EP3280230B1 - Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci - Google Patents

Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci Download PDF

Info

Publication number
EP3280230B1
EP3280230B1 EP16182997.3A EP16182997A EP3280230B1 EP 3280230 B1 EP3280230 B1 EP 3280230B1 EP 16182997 A EP16182997 A EP 16182997A EP 3280230 B1 EP3280230 B1 EP 3280230B1
Authority
EP
European Patent Office
Prior art keywords
particle beam
cell
heat
plasma
heat carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16182997.3A
Other languages
German (de)
English (en)
Other versions
EP3280230A1 (fr
Inventor
Aleksander Nagornõi
Aleksandr Vlasov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Efenco Oue
Original Assignee
Efenco Oue
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Efenco Oue filed Critical Efenco Oue
Priority to EP16182997.3A priority Critical patent/EP3280230B1/fr
Priority to PCT/EP2017/069605 priority patent/WO2018024808A1/fr
Publication of EP3280230A1 publication Critical patent/EP3280230A1/fr
Application granted granted Critical
Publication of EP3280230B1 publication Critical patent/EP3280230B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases

Definitions

  • Present invention relates to power engineering and it includes a method and device for creating and heating up a plasma and a conversion of energy.
  • the disadvantages of the prior art are mainly related to a fact that plasma generation devices are mainly electromechanical devices comprising at least two parts.
  • the first part is a plasma generating apparatus which is built into the combustion chamber and/or reactor of neutralization of toxic combustion products
  • the second part is an external power source for plasma generation device. Examples of systems for disposal of toxic or hazardous waste can be found in US 4,644,877 A and US 8,512,644 B1 .
  • Drawbacks are related to a need to use specialized electromechanical interfaces between the plasma generator, the power source, monitoring and control systems, and the reactor, where the plasma is generated.
  • Representative samples of the prior art are known from the following documents: US2014130980 - “Plasma generation apparatus and plasma generation method”; US2006008043 - “Electromagnetic radiation-initiated plasma reactor, DE10326424 "Thermodynamic energy conversion facility employs microprocessor for the targeted influence of heat transmission", and WO2005017410 - "Plasma catalytic fuel injector for enhanced combustion”.
  • the aim of the invention is to create so called synchrotron radiation beam with the suitable parameters and which is powerful enough and with suitable spectral composition which will be used as a finely configurable tool for selective ionization of products of combustion, i.e. hot combustion gases that form a heat carrier.
  • the synchrotron radiation provides a beam of photons over a wide spectral range - from visible light to hard X-ray.
  • a monochromator is used comprising diffraction gratings and multilayer reflectors.
  • the flame is a very complicated phenomenon between the start of combustion of organics to convert it into end-products (in the ideal case - the water and carbon dioxide) that involves thousands of different chemical reactions.
  • end-products in the ideal case - the water and carbon dioxide
  • For a proper formation of the most efficient and environmentally friendly combustion process is required a thorough study of the intermediate reaction steps.
  • synchrotron radiation differs essentially from the electron beam: it can be used for targeted rupture of well-defined chemical bonds within molecules which enable not only to identify chemicals that are formed during combustion, but even to distinguish isomers of the same composition.
  • the method and in particular the device according to present invention integrates several physical effects, the main ones are: pyroelectric effect of polar dielectrics, field emission and scattering of electrons, the ionization with a beam of electrons and photons, and the spontaneous emergence of a positive feedback between related processes.
  • the device according to invention performs a direct conversion of the thermal energy of the heat carrier into a beam of charged and neutral particles (CPB&NPB) without any electromechanical and/or moving parts, and does not use any additional (external) energy sources. Also the geometric dimension of such a device are compact enabling device to be readily integrated with the reactor/burning chamber.
  • present invention provides a method for producing a plasma in a heat carrier (i.e. hot combustion gases of fuel and oxidant mixture) for stabilization of combustion and neutralization of toxic products, where said method comprising:
  • said particle beam is a beam of charged and/or neutral particles (CPB&NPB).
  • said particle beam comprising mainly electrons and photons.
  • Present invention also provides a device for performing the method described above.
  • present invention provides a device for producing a plasma in a heat carrier for stabilization of combustion and neutralization of toxic products, where said device is embodied as an ultra-large-scale-integrated (ULSIC) device based on cells of multilayer compositions of different linear and nonlinear dielectrics, metals and semimetals on the metal-ceramic surface of the protective sealed hou-sing arranged in connection with the burning chamber.
  • ULSIC ultra-large-scale-integrated
