1, wherein the dielectric layer is disposed in a transistor.
  9. 9. The electronic device of claim 1, wherein the dielectric layer is disposed in a memory.
  10. 10. The electronic device of claim 1, wherein the electronic device is configured in an electronic system.
  11. 11. A transistor comprising:
    a body region on a substrate between a first and a second source/drain regions;
    a film containing Pr2O3 and another lanthanide oxide on the body region between the first and second source/drain regions; and
    a gate coupled to the film;
    the film being formed by a method including:
    forming a layer of Pr2O3 onto the body region; and
    forming a layer of another lanthanide oxide onto the layer of Pr2O3.
  12. 12. The transistor of claim 11, wherein the film includes a nanolaminate of Pr2O3 and the other lanthanide oxide.
  13. 13. The transistor of claim 11, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  14. 14. The transistor of claim 13, wherein the film has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the selected lanthanide oxide.
  15. 15. The transistor of claim 11, wherein forming a layer of Pr2O3 and forming a layer of another lanthanide oxide includes forming both layers by electron beam evaporation.
  16. 16. A transistor comprising:
    a body region on a substrate between a first and a second source/drain regions;
    a film containing a layer of Pr2O3 and a layer of another lanthanide oxide on the body region between the first and second source/drain regions; and
    a gate coupled to the film.
  17. 17. The transistor of claim 16, wherein the layer of Pr2O3 and the layer of the other lanthanide oxide include a nanolaminate of Pr2O3 and the other lanthanide oxide.
  18. 18. The transistor of claim 16, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  19. 19. The transistor of claim 18, wherein the film has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the selected lanthanide oxide.
  20. 20. The transistor of claim 18, wherein the film further includes one or more additional layers of a lanthanide oxide, each of the additional layers of a lanthanide oxide selected from a group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  21. 21. The transistor of claim 16, wherein the dielectric layer has an effective dielectric constant ranging from about 11 to about 15.
  22. 22. The transistor of claim 16, wherein the dielectric layer has an equivalent oxide thickness less than or equal to about 14 Å.
  23. 23. A transistor comprising:
    a body region on a substrate between a first and a second source/drain regions;
    a gate dielectric disposed on the body region;
    a floating gate disposed on the gate dielectric;
    a control gate; and
    a floating gate dielectric interposed between the floating gate and the control gate, wherein at least one of the gate dielectric and the floating gate dielectric includes a film containing Pr2O3 and another lanthanide oxide;
    the film being formed by a method including:
    forming a layer of Pr2O3; and
    forming a layer of another lanthanide oxide onto the layer of Pr2O3.
  24. 24. The transistor of claim 23, wherein the film is configured as the gate dielectric.
  25. 25. The transistor of claim 23, wherein the film is configured as the floating gate dielectric.
  26. 26. The transistor of claim 23, wherein the film includes a nanolaminate of Pr2O3 and the other lanthanide oxide.
  27. 27. The transistor of claim 23, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  28. 28. The transistor of claim 23, wherein forming a layer of Pr2O3 and forming a layer of another lanthanide oxide includes forming both layers by electron beam evaporation.
  29. 29. A transistor comprising:
    a body region on a substrate between a first and a second source/drain regions;
    a gate dielectric disposed on the body region;
    a floating gate disposed on the gate dielectric;
    a control gate; and
    a floating gate dielectric interposed between the floating gate and the control gate, wherein at least one of the gate dielectric and the floating gate dielectric includes a film containing Pr2O3 and another lanthanide oxide.
  30. 30. The transistor of claim 29, wherein the film is configured as the gate dielectric.
  31. 31. The transistor of claim 29, wherein the film is configured as the floating gate dielectric.
  32. 32. The transistor of claim 29, wherein the layer of Pr2O3 and the layer of the other lanthanide oxide include a nanolaminate of Pr2O3 and the other lanthanide oxide.
  33. 33. The transistor of claim 29, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  34. 34. The transistor of claim 33, wherein the film further includes one or more additional layers of a lanthanide oxide, each of the additional layers of a lanthanide oxide selected from a group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  35. 35. A memory having a memory array comprising:
    a number of access transistors, each access transistor including a gate coupled to a film containing Pr2O3 and another lanthanide oxide, the film formed on a body region on a substrate between a first and a second source/drain regions;
    a number of word lines coupled to a number of the gates of the number of access transistors;
    a number of source lines coupled to a number of the first source/drain regions of the number of access transistors; and
    a number of bit lines coupled to a number of the second source/drain regions of the number of access transistors;
    the film being formed by a method including:
    forming a layer of Pr2O3 onto the body region; and
    forming a layer of another lanthanide oxide onto the layer of Pr2O3.
  36. 36. The memory of claim 35, wherein the film includes a nanolaminate of Pr2O3 and the other lanthanide oxide.
  37. 37. The memory of claim 35, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  38. 38. The memory of claim 37, wherein the film has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the selected lanthanide oxide.
  39. 39. The memory of claim 35, wherein forming a layer of Pr2O3 and forming a layer of another lanthanide oxide includes forming both layers by electron beam evaporation.
  40. 40. A memory having a memory array comprising:
    a number of transistors, each transistor including a gate coupled to a film containing a layer of Pr2O3 and a layer of another lanthanide oxide, the film disposed above a body region on a substrate between a first and a second source/drain regions;
    a number of word lines coupled to a number of the gates of the number of transistors;
    a number of source lines coupled to a number of the first source/drain regions of the number of transistors; and
    a number of bit lines coupled to a number of the second source/drain regions of the number of transistors.
  41. 41. The memory of claim 40, wherein the film is configured as a floating gate dielectric and the gate is configured as a control gate.
  42. 42. The memory of claim 40, wherein the film is configured as a gate dielectric and the gate is configured as a control gate.
  43. 43. The memory of claim 40, wherein the layer of Pr2O3 and the layer of the other lanthanide oxide include a nanolaminate of Pr2O3 and the other lanthanide oxide.
  44. 44. The memory of claim 40, wherein the layer of another lanthanide oxide includes a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  45. 45. The memory of claim 44, wherein the film has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the selected lanthanide oxide.
  46. 46. The memory of claim 40, wherein the dielectric layer has an effective dielectric constant ranging from about 11 to about 15.
  47. 47. The memory of claim 40, wherein the dielectric layer has an equivalent oxide thickness less than or equal to about 14 Å.
  48. 48. The memory of claim 40, the film further includes one or more additional layers of a lanthanide oxide, each of the additional layers of a lanthanide oxide selected from a group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  49. 49. An electronic system comprising:
    a processor;
    a memory having a memory array, the memory array including:
    a number of access transistors, each access transistors having a gate coupled to a film containing Pr2O3 and another lanthanide oxide, the film located on a body region on a substrate between a first and a second source/drain regions;
    a number of word lines coupled to a number of the gates of the number of access transistors;
    a number of source lines coupled to a number of the first source/drain regions of the number of access transistors;
    a number of bit lines coupled to a number of the second source/drain regions of the number of access transistors; and
    a system bus that couples the processor to the memory;
    the film being formed by a method including:
    forming a layer of Pr2O3 onto the body region; and
    forming a layer of another lanthanide oxide onto the layer of Pr2O3.
  50. 50. The electronic system of claim 49, wherein the film includes a nanolaminate of Pr2O3 and the other lanthanide oxide.
  51. 51. The electronic system of claim 49, wherein forming a layer of another lanthanide oxide includes forming a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  52. 52. The electronic system of claim 51, wherein the film has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the selected lanthanide oxide.
  53. 53. The electronic system of claim 49, wherein forming a layer of Pr2O3 and forming a layer of another lanthanide oxide includes forming both layers by electron beam evaporation.
  54. 54. An electronic system comprising:
    a processor; and
    a memory having a memory array, the memory array including:
    a number of transistors, each transistors having a gate coupled to a film containing a layer of Pr2O3 and a layer of another lanthanide oxide, the film disposed above a body region on a substrate between a first and a second source/drain regions;
    a number of word lines coupled to a number of the gates of the number of transistors;
    a number of source lines coupled to a number of the first source/drain regions of the number of transistors;
    a number of bit lines coupled to a number of the second source/drain regions of the number of transistors; and
    a system bus that couples the processor to the memory.
  55. 55. The electronic system of claim 54, wherein the film is configured as a floating gate dielectric and the gate is configured as a control gate.
  56. 56. The electronic system of claim 54, wherein the film is configured as a gate dielectric and the gate is configured as a control gate.
  57. 57. The electronic system of claim 54, wherein the film includes a nanolaminate of Pr2O3 and the other lanthanide oxide.
  58. 58. The electronic system of claim 54, wherein forming a layer of another lanthanide oxide includes forming a layer of a lanthanide oxide selected from the group consisting of Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  59. 59. The electronic system of claim 58, wherein the film has an effective dielectric constant ranging from a dielectric constant of Pr2O3 to a dielectric constant of the selected lanthanide oxide.
  60. 60. The electronic system of claim 58, wherein the film further includes one or more additional layers of a lanthanide oxide, each of the additional layers of a lanthanide oxide selected from a group consisting of Pr2O3, Nd2O3, Sm2O3, Gd2O3, and Dy2O3.
  61. 61. The electronic system of claim 54, wherein the dielectric layer has an effective dielectric constant ranging from about 11 to about 15.
  62. 62. The electronic system of claim 54, wherein the dielectric layer has an equivalent oxide thickness less than or equal to about 14 Å.
US10931365 2002-06-05 2004-08-31 Pr2O3-based la-oxide gate dielectrics Abandoned US20050023594A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10163686 US7205218B2 (en) 2002-06-05 2002-06-05 Method including forming gate dielectrics having multiple lanthanide oxide layers
US10931365 US20050023594A1 (en) 2002-06-05 2004-08-31 Pr2O3-based la-oxide gate dielectrics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10931365 US20050023594A1 (en) 2002-06-05 2004-08-31 Pr2O3-based la-oxide gate dielectrics
US11621401 US8093638B2 (en) 2002-06-05 2007-01-09 Systems with a gate dielectric having multiple lanthanide oxide layers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10163686 Division US7205218B2 (en) 2002-06-05 2002-06-05 Method including forming gate dielectrics having multiple lanthanide oxide layers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11621401 Division US8093638B2 (en) 2002-06-05 2007-01-09 Systems with a gate dielectric having multiple lanthanide oxide layers

Publications (1)

Publication Number Publication Date
US20050023594A1 true true US20050023594A1 (en) 2005-02-03

Family

ID=29710030

Family Applications (3)

