US20050019714A1 - Plasma catalytic fuel injector for enhanced combustion - Google Patents

Plasma catalytic fuel injector for enhanced combustion Download PDF

Info

Publication number
US20050019714A1
US20050019714A1 US10/626,017 US62601703A US2005019714A1 US 20050019714 A1 US20050019714 A1 US 20050019714A1 US 62601703 A US62601703 A US 62601703A US 2005019714 A1 US2005019714 A1 US 2005019714A1
Authority
US
United States
Prior art keywords
fuel
fuel gas
air
electrical power
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/626,017
Other languages
English (en)
Inventor
David Platts
Don Coates
Louis Rosocha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Priority to US10/626,017 priority Critical patent/US20050019714A1/en
Assigned to REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE reassignment REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROSOCHA, LOUIS A., COATES, DON M., PLATTS, DAVID
Assigned to ENERGY, U.S. DEPARTMENT OF reassignment ENERGY, U.S. DEPARTMENT OF CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE
Priority to PCT/US2004/022664 priority patent/WO2005017410A1/fr
Publication of US20050019714A1 publication Critical patent/US20050019714A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/08Preparation of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/007Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99005Combustion techniques using plasma gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2300/00Pretreatment and supply of liquid fuel
    • F23K2300/10Pretreatment
    • F23K2300/101Application of magnetism or electricity