  • said particle beam is set to be accelerated, polarized, focused and deflected back to the area of the heat carrier.
  • a highly excited non-equilibrium plasma is set to be generated and heated up for the following initiation of the branching-chain-type plasma-chemical reaction, where in the excited state the plasma retention time is a sum of the single pulse duration of the particle beam and plasma relaxation time up to the beginning of forming of a hot gas to its initial state, where during that time the form of change of the plasma parameters in general follows the pulse shape of the particle beam intensity.
  • Part of the heat energy of the heat carrier is set to be continuously converted into a particle beam to generate and heat up plasma so that heat energy conversion process into particle beam becomes self-sustaining oscillatory process with the positive feedback, where the housing of the device comprising:
  • said window of output particle beam is comprising at least a cell of filtering and collimation of particle beam, said cell comprising in turn at least one set of multi-layered metal films, comprising collimation layer of thick film and/or foil containing micro-holes (perforation).
  • said heat conducting surface comprising at least a cell of thermal inertia which in turn comprises at least one set of multi-layered metal-ceramic structure.
  • said cell is in thermal contact with at least one cell for modulating input heat flux, where said cell in turn comprising multi-layered metal-ceramic structure comprising a set of ferroelectrics with electrocaloric effect and ferroelectric thin films based on a substrate of a pyroelectric.
  • said device comprises at least a cell for converting heat energy into the particle beam, where said cell having a vertically-pillar or planar or mixed internal structure.
  • said cell comprises at least one cell of heat flux modulation.
  • said cell includes at least one multilayer stack of pyroelectrics, emission targets, pre-accelerator and polarizer of particles, multilayer reflectors, conductors and dielectrics.
  • said device includes at least one pyroelectric stack comprising array of single or different materials having different phase transition temperatures for broadening range of operating temperatures and having different surface shapes and with different surface coating materials.
  • pre-accelerator and polarizer of particles comprise at least one array of stacks of pyroelectric materials and having different surface shapes and with different surface coating materials.
  • said multi-layered reflectors are in the form of surface coatings and/or dielectric substrates of structural elements.
  • said device comprises at least one cell for accelerating, polarising and focusing of the particle beam in a tangential electrostatic field said cell consisting of an array of pyroelectric stacks.
  • said device comprises at least one cell for accelerating, polarising, focusing and deflecting of the particle beam in tangential electrostatic and magnetic fields, said cell consisting of composite array of pyroelectric stacks and magneto-electric/multiferroic materials.
  • Most preferably said device has scalable single design for different of output radiant power and operating temperatures.
  • Figure 1 depicts a pyroelectric effect scheme involving spontaneous polarization due to the temperature gradient.
  • the pyroelectric coefficient ⁇ reaches a maximum value near the point (the Curie temperature T C ) where second order phase change occurs.
  • may exceed 10 9 V ⁇ cm -1 depending on the chemical composition and the crystal lattice structure, scale factor, the volume and surface shape of a pyroelectric material and thermal conditions (temperature).
  • Figure 2 depicts a the dynamic response diagram of pyroelectric material a response to a temperature changes.
  • the electrical field strength ( E ⁇ 10 7 10 8 V ⁇ cm -1 ) which relates to a temperature change of a pyroelectric material, causes field emission of electrons (the Schottky effect) with energies of the order of 10 -1 ⁇ 10 3 keV and above depending on the Z target (atomic number) and the emission current j ⁇ E 2 (j ⁇ 10 8 A ⁇ cm - 1) or E 3 / 2 (j > 10 8 A ⁇ cm - 1).
  • Electrons are emitted from the inner shells of atoms, forming shell vacancies that are unstable excited state of the atom. Transition of atoms into a stable state is accompanied by the transition of electrons from the outer shells into the inner shells accompanied with the emission of characteristic X-radiation, where the energy of said radiation is equal to the difference between energies of said shells. Photons of X-ray bremsstrahlung are produced in the process of scattering of electrons in an electric field of atomic nuclei.
  • Figure 3 depicts the dynamic response diagram of pyroelectric, showing flow of electrons and photons as response to a temperature change.
  • the plasma is created by the ionization of the following channels: electron-impact ionization by the beam of electrons, photoresonance and multiphoton ionization.
  • FIG. 4 is a diagram of a thermal positive feedback between the pyroelectric and the plasma created by it through the energy exchange process.
  • Figure 4 depicts the thermodynamic cycle of a pyroelectric unit.
  • the cycle is formed by the influence of the pulse of thermal flux ⁇ T *, where t T * is pulse duration, wherein the front and trailing edges of the pulse correspond to the heating and cooling.