Application Number Title Priority Date Filing Date
US10163686 Active 2022-12-29 US7205218B2 (en) 2002-06-05 2002-06-05 Method including forming gate dielectrics having multiple lanthanide oxide layers
US10931365 Abandoned US20050023594A1 (en) 2002-06-05 2004-08-31 Pr2O3-based la-oxide gate dielectrics
US11621401 Active 2024-09-30 US8093638B2 (en) 2002-06-05 2007-01-09 Systems with a gate dielectric having multiple lanthanide oxide layers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10163686 Active 2022-12-29 US7205218B2 (en) 2002-06-05 2002-06-05 Method including forming gate dielectrics having multiple lanthanide oxide layers

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11621401 Active 2024-09-30 US8093638B2 (en) 2002-06-05 2007-01-09 Systems with a gate dielectric having multiple lanthanide oxide layers

Country Status (1)

Country Link
US (3) US7205218B2 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030045082A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators
US20030045078A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US20030207032A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits
US20030228747A1 (en) * 2002-06-05 2003-12-11 Micron Technology, Inc. Pr2O3-based la-oxide gate dielectrics
US20030227033A1 (en) * 2002-06-05 2003-12-11 Micron Technology, Inc. Atomic layer-deposited HfA1O3 films for gate dielectrics
US20040043541A1 (en) * 2002-08-29 2004-03-04 Ahn Kie Y. Atomic layer deposited lanthanide doped TiOx dielectric films
US20040164357A1 (en) * 2002-05-02 2004-08-26 Micron Technology, Inc. Atomic layer-deposited LaAIO3 films for gate dielectrics
US20040164365A1 (en) * 2002-08-15 2004-08-26 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US20040175882A1 (en) * 2003-03-04 2004-09-09 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20040183108A1 (en) * 2001-12-20 2004-09-23 Micron Technology, Inc. Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics
US20040214399A1 (en) * 2003-04-22 2004-10-28 Micron Technology, Inc. Atomic layer deposited ZrTiO4 films
US20050023627A1 (en) * 2002-08-15 2005-02-03 Micron Technology, Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US20050023626A1 (en) * 2003-06-24 2005-02-03 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US20050029604A1 (en) * 2002-12-04 2005-02-10 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20050029547A1 (en) * 2003-06-24 2005-02-10 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US20050034662A1 (en) * 2001-03-01 2005-02-17 Micro Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US20050054165A1 (en) * 2003-03-31 2005-03-10 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers
US20050277256A1 (en) * 2002-07-30 2005-12-15 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US20060043504A1 (en) * 2004-08-31 2006-03-02 Micron Technology, Inc. Atomic layer deposited titanium aluminum oxide films
US20060046505A1 (en) * 2004-08-26 2006-03-02 Micron Technology, Inc. Ruthenium gate for a lanthanide oxide dielectric layer
US20060046522A1 (en) * 2004-08-31 2006-03-02 Micron Technology, Inc. Atomic layer deposited lanthanum aluminum oxide dielectric layer
US20060125030A1 (en) * 2004-12-13 2006-06-15 Micron Technology, Inc. Hybrid ALD-CVD of PrxOy/ZrO2 films as gate dielectrics
US20060128168A1 (en) * 2004-12-13 2006-06-15 Micron Technology, Inc. Atomic layer deposited lanthanum hafnium oxide dielectrics
US20060176645A1 (en) * 2005-02-08 2006-08-10 Micron Technology, Inc. Atomic layer deposition of Dy doped HfO2 films as gate dielectrics
US20060177975A1 (en) * 2005-02-10 2006-08-10 Micron Technology, Inc. Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics
US20060183272A1 (en) * 2005-02-15 2006-08-17 Micron Technology, Inc. Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US20060189154A1 (en) * 2005-02-23 2006-08-24 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US20060244100A1 (en) * 2005-04-28 2006-11-02 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US20060270147A1 (en) * 2005-05-27 2006-11-30 Micron Technology, Inc. Hafnium titanium oxide films
US20060281330A1 (en) * 2005-06-14 2006-12-14 Micron Technology, Inc. Iridium / zirconium oxide structure
US20070049023A1 (en) * 2005-08-29 2007-03-01 Micron Technology, Inc. Zirconium-doped gadolinium oxide films
US20070049054A1 (en) * 2005-08-31 2007-03-01 Micron Technology, Inc. Cobalt titanium oxide dielectric films
US20070048953A1 (en) * 2005-08-30 2007-03-01 Micron Technology, Inc. Graded dielectric layers
US20070048926A1 (en) * 2005-08-31 2007-03-01 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
US20070092989A1 (en) * 2005-08-04 2007-04-26 Micron Technology, Inc. Conductive nanoparticles
US20070158765A1 (en) * 2006-01-10 2007-07-12 Micron Technology, Inc. Gallium lanthanide oxide films
US20070181931A1 (en) * 2005-01-05 2007-08-09 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US20070234949A1 (en) * 2006-04-07 2007-10-11 Micron Technology, Inc. Atomic layer deposited titanium-doped indium oxide films
US20070263474A1 (en) * 2006-05-15 2007-11-15 Freescale Semiconductor, Inc. Memory with level shifting word line driver and method thereof
US20080048225A1 (en) * 2006-08-25 2008-02-28 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US20080054330A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US20080057659A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Hafnium aluminium oxynitride high-K dielectric and metal gates
US20080087945A1 (en) * 2006-08-31 2008-04-17 Micron Technology, Inc. Silicon lanthanide oxynitride films
US20080124908A1 (en) * 2006-08-31 2008-05-29 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US7393736B2 (en) 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US20090079015A1 (en) * 2007-09-26 2009-03-26 Micron Technology, Inc. Lanthanide dielectric with controlled interfaces
US7544596B2 (en) 2005-08-30 2009-06-09 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
US20090173991A1 (en) * 2005-08-04 2009-07-09 Marsh Eugene P Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US20100044771A1 (en) * 2002-12-04 2010-02-25 Ahn Kie Y Zr-Sn-Ti-O FILMS
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7727908B2 (en) 2006-08-03 2010-06-01 Micron Technology, Inc. Deposition of ZrA1ON films
US7727905B2 (en) 2004-08-02 2010-06-01 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7728626B2 (en) 2002-07-08 2010-06-01 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7759747B2 (en) 2006-08-31 2010-07-20 Micron Technology, Inc. Tantalum aluminum oxynitride high-κ dielectric
US7776765B2 (en) 2006-08-31 2010-08-17 Micron Technology, Inc. Tantalum silicon oxynitride high-k dielectrics and metal gates
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7989362B2 (en) 2006-08-31 2011-08-02 Micron Technology, Inc. Hafnium lanthanide oxynitride films

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10039327A1 (en) * 2000-08-03 2002-02-14 Ihp Gmbh Electronic component and manufacturing processes for electronic component
US7068544B2 (en) * 2001-08-30 2006-06-27 Micron Technology, Inc. Flash memory with low tunnel barrier interpoly insulators
US6844203B2 (en) * 2001-08-30 2005-01-18 Micron Technology, Inc. Gate oxides, and methods of forming
US6953730B2 (en) 2001-12-20 2005-10-11 Micron Technology, Inc. Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics
DE10164462B4 (en) * 2001-12-20 2007-04-26 IHP GmbH - Innovations for High Performance Microelectronics/ Institut für innovative Mikroelektronik GmbH CORDIC unit
US6893984B2 (en) * 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
DE10218799A1 (en) * 2002-04-23 2003-11-13 Ihp Gmbh Semiconductor capacitor with praseodymium oxide as dielectric
DE10230674B4 (en) * 2002-07-04 2006-11-23 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Semiconductor capacitor and thus constructed MOSFET
US7037863B2 (en) * 2002-09-10 2006-05-02 Samsung Electronics Co., Ltd. Post thermal treatment methods of forming high dielectric layers over interfacial layers in integrated circuit devices
DE10245590A1 (en) * 2002-09-26 2004-04-15 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Semiconductor device with praseodymium oxide dielectric
DE10248507A1 (en) * 2002-10-11 2004-04-22 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Error correction method for multiplex signals, esp. OFDM in digital audio broadcast (DAB), involves compensating or balancing step of partial elimination of phase error accumulation of part signal
US20060157733A1 (en) * 2003-06-13 2006-07-20 Gerald Lucovsky Complex oxides for use in semiconductor devices and related methods
DE10340202A1 (en) * 2003-08-28 2005-04-14 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Manufacturing method of a semiconductor device with praseodymium oxide dielectric
DE102005005229B4 (en) * 2004-10-04 2009-11-05 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik Wet chemical etching process for MOS-layer structures with dielectric praseodymoxidhaltigen
US7202562B2 (en) * 2004-12-02 2007-04-10 Micron Technology, Inc. Integrated circuit cooling system and method
US7365027B2 (en) * 2005-03-29 2008-04-29 Micron Technology, Inc. ALD of amorphous lanthanide doped TiOx films
DE102005051573B4 (en) * 2005-06-17 2007-10-18 IHP GmbH - Innovations for High Performance Microelectronics/Institut für innovative Mikroelektronik MIM / MIS structure with Praseodymtitanat as an insulator material
US7195999B2 (en) * 2005-07-07 2007-03-27 Micron Technology, Inc. Metal-substituted transistor gates
US20070045752A1 (en) * 2005-08-31 2007-03-01 Leonard Forbes Self aligned metal gates on high-K dielectrics
US7749879B2 (en) * 2006-08-03 2010-07-06 Micron Technology, Inc. ALD of silicon films on germanium
US7985995B2 (en) * 2006-08-03 2011-07-26 Micron Technology, Inc. Zr-substituted BaTiO3 films
US20080087890A1 (en) * 2006-10-16 2008-04-17 Micron Technology, Inc. Methods to form dielectric structures in semiconductor devices and resulting devices
US7833914B2 (en) * 2007-04-27 2010-11-16 Micron Technology, Inc. Capacitors and methods with praseodymium oxide insulators
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
WO2017149205A1 (en) * 2016-03-04 2017-09-08 Beneq Oy A plasma etch-resistant film and a method for its fabrication