Definitions

  • the present invention generally relates to combustion processes, and, more specifically, to processes that enhance the efficiency of combustion processes.
  • This invention was made with Government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy. The Government has certain rights in the invention.
  • Combustion processes are involved in many aspects of modern life, and are, in large part, responsible for our current standard of living. Combustion provides the propulsion of our automobiles and airplanes, generates virtually all our electrical power, heats most of our homes and buildings, and provides much of our hot water. In this age of increasing energy costs, it is vitally important to assure that these combustion processes are carried out in the most efficient way possible, and to assure that fuel is conserved and that pollution is reduced.
  • the overall combustion reaction rate usually is determined by the efficiency of generation of the new reactive species in the spreading flame front. As the reaction rate and temperature of the combustion process are increased, a related increase in detonations and pressure will occur.
  • thermodynamic considerations namely, the higher the temperature, the more thorough and efficient the combustion process becomes,.and the greater the energy that can be extracted -and the higher the Carnot efficiency. This is the reason behind the thrust of engine makers, either of internal combustion engines or jet engines, to seek ever-higher temperature combustion processes.
  • this increase in temperature places increasing demands on material scientists to provide materials that can withstand such high temperatures.
  • apparatus for enhancing combustion comprises an enclosure defining an opening for introduction of a gas and openings for the introduction of air, with a nozzle in the opening for introduction of a fuel gas into the enclosure.
  • First and second electrodes are located in the enclosure, the first and second electrodes being coated with dielectric material and being connected to an electrical power supply.
  • an atmospheric pressure plasma created by a dielectric barrier discharge is produced in the enclosure that cracks the fuel gas prior to its mixing with air introduced through the openings for the introduction of air.
  • a method of increasing the efficiency of combustion processes comprises the steps of producing an atmospheric pressure plasma created by dielectric barrier discharge; and spraying a fuel gas into the atmospheric pressure plasma; wherein the atmospheric pressure plasma cracks the fuel gas.
  • apparatus for enhancing combustion comprises separate supplies of fuel and air, with valve means for controlling the flow of fuel and air.
  • Plasma processing means receive the fuel and air for selectively pre-cracking the fuel and exciting the air and outputting the pre-cracked fuel and excited air to a combustor.
  • FIG. 1 is an illustration of an embodiment of the present invention in which an atmospheric pressure plasma is used to crack the fuel.
  • FIG. 2 is an illustration of an embodiment of the present invention in which a combination of a plasma and heated electrodes are used to crack the fuel.
  • FIG. 3 is an illustration of an embodiment of the present invention in which valves and individual plasma units are used to show some of the various ways that a plasma treatment could be applied to the combustion process.
  • the present invention converts liquid or gaseous fuels into reactive species on a continuous basis, so that the combustion process does not rely solely on the self-generation of reactive species.
  • the understanding of the invention can be aided through reference to the drawings.
  • FIG. 1 a schematical illustration of one embodiment of the invention is shown where fuel gas 11 is introduced into volume 12 through fuel nozzle 11 a.
  • fuel gas 11 is initially in liquid form, such as all hydrocarbon fuels, oxygenated hydrocarbon fuels and other functionalized fuels, fuel oils, diesel fuels, kerosene fuels including usual jet fuels such as Jet A, Jet B, JP-10, crude oil, and kerosene, it is atomized in the manner of conventional fuel injectors before being introduced into volume 12 .
  • the fuel gas 11 is a gas, such as propane, natural gas, butane, propene, pure methane, ethylene, ethane and related fuels, it is passed directly through nozzle 11 a to meter the flow.
  • the present invention can use essentially any liquid or gas that burns as fuel gas 11 .
  • the present invention can accommodate both liquid and gaseous fuels it useful in virtually all present combustion processes. In some circumstances, it will be beneficial to heat fuel gas 11 before it is passed through nozzle 11 a to achieve an even higher level of enhancement.
  • Electrical power unit 13 produces a voltage at electrodes 13 a and 13 b inside volume 12 .
  • Each of electrodes 13 a 13 b is coated with dielectric material 13 c.
  • the voltage at electrodes 13 a, 13 b produces an atmospheric pressure plasma created by dielectric barrier discharge in volume 12 that cracks fuel gas 11 into reactive species 14 .
  • Reactive species 14 now a highly reactive cracked fuel, is exhausted through volume 12 until it is mixed with air 15 incoming through ports 12 a and combusts into flame front 16 . Further ignition may not be needed as reactive species 14 are predisposed to immediate reaction with oxygen.
  • this embodiment of the invention can serve as an ignition initiator device.
  • electrodes 13 a, 13 b could be coated with a dielectric material that has a catalytic material deposited at predetermined non-contiguous areas.
  • Electrical power unit 13 can supply a range of voltages to electrodes 13 a, 13 b.
  • electrical power supply 13 provides a radio frequency voltage having a frequency of 13.56 MHz.
  • Other possible outputs of electrical power supply 13 include pulsed direct current, alternating currents from low frequencies to radio frequency and even microwave. Each will be capable of creating the atmospheric pressure plasma created by a dielectric barrier discharge.
  • Fuel gas 11 is cracked by passing through the atmospheric pressure plasma region in volume 12 in a process that can be adjusted to produce any desired level of molecular breakdown.
  • the cracking could be limited to just cleaving hydrogen as shown in the following reaction: CH 3 —CH 2 —CH 3 ⁇ CH 3 —CH 2 —CH 2 .+H.. 10
  • FIG. 2 Another embodiment of the invention is illustrated schematically in FIG. 2 .
  • electrical power unit 13 is connected to electrodes 21 a, 21 b, which may be fabricated from any metallic materials, and which are coated with a dielectric material having, in one embodiment, known transition elements, such as platinum, or alloys made of combinations of transition elements, deposited at predetermined non-contiguous areas.
  • a catalyst such as platinum or other transition element, could be suspended inside volume 12 .
  • Electrodes 21 a, 21 b also can be resistance heated by power sources 22 , 23 to add thermal deposition to the cracking reactions to further accelerate the cleavage reactions.
  • FIG. 3 Another embodiment of the invention that may provide improved pollutant emission performance and excellent control is illustrated in schematic form in FIG. 3 .
  • fuel supply 31 provides fuel as previously described to valves 32 , 33 , and 34 .
  • Air supply 36 provides air to valves 37 , 38 , and 39 . With valves 32 and 37 open, fuel and air can mix in T-connection 35 and be provided to combustor 40 if valve 41 is open. This would be for conventional combustion. Alternatively, if only valves 34 and 39 are open, fuel and air would separately be provided to combustor 40 .
  • valves 34 , 39 , and 41 would be closed and valves 32 , 37 , and 42 opened.
  • the mixed fuel and air flows through plasma unit 42 where fuel is cracked and air is excited, in a process previously described, before entering combustor 40 .
  • the fuel and air could separately pass through plasma units 44 and 45 respectively if valves 33 and 38 are open and all other valves closed. According to the desired effect, any or all of the valves may be partly open with some of the fuel, the air, or a mixture of both undergoes treatment by the plasma.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
US10/626,017 2003-07-24 2003-07-24 Plasma catalytic fuel injector for enhanced combustion Abandoned US20050019714A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/626,017 US20050019714A1 (en) 2003-07-24 2003-07-24 Plasma catalytic fuel injector for enhanced combustion
PCT/US2004/022664 WO2005017410A1 (fr) 2003-07-24 2004-07-14 Injecteur de carburant catalytique a plasma destine a une combustion amelioree

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/626,017 US20050019714A1 (en) 2003-07-24 2003-07-24 Plasma catalytic fuel injector for enhanced combustion

Publications (1)

Publication Number Publication Date
US20050019714A1 true US20050019714A1 (en) 2005-01-27