  • delay t 1 n ⁇ sec (time transients in a pyroelectric unit for charge storage and achieve an electric potential required for field emission)
  • t E ⁇ t T * is pulse duration, that creates and heats up a plasma.
  • the particle flux pulse characteristics shape, duration, period, and duty cycle
  • a time of ionizing event t 2 and plasma relaxation lasts a few ⁇ sec in contrast to particle flux pulse duration t E a few sec.
  • the part of heat flux radiated by a plasma falls on the surface area S of a pyroelectric: ⁇ T * ⁇ ⁇ T ⁇ S/4 ⁇ R 2 , where R is distance to surface S, and the cycle repeats.
  • the device is embodied as an ultra-large-scale integrated (ULSIC) device based on cells of multilayer compositions of different linear and nonlinear dielectrics, metals and semimetals on the metal-ceramic surface of the protective sealed housing arranged in connection with the burning chamber, said housing comprising at least one output window for the particle beam in connection with the burning chamber, at least one heat conducting surface for heat exchange with at least one heat carrier.
  • ULSIC ultra-large-scale integrated
  • FIG. 5 depicts a block diagram of one of the possible architectural embodiment of the ULSIC-device.
  • the device is a highly integrated device comprising at least one or several stacks layers (CPB&NPB stack 601), where each stack comprises at least one functional cell or several functional cells of different functionality: protective sealed housing with interfaces 600; a cell for converting heat energy of heat carrier into the particle beam (CPB&NPB cell 602); a cell for accelerating, polarising and focusing of the particle beam (AFPB cell 603); a cell for deflecting of the particle beam (DPB cell 604); a set of different Bragg's reflectors 605; a bandpass filter and collimator array 606; a cell for temperature modulation (TM cell 606); and optionally with input bandpass filter and thermal inertia unit 607, a logical unit 608, the thermoelectric module 609 based on the Seebeck or Peltier effect and heatsink 610.
  • CPB&NPB stack 601 stacks layers
  • the architectural embodiment of the device can either be predefined (a set of similar plasma generator ULSIC-devices according to present invention described herein) or customized according to the following criteria: a working environment (corrosiveness of environment, vacuum, normal or elevated pressure); chemical composition of the fuel and oxidant, for example, hydrogen and oxygen, methane and air, etc.; a specific (precise) operating temperature range; power and frequency band (wavelength) of radiation, for example, to focus on the selective ionization of single-type molecules, atoms, or excitation of nuclear oscillations or inner-shell electrons; a specific form-factor (housing geometry and dimension); and etc.
  • a working environment corrosioniveness of environment, vacuum, normal or elevated pressure
  • chemical composition of the fuel and oxidant for example, hydrogen and oxygen, methane and air, etc.
  • a specific (precise) operating temperature range for example, to focus on the selective ionization of single-type molecules, atoms, or excitation of nuclear oscillations or inner
  • the key elements of the above cells is a pyroelectric stack (PE stack) volumetric 700 and/or layered film 701 structure of series-parallel connected pyroelectric materials, conductors and insulators 702, see Figure 6(a) .
  • the pillar design 703 is more preferred for stacked crystal bars (eg. an accelerator-polarizer and/or a deflector of particles) in contrast, multilayer structure 705 like a sandwich based on a substrate 706, is preferred for reflectors and/or a specific target-reflector.
  • the planar design 704, comprising of stacked bars between ceramic substrate-based ferroelectric/multiferroic thick films, is suitable to use the magnetoelectric and electrocaloric effects.
  • PE stack structure 700, 701 may include pyroelectrics with various physico-chemical parameters 702 and thus efficiently operate over a wide temperature range, for example, a hydrogen power cell needs a special ULSIC-device with operating temperature range of 900-1500K in contrast, toxin neutralization apparatus operates in the range of 500-900K.
  • one of the basic design limits of the stack is the melting temperature ( T M ) of any pyroelectric materials which must be greater than the temperature of second order phase transition temperature ( T C ) of any other pyroelectric in the stack and accordingly higher than the maximum operating temperature ( T OP ) of the PE stack (T OP ⁇ TC ⁇ T M ), see Figure 6(b) .
  • Second important aspect is that the maximum value of the pyroelectric coeffiecient max T C ⁇ ⁇ T ⁇ T ⁇ T C , is achieved in a relatively narrow range of temperature change ⁇ T ⁇ 707 , its enables the possibility to control the direction of polarization vector through temperature modulation in this temperature range and thus increase the efficiency of converting thermal energy into electrical energy.
  • K TE 2 dW E / dW T ⁇ ⁇ 2 T op / ⁇ 0 C V
  • WT and WE are respectively total heat energy and produced electric energy
  • ⁇ and ⁇ 0 are respectively the relative permittivity of a pyroelectric material and the vacuum permittivity and C vis the volumetric heat capacity of a pyroelectric.
  • one of the main criteria for design of the PE stack is to maximize the efficiency of thermoelectric conversion of an individual pyroelectric and a pyroelectric stack as a whole under the above temperature limits.