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647947A (en) * 1982-03-15 1987-03-03 Tokyo Shibaura Denki Kabushiki Kaisha Optical protuberant bubble recording medium
US4725887A (en) * 1984-09-14 1988-02-16 U.S. Philips Corporation Method of and apparatus for processing video signals
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
US5089084A (en) * 1990-12-03 1992-02-18 Micron Technology, Inc. Hydrofluoric acid etcher and cascade rinser
US5595606A (en) * 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
US5879459A (en) * 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US6010969A (en) * 1996-10-02 2000-01-04 Micron Technology, Inc. Method of depositing films on semiconductor devices by using carboxylate complexes
US6013553A (en) * 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US6025627A (en) * 1998-05-29 2000-02-15 Micron Technology, Inc. Alternate method and structure for improved floating gate tunneling devices
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6171900B1 (en) * 1999-04-15 2001-01-09 Taiwan Semiconductor Manufacturing Company CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET
US6184146B1 (en) * 1998-08-28 2001-02-06 Micron Technology, Inc. Plasma producing tools, dual-source plasma etchers, dual-source plasma etching methods, and method of forming planar coil dual-source plasma etchers
US6187484B1 (en) * 1999-08-31 2001-02-13 Micron Technology, Inc. Irradiation mask
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6203726B1 (en) * 1997-03-04 2001-03-20 Symyx Technologies, Inc. Phosphor Materials
US6207589B1 (en) * 1999-07-19 2001-03-27 Sharp Laboratories Of America, Inc. Method of forming a doped metal oxide dielectric film
US6206972B1 (en) * 1999-07-08 2001-03-27 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US20030003635A1 (en) * 2001-05-23 2003-01-02 Paranjpe Ajit P. Atomic layer deposition for fabricating thin films
US20030003722A1 (en) * 1998-09-01 2003-01-02 Micron Technology, Inc. Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands
US20030001212A1 (en) * 1997-02-19 2003-01-02 Micron Technology, Inc. Conductor layer nitridation
US20030003730A1 (en) * 2001-02-13 2003-01-02 Micron Technology, Inc. Sequential pulse deposition
US20030003702A1 (en) * 2001-02-09 2003-01-02 Micron Technology, Inc. Formation of metal oxide gate dielectric
US20030008243A1 (en) * 2001-07-09 2003-01-09 Micron Technology, Inc. Copper electroless deposition technology for ULSI metalization
US6509252B1 (en) * 2001-10-30 2003-01-21 Fujitsu Limited Method of manufacturing semiconductor device
US20030017717A1 (en) * 2001-07-18 2003-01-23 Ahn Kie Y. Methods for forming dielectric materials and methods for forming semiconductor devices
US20030020180A1 (en) * 2001-07-24 2003-01-30 Ahn Kie Y. Copper technology for ULSI metallization
US6514828B2 (en) * 2001-04-20 2003-02-04 Micron Technology, Inc. Method of fabricating a highly reliable gate oxide
US6518610B2 (en) * 2001-02-20 2003-02-11 Micron Technology, Inc. Rhodium-rich oxygen barriers
US20030032270A1 (en) * 2001-08-10 2003-02-13 John Snyder Fabrication method for a device for regulating flow of electric current with high dielectric constant gate insulating layer and source/drain forming schottky contact or schottky-like region with substrate
US6521911B2 (en) * 2000-07-20 2003-02-18 North Carolina State University High dielectric constant metal silicates formed by controlled metal-surface reactions
US6524867B2 (en) * 2000-12-28 2003-02-25 Micron Technology, Inc. Method for forming platinum-rhodium stack as an oxygen barrier
US6524901B1 (en) * 2002-06-20 2003-02-25 Micron Technology, Inc. Method for forming a notched damascene planar poly/metal gate
US6527866B1 (en) * 2000-02-09 2003-03-04 Conductus, Inc. Apparatus and method for deposition of thin films
US20030043637A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc Flash memory with low tunnel barrier interpoly insulators
US20030042526A1 (en) * 2001-08-29 2003-03-06 Micron Technology, Inc. Method of improved high K dielectric-polysilicon interface for CMOS devices
US20030045078A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US20030045060A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Crystalline or amorphous medium-k gate oxides, Y2O3 and Gd2O3
US6531354B2 (en) * 2000-01-19 2003-03-11 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors
US20030049942A1 (en) * 2001-08-31 2003-03-13 Suvi Haukka Low temperature gate stack
US20030048666A1 (en) * 2001-08-30 2003-03-13 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US6537613B1 (en) * 2000-04-10 2003-03-25 Air Products And Chemicals, Inc. Process for metal metalloid oxides and nitrides with compositional gradients
US20030059535A1 (en) * 2001-09-25 2003-03-27 Lee Luo Cycling deposition of low temperature films in a cold wall single wafer process chamber
US6674138B1 (en) * 2001-12-31 2004-01-06 Advanced Micro Devices, Inc. Use of high-k dielectric materials in modified ONO structure for semiconductor devices
US6673701B1 (en) * 2002-08-27 2004-01-06 Micron Technology, Inc. Atomic layer deposition methods
US20040004859A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US20040004245A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide-conductor nanolaminates
US20040004244A1 (en) * 2001-03-15 2004-01-08 Micron Technology, Inc. Structures, methods, and systems for ferroelectric memory transistors
US20040004247A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide-nitride nanolaminates
US6677250B2 (en) * 2001-08-17 2004-01-13 Micron Technology, Inc. CVD apparatuses and methods of forming a layer over a semiconductor substrate
US20040007171A1 (en) * 1999-10-14 2004-01-15 Mikko Ritala Method for growing thin oxide films
US20040009679A1 (en) * 2001-01-19 2004-01-15 Yeo Jae-Hyun Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same
US6683005B2 (en) * 2001-08-30 2004-01-27 Micron Technology, Inc. Method of forming capacitor constructions
US20040023461A1 (en) * 2002-07-30 2004-02-05 Micron Technology, Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US20040033701A1 (en) * 2002-08-15 2004-02-19 Micron Technology, Inc. Lanthanide doped tiox dielectric films
US20040033681A1 (en) * 2002-08-15 2004-02-19 Micron Technology, Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US6696332B2 (en) * 2001-12-26 2004-02-24 Texas Instruments Incorporated Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing
US20040038554A1 (en) * 2002-08-21 2004-02-26 Ahn Kie Y. Composite dielectric forming methods and composite dielectrics
US6699747B2 (en) * 2000-02-29 2004-03-02 Infineon Technologies Ag Method for increasing the capacitance in a storage trench
US20040043569A1 (en) * 2002-08-28 2004-03-04 Ahn Kie Y. Atomic layer deposited HfSiON dielectric films
US20040043541A1 (en) * 2002-08-29 2004-03-04 Ahn Kie Y. Atomic layer deposited lanthanide doped TiOx dielectric films
US20040043635A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming metal oxides using metal diketonates and/or ketoimines
US6709989B2 (en) * 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6713846B1 (en) * 2001-01-26 2004-03-30 Aviza Technology, Inc. Multilayer high κ dielectric films
US20050020017A1 (en) * 2003-06-24 2005-01-27 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US20050023624A1 (en) * 2002-06-05 2005-02-03 Micron Technology, Inc. Atomic layer-deposited HfAlO3 films for gate dielectrics
US20050023603A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators
US20050023626A1 (en) * 2003-06-24 2005-02-03 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US20050026374A1 (en) * 2002-03-13 2005-02-03 Micron Technology, Inc. Evaporation of Y-Si-O films for medium-K dielectrics
US20050023602A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers
US20050023595A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory devices with asymmetrical tunnel barriers
US20050029604A1 (en) * 2002-12-04 2005-02-10 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20050032342A1 (en) * 2002-08-22 2005-02-10 Micron Technology, Inc. Atomic layer deposition of CMOS gates with variable work functions
US20050037563A1 (en) * 2001-06-13 2005-02-17 Ahn Kie Y. Capacitor structures
US6858120B2 (en) * 2001-03-15 2005-02-22 Micron Technology, Inc. Method and apparatus for the fabrication of ferroelectric films
US20050054165A1 (en) * 2003-03-31 2005-03-10 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers
US20060001151A1 (en) * 2003-03-04 2006-01-05 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20060000412A1 (en) * 2002-05-02 2006-01-05 Micron Technology, Inc. Systems and apparatus for atomic-layer deposition
US20060023513A1 (en) * 2004-07-27 2006-02-02 Micron Technology, Inc. High density stepped, non-planar nitride read only memory
US20060024975A1 (en) * 2004-08-02 2006-02-02 Micron Technology, Inc. Atomic layer deposition of zirconium-doped tantalum oxide films
US20060028869A1 (en) * 2004-08-03 2006-02-09 Micron Technology, Inc. High density stepped, non-planar flash memory
US20060028867A1 (en) * 2004-08-03 2006-02-09 Micron Technology, Inc. Non-planar flash memory having shielding between floating gates