Family

ID=34080319

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/626,017 Abandoned US20050019714A1 (en) 2003-07-24 2003-07-24 Plasma catalytic fuel injector for enhanced combustion

Country Status (2)

Country Link
US (1) US20050019714A1 (fr)
WO (1) WO2005017410A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286492A1 (en) * 2005-06-17 2006-12-21 Perkinelmer, Inc. Boost devices and methods of using them
US20080107592A1 (en) * 2006-10-20 2008-05-08 Adams Charles T Methods and systems of producing fuel for an internal combustion engine using a plasma system in combination with a purification system
US20080131360A1 (en) * 2006-10-20 2008-06-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system at various pressures
US20080128267A1 (en) * 2006-10-20 2008-06-05 Charles Terrel Adams Methods and systems of producing fuel for an internal combustion engine using a plasma system at various pressures
US20080131744A1 (en) * 2006-10-20 2008-06-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a low-temperature plasma system
US20080138676A1 (en) * 2006-10-20 2008-06-12 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system in combination with a membrane separation system
US20080135807A1 (en) * 2006-10-20 2008-06-12 Charles Terrel Adams Methods and systems for producing fuel for an internal combustion engine using a low-temperature plasma system
US20080173270A1 (en) * 2005-09-01 2008-07-24 Perriquest Defense Research Enterprises Llc Fuel injection device including plasma-inducing electrode arrays
US20090035619A1 (en) * 2006-10-20 2009-02-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system in combination with an electrical swing adsorption separation system
WO2009031989A1 (fr) * 2007-09-04 2009-03-12 Privatne Pidpryemstvo 'radical Plus' Procédé d'intensification de la combustion d'un combustible gazeux
US20090114178A1 (en) * 2005-09-01 2009-05-07 Perriquest Defense Research Enterprises Llc Fuel injection device including plasma-inducing electrode arrays
US20090151322A1 (en) * 2007-12-18 2009-06-18 Perriquest Defense Research Enterprises Llc Plasma Assisted Combustion Device
US20090241775A1 (en) * 2008-03-25 2009-10-01 Environmental Energy Technologies, Inc. Non-thermal plasma particulate removal systems and methods thereof
KR101930077B1 (ko) * 2016-11-28 2018-12-17 한국기계연구원 플라즈마 이용 연료 분무 연소기 및 이를 이용한 가스 가열 장치
WO2019039623A1 (fr) 2017-08-22 2019-02-28 유한회사 더프라임솔루션 Système de réduction de matière particulaire dans un gaz d'échappement
WO2019151564A1 (fr) 2018-02-05 2019-08-08 유한회사 더프라임솔루션 Système de réduction de matière particulaire dans un gaz d'échappement
WO2020204243A1 (fr) 2019-03-29 2020-10-08 유한회사 더프라임솔루션 Appareil de réduction de matière particulaire de gaz d'échappement à base de plasma non thermique pour empêcher un phénomène d'arc électrique
US10920637B2 (en) 2012-11-05 2021-02-16 Paradigm Of Ny, Llc Calibrated non-thermal plasma systems for control of engine emissions
EP3627047A4 (fr) * 2018-05-15 2021-06-02 Obshchestvo S Ogranichennoy Otvetstvennostyu "Cotes Engineering" Dispositif et procédé pour brûler du combustible en torches
CN113365404A (zh) * 2021-04-23 2021-09-07 安徽理工大学 介质阻挡放电等离子体辅助煤炭燃烧发生装置
US11365669B2 (en) 2015-01-23 2022-06-21 Faurecia Emissions Control Technologies, Germany Gmbh Heat shield assembly for a vehicle exhaust system and exhaust system component of a motor vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025551A1 (de) 2007-05-31 2008-12-11 Siemens Ag Verfahren und Vorrichtung zur Verbrennung von kohlenwasserstoffhaltigen Brennstoffen
CN106132057A (zh) * 2016-06-28 2016-11-16 无锡锡能锅炉有限公司 一种生物质锅炉点火方法
EP3280230B1 (fr) 2016-08-05 2021-11-24 Efenco OÜ Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023351A (en) * 1974-04-30 1977-05-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Injecting and igniting device
US4525140A (en) * 1980-12-29 1985-06-25 Office National D'etudes Et De Recherches Aerospatiales Dit O.N.E.R.A. Ignition method and igniter device for igniting carburated gaseous mixtures
US5088917A (en) * 1989-05-19 1992-02-18 Electricite De France Gas electroburner with electric power supply and assisted ignition
US5359966A (en) * 1992-06-10 1994-11-01 Jensen Donald C Energy converter using imploding plasma vortex heating
US5695328A (en) * 1994-10-04 1997-12-09 Simmonds Precision Engine Systems & Precision Combustion Ignition apparatus using electrostatic nozzle and catalytic igniter
US5861600A (en) * 1996-08-21 1999-01-19 Jensen; Donald C. Fuel plasma vortex combustion system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1121762B (de) * 1960-04-14 1962-01-11 Alberto Wobig Brenner fuer gasfoermige oder fluessige Brennstoffe
WO2002076884A1 (fr) * 2001-03-21 2002-10-03 Accentus Plc Production d'hydrogene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4023351A (en) * 1974-04-30 1977-05-17 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Injecting and igniting device
US4525140A (en) * 1980-12-29 1985-06-25 Office National D'etudes Et De Recherches Aerospatiales Dit O.N.E.R.A. Ignition method and igniter device for igniting carburated gaseous mixtures
US5088917A (en) * 1989-05-19 1992-02-18 Electricite De France Gas electroburner with electric power supply and assisted ignition
US5359966A (en) * 1992-06-10 1994-11-01 Jensen Donald C Energy converter using imploding plasma vortex heating
US5695328A (en) * 1994-10-04 1997-12-09 Simmonds Precision Engine Systems & Precision Combustion Ignition apparatus using electrostatic nozzle and catalytic igniter
US5861600A (en) * 1996-08-21 1999-01-19 Jensen; Donald C. Fuel plasma vortex combustion system