  • Simulation by dipoles 804 is used for calculating the electrical field strength
  • 2 ⁇ q / 4 ⁇ o ⁇ m ⁇ r2 at a certain point r 2 >>d 2 of a medium with the relative permittivity ⁇ m and its configuration, for example, the strength of quasiuniform electric field at midpoint r between two oppositely charged pyroelectrics 805 is
  • 4 ⁇ q / 4 ⁇ o ⁇ m ⁇ r2
  • coatings 906 on the interface of the PE stack enables additional opportunities to form parameters of the beam.
  • Single-layer 907 (a mesh 908) and/or multilayer thin metal films 909 act as combined target-reflector (eg, CPB&NPB cell).
  • Field emitter arrays like Spindt-type arrays, such as: micro- and nanometric cone 910, tube 911 and rods 912, reduce the emission potential and form coherent e-beam, see Figure 8(d) .
  • FIG. 9 depicts a schematically a selection of the PE stack design depending of its functional purpose 1000.
  • the PE stack 1001 is the key element that converts heat flux in symmetrical electrostatic field 1002.
  • the field 1002 of the stack 1001 by using materials with different physical phenomena and effects, is transformed into particle flux 1003, asymmetrical electrostatic field 1004, magnetic field 1005 and thermal field 1006 with gradient VT.
  • These generated fields have the practical properties, such as: acceleration 1007, focusing 1008, polarization 1009 and deflection 1010 of particles and thermo-modulation 1011, and are embodied in finite functional cells.
  • the cell 1012 operates like an e-beam microgun based on thermo pumping and the field emission, and its comprises: array of stacks 1001; emission targets; at least one preaccelerator and polarizer of particles; at least one multilayer reflector; at least one dielectric substrate.
  • the emission of electrons and photons from the target takes place under the influence of electrostatic field E of array of stacks 1001.
  • Evaluation of the emission current density can be represented by a simplified conventional Fowler-Nordheim equation: j ⁇ 1.54 ⁇ 10 ⁇ 6 ⁇ E ⁇ 2 ⁇ ⁇ exp ⁇ 6.83 ⁇ 10 7 ⁇ ⁇ 2 / 3 E ⁇ ⁇ ⁇ y where tabulated values are: ⁇ - electronic work function; ⁇ ( y ) - Nordheim function.
  • the spectrum of the bremsstrahlung photons is continuous, and it depends of the electric potential ⁇ and Z targets.
  • the characteristic of X-ray spectrum is a line spectrum with a high degree of monochromaticity (monochromaticity depends on Z targets).
  • the design of the cells 1012 provides the ability to use additional PE stack array as a preaccelerator of particles due to the tangential electrostatic field (eg, for e - ,
  • Polarization of the particle beam can occur by the electrostatic field and also by the magnetic field when on top and/or between parts of the PE stack 1100 is added of one or more layers of ferroelectric/multiferroic films 1101 for generation of the magnetic field based on the magnetoelectric effect, see Figure 10(a) .
  • the chart 1102 illustrates the magnetization M of layer 1101, where ⁇ flip angle, i.e. the angle to which the magnetization M is rotated relative to the main magnetic field direction by the application of field E .
  • the chart 1103 illustrates dependence of magnetization M against electric field E .
  • CPB&NPB cell can include a thin film multilayer reflector/reflectors 1200 made of n pairs 1201 of different dielectrics, metals and/or their composition, see Figure 12(a) .
  • the criterion for the choice of materials, design and spatial arrangement of reflector/reflectors is the fulfilment of the Wulff-Bragg's condition (Bragg's law), pre-designed wavelength ⁇ of incident beam 1202 at grazing angle ⁇ and reflected beam 1203 and the polar radiation pattern of the radiation.
  • the chart 1204 illustrates typical dependence of a reflectance of a matter against a wavelength of an incident beam.
  • a target-reflector 1205 may be disposed on the surface of the PE stack 1206 based on the substrate 1207, or it can be part of the substrate coating 1208 and/or PE stack 1209 (preaccelerator-reflector) and/or the substrate 1210 itself of the CPB&NPB cell, see Figure 11(b).
  • Embodiments of the CPB&NPB cell 1300 comprising of an array of PE stacks 1301, emission targets 1302, preaccelerator 1303 and reflectors 1304 is shown on Figure 12 .
  • Simple structure 1305 of the cell 1300 comprises substrate-based 1304 stack 1301 that is connected to wedge-type target 1302 with facet at a slope of 40-45 degrees relative to the stack.
  • More complex structure of the CPB&NPB cell 1308 is based on an array of four stacks 1307 and may include a target 1302, also at least one preaccelerator 1303 based on two stacks 1301.
  • the array 1307 is based on either a substrate with a strip-reflector 1309 or without it 1310.
  • AFPB cell for accelerating, polarizing and focusing of particle beam
  • DPB cell for beam deflection.
  • these cells are have little difference from each other and they form an array 1400 of N PE stacks 1401, and they are arranged around the beam axis 1402 so that both tangents to the beam path and the electric field vector are parallel to each other in the same coordinate points along the path of the beam through the cell, see Figure 13 .
  • axis is the projection of the velocity vector of particle beam on axes X, Y, Z, and therefore the control values of degree symmetry of E are depended on E i ( ⁇ ,x,y,z ), where ⁇ the surface charge, y the length of stack 1401, x and
  • thermoelectric conversion K TE ⁇ ⁇ / ⁇ ⁇ ⁇
  • T C phase transition point
  • the functional element of the inverse transform of the electric field in the temperature based on electrocaloric effect embodied in a temperature modulation cell (TM cell).
  • the chart 1104 in Figure 11(b) illustrates the dependence of temperature change ( ⁇ T ) of the ferroelectric against switched electric field E .
  • the chart 1105 shows the deployment of ferroelectric-hysteresis loop into heating-cooling process 1106 of flowing in time.
  • the chart 1107 depicts the nonlinear dependence of ⁇ / ⁇ ⁇ ⁇ against temperature near second-order transition point.
  • Simple structure of the CPB&NPB stack 1500 may comprise at least one CPB&NPB cell 1501, at least one AFPB cell 1502 and/or at least one DPB cell 1503.
  • the cell 1502 and/or cell 1503 may also part of the CPB&NPB multistage stack 1504 and to carry out an independent role, for example, to collect and focus the beams from several stacks 1500 in one beam 1505, see Figure 14 .
  • the total amount of CPB&NPB stacks in ULSIC plasma generator may vary from one to several units.
  • the plasma generating device has a predefined and/or a customized structure, in particular, it has a protective sealed housing.
  • Figure 15 depicts different embodiments of the housing, such as a rectangular 1600 and convex 6 and/or 8-gon 1601, and placement of CPB&NPB stacks 1605 in them, such as packed in dielectric square-cell honeycomb 1610 or placed on substrate 1612 a planar array 1611.
  • surface 1602 of the device is an interface in which there is a window 1603, through which particle beam is transmitted to exposure object.
  • the interface window 1603 is formed as a multilayer structure which may include a layer consisting of a collimation matrix 1604 for obtaining a quasi-parallel beam and limiting the spatial cross section of the particle beam.
  • the matrix is placed over the array of CPB&NPB stacks 1605.
  • ULSICs plasma generator may comprise optoelectronic devices 1606 and/or logical control unit 1607, in this case the source of electrical energy for their operation may be integrated with a thermoelectric converter device 1608 based on Seebeck and/or Peltier effect.
  • the heat transfer between the heat source and the device may be through a direct contact heat transfer and infrared radiation and convection.
  • the device For interaction of ULSIC plasma generator with a heat carrier, the device comprises the interface layers 1602 and 1609. These interfaces allow due to the contact surfaces to ensure good thermal contact between the device and the heat carrier.
  • the selection criteria of interface material are high thermal conductivity and compatibility with environmental conditions (eg, based on nickel-ferrous-Me alloy with protected coating either alumina or nitride ceramics, etc.).
  • Pulse delay time and latency and duty cycle are crucial parameters for the positive feedback between the device and the heat carrier, see Figure 4 .
  • FIG. 16 depicts embodiment of ULSIC-device in a part of hydrogen power cell 1700 for micro combined heat and power (micro-CHP) apparatus.
  • ULSIC-devices 1702 are installed inside the vacuum chamber 1701 and opposite the combustors 1703, which burn a hydrogen-oxygen mixture, where 1706 is flow direction.
  • IR radiation 1709 of hot gases of the torch 1705, including formed steam is transmitted to ULSIC-devices, which convert heat into CPB&NPB flux 1710 that is directed back to ionize the gases, and finally creates and heats up a plasma.
  • a leader shows a part axial-section of the device, consisting of a housing (eg.
  • alumina 1714 alumina 1714
  • CPB&NPB 1715 and TM 1713 cells a window 1711 with collimator matrix 1712 (eg. silicon nitride or pure silicon is suitable too, and aluminum respectively).
  • a reheat steam 1708 which mixed with the main flow of combustion gases, and mixture heated up to state of superheated steam.
  • Figure 17 illustrates an example of application of ULSIC-device in an apparatus of waste neutralization 1800, comprising of the chamber 1801 with inside coating that is a mosaic of zirconia-based ceramic 1802 and a set 1807 of the devices 1803, where 1804 is an adhesive.
  • the device 1803 converts heat energy of waste flux 1805 (i.e. hot gases, steams and/or liquids, where 1806 is an input) into a photon beam that is directed back to waste flux, and has a fine-tune to a specific energy of molecular bonds and atom-bond electrons. Photochemical degradation of a specific molecular and/or intra-atomic bonds creates conditions for a new bonding and chemical reactions, as required. As mentioned above, a fine-tune to a specific energy depends on Z target and characteristics of collimator matrix that defined on pre-design stage.
  • ULSICs plasma generator 1900 has a sealed housing and depending on the application it can be used in various corrosive environments 1904 (hot gases/plasma) and under different pressures, see Figure 18 . Installation of the device is carried out by means of adhesive and/or a special clip-clamping 1901 that does not violate the integrity of the surface to which the device is attached to (a wall 1902).
  • Figure 18 shows three possible positions (A, B, C) in relation to the burning or neutralizing reactor 1903.
  • Figure 19 illustrate exemplary embodiments, but the present inventions is not limited there to.
  • This schematic shows a design options of ULSIC devices, and relevant applications.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Claims (15)