Family Cites Families (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US621099A (en) * 1899-03-14 Machine for making braid of variable widths
US3381114A (en) 1963-12-28 1968-04-30 Nippon Electric Co Device for manufacturing epitaxial crystals
FI52359C (en) 1974-11-29 1977-08-10 Instrumentarium Oy A method and apparatus for increasing compound thin films.
US4215156A (en) 1977-08-26 1980-07-29 International Business Machines Corporation Method for fabricating tantalum semiconductor contacts
FI57975C (en) 1979-02-28 1980-11-10 Lohja Ab Oy Foerfarande at uppbyggande and the arrangement of the thin foereningshinnor
US4333808A (en) 1979-10-30 1982-06-08 International Business Machines Corporation Method for manufacture of ultra-thin film capacitor
US4394673A (en) 1980-09-29 1983-07-19 International Business Machines Corporation Rare earth silicide Schottky barriers
GB2085166A (en) 1980-10-07 1982-04-21 Itt Ind Ltd Semiconductor gas sensor
US4590042A (en) 1984-12-24 1986-05-20 Tegal Corporation Plasma reactor having slotted manifold
US4695436A (en) * 1985-01-16 1987-09-22 Toth Aluminum Corporation Process for manufacturing high purity metal chlorides
US4920071A (en) 1985-03-15 1990-04-24 Fairchild Camera And Instrument Corporation High temperature interconnect system for an integrated circuit
DE3606959A1 (en) 1986-03-04 1987-09-10 Leybold Heraeus Gmbh & Co Kg An apparatus for plasma treatment of substrates in an excited by high-frequency plasma discharge
US4725877A (en) 1986-04-11 1988-02-16 American Telephone And Telegraph Company, At&T Bell Laboratories Metallized semiconductor device including an interface layer
US6120531A (en) 1987-05-20 2000-09-19 Micron, Technology Physiotherapy fiber, shoes, fabric, and clothes utilizing electromagnetic energy
JPH029115A (en) 1988-06-28 1990-01-12 Mitsubishi Electric Corp Semiconductor manufacturing equipment
DE69030365T2 (en) 1989-12-22 1997-10-23 Sumitomo Electric Industries A process for preparing a superconducting microwave component
US5840897A (en) 1990-07-06 1998-11-24 Advanced Technology Materials, Inc. Metal complex source reagents for chemical vapor deposition
US6110529A (en) 1990-07-06 2000-08-29 Advanced Tech Materials Method of forming metal films on a substrate by chemical vapor deposition
US5032545A (en) 1990-10-30 1991-07-16 Micron Technology, Inc. Process for preventing a native oxide from forming on the surface of a semiconductor material and integrated circuit capacitors produced thereby
EP0540993A1 (en) * 1991-11-06 1993-05-12 Ramtron International Corporation Structure and fabrication of high transconductance MOS field effect transistor using a buffer layer/ferroelectric/buffer layer stack as the gate dielectric
CN1092898A (en) 1993-01-25 1994-09-28 株式会社日立制作所 Dynamic ram and information processing system using the same
JP3328389B2 (en) 1993-09-14 2002-09-24 シャープ株式会社 The method of manufacturing a ferroelectric thin film
US5455489A (en) 1994-04-11 1995-10-03 Bhargava; Rameshwar N. Displays comprising doped nanocrystal phosphors
US5828080A (en) 1994-08-17 1998-10-27 Tdk Corporation Oxide thin film, electronic device substrate and electronic device
US5822256A (en) 1994-09-06 1998-10-13 Intel Corporation Method and circuitry for usage of partially functional nonvolatile memory
US5753934A (en) 1995-08-04 1998-05-19 Tok Corporation Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
KR0164072B1 (en) 1995-11-13 1999-02-01 김주용 Method of forming shallow junction in a semiconductor device
US5756404A (en) 1995-12-07 1998-05-26 Micron Technologies, Inc. Two-step nitride deposition
US5789030A (en) 1996-03-18 1998-08-04 Micron Technology, Inc. Method for depositing doped amorphous or polycrystalline silicon on a substrate
US5735960A (en) 1996-04-02 1998-04-07 Micron Technology, Inc. Apparatus and method to increase gas residence time in a reactor
US5674574A (en) 1996-05-20 1997-10-07 Micron Technology, Inc. Vapor delivery system for solid precursors and method regarding same
US5939333A (en) 1996-05-30 1999-08-17 Micron Technology, Inc. Silicon nitride deposition method
US6313035B1 (en) 1996-05-31 2001-11-06 Micron Technology, Inc. Chemical vapor deposition using organometallic precursors
JP3193302B2 (en) 1996-06-26 2001-07-30 ティーディーケイ株式会社 Membrane structure, an electronic device, a method of manufacturing a recording medium and a ferroelectric thin film
US5963833A (en) 1996-07-03 1999-10-05 Micron Technology, Inc. Method for cleaning semiconductor wafers and
US6020247A (en) 1996-08-05 2000-02-01 Texas Instruments Incorporated Method for thin film deposition on single-crystal semiconductor substrates
US5698022A (en) 1996-08-14 1997-12-16 Advanced Technology Materials, Inc. Lanthanide/phosphorus precursor compositions for MOCVD of lanthanide/phosphorus oxide films
US6342277B1 (en) 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5950925A (en) 1996-10-11 1999-09-14 Ebara Corporation Reactant gas ejector head
EP0854210B1 (en) 1996-12-19 2002-03-27 Toshiba Ceramics Co., Ltd. Vapor deposition apparatus for forming thin film
DE69841885D1 (en) 1997-03-03 2010-10-21 Nissan Chemical Ind Ltd Process for production of kompositsolen, coating composition and optical element
US6072209A (en) 1997-07-08 2000-06-06 Micro Technology, Inc. Four F2 folded bit line DRAM cell structure having buried bit and word lines
US6391769B1 (en) 1998-08-19 2002-05-21 Samsung Electronics Co., Ltd. Method for forming metal interconnection in semiconductor device and interconnection structure fabricated thereby
US6063202A (en) 1997-09-26 2000-05-16 Novellus Systems, Inc. Apparatus for backside and edge exclusion of polymer film during chemical vapor deposition
US6161500A (en) 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
KR100269328B1 (en) * 1997-12-31 2000-10-16 윤종용 Method for forming conductive layer using atomic layer deposition process
US6592661B1 (en) 1998-02-25 2003-07-15 Micron Technology, Inc. Method for processing wafers in a semiconductor fabrication system
US6093944A (en) 1998-06-04 2000-07-25 Lucent Technologies Inc. Dielectric materials of amorphous compositions of TI-O2 doped with rare earth elements and devices employing same
US6225168B1 (en) 1998-06-04 2001-05-01 Advanced Micro Devices, Inc. Semiconductor device having metal gate electrode and titanium or tantalum nitride gate dielectric barrier layer and process of fabrication thereof
US6461970B1 (en) 1998-06-10 2002-10-08 Micron Technology, Inc. Method of reducing defects in anti-reflective coatings and semiconductor structures fabricated thereby
US6302964B1 (en) 1998-06-16 2001-10-16 Applied Materials, Inc. One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system
US6141260A (en) 1998-08-27 2000-10-31 Micron Technology, Inc. Single electron resistor memory device and method for use thereof
US6211035B1 (en) 1998-09-09 2001-04-03 Texas Instruments Incorporated Integrated circuit and method
US6218293B1 (en) 1998-11-13 2001-04-17 Micron Technology, Inc. Batch processing for semiconductor wafers to form aluminum nitride and titanium aluminum nitride
US6210999B1 (en) 1998-12-04 2001-04-03 Advanced Micro Devices, Inc. Method and test structure for low-temperature integration of high dielectric constant gate dielectrics into self-aligned semiconductor devices
JP2000208508A (en) 1999-01-13 2000-07-28 Texas Instr Inc <Ti> Vacuum deposition of high-dielectric material made of silicate
US6291341B1 (en) 1999-02-12 2001-09-18 Micron Technology, Inc. Method for PECVD deposition of selected material films
US6303500B1 (en) 1999-02-24 2001-10-16 Micron Technology, Inc. Method and apparatus for electroless plating a contact pad
US6445023B1 (en) 1999-03-16 2002-09-03 Micron Technology, Inc. Mixed metal nitride and boride barrier layers
KR100319884B1 (en) 1999-04-12 2002-01-10 윤종용 Capacitor of semiconductor device and method for fabricating the same
US6273951B1 (en) 1999-06-16 2001-08-14 Micron Technology, Inc. Precursor mixtures for use in preparing layers on substrates
US6812157B1 (en) 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
US6297539B1 (en) 1999-07-19 2001-10-02 Sharp Laboratories Of America, Inc. Doped zirconia, or zirconia-like, dielectric film transistor structure and deposition method for same
US6368518B1 (en) 1999-08-25 2002-04-09 Micron Technology, Inc. Methods for removing rhodium- and iridium-containing films
KR100304714B1 (en) 1999-10-20 2001-11-02 윤종용 Method for fabricating metal layer of semiconductor device using metal-halide gas
KR100714378B1 (en) 1999-10-25 2007-05-07 프리스케일 세미컨덕터, 인크. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US6780704B1 (en) 1999-12-03 2004-08-24 Asm International Nv Conformal thin films over textured capacitor electrodes
US6503330B1 (en) 1999-12-22 2003-01-07 Genus, Inc. Apparatus and method to achieve continuous interface and ultrathin film during atomic layer deposition
KR100313091B1 (en) 1999-12-29 2001-11-07 박종섭 Method of forming gate dielectric layer with TaON
US6404027B1 (en) 2000-02-07 2002-06-11 Agere Systems Guardian Corp. High dielectric constant gate oxides for silicon-based devices
US6407435B1 (en) * 2000-02-11 2002-06-18 Sharp Laboratories Of America, Inc. Multilayer dielectric stack and method
US6444039B1 (en) 2000-03-07 2002-09-03 Simplus Systems Corporation Three-dimensional showerhead apparatus
FI117979B (en) * 2000-04-14 2007-05-15 Asm Int Process for the preparation of oksidiohutkalvojen
US6432779B1 (en) 2000-05-18 2002-08-13 Motorola, Inc. Selective removal of a metal oxide dielectric
US6444592B1 (en) 2000-06-20 2002-09-03 International Business Machines Corporation Interfacial oxidation process for high-k gate dielectric process integration
JP4145509B2 (en) 2000-06-27 2008-09-03 三星電子株式会社Samsung Electronics Co.,Ltd. Method of manufacturing an integrated circuit device including an insulating film
US6551929B1 (en) * 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6592942B1 (en) * 2000-07-07 2003-07-15 Asm International N.V. Method for vapour deposition of a film onto a substrate
DE10039327A1 (en) 2000-08-03 2002-02-14 Ihp Gmbh Electronic component and manufacturing processes for electronic component
US6365515B1 (en) 2000-08-28 2002-04-02 Micron Technology, Inc. Chemical vapor deposition process
US7112503B1 (en) * 2000-08-31 2006-09-26 Micron Technology, Inc. Enhanced surface area capacitor fabrication methods
EP1743949B1 (en) 2000-10-02 2012-02-15 JX Nippon Mining & Metals Corporation High-purity zirconium or hafnium metal for sputter targets and thin film applications
US6300203B1 (en) 2000-10-05 2001-10-09 Advanced Micro Devices, Inc. Electrolytic deposition of dielectric precursor materials for use in in-laid gate MOS transistors
US6465334B1 (en) 2000-10-05 2002-10-15 Advanced Micro Devices, Inc. Enhanced electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors
US6660660B2 (en) * 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
US6395650B1 (en) * 2000-10-23 2002-05-28 International Business Machines Corporation Methods for forming metal oxide layers with enhanced purity
JP3681632B2 (en) * 2000-11-06 2005-08-10 松下電器産業株式会社 Semiconductor device and manufacturing method thereof
US20020083464A1 (en) * 2000-11-07 2002-06-27 Mai-Ian Tomsen System and method for unprompted, context-sensitive querying during a televison broadcast
US6368941B1 (en) 2000-11-08 2002-04-09 United Microelectronics Corp. Fabrication of a shallow trench isolation by plasma oxidation
KR100385947B1 (en) * 2000-12-06 2003-06-02 삼성전자주식회사 Method of forming thin film by atomic layer deposition
KR20020056260A (en) 2000-12-29 2002-07-10 박종섭 Method for forming metal gate of semiconductor devoie
US7112543B2 (en) 2001-01-04 2006-09-26 Micron Technology, Inc. Methods of forming assemblies comprising silicon-doped aluminum oxide
US20020089023A1 (en) * 2001-01-05 2002-07-11 Motorola, Inc. Low leakage current metal oxide-nitrides and method of fabricating same
US20020089063A1 (en) 2001-01-08 2002-07-11 Ahn Kie Y. Copper dual damascene interconnect technology
US6566147B2 (en) * 2001-02-02 2003-05-20 Micron Technology, Inc. Method for controlling deposition of dielectric films
US6528374B2 (en) * 2001-02-05 2003-03-04 International Business Machines Corporation Method for forming dielectric stack without interfacial layer
KR100384558B1 (en) 2001-02-22 2003-05-22 삼성전자주식회사 Method for forming dielectric layer and capacitor using thereof
US6852167B2 (en) * 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US20050145959A1 (en) 2001-03-15 2005-07-07 Leonard Forbes Technique to mitigate short channel effects with vertical gate transistor with different gate materials
US6441417B1 (en) 2001-03-28 2002-08-27 Sharp Laboratories Of America, Inc. Single c-axis PGO thin film on ZrO2 for non-volatile memory applications and methods of making the same
JP3792589B2 (en) 2001-03-29 2006-07-05 富士通株式会社 A method of manufacturing a semiconductor device
EP1251530A3 (en) * 2001-04-16 2004-12-29 Shipley Company, L.L.C. Dielectric laminate for a capacitor
US20020167089A1 (en) 2001-05-14 2002-11-14 Micron Technology, Inc. Copper dual damascene interconnect technology
KR100426219B1 (en) * 2001-05-18 2004-04-06 홍국선 Dielectric Ceramic Compositions and Manufacturing Method of Multilayer components thereof
KR100363332B1 (en) 2001-05-23 2002-11-20 Samsung Electronics Co Ltd Method for forming semiconductor device having gate all-around type transistor
US6656835B2 (en) 2001-06-21 2003-12-02 Micron Technology, Inc. Process for low temperature atomic layer deposition of Rh
US6730575B2 (en) 2001-08-30 2004-05-04 Micron Technology, Inc. Methods of forming perovskite-type material and capacitor dielectric having perovskite-type crystalline structure
US6754108B2 (en) 2001-08-30 2004-06-22 Micron Technology, Inc. DRAM cells with repressed floating gate memory, low tunnel barrier interpoly insulators
US6656371B2 (en) 2001-09-27 2003-12-02 Micron Technology, Inc. Methods of forming magnetoresisitive devices
US6498063B1 (en) 2001-10-12 2002-12-24 Micron Technology, Inc. Even nucleation between silicon and oxide surfaces for thin silicon nitride film growth
US6593610B2 (en) 2001-12-13 2003-07-15 Micron Technology, Inc. Memory cell arrays
US6900122B2 (en) 2001-12-20 2005-05-31 Micron Technology, Inc. Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics
US6953730B2 (en) 2001-12-20 2005-10-11 Micron Technology, Inc. Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics
US6821873B2 (en) 2002-01-10 2004-11-23 Texas Instruments Incorporated Anneal sequence for high-κ film property optimization
US6767795B2 (en) * 2002-01-17 2004-07-27 Micron Technology, Inc. Highly reliable amorphous high-k gate dielectric ZrOXNY
US6645882B1 (en) 2002-01-17 2003-11-11 Advanced Micro Devices, Inc. Preparation of composite high-K/standard-K dielectrics for semiconductor devices
US6893984B2 (en) 2002-02-20 2005-05-17 Micron Technology Inc. Evaporated LaA1O3 films for gate dielectrics
US6586349B1 (en) * 2002-02-21 2003-07-01 Advanced Micro Devices, Inc. Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices
US6451641B1 (en) 2002-02-27 2002-09-17 Advanced Micro Devices, Inc. Non-reducing process for deposition of polysilicon gate electrode over high-K gate dielectric material
US6900106B2 (en) 2002-03-06 2005-05-31 Micron Technology, Inc. Methods of forming capacitor constructions
US6642573B1 (en) 2002-03-13 2003-11-04 Advanced Micro Devices, Inc. Use of high-K dielectric material in modified ONO structure for semiconductor devices
US6750066B1 (en) * 2002-04-08 2004-06-15 Advanced Micro Devices, Inc. Precision high-K intergate dielectric layer
US20030235961A1 (en) 2002-04-17 2003-12-25 Applied Materials, Inc. Cyclical sequential deposition of multicomponent films
US7045430B2 (en) 2002-05-02 2006-05-16 Micron Technology Inc. Atomic layer-deposited LaAlO3 films for gate dielectrics
US7589029B2 (en) 2002-05-02 2009-09-15 Micron Technology, Inc. Atomic layer deposition and conversion
US7205218B2 (en) * 2002-06-05 2007-04-17 Micron Technology, Inc. Method including forming gate dielectrics having multiple lanthanide oxide layers
US7101813B2 (en) * 2002-12-04 2006-09-05 Micron Technology Inc. Atomic layer deposited Zr-Sn-Ti-O films
JP4290421B2 (en) * 2002-12-27 2009-07-08 Necエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US20040144980A1 (en) 2003-01-27 2004-07-29 Ahn Kie Y. Atomic layer deposition of metal oxynitride layers as gate dielectrics and semiconductor device structures utilizing metal oxynitride layers
US20040198069A1 (en) 2003-04-04 2004-10-07 Applied Materials, Inc. Method for hafnium nitride deposition
US7183186B2 (en) 2003-04-22 2007-02-27 Micro Technology, Inc. Atomic layer deposited ZrTiO4 films
US6989573B2 (en) * 2003-10-10 2006-01-24 Micron Technology, Inc. Lanthanide oxide/zirconium oxide atomic layer deposited nanolaminate gate dielectrics
US7157769B2 (en) 2003-12-18 2007-01-02 Micron Technology, Inc. Flash memory having a high-permittivity tunnel dielectric
US7253000B2 (en) * 2004-04-26 2007-08-07 Pioneer Hi-Bred International, Inc. Transcriptional activators involved in abiotic stress tolerance
US7081421B2 (en) * 2004-08-26 2006-07-25 Micron Technology, Inc. Lanthanide oxide dielectric layer
US7494939B2 (en) * 2004-08-31 2009-02-24 Micron Technology, Inc. Methods for forming a lanthanum-metal oxide dielectric layer
US7588988B2 (en) 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US20060080682A1 (en) 2004-10-12 2006-04-13 Picsel Research Ltd. Run time dynamic linking
US20060125030A1 (en) 2004-12-13 2006-06-15 Micron Technology, Inc. Hybrid ALD-CVD of PrxOy/ZrO2 films as gate dielectrics
US7235501B2 (en) 2004-12-13 2007-06-26 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7560395B2 (en) 2005-01-05 2009-07-14 Micron Technology, Inc. Atomic layer deposited hafnium tantalum oxide dielectrics
US7365027B2 (en) * 2005-03-29 2008-04-29 Micron Technology, Inc. ALD of amorphous lanthanide doped TiOx films
US7195999B2 (en) * 2005-07-07 2007-03-27 Micron Technology, Inc. Metal-substituted transistor gates
US20070045752A1 (en) * 2005-08-31 2007-03-01 Leonard Forbes Self aligned metal gates on high-K dielectrics
US20070049023A1 (en) * 2005-08-29 2007-03-01 Micron Technology, Inc. Zirconium-doped gadolinium oxide films
US7544596B2 (en) 2005-08-30 2009-06-09 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
US7432548B2 (en) * 2006-08-31 2008-10-07 Micron Technology, Inc. Silicon lanthanide oxynitride films

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647947A (en) * 1982-03-15 1987-03-03 Tokyo Shibaura Denki Kabushiki Kaisha Optical protuberant bubble recording medium
US4725887A (en) * 1984-09-14 1988-02-16 U.S. Philips Corporation Method of and apparatus for processing video signals
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
US5089084A (en) * 1990-12-03 1992-02-18 Micron Technology, Inc. Hydrofluoric acid etcher and cascade rinser
US5595606A (en) * 1995-04-20 1997-01-21 Tokyo Electron Limited Shower head and film forming apparatus using the same
US6010969A (en) * 1996-10-02 2000-01-04 Micron Technology, Inc. Method of depositing films on semiconductor devices by using carboxylate complexes
US20030001212A1 (en) * 1997-02-19 2003-01-02 Micron Technology, Inc. Conductor layer nitridation
US6203726B1 (en) * 1997-03-04 2001-03-20 Symyx Technologies, Inc. Phosphor Materials
US6013553A (en) * 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US6020024A (en) * 1997-08-04 2000-02-01 Motorola, Inc. Method for forming high dielectric constant metal oxides
US5879459A (en) * 1997-08-29 1999-03-09 Genus, Inc. Vertically-stacked process reactor and cluster tool system for atomic layer deposition
US6025627A (en) * 1998-05-29 2000-02-15 Micron Technology, Inc. Alternate method and structure for improved floating gate tunneling devices
US6027961A (en) * 1998-06-30 2000-02-22 Motorola, Inc. CMOS semiconductor devices and method of formation
US6184146B1 (en) * 1998-08-28 2001-02-06 Micron Technology, Inc. Plasma producing tools, dual-source plasma etchers, dual-source plasma etching methods, and method of forming planar coil dual-source plasma etchers
US20030003722A1 (en) * 1998-09-01 2003-01-02 Micron Technology, Inc. Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands
US6682602B2 (en) * 1998-09-01 2004-01-27 Micron Technology, Inc. Chemical vapor deposition systems including metal complexes with chelating O- and/or N-donor ligands
US6171900B1 (en) * 1999-04-15 2001-01-09 Taiwan Semiconductor Manufacturing Company CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET
US6206972B1 (en) * 1999-07-08 2001-03-27 Genus, Inc. Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes
US6207589B1 (en) * 1999-07-19 2001-03-27 Sharp Laboratories Of America, Inc. Method of forming a doped metal oxide dielectric film
US6187484B1 (en) * 1999-08-31 2001-02-13 Micron Technology, Inc. Irradiation mask
US20040007171A1 (en) * 1999-10-14 2004-01-15 Mikko Ritala Method for growing thin oxide films
US6203613B1 (en) * 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6531354B2 (en) * 2000-01-19 2003-03-11 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors
US6527866B1 (en) * 2000-02-09 2003-03-04 Conductus, Inc. Apparatus and method for deposition of thin films
US6699747B2 (en) * 2000-02-29 2004-03-02 Infineon Technologies Ag Method for increasing the capacitance in a storage trench
US6537613B1 (en) * 2000-04-10 2003-03-25 Air Products And Chemicals, Inc. Process for metal metalloid oxides and nitrides with compositional gradients
US6521911B2 (en) * 2000-07-20 2003-02-18 North Carolina State University High dielectric constant metal silicates formed by controlled metal-surface reactions
US6524867B2 (en) * 2000-12-28 2003-02-25 Micron Technology, Inc. Method for forming platinum-rhodium stack as an oxygen barrier
US20030052356A1 (en) * 2000-12-28 2003-03-20 Micron Technology, Inc. Platinum-rhodium stack as an oxygen barrier in an integrated circuit capacitor
US20040009679A1 (en) * 2001-01-19 2004-01-15 Yeo Jae-Hyun Method of forming material using atomic layer deposition and method of forming capacitor of semiconductor device using the same
US6713846B1 (en) * 2001-01-26 2004-03-30 Aviza Technology, Inc. Multilayer high κ dielectric films
US20030003702A1 (en) * 2001-02-09 2003-01-02 Micron Technology, Inc. Formation of metal oxide gate dielectric
US20030003730A1 (en) * 2001-02-13 2003-01-02 Micron Technology, Inc. Sequential pulse deposition
US6518610B2 (en) * 2001-02-20 2003-02-11 Micron Technology, Inc. Rhodium-rich oxygen barriers
US6858444B2 (en) * 2001-03-15 2005-02-22 Micron Technology, Inc. Method for making a ferroelectric memory transistor
US20050030825A1 (en) * 2001-03-15 2005-02-10 Micron Technology, Inc. Structures, methods, and systems for ferroelectric memory transistors
US20040004244A1 (en) * 2001-03-15 2004-01-08 Micron Technology, Inc. Structures, methods, and systems for ferroelectric memory transistors
US6858120B2 (en) * 2001-03-15 2005-02-22 Micron Technology, Inc. Method and apparatus for the fabrication of ferroelectric films
US6514828B2 (en) * 2001-04-20 2003-02-04 Micron Technology, Inc. Method of fabricating a highly reliable gate oxide
US20030003635A1 (en) * 2001-05-23 2003-01-02 Paranjpe Ajit P. Atomic layer deposition for fabricating thin films
US20050037563A1 (en) * 2001-06-13 2005-02-17 Ahn Kie Y. Capacitor structures
US6709989B2 (en) * 2001-06-21 2004-03-23 Motorola, Inc. Method for fabricating a semiconductor structure including a metal oxide interface with silicon
US20030008243A1 (en) * 2001-07-09 2003-01-09 Micron Technology, Inc. Copper electroless deposition technology for ULSI metalization
US6534420B2 (en) * 2001-07-18 2003-03-18 Micron Technology, Inc. Methods for forming dielectric materials and methods for forming semiconductor devices
US20030017717A1 (en) * 2001-07-18 2003-01-23 Ahn Kie Y. Methods for forming dielectric materials and methods for forming semiconductor devices
US20030020180A1 (en) * 2001-07-24 2003-01-30 Ahn Kie Y. Copper technology for ULSI metallization
US20030020169A1 (en) * 2001-07-24 2003-01-30 Ahn Kie Y. Copper technology for ULSI metallization
US20030032270A1 (en) * 2001-08-10 2003-02-13 John Snyder Fabrication method for a device for regulating flow of electric current with high dielectric constant gate insulating layer and source/drain forming schottky contact or schottky-like region with substrate
US6677250B2 (en) * 2001-08-17 2004-01-13 Micron Technology, Inc. CVD apparatuses and methods of forming a layer over a semiconductor substrate
US20030042526A1 (en) * 2001-08-29 2003-03-06 Micron Technology, Inc. Method of improved high K dielectric-polysilicon interface for CMOS devices
US20030052358A1 (en) * 2001-08-29 2003-03-20 Micron Technology Inc. Method of improved high K dielectric - polysilicon interface for CMOS devices
US20050032292A1 (en) * 2001-08-30 2005-02-10 Micron Technology, Inc. Crystalline or amorphous medium-K gate oxides, Y2O3 and Gd2O3
US20030043637A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc Flash memory with low tunnel barrier interpoly insulators
US20030045060A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Crystalline or amorphous medium-k gate oxides, Y2O3 and Gd2O3
US6844203B2 (en) * 2001-08-30 2005-01-18 Micron Technology, Inc. Gate oxides, and methods of forming
US20030045078A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US6683005B2 (en) * 2001-08-30 2004-01-27 Micron Technology, Inc. Method of forming capacitor constructions
US20030048666A1 (en) * 2001-08-30 2003-03-13 Micron Technology, Inc. Graded composition metal oxide tunnel barrier interpoly insulators
US20050029605A1 (en) * 2001-08-30 2005-02-10 Micron Technology, Inc. Highly reliable amorphous high-k gate oxide ZrO2
US20050023595A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory devices with asymmetrical tunnel barriers
US20050023603A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators
US20050026349A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Flash memory with low tunnel barrier interpoly insulators
US20050023602A1 (en) * 2001-08-30 2005-02-03 Micron Technology, Inc. Programmable array logic or memory with p-channel devices and asymmetrical tunnel barriers
US20030049942A1 (en) * 2001-08-31 2003-03-13 Suvi Haukka Low temperature gate stack
US20030059535A1 (en) * 2001-09-25 2003-03-27 Lee Luo Cycling deposition of low temperature films in a cold wall single wafer process chamber
US6509252B1 (en) * 2001-10-30 2003-01-21 Fujitsu Limited Method of manufacturing semiconductor device
US6696332B2 (en) * 2001-12-26 2004-02-24 Texas Instruments Incorporated Bilayer deposition to avoid unwanted interfacial reactions during high K gate dielectric processing
US6674138B1 (en) * 2001-12-31 2004-01-06 Advanced Micro Devices, Inc. Use of high-k dielectric materials in modified ONO structure for semiconductor devices
US20050026374A1 (en) * 2002-03-13 2005-02-03 Micron Technology, Inc. Evaporation of Y-Si-O films for medium-K dielectrics
US20060000412A1 (en) * 2002-05-02 2006-01-05 Micron Technology, Inc. Systems and apparatus for atomic-layer deposition
US20050023624A1 (en) * 2002-06-05 2005-02-03 Micron Technology, Inc. Atomic layer-deposited HfAlO3 films for gate dielectrics
US6524901B1 (en) * 2002-06-20 2003-02-25 Micron Technology, Inc. Method for forming a notched damascene planar poly/metal gate
US20040004247A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide-nitride nanolaminates
US20050023574A1 (en) * 2002-07-08 2005-02-03 Micron Technology, Inc. Memory utilizing oxide-nitride nanolaminates
US20040004245A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide-conductor nanolaminates
US20040004859A1 (en) * 2002-07-08 2004-01-08 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US20040023461A1 (en) * 2002-07-30 2004-02-05 Micron Technology, Inc. Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics
US20050023627A1 (en) * 2002-08-15 2005-02-03 Micron Technology, Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US20040033681A1 (en) * 2002-08-15 2004-02-19 Micron Technology, Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US20040033701A1 (en) * 2002-08-15 2004-02-19 Micron Technology, Inc. Lanthanide doped tiox dielectric films
US20040038554A1 (en) * 2002-08-21 2004-02-26 Ahn Kie Y. Composite dielectric forming methods and composite dielectrics
US20050009370A1 (en) * 2002-08-21 2005-01-13 Ahn Kie Y. Composite dielectric forming methods and composite dielectrics
US20050032342A1 (en) * 2002-08-22 2005-02-10 Micron Technology, Inc. Atomic layer deposition of CMOS gates with variable work functions
US6673701B1 (en) * 2002-08-27 2004-01-06 Micron Technology, Inc. Atomic layer deposition methods
US20040043635A1 (en) * 2002-08-28 2004-03-04 Micron Technology, Inc. Systems and methods for forming metal oxides using metal diketonates and/or ketoimines
US20040043569A1 (en) * 2002-08-28 2004-03-04 Ahn Kie Y. Atomic layer deposited HfSiON dielectric films
US20050023625A1 (en) * 2002-08-28 2005-02-03 Micron Technology, Inc. Atomic layer deposited HfSiON dielectric films
US20040043541A1 (en) * 2002-08-29 2004-03-04 Ahn Kie Y. Atomic layer deposited lanthanide doped TiOx dielectric films
US20060003517A1 (en) * 2002-12-04 2006-01-05 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20050029604A1 (en) * 2002-12-04 2005-02-10 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20060001151A1 (en) * 2003-03-04 2006-01-05 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20050054165A1 (en) * 2003-03-31 2005-03-10 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers
US20050020017A1 (en) * 2003-06-24 2005-01-27 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US20050029547A1 (en) * 2003-06-24 2005-02-10 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US20050023626A1 (en) * 2003-06-24 2005-02-03 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US20060023513A1 (en) * 2004-07-27 2006-02-02 Micron Technology, Inc. High density stepped, non-planar nitride read only memory
US20060024975A1 (en) * 2004-08-02 2006-02-02 Micron Technology, Inc. Atomic layer deposition of zirconium-doped tantalum oxide films
US20060028867A1 (en) * 2004-08-03 2006-02-09 Micron Technology, Inc. Non-planar flash memory having shielding between floating gates
US20060028869A1 (en) * 2004-08-03 2006-02-09 Micron Technology, Inc. High density stepped, non-planar flash memory