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060286492A1 (en) * 2005-06-17 2006-12-21 Perkinelmer, Inc. Boost devices and methods of using them
US8622735B2 (en) * 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
US20080173270A1 (en) * 2005-09-01 2008-07-24 Perriquest Defense Research Enterprises Llc Fuel injection device including plasma-inducing electrode arrays
US20090114178A1 (en) * 2005-09-01 2009-05-07 Perriquest Defense Research Enterprises Llc Fuel injection device including plasma-inducing electrode arrays
US20090035619A1 (en) * 2006-10-20 2009-02-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system in combination with an electrical swing adsorption separation system
US20080138676A1 (en) * 2006-10-20 2008-06-12 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system in combination with a membrane separation system
US20080135807A1 (en) * 2006-10-20 2008-06-12 Charles Terrel Adams Methods and systems for producing fuel for an internal combustion engine using a low-temperature plasma system
US20080131744A1 (en) * 2006-10-20 2008-06-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a low-temperature plasma system
US7946258B2 (en) 2006-10-20 2011-05-24 Tetros Innovations, Llc Method and apparatus to produce enriched hydrogen with a plasma system for an internal combustion engine
US20080128267A1 (en) * 2006-10-20 2008-06-05 Charles Terrel Adams Methods and systems of producing fuel for an internal combustion engine using a plasma system at various pressures
US20080131360A1 (en) * 2006-10-20 2008-06-05 Charles Terrel Adams Methods and systems of producing molecular hydrogen using a plasma system at various pressures
US8220440B2 (en) 2006-10-20 2012-07-17 Tetros Innovations, Llc Methods and systems for producing fuel for an internal combustion engine using a low-temperature plasma system
EP2091864A2 (fr) * 2006-10-20 2009-08-26 Semgreen, L.P. Procédés et systèmes pour produire de l'hydrogène moléculaire en utilisant un système de plasma
US20080107592A1 (en) * 2006-10-20 2008-05-08 Adams Charles T Methods and systems of producing fuel for an internal combustion engine using a plasma system in combination with a purification system
US8211276B2 (en) 2006-10-20 2012-07-03 Tetros Innovations, Llc Methods and systems of producing fuel for an internal combustion engine using a plasma system at various pressures
WO2009031989A1 (fr) * 2007-09-04 2009-03-12 Privatne Pidpryemstvo 'radical Plus' Procédé d'intensification de la combustion d'un combustible gazeux
WO2009079420A3 (fr) * 2007-12-18 2009-09-17 Perriquest Defense Research Enterprises Llc Dispositif de combustion assistée par plasma
WO2009079420A2 (fr) * 2007-12-18 2009-06-25 Perriquest Defense Research Enterprises Llc Dispositif de combustion assistée par plasma
US20090151322A1 (en) * 2007-12-18 2009-06-18 Perriquest Defense Research Enterprises Llc Plasma Assisted Combustion Device
US20090241775A1 (en) * 2008-03-25 2009-10-01 Environmental Energy Technologies, Inc. Non-thermal plasma particulate removal systems and methods thereof
US8157902B2 (en) * 2008-03-25 2012-04-17 Environmental Energy Technologies, Inc. Non-thermal plasma particulate removal systems and methods thereof
US10920637B2 (en) 2012-11-05 2021-02-16 Paradigm Of Ny, Llc Calibrated non-thermal plasma systems for control of engine emissions
US11365669B2 (en) 2015-01-23 2022-06-21 Faurecia Emissions Control Technologies, Germany Gmbh Heat shield assembly for a vehicle exhaust system and exhaust system component of a motor vehicle
KR101930077B1 (ko) * 2016-11-28 2018-12-17 한국기계연구원 플라즈마 이용 연료 분무 연소기 및 이를 이용한 가스 가열 장치
US11078818B2 (en) 2017-08-22 2021-08-03 The Prime Solution L.L.C. System for reducing particulate matter in exhaust gas
WO2019039623A1 (fr) 2017-08-22 2019-02-28 유한회사 더프라임솔루션 Système de réduction de matière particulaire dans un gaz d'échappement
WO2019151564A1 (fr) 2018-02-05 2019-08-08 유한회사 더프라임솔루션 Système de réduction de matière particulaire dans un gaz d'échappement
EP3627047A4 (fr) * 2018-05-15 2021-06-02 Obshchestvo S Ogranichennoy Otvetstvennostyu "Cotes Engineering" Dispositif et procédé pour brûler du combustible en torches
WO2020204243A1 (fr) 2019-03-29 2020-10-08 유한회사 더프라임솔루션 Appareil de réduction de matière particulaire de gaz d'échappement à base de plasma non thermique pour empêcher un phénomène d'arc électrique
CN113365404A (zh) * 2021-04-23 2021-09-07 安徽理工大学 介质阻挡放电等离子体辅助煤炭燃烧发生装置