  1. Le procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques, ledit procédé comprenant des étapes suivantes, caractérisées en ce que
    une étape (a), dans laquelle une partie de l'énergie thermique du caloporteur est convertie en une impulsion de faisceau de particules (CPB et NPB), ledit faisceau de particules est accéléré, polarisé, focalisé et renvoyé vers la zone du caloporteur,
    une étape (b), dans laquelle, dans une zone du caloporteur dans laquelle ledit faisceau de particules est dirigé avec ledit faisceau de particules, un plasma hors équilibre hautement excité est généré et chauffé pour l'initiation suivante de la réaction chimique plasmatique de type à chaîne ramifiée, dans laquelle, à l'état excité, le temps de rétention du plasma est la somme de la durée d'impulsion unique du faisceau de particules et du temps de relaxation du plasma jusqu'au début de la formation d'un gaz chaud à son état initial où, pendant ce temps, la forme de changement des paramètres du plasma suit en général la forme d'impulsion de l'intensité du faisceau de particules, et
    la répétition continuelle des étapes ci-dessus en convertissant une partie de l'énergie thermique du caloporteur en un faisceau de particules pour générer et chauffer du plasma de sorte que le processus de conversion d'énergie thermique en faisceau de particules devienne un processus oscillatoire autonome avec la rétroaction positive.
  2. Le procédé selon la revendication 1, caractérisé en ce que ledit faisceau de particules est un faisceau de particules chargées et/ou neutres dans lequel ledit faisceau de particules comprend de préférence principalement des électrons et des photons.
  3. Le dispositif de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques,
    où ledit dispositif est réalisé sous la forme d'un dispositif intégré à très grande échelle basé sur des cellules de compositions multicouches de différents diélectriques linéaires et non linéaires, métaux et semi-métaux sur une surface métal-céramique d'un boîtier de protection étanche agencé en relation avec une chambre de combustion, caractérisé en ce que
    dans ledit dispositif, une partie de l'énergie thermique du caloporteur est réglée pour être convertie en une impulsion de faisceau de particules (CPB et NPB), ledit faisceau de particules est réglé pour être accéléré, polarisé, focalisé et renvoyé vers la zone du caloporteur,
    dans une zone du caloporteur dans laquelle ledit faisceau de particules est réglé pour être dirigé avec ledit faisceau de particules, un plasma hautement excité hors équilibre est réglé pour être généré et chauffé pour l'initiation suivante de la réaction chimique plasmatique de type à chaîne ramifiée où, à l'état excité, le temps de rétention du plasma est la somme de la durée d'impulsion unique du faisceau de particules et du temps de relaxation du plasma jusqu'au début de la formation d'un gaz chaud à son état initial où, pendant ce temps, la forme de changement des paramètres du plasma suit en général la forme d'impulsion de l'intensité du faisceau de particules ; et
    une partie de l'énergie thermique du caloporteur est réglée pour être continuellement convertie en un faisceau de particules pour générer et chauffer du plasma de sorte que le processus de conversion d'énergie thermique en faisceau de particules devienne un processus oscillatoire autonome avec la rétroaction positive,
    ledit boîtier du dispositif comprenant :
    au moins une fenêtre de sortie du faisceau de particules en connexion avec la chambre de combustion,
    au moins une surface conductrice de chaleur pour l'échange de chaleur avec au moins un caloporteur,
    une cellule pour convertir l'énergie thermique d'un caloporteur (c'est-à-dire des gaz chauds) générée par la combustion d'un mélange de combustible et d'oxydant en un faisceau de particules à haute énergie,
    une cellule d'accélération, de polarisation, et de focalisation du faisceau de particules,
    une cellule d'accélération, de polarisation, de focalisation et de renvoie du faisceau de particules pour diriger le faisceau dans une zone de volume prédéterminée du caloporteur,
    une cellule de filtrage et de collimation du faisceau de particules de sortie,
    une cellule pour moduler le flux thermique d'entrée, et
    une cellule d'inertie thermique pour former une impulsion d'un flux thermique d'entrée.
  4. Le dispositif selon la revendication 3, caractérisé en ce que ladite fenêtre de faisceau de particules de sortie comprend au moins une cellule de filtrage et de collimation de faisceau de particules, ladite cellule comprenant à son tour au moins un ensemble de films métalliques multicouches, comprenant une couche de collimation de film épais et/ou une feuille contenant des micro-trous.
  5. Le dispositif selon la revendication 3, caractérisé en ce que ladite surface conductrice de chaleur comprend au moins une cellule d'inertie thermique qui à son tour comprend au moins un ensemble de structure métal-céramique multicouche.
  6. Le dispositif selon la revendication 5, caractérisé en ce que ladite cellule est en contact thermique avec au moins une cellule de modulation du flux thermique d'entrée, ladite cellule comprenant à son tour une structure multicouche métal-céramique comprenant un ensemble de ferroélectriques à effet électro-calorique et des couches minces ferroélectriques-pyroélectriques sur un substrat d'un pyroélectrique.
  7. Le dispositif selon la revendication 3, caractérisé en ce que ledit dispositif comprend au moins une cellule de conversion d'énergie thermique en faisceau de particules, ladite cellule ayant une structure interne verticalement pilier ou plane ou mixte.
  8. Le dispositif selon la revendication 7, caractérisé en ce que ladite cellule comprend au moins une cellule de modulation de flux thermique.
  9. Le dispositif selon la revendication 7, caractérisé en ce que ladite cellule comprend au moins un empilement multicouche de pyroélectriques, cibles d'émission, pré-accélérateur et polariseur de particules, réflecteurs multicouches, conducteurs et diélectriques.
  10. Le dispositif selon la revendication 9, caractérisé en ce que ledit dispositif comprend au moins un empilement pyroélectrique comprenant un réseau de matériaux uniques ou différents ayant des températures de transition de phase différentes pour élargir la plage de températures de fonctionnement et ayant différentes formes de surface, et avec différents matériaux de revêtement de surface.
  11. Le dispositif selon la revendication 9, caractérisé en ce que ledit pré-accélérateur et polariseur de particules comprend au moins un réseau d'empilements de matériaux pyroélectriques, et ayant différentes formes de surface, et avec différents matériaux de revêtement de surface.
  12. Le dispositif selon la revendication 9, caractérisé en ce que lesdits réflecteurs multicouches se présentent sous la forme de revêtements de surface et/ou de substrats diélectriques des éléments de structure.
  13. Le dispositif selon la revendication 3, caractérisé en ce que ledit dispositif comprend au moins une cellule d'accélération, de polarisation, et de focalisation du faisceau de particules dans un champ électrostatique tangentiel, ladite cellule étant constituée d'un réseau des empilements pyroélectriques.
  14. Le dispositif selon la revendication 3, caractérisé en ce que ledit dispositif comprend au moins une cellule d'accélération, de polarisation, de focalisation, et de renvoie du faisceau de particules dans des champs électrostatiques et magnétiques tangentiels, ladite cellule étant constituée d'un réseau composite d'empilements pyroélectriques et des matériaux magnétoélectriques/multiferroïques.
  15. Le dispositif selon la revendication 3, caractérisé en ce que ledit dispositif est d'une conception unique évolutive pour les puissances radiantes de sortie et les températures de fonctionnement différentes.
EP16182997.3A 2016-08-05 2016-08-05 Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci Active EP3280230B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16182997.3A EP3280230B1 (fr) 2016-08-05 2016-08-05 Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci
PCT/EP2017/069605 WO2018024808A1 (fr) 2016-08-05 2017-08-03 Procédé d'obtention d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif associé

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16182997.3A EP3280230B1 (fr) 2016-08-05 2016-08-05 Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci

Publications (2)

Publication Number Publication Date
EP3280230A1 EP3280230A1 (fr) 2018-02-07
EP3280230B1 true EP3280230B1 (fr) 2021-11-24

Family

ID=56615875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16182997.3A Active EP3280230B1 (fr) 2016-08-05 2016-08-05 Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci

Country Status (2)

Country Link
EP (1) EP3280230B1 (fr)
WO (1) WO2018024808A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3174027A1 (fr) * 2020-03-24 2021-09-30 Efenco Ou Catalyseur de plasma ceramique nanometrique pour stabiliser et faciliter la combustion a plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644877A (en) * 1984-01-23 1987-02-24 Pyroplasma International N.V. Plasma pyrolysis waste destruction
US20080226011A1 (en) * 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
WO2012030131A2 (fr) * 2010-08-30 2012-03-08 단국대학교 산학협력단 Appareil permettant de produire des neutrons de cristal pyroélectrique par chaleur radiante
US8512644B1 (en) * 2012-08-01 2013-08-20 Thomas C. Maganas System for transforming organic waste materials into thermal energy and electric power

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4242385A1 (de) * 1992-12-08 1994-06-09 Peter Dipl Ing Belle Die Direktwandlung der thermischen Energie eines künstlichen Plasmas, sowie die Wandlung der Strahlungsenergie der Sonne in Elektroenergie mittels des Plasmaelt-Generators
US5637962A (en) * 1995-06-09 1997-06-10 The Regents Of The University Of California Office Of Technology Transfer Plasma wake field XUV radiation source
EP1312247A2 (fr) 2000-07-05 2003-05-21 CRT Holdings, Inc. Reacteur a plasma a demarrage par rayonnement electromagnetique
DE10326424A1 (de) * 2003-06-10 2004-12-30 Solar Dynamics Gmbh Vorrichtung zur gezielten Beeinflussung von Wärmeübergängen
US20050019714A1 (en) 2003-07-24 2005-01-27 David Platts Plasma catalytic fuel injector for enhanced combustion
NZ597840A (en) 2009-08-07 2013-09-27 Univ California Apparatus for producing x-rays for use in imaging
US8723941B1 (en) 2010-06-29 2014-05-13 Bank Of America Corporation Handicap-accessible ATM
KR101241049B1 (ko) 2011-08-01 2013-03-15 주식회사 플라즈마트 플라즈마 발생 장치 및 플라즈마 발생 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644877A (en) * 1984-01-23 1987-02-24 Pyroplasma International N.V. Plasma pyrolysis waste destruction
US20080226011A1 (en) * 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
WO2012030131A2 (fr) * 2010-08-30 2012-03-08 단국대학교 산학협력단 Appareil permettant de produire des neutrons de cristal pyroélectrique par chaleur radiante
US8512644B1 (en) * 2012-08-01 2013-08-20 Thomas C. Maganas System for transforming organic waste materials into thermal energy and electric power

Also Published As

Publication number Publication date
EP3280230A1 (fr) 2018-02-07
WO2018024808A1 (fr) 2018-02-08

Similar Documents

Publication Publication Date Title
Renner et al. Challenges of x-ray spectroscopy in investigations of matter under extreme conditions
Carroll et al. Laser-produced plasmas
Hartemann et al. Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus
Brown et al. Three-dimensional time and frequency-domain theory of femtosecond x-ray pulse generation through Thomson scattering
Fortov Extreme States of Matter: on Earth and in the Cosmos
Hau-Riege High-intensity X-rays-interaction with matter: processes in plasmas, clusters, molecules and solids
Driver et al. First-principles simulations and shock Hugoniot calculations of warm dense neon
Tahir et al. Shock compression of condensed matter using intense beams of energetic heavy ions
McNeur et al. A miniaturized electron source based on dielectric laser accelerator operation at higher spatial harmonics and a nanotip photoemitter
Theobald et al. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition
Albert et al. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems
EP3280230B1 (fr) Procédé de production d'un plasma dans un caloporteur pour la stabilisation de la combustion et la neutralisation de produits toxiques et dispositif pour celui-ci
Nilson et al. Target-heating effects on the Kα1, 2-emission spectrum from solid targets heated by laser-generated hot electrons
Jiang et al. TJ cm− 3 high energy density plasma formation from intense laser-irradiated foam targets composed of disordered carbon nanowires
Holmlid Ultra-dense hydrogen H (0) as dark matter in the universe: new possibilities for the cosmological red-shift and the cosmic microwave background radiation
Rosmej et al. The hydrodynamic and radiative properties of low-density foams heated by X-rays
Akli et al. A novel zirconium Kα imager for high energy density physics research
Yates et al. Molecular physical chemistry for engineers
Scott et al. Fast electron beam measurements from relativistically intense, frequency-doubled laser–solid interactions
Sergueev et al. High-pressure nuclear inelastic scattering with backscattering monochromatization
Wu Neutron production from thermonuclear reactions in laser-generated plasmas
Wilke et al. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses
Hauer et al. Current new applications of laser plasmas
RU2802621C9 (ru) Наноразмерный керамический плазменный катализатор для стабилизации плазменного горения и способствования ему
RU2802621C1 (ru) Наноразмерный керамический плазменный катализатор для стабилизации плазменного горения и способствования ему

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180803

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EFENCO OUE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201201

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210406

INTG Intention to grant announced

Effective date: 20210421

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210614

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1450869

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016066516

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211124

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1450869

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220324

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016066516

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

26N No opposition filed

Effective date: 20220825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20230825

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20230821

Year of fee payment: 8

Ref country code: IE

Payment date: 20230818

Year of fee payment: 8

Ref country code: GB

Payment date: 20230822

Year of fee payment: 8

Ref country code: CH

Payment date: 20230902

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 8

Ref country code: DE

Payment date: 20230828

Year of fee payment: 8

Ref country code: BE

Payment date: 20230825

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MT

Payment date: 20230825

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211124