Cited By (168)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050087134A1 (en) * 2001-03-01 2005-04-28 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US20050034662A1 (en) * 2001-03-01 2005-02-17 Micro Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
US20030045078A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US20030045082A1 (en) * 2001-08-30 2003-03-06 Micron Technology, Inc. Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators
US8652957B2 (en) 2001-08-30 2014-02-18 Micron Technology, Inc. High-K gate dielectric oxide
US8026161B2 (en) 2001-08-30 2011-09-27 Micron Technology, Inc. Highly reliable amorphous high-K gate oxide ZrO2
US20050029605A1 (en) * 2001-08-30 2005-02-10 Micron Technology, Inc. Highly reliable amorphous high-k gate oxide ZrO2
US20040185654A1 (en) * 2001-12-20 2004-09-23 Micron Technology, Inc. Low-temperature growth high-quality ultra-thin praseodymium gate dielectrics
US20040183108A1 (en) * 2001-12-20 2004-09-23 Micron Technology, Inc. Low-temperature grown high-quality ultra-thin praseodymium gate dielectrics
US20040164357A1 (en) * 2002-05-02 2004-08-26 Micron Technology, Inc. Atomic layer-deposited LaAIO3 films for gate dielectrics
US7670646B2 (en) 2002-05-02 2010-03-02 Micron Technology, Inc. Methods for atomic-layer deposition
US20030207032A1 (en) * 2002-05-02 2003-11-06 Micron Technology, Inc. Methods, systems, and apparatus for atomic-layer deposition of aluminum oxides in integrated circuits
US20030228747A1 (en) * 2002-06-05 2003-12-11 Micron Technology, Inc. Pr2O3-based la-oxide gate dielectrics
US20050023624A1 (en) * 2002-06-05 2005-02-03 Micron Technology, Inc. Atomic layer-deposited HfAlO3 films for gate dielectrics
US20030227033A1 (en) * 2002-06-05 2003-12-11 Micron Technology, Inc. Atomic layer-deposited HfA1O3 films for gate dielectrics
US8093638B2 (en) 2002-06-05 2012-01-10 Micron Technology, Inc. Systems with a gate dielectric having multiple lanthanide oxide layers
US8228725B2 (en) 2002-07-08 2012-07-24 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7728626B2 (en) 2002-07-08 2010-06-01 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US20050277256A1 (en) * 2002-07-30 2005-12-15 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US8125038B2 (en) 2002-07-30 2012-02-28 Micron Technology, Inc. Nanolaminates of hafnium oxide and zirconium oxide
US20060246741A1 (en) * 2002-07-30 2006-11-02 Micron Technology, Inc. ATOMIC LAYER DEPOSITED NANOLAMINATES OF HfO2/ZrO2 FILMS AS GATE DIELECTRICS
US20040164365A1 (en) * 2002-08-15 2004-08-26 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US20050124174A1 (en) * 2002-08-15 2005-06-09 Micron Technology, Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US20050023627A1 (en) * 2002-08-15 2005-02-03 Micron Technology, Inc. Lanthanide doped TiOx dielectric films by plasma oxidation
US20060237764A1 (en) * 2002-08-29 2006-10-26 Micron Technology, Inc. LANTHANIDE DOPED TiOx DIELECTRIC FILMS
US20040043541A1 (en) * 2002-08-29 2004-03-04 Ahn Kie Y. Atomic layer deposited lanthanide doped TiOx dielectric films
US20050029604A1 (en) * 2002-12-04 2005-02-10 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US20100044771A1 (en) * 2002-12-04 2010-02-25 Ahn Kie Y Zr-Sn-Ti-O FILMS
US20060003517A1 (en) * 2002-12-04 2006-01-05 Micron Technology, Inc. Atomic layer deposited Zr-Sn-Ti-O films using TiI4
US8445952B2 (en) 2002-12-04 2013-05-21 Micron Technology, Inc. Zr-Sn-Ti-O films
US20040175882A1 (en) * 2003-03-04 2004-09-09 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20060001151A1 (en) * 2003-03-04 2006-01-05 Micron Technology, Inc. Atomic layer deposited dielectric layers
US20060255470A1 (en) * 2003-03-31 2006-11-16 Micron Technology, Inc. ZrAlxOy DIELECTRIC LAYERS
US20050054165A1 (en) * 2003-03-31 2005-03-10 Micron Technology, Inc. Atomic layer deposited ZrAlxOy dielectric layers
US20070059881A1 (en) * 2003-03-31 2007-03-15 Micron Technology, Inc. Atomic layer deposited zirconium aluminum oxide
US20050280067A1 (en) * 2003-04-22 2005-12-22 Micron Technology, Inc. Atomic layer deposited zirconium titanium oxide films
US7863667B2 (en) 2003-04-22 2011-01-04 Micron Technology, Inc. Zirconium titanium oxide films
US20040214399A1 (en) * 2003-04-22 2004-10-28 Micron Technology, Inc. Atomic layer deposited ZrTiO4 films
US20050023626A1 (en) * 2003-06-24 2005-02-03 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectrics
US20050029547A1 (en) * 2003-06-24 2005-02-10 Micron Technology, Inc. Lanthanide oxide / hafnium oxide dielectric layers
US20060261397A1 (en) * 2003-06-24 2006-11-23 Micron Technology, Inc. Lanthanide oxide/hafnium oxide dielectric layers
US20100301406A1 (en) * 2004-08-02 2010-12-02 Ahn Kie Y Zirconium-doped tantalum oxide films
US8288809B2 (en) 2004-08-02 2012-10-16 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7727905B2 (en) 2004-08-02 2010-06-01 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US8765616B2 (en) 2004-08-02 2014-07-01 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US7776762B2 (en) 2004-08-02 2010-08-17 Micron Technology, Inc. Zirconium-doped tantalum oxide films
US20060046505A1 (en) * 2004-08-26 2006-03-02 Micron Technology, Inc. Ruthenium gate for a lanthanide oxide dielectric layer
US7719065B2 (en) 2004-08-26 2010-05-18 Micron Technology, Inc. Ruthenium layer for a dielectric layer containing a lanthanide oxide
US20060043492A1 (en) * 2004-08-26 2006-03-02 Micron Technology, Inc. Ruthenium gate for a lanthanide oxide dielectric layer
US8907486B2 (en) 2004-08-26 2014-12-09 Micron Technology, Inc. Ruthenium for a dielectric containing a lanthanide
US8558325B2 (en) 2004-08-26 2013-10-15 Micron Technology, Inc. Ruthenium for a dielectric containing a lanthanide
US8154066B2 (en) 2004-08-31 2012-04-10 Micron Technology, Inc. Titanium aluminum oxide films
US20060043504A1 (en) * 2004-08-31 2006-03-02 Micron Technology, Inc. Atomic layer deposited titanium aluminum oxide films
US20060046522A1 (en) * 2004-08-31 2006-03-02 Micron Technology, Inc. Atomic layer deposited lanthanum aluminum oxide dielectric layer
US7867919B2 (en) 2004-08-31 2011-01-11 Micron Technology, Inc. Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer
US8237216B2 (en) 2004-08-31 2012-08-07 Micron Technology, Inc. Apparatus having a lanthanum-metal oxide semiconductor device
US8541276B2 (en) 2004-08-31 2013-09-24 Micron Technology, Inc. Methods of forming an insulating metal oxide
US20110037117A1 (en) * 2004-08-31 2011-02-17 Ahn Kie Y Lanthanum-metal oxide dielectric apparatus, methods, and systems
US20060128168A1 (en) * 2004-12-13 2006-06-15 Micron Technology, Inc. Atomic layer deposited lanthanum hafnium oxide dielectrics
US20090032910A1 (en) * 2004-12-13 2009-02-05 Micron Technology, Inc. Dielectric stack containing lanthanum and hafnium
US20070037415A1 (en) * 2004-12-13 2007-02-15 Micron Technology, Inc. Lanthanum hafnium oxide dielectrics
US7915174B2 (en) 2004-12-13 2011-03-29 Micron Technology, Inc. Dielectric stack containing lanthanum and hafnium
US20060125030A1 (en) * 2004-12-13 2006-06-15 Micron Technology, Inc. Hybrid ALD-CVD of PrxOy/ZrO2 films as gate dielectrics
US20070181931A1 (en) * 2005-01-05 2007-08-09 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US8524618B2 (en) 2005-01-05 2013-09-03 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US8278225B2 (en) 2005-01-05 2012-10-02 Micron Technology, Inc. Hafnium tantalum oxide dielectrics
US20060176645A1 (en) * 2005-02-08 2006-08-10 Micron Technology, Inc. Atomic layer deposition of Dy doped HfO2 films as gate dielectrics
US20080248618A1 (en) * 2005-02-10 2008-10-09 Micron Technology, Inc. ATOMIC LAYER DEPOSITION OF CeO2/Al2O3 FILMS AS GATE DIELECTRICS
US7754618B2 (en) 2005-02-10 2010-07-13 Micron Technology, Inc. Method of forming an apparatus having a dielectric containing cerium oxide and aluminum oxide
US20060177975A1 (en) * 2005-02-10 2006-08-10 Micron Technology, Inc. Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics
US20060183272A1 (en) * 2005-02-15 2006-08-17 Micron Technology, Inc. Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US7399666B2 (en) 2005-02-15 2008-07-15 Micron Technology, Inc. Atomic layer deposition of Zr3N4/ZrO2 films as gate dielectrics
US20060263972A1 (en) * 2005-02-15 2006-11-23 Micron Technology, Inc. ATOMIC LAYER DEPOSITION OF Zr3N4/ZrO2 FILMS AS GATE DIELECTRICS
US20060189154A1 (en) * 2005-02-23 2006-08-24 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US7960803B2 (en) 2005-02-23 2011-06-14 Micron Technology, Inc. Electronic device having a hafnium nitride and hafnium oxide film
US8076249B2 (en) 2005-03-29 2011-12-13 Micron Technology, Inc. Structures containing titanium silicon oxide
US8399365B2 (en) 2005-03-29 2013-03-19 Micron Technology, Inc. Methods of forming titanium silicon oxide
US7687409B2 (en) 2005-03-29 2010-03-30 Micron Technology, Inc. Atomic layer deposited titanium silicon oxide films
US20060244100A1 (en) * 2005-04-28 2006-11-02 Micron Technology, Inc. Atomic layer deposited zirconium silicon oxide films
US20080220618A1 (en) * 2005-04-28 2008-09-11 Micron Technology, Inc. Zirconium silicon oxide films
US7662729B2 (en) 2005-04-28 2010-02-16 Micron Technology, Inc. Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US8084808B2 (en) 2005-04-28 2011-12-27 Micron Technology, Inc. Zirconium silicon oxide films
US20080217676A1 (en) * 2005-04-28 2008-09-11 Micron Technology, Inc. Zirconium silicon oxide films
US20060270147A1 (en) * 2005-05-27 2006-11-30 Micron Technology, Inc. Hafnium titanium oxide films
US7700989B2 (en) 2005-05-27 2010-04-20 Micron Technology, Inc. Hafnium titanium oxide films
US20070090439A1 (en) * 2005-05-27 2007-04-26 Micron Technology, Inc. Hafnium titanium oxide films
US20060281330A1 (en) * 2005-06-14 2006-12-14 Micron Technology, Inc. Iridium / zirconium oxide structure
US8921914B2 (en) 2005-07-20 2014-12-30 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8288818B2 (en) 2005-07-20 2012-10-16 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US8501563B2 (en) 2005-07-20 2013-08-06 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US9496355B2 (en) 2005-08-04 2016-11-15 Micron Technology, Inc. Conductive nanoparticles
US20090302371A1 (en) * 2005-08-04 2009-12-10 Micron Technology, Inc. Conductive nanoparticles
US8314456B2 (en) 2005-08-04 2012-11-20 Micron Technology, Inc. Apparatus including rhodium-based charge traps
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US20090173991A1 (en) * 2005-08-04 2009-07-09 Marsh Eugene P Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US20070092989A1 (en) * 2005-08-04 2007-04-26 Micron Technology, Inc. Conductive nanoparticles
US8497542B2 (en) 2005-08-29 2013-07-30 Micron Technology, Inc. ZrXHfYSn1-X-YO2 films as high K gate dielectrics
US20080224240A1 (en) * 2005-08-29 2008-09-18 Micron Technology, Inc. ATOMIC LAYER DEPOSITION OF Zrx Hfy Sn1-x-y O2 FILMS AS HIGH k GATE DIELECTRICS
US20070049023A1 (en) * 2005-08-29 2007-03-01 Micron Technology, Inc. Zirconium-doped gadolinium oxide films
US20110121378A1 (en) * 2005-08-29 2011-05-26 Ahn Kie Y ZrXHfYSn1-X-YO2 FILMS AS HIGH K GATE DIELECTRICS
US7393736B2 (en) 2005-08-29 2008-07-01 Micron Technology, Inc. Atomic layer deposition of Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US7875912B2 (en) 2005-08-29 2011-01-25 Micron Technology, Inc. Zrx Hfy Sn1-x-y O2 films as high k gate dielectrics
US20070048953A1 (en) * 2005-08-30 2007-03-01 Micron Technology, Inc. Graded dielectric layers
US8603907B2 (en) 2005-08-30 2013-12-10 Micron Technology, Inc. Apparatus having a dielectric containing scandium and gadolinium
US7544596B2 (en) 2005-08-30 2009-06-09 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
US20090152620A1 (en) * 2005-08-30 2009-06-18 Micron Technology, Inc. ATOMIC LAYER DEPOSITION OF GdScO3 FILMS AS GATE DIELECTRICS
US8933449B2 (en) 2005-08-30 2015-01-13 Micron Technology, Inc. Apparatus having a dielectric containing scandium and gadolinium
US8110469B2 (en) 2005-08-30 2012-02-07 Micron Technology, Inc. Graded dielectric layers
US8951903B2 (en) 2005-08-30 2015-02-10 Micron Technology, Inc. Graded dielectric structures
US8003985B2 (en) 2005-08-30 2011-08-23 Micron Technology, Inc. Apparatus having a dielectric containing scandium and gadolinium
US9627501B2 (en) 2005-08-30 2017-04-18 Micron Technology, Inc. Graded dielectric structures
US20070090440A1 (en) * 2005-08-31 2007-04-26 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
US20070048926A1 (en) * 2005-08-31 2007-03-01 Micron Technology, Inc. Lanthanum aluminum oxynitride dielectric films
US20070049054A1 (en) * 2005-08-31 2007-03-01 Micron Technology, Inc. Cobalt titanium oxide dielectric films
US8895442B2 (en) 2005-08-31 2014-11-25 Micron Technology, Inc. Cobalt titanium oxide dielectric films
US8071476B2 (en) 2005-08-31 2011-12-06 Micron Technology, Inc. Cobalt titanium oxide dielectric films
US8455959B2 (en) 2005-08-31 2013-06-04 Micron Technology, Inc. Apparatus containing cobalt titanium oxide
US9583334B2 (en) 2006-01-10 2017-02-28 Micron Technology, Inc. Gallium lanthanide oxide films
US9129961B2 (en) 2006-01-10 2015-09-08 Micron Technology, Inc. Gallium lathanide oxide films
US20070158765A1 (en) * 2006-01-10 2007-07-12 Micron Technology, Inc. Gallium lanthanide oxide films
US7972974B2 (en) 2006-01-10 2011-07-05 Micron Technology, Inc. Gallium lanthanide oxide films
US7709402B2 (en) 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US8067794B2 (en) 2006-02-16 2011-11-29 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US8785312B2 (en) 2006-02-16 2014-07-22 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride
US8628615B2 (en) 2006-04-07 2014-01-14 Micron Technology, Inc. Titanium-doped indium oxide films
US20070234949A1 (en) * 2006-04-07 2007-10-11 Micron Technology, Inc. Atomic layer deposited titanium-doped indium oxide films
US8273177B2 (en) 2006-04-07 2012-09-25 Micron Technology, Inc. Titanium-doped indium oxide films
US20090021990A1 (en) * 2006-05-15 2009-01-22 Freescale Semiconductor, Inc. Memory with level shifting word line driver and method thereof
US20070263474A1 (en) * 2006-05-15 2007-11-15 Freescale Semiconductor, Inc. Memory with level shifting word line driver and method thereof
US7706207B2 (en) 2006-05-15 2010-04-27 Freescale Semiconductor, Inc. Memory with level shifting word line driver and method thereof
WO2007133849A3 (en) * 2006-05-15 2008-04-10 Freescale Semiconductor Inc Memory with level shifting word line driver and method thereof
US7440354B2 (en) 2006-05-15 2008-10-21 Freescale Semiconductor, Inc. Memory with level shifting word line driver and method thereof
WO2007133849A2 (en) * 2006-05-15 2007-11-22 Freescale Semiconductor Inc. Memory with level shifting word line driver and method thereof
US9502256B2 (en) 2006-08-03 2016-11-22 Micron Technology, Inc. ZrAION films
US9236245B2 (en) 2006-08-03 2016-01-12 Micron Technology, Inc. ZrA1ON films
US8993455B2 (en) 2006-08-03 2015-03-31 Micron Technology, Inc. ZrAlON films
US7727908B2 (en) 2006-08-03 2010-06-01 Micron Technology, Inc. Deposition of ZrA1ON films
US20100237403A1 (en) * 2006-08-03 2010-09-23 Ahn Kie Y ZrAlON FILMS
US20080048225A1 (en) * 2006-08-25 2008-02-28 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US20090315089A1 (en) * 2006-08-25 2009-12-24 Ahn Kie Y Atomic layer deposited barium strontium titanium oxide films
US8581352B2 (en) 2006-08-25 2013-11-12 Micron Technology, Inc. Electronic devices including barium strontium titanium oxide films
US9202686B2 (en) 2006-08-25 2015-12-01 Micron Technology, Inc. Electronic devices including barium strontium titanium oxide films
US7776765B2 (en) 2006-08-31 2010-08-17 Micron Technology, Inc. Tantalum silicon oxynitride high-k dielectrics and metal gates
US8557672B2 (en) 2006-08-31 2013-10-15 Micron Technology, Inc. Dielectrics containing at least one of a refractory metal or a non-refractory metal
US8168502B2 (en) 2006-08-31 2012-05-01 Micron Technology, Inc. Tantalum silicon oxynitride high-K dielectrics and metal gates
US7759747B2 (en) 2006-08-31 2010-07-20 Micron Technology, Inc. Tantalum aluminum oxynitride high-κ dielectric
US8519466B2 (en) 2006-08-31 2013-08-27 Micron Technology, Inc. Tantalum silicon oxynitride high-K dielectrics and metal gates
US7902582B2 (en) 2006-08-31 2011-03-08 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US20080124908A1 (en) * 2006-08-31 2008-05-29 Micron Technology, Inc. Hafnium tantalum oxynitride high-k dielectric and metal gates
US8759170B2 (en) 2006-08-31 2014-06-24 Micron Technology, Inc. Hafnium tantalum oxynitride dielectric
US20100283537A1 (en) * 2006-08-31 2010-11-11 Leonard Forbes Tantalum aluminum oxynitride high-k dielectric
US8772851B2 (en) 2006-08-31 2014-07-08 Micron Technology, Inc. Dielectrics containing at least one of a refractory metal or a non-refractory metal
US8466016B2 (en) 2006-08-31 2013-06-18 Micron Technolgy, Inc. Hafnium tantalum oxynitride dielectric
US8114763B2 (en) 2006-08-31 2012-02-14 Micron Technology, Inc. Tantalum aluminum oxynitride high-K dielectric
US20080087945A1 (en) * 2006-08-31 2008-04-17 Micron Technology, Inc. Silicon lanthanide oxynitride films
US20100301428A1 (en) * 2006-08-31 2010-12-02 Leonard Forbes Tantalum silicon oxynitride high-k dielectrics and metal gates
US20090236650A1 (en) * 2006-08-31 2009-09-24 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US8951880B2 (en) 2006-08-31 2015-02-10 Micron Technology, Inc. Dielectrics containing at least one of a refractory metal or a non-refractory metal
US20080057659A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Hafnium aluminium oxynitride high-K dielectric and metal gates
US8084370B2 (en) 2006-08-31 2011-12-27 Micron Technology, Inc. Hafnium tantalum oxynitride dielectric
US20080054330A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Tantalum lanthanide oxynitride films
US7989362B2 (en) 2006-08-31 2011-08-02 Micron Technology, Inc. Hafnium lanthanide oxynitride films
US7662693B2 (en) 2007-09-26 2010-02-16 Micron Technology, Inc. Lanthanide dielectric with controlled interfaces
US7956426B2 (en) 2007-09-26 2011-06-07 Micron Technology, Inc. Lanthanide dielectric with controlled interfaces
US8153497B2 (en) 2007-09-26 2012-04-10 Micron Technology, Inc. Lanthanide dielectric with controlled interfaces
US8399332B2 (en) 2007-09-26 2013-03-19 Micron Technology, Inc. Lanthanide dielectric with controlled interfaces
US20090079015A1 (en) * 2007-09-26 2009-03-26 Micron Technology, Inc. Lanthanide dielectric with controlled interfaces

Also Published As

Publication number Publication date Type
US20030228747A1 (en) 2003-12-11 application
US20070111544A1 (en) 2007-05-17 application
US8093638B2 (en) 2012-01-10 grant
US7205218B2 (en) 2007-04-17 grant

Similar Documents

Publication Publication Date Title
US7211492B2 (en) Self aligned metal gates on high-k dielectrics
US6586792B2 (en) Structures, methods, and systems for ferroelectric memory transistors
US5498890A (en) Semiconductor device having a multi-layered dielectric structure and manufacturing method thereof
US6020024A (en) Method for forming high dielectric constant metal oxides
US6784101B1 (en) Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation
US6787413B2 (en) Capacitor structure forming methods
US6421269B1 (en) Low-leakage MOS planar capacitors for use within DRAM storage cells
US6906398B2 (en) Semiconductor chip with gate dielectrics for high-performance and low-leakage applications
US7378702B2 (en) Vertical memory device structures
US6207589B1 (en) Method of forming a doped metal oxide dielectric film
US6950340B2 (en) Asymmetric band-gap engineered nonvolatile memory device
US7187587B2 (en) Programmable memory address and decode circuits with low tunnel barrier interpoly insulators
US20040156233A1 (en) TFT-based random access memory cells comprising thyristors
US20070049054A1 (en) Cobalt titanium oxide dielectric films
US20040048491A1 (en) Post thermal treatment methods of forming high dielectric layers in integrated circuit devices
US7312494B2 (en) Lanthanide oxide / hafnium oxide dielectric layers
US20090057787A1 (en) Semiconductor device
US20050280067A1 (en) Atomic layer deposited zirconium titanium oxide films
US20110204450A1 (en) Semiconductor device and manufacturing method thereof
US6249460B1 (en) Dynamic flash memory cells with ultrathin tunnel oxides
US6768156B1 (en) Non-volatile random access memory cells associated with thin film constructions
US20060281330A1 (en) Iridium / zirconium oxide structure
US20060028867A1 (en) Non-planar flash memory having shielding between floating gates
US6420742B1 (en) Ferroelectric memory transistor with high-k gate insulator and method of fabrication
US7560395B2 (en) Atomic layer deposited hafnium tantalum oxide dielectrics