Also Published As

Publication number Publication date
WO2005017410A1 (fr) 2005-02-24

Similar Documents

Publication Publication Date Title
US20050019714A1 (en) Plasma catalytic fuel injector for enhanced combustion
EP2180177B1 (fr) Moteur à combustion interne et allumage par compression, bougie à incandescence et injecteurs
US8601819B2 (en) Method and device for the combustion of hydrocarbon-containing fuels
US20090151322A1 (en) Plasma Assisted Combustion Device
Pilla et al. Stabilization of a turbulent premixed flame using a nanosecond repetitively pulsed plasma
Wang et al. Transient plasma ignition of quiescent and flowing air/fuel mixtures
CN113074046B (zh) 一种基于多个等离子体装置点火与助燃的喷气式氨发动机
RU2333381C2 (ru) Способ инициирования воспламенения, интенсификации горения или реформинга топливовоздушных и топливокислородных смесей
JP2004510087A (ja) 燃焼強化システムおよび燃焼強化方法
JP2003514166A (ja) 低電力小型プラズマ燃料変換器
CN112483243A (zh) 一种基于等离子体在线裂解、点火与助燃的氨发动机
WO2019040432A1 (fr) Préchambres améliorées d'alcool et de plasma pour moteurs à essence à émissions réduites et efficacité supérieure
US20080173270A1 (en) Fuel injection device including plasma-inducing electrode arrays
US20090114178A1 (en) Fuel injection device including plasma-inducing electrode arrays
CN113661317B (zh) 燃料重整装置和燃料重整方法
Ikeda et al. Microwave enhanced ignition process for fuel mixture at elevated pressure of 1MPa
US20190186438A1 (en) Electromagnetic Wave Modification of Fuel in a Power-generation Turbine
US10677456B2 (en) Waveguide antenna for microwave enhanced combustion
US20190186746A1 (en) Jet engine with plasma-assisted afterburner having Ring of Resonators and Resonator with Fuel Conduit
US20190186437A1 (en) Electromagnetic Wave Modification of Fuel in a Jet Engine
US10487784B2 (en) Device and method for improving combustion
Liu et al. Transient plasma ignition for lean burn applications
CN113669183B (zh) 一种高效的低碳无碳灵活燃料燃烧系统
Wang et al. Numerical study and experimental validation of minimum ignition energy for microwave spark ignition
Wall Effect of hydrogen enriched hydrocarbon combustion on emissions and performance

Legal Events

Date Code Title Description
AS Assignment

Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, NEW

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PLATTS, DAVID;COATES, DON M.;ROSOCHA, LOUIS A.;REEL/FRAME:014343/0505;SIGNING DATES FROM 20030722 TO 20030723

AS Assignment

Owner name: ENERGY, U.S. DEPARTMENT OF, DISTRICT OF COLUMBIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE;REEL/FRAME:014680/0431

Effective date: 20040507

